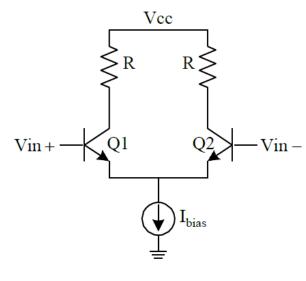
Referencia Bandgap: Básico

Sumario

- Introducción
- Referencia constante con temperatura
- Generador PTAT
- Fuente de corriente constante con VDD
- Ejemplo de diseño

Introducción

- Condiciones a satisfacer para una producción de IC
 - ✓ Funcionar con cambios de Vcc (variación de Alimentación):
 - Ej: Vcc: 2.7V→3.0V
 - ✓ Funcionar con cambios de Temp. (variación de Temperatura)
 - Ej: T: -25C→0→25C→75C
 - ✓ Funcionar con cambio de prop. físicas (variación de Proceso)
 - TBJs: β: ±30%
 - MOS: μ : $\pm 10\%$, V_{th} : $\pm 100 mV$
 - Resistencias: R: ±20%
 - Capacitores: C: ±5%
 - Inductores: L: ±1%
- Deben considerarse todas las posibles combinaciones de variación de alimentación (Vcc), temperatura (T) y proceso (P). Esto se conoce como PVT (proceso, voltaje y temperatura)


Introducción: Caso de Estudio

Variación de la ganancia de pequeña señal con PVT

- Variación de Alimentación: ganancia de baja frecuencia es casi insensible a las variaciones de Vcc (asumiendo Q en la región activa)
- Variación de Temperatura: gm cambia con la temperatura (decrece, suponiendo lco independiente de T) → ganancia dependiente de la temperatura

Solución: hacer lco = f(T), aumentando con la temperatura → ganancia insensible a l

 Variación de Proceso: en TBJs, V_T = KT/q es casi insensible a la variación del proceso (asumiendo que lco no varía con el proceso) → gm no varía con el proceso. Sin embargo la ganancia no es constante por la variación de las resistencias R

$$Gain = \frac{V_{out}}{V_{in}} = g_m R$$

$$g_{\rm m} = \frac{I_{\rm CQ}}{V_{\rm T}} = \frac{I_{\rm CQ}}{|KT|} \uparrow$$


Introducción: Caso de Estudio

Variación de la ganancia de pequeña señal con PVT

- Variación de Alimentación: ganancia de baja frecuencia es casi insensible a las variaciones de Vcc (asumiendo Q en la región activa)
- Variación de Temperatura y Proceso:
 Manteniendo R/Rs constante → la ganancia de baja frecuencia se mantiene constante.

 Esto puede lograrse usando:
 - Resistencias R, Rs del mismo tipo.
 - Buenas prácticas de layout para alcanzar un mejor "matching" de componentes.

$$Gain = \frac{V_{out}}{V_{in}} \approx \frac{R}{Rs}$$

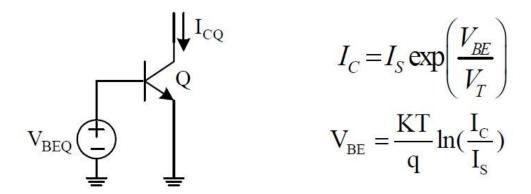
Referencia de tensión BANDGAP

Idea clave: sumar dos cantidades con coeficiente de temperatura opuestos y apropiadamente escalados → la cantidad resultante exhibe coeficiente de temperatura nulo.

Ej: V1 y V2 tienen dependencia opuesta con la temperatura, si se elijen los coeficientes de manera tal que:

$$\begin{aligned} V_{ref} &= c_1 V_1 + c_2 V_2 \\ \frac{\partial V_{ref}}{\partial T} &= c_1 \frac{\partial V_1}{\partial T} + c_2 \frac{\partial V_2}{\partial T} = 0 \\ &\Rightarrow \text{if } c_1, c_2 > 0 \Rightarrow \begin{cases} \frac{\partial V_1}{\partial T} < 0 : \text{ NTC} \\ \frac{\partial V_2}{\partial T} > 0 : \text{ PTC} \end{cases} \end{aligned}$$

Entonces, la referencia de tensión Vref tiene coeficiente de temperatura nulo.



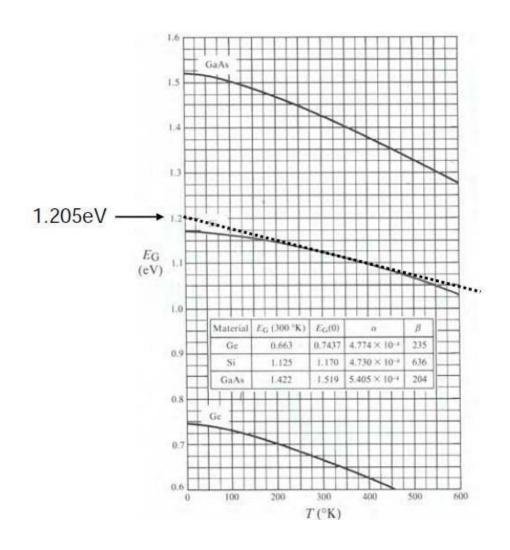
Referencia de tensión BANDGAP

- Objetivo: diseñar una referencia de tensión fija de cc que no varíe con la temperatura.
 - Muy útil en circuitos que requieren una referencia estable de temperatura. Ej: ADC/DAC
- Las características de los TBJs permiten obtener coeficientes de temperatura tanto positivos como negativos.
- kT/q tiene coeficiente de temperatura positivo
 - "PTAT" proporcional a la temperatura absoluta.
- VBE de un TBJ disminuye con la temperatura.
 - "CTAT" complementario a la temperatura absoluta.
- Se pueden combinar PTAT + CTAT para dar una referencia de tensión con coeficiente de temperatura (TC) <u>aproximadamente</u> nulo.

Comportamiento térmico del TBJ

Aún cuando KT/q aumenta con la temperatura, VBE disminuye con la temperatura porque ls depende fuertemente de ella.

$$V_{BE} \cong rac{kT}{q} ln \left(rac{I_C}{I_o} e^{V_{GO}/(kT/q)}
ight)$$

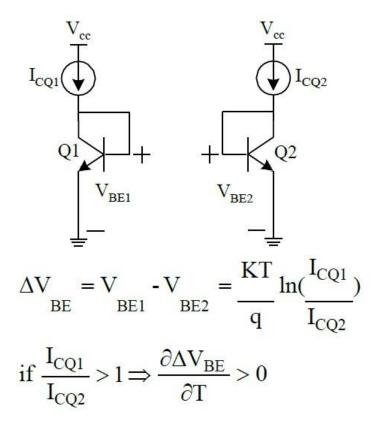

$$\cong V_{GO} - rac{kT}{q} ln \left(rac{I_O}{I_C}
ight)$$

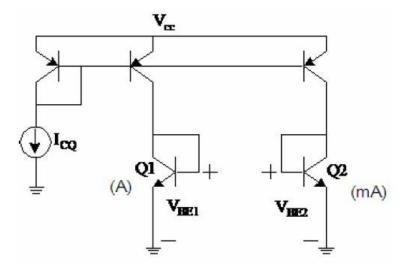
Asumiendo que que tanto lo como la son constantes con la T:

$$\frac{dV_{BE}}{dt} \cong -\frac{k}{q} ln \left(\frac{I_0}{I_C}\right) = \frac{V_{BE} - V_{G0}}{T}$$

V_{G0} es la tensión de bandgap del silicio "extrapolada a 0" Kelvin"

Bandgap Extrapolado

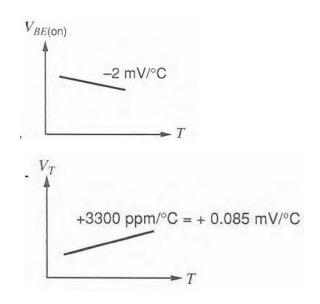

[Pierret, Advance Semiconductor Fundamentals, p.85]

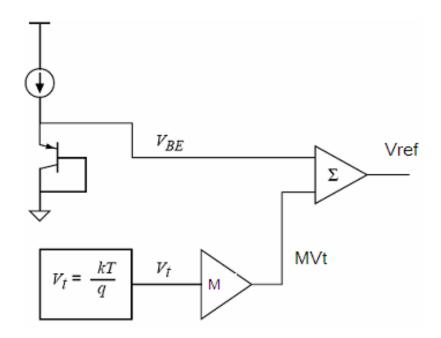

$$V_{G0} = \frac{1.205 eV}{q} = 1.205V$$

Generador PTAT

- Amplificar la diferencia en V_{BE} de dos TBJs → término PTAT
- Se pueden obtener diferentes voltajes V_{BE} por:
 - Aplicar distintas Ico
 - Usar dos TBJs con distintas áreas pero igual Ico

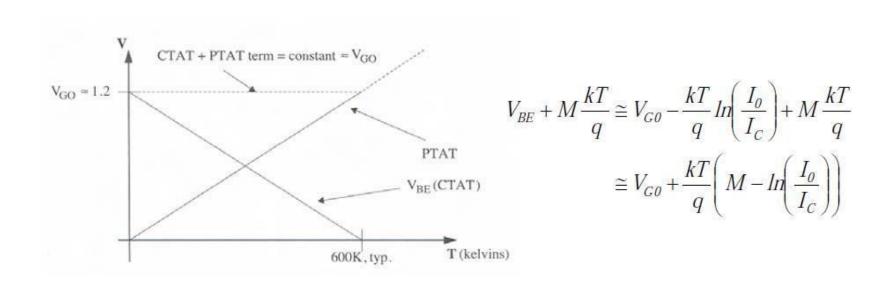
$$V_{\text{BEQ1}} = \frac{KT}{q} ln(\frac{I_{\text{CQ}}}{\alpha A}) \; , \; V_{\text{BEQ2}} = \frac{KT}{q} ln(\frac{I_{\text{CQ}}}{\alpha m A})$$


$$\Delta V_{BEQ} = V_{BEQ1} - V_{BEQ2} = \frac{KT}{q} ln(m)$$

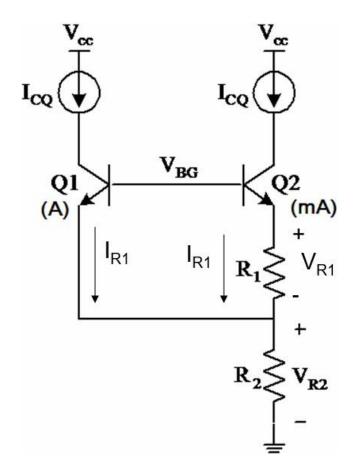


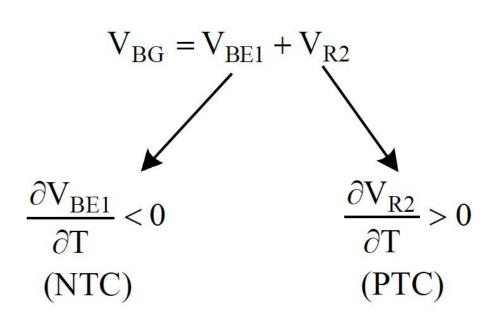
Referencia de tensión Bandgap

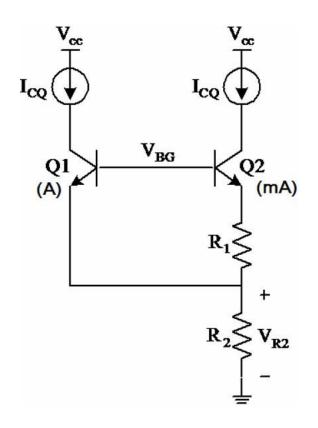
- Generar PTAT y su complemento CTAT y sumarlos apropiadamente.
 - VBE tiene un CTAT de aproximadamente -2.2 mV/°C a temperatura ambiente.
 - $ightharpoonup V_t = kT/q$ tiene un PTAT de +0.085 mV/°C a temperatura ambiente.
- Multiplicar V_t por una constante M y sumarla a V_{BE} para obtener:


$$V_{REF} = V_{BE} + MV_{t}$$

Referencia de tensión Bandgap

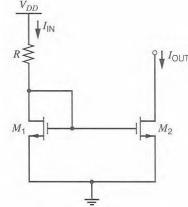

Combinando V_{BE} y una versión escalada de kT/q se obtiene un voltaje independiente de la temperatura igual a V_{G0}

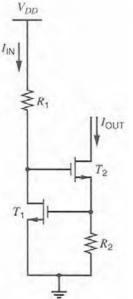

Generador PTAT


¿Cómo generamos un voltaje que es la diferencia de dos V_{BE}?

$$\begin{split} V_{_{BE1}} = & \frac{KT}{q} \ln(\frac{I_{_{CQ}}}{\alpha A}) , V_{_{BE2}} = \frac{KT}{q} \ln(\frac{I_{_{CQ}}}{\alpha m A}) \\ V_{_{R1}} = & \Delta V_{_{BE}} = V_{_{BE1}} \text{-}V_{_{BE2}} = \frac{KT}{q} \ln(m) \\ I_{_{R1}} = & \frac{V_{_{R1}}}{R_{_{1}}} = \frac{V_{_{t}}}{R_{_{1}}} \ln(m) \\ V_{_{R2}} = & 2R_{_{2}}I_{_{R1}} = \frac{2R_{_{2}}}{R_{_{1}}} V_{_{t}} \ln(m) \\ \Rightarrow & \frac{\partial V_{_{R2}}}{\partial T} = \frac{2R_{_{2}}}{R_{_{1}}} \frac{K}{q} \ln(m) > 0 ; PTC! \end{split}$$

Referencia de tensión Bandgap

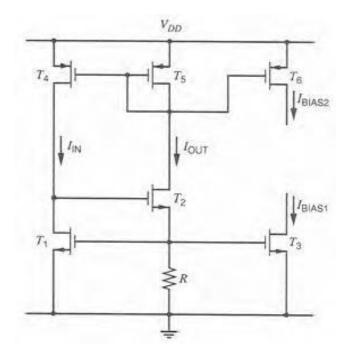

Fuente de corriente independiente de VDD


- ¿Cómo generamos las corrientes de polarización Icq?
 - > Fuente espejo convencional:
 - La corriente es proporcional a V_{DD}
 - Ej: Si V_{DD} varía en x%, la corriente de polarización variará en la misma cantidad.
 - ➤ Fuente de corriente independiente de V_{DD}

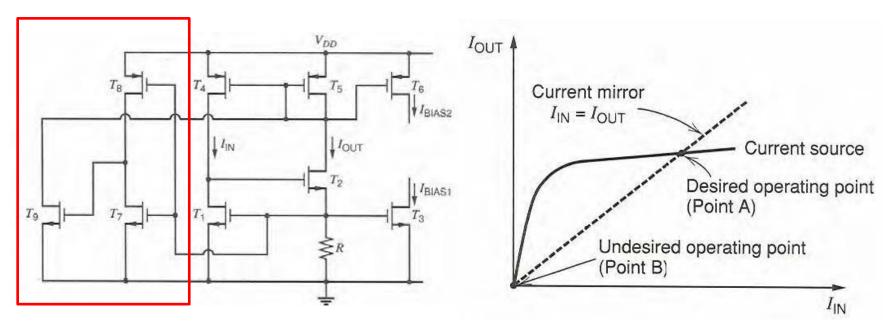
$$I_{OUT} = \frac{V_{GS1}}{R_2} \cong \frac{V_t + V_{OV}}{R_2} \cong \frac{V_t + V_{OV}}{R_2} \cong \frac{V_t + \sqrt{\frac{2I_{IN}}{\mu C_{ox}} \frac{W}{L}}}{R_2}$$

Usando un dispositivo con ancho W suficiente podemos hacer $V_{ov} << V_{t}$ y llegar a:

$$I_{OUT} \cong \frac{V_t}{R_2}$$

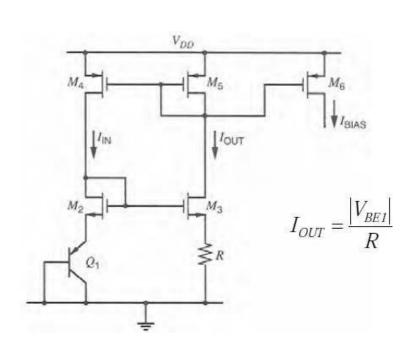


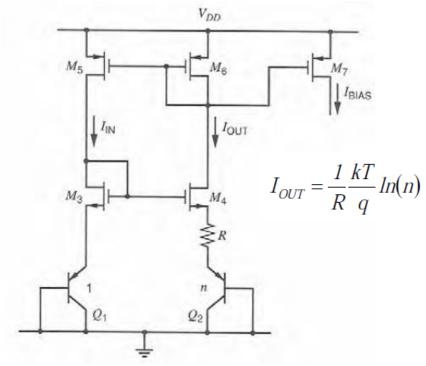
Fuente de corriente independiente de VDD


- Los circuitos de polarización vistos son altamente dependientes de la alimentación porque I_{IN} es directamente proporcional a V_{DD}
- Nueva Idea: Reinyectar la corriente espejo de salida en la entrada en lugar de usar una corriente de entrada dependiente de V_{DD}

Circuito de Start-up

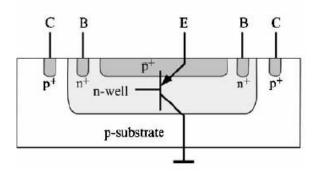
Start-up




Existe un punto de operación con todas las corrientes igual a 0

Para resolver este problema usamos un circuito de start-up

Generación de corriente PTAT



- ✓ Solo tenemos una variable (R) para fijar louт
- ✓ Tenemos dos variables (R, n) para fijar lout

Bandgap CMOS con TBJs PNP en substrato

- En tecnología CMOS donde no tenemos transistores bipolares se usan los transistores bipolares parásitos.
- También se han utilizado referencias PTAT como diferencia de tensiones source-gate de dos MOS polarizados con corrientes en la zona de inversión débil.

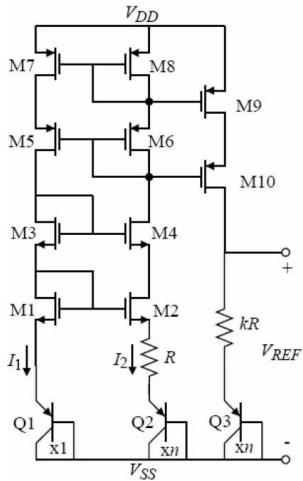
Transistor PNP "parásito" disponible en el substrato de cualquier tecnología CMOS

Bandgap CMOS con TBJs PNP en substrato

Funcionamiento:

El espejo Cascode (M5-M6-M7-M8) hace que las corrientes en Q1, Q2 y Q3 sean iguales.

$$VBE1 = I_2R + VBE2$$

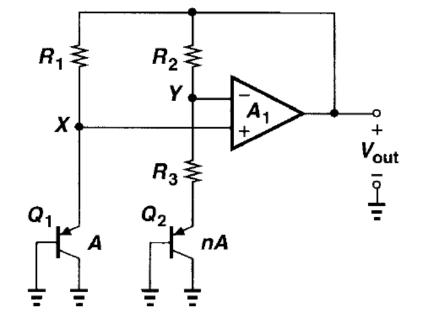

$$VREF = VBE3 + I_2(kR) = VBE3 + kVt \cdot \ln(n)$$

$$I_2 = \frac{Vt}{R} \ln(n)$$

Usamos k y n para diseñar el valor de M = k ln(n) (n es entero >1)

Desventaja:

La principal limitación del cascode es que incrementa la mínima tensión de alimentación requerida para que todos los transistores funcionen en la región activa

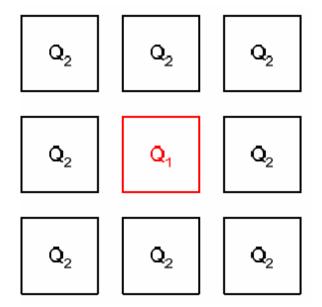


Ejemplo de Diseño

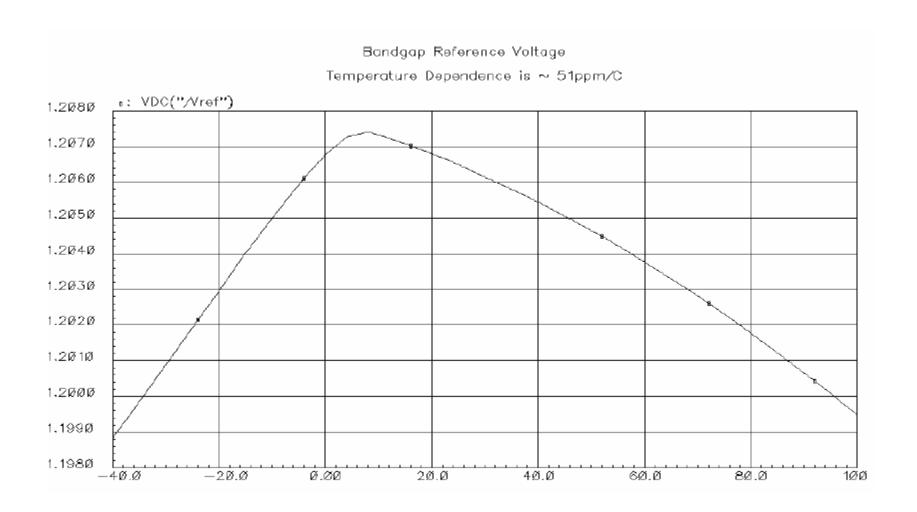
Especificaciones:

Alimentación 5V Proceso CMOS 0.5μm TC < 60 ppm/°C

$$\begin{split} &V_{X} = V_{Y}, \, R_{1} = R_{2}, \, A_{EQ2} = n A_{EQ1} \\ &\Rightarrow \frac{J_{C2}}{J_{C1}} = \frac{1}{n}; \, V_{out} = V_{EB2} + V_{R2} + V_{R3}; \\ &V_{R3} = V_{EB1} - V_{EB2} = \Delta V_{EB} = V_{T} \ln(n) \\ &V_{R2} = R_{2} I_{R2} = R_{2} \frac{V_{R3}}{R_{3}} = \frac{R_{2}}{R_{3}} V_{T} \ln(n) \\ &\Rightarrow V_{out} = V_{EB2} + \left(1 + \frac{R_{2}}{R_{3}}\right) V_{T} \ln(n) \end{split}$$



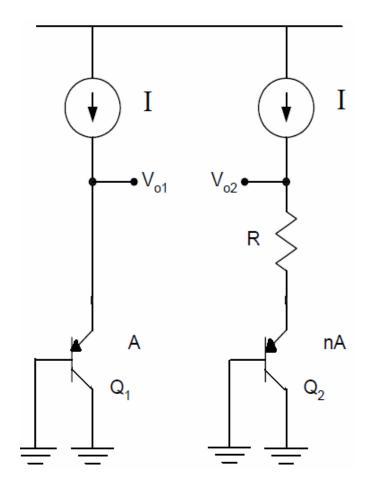
Elección de n


En general se elije: $n = entero^2 - 1$ ej: n=8

Layout:

✓ La disposición es robusta frente a los gradientes de temperatura

Resultado Simulación



Resumen

Como diseñar una Bandgap

- 1. Generar dos corrientes para polarizar los transistores.
- 2. Agregar un mecanismo que haga $V_{o1} = V_{o2}$
- 3. Agregar un factor de escala que produzca una salida con TC=0
- 4. Circuito de start-up

Listo!!!

Referencias

- R. J. Widlar, "New developments in IC voltage regulators," IEEE J. Solid-State Circuits, pp. 2-7, Feb.1971.
- P. Brokaw, "A simple three-terminal IC bandgap reference," IEEE J. Solid-State Circuits, pp. 388-393,Dec. 1974.
- Design of Analog Integrated Circuits, Behzad Razavi.
- Analysis and Design of Analog Integrated Circuits, P.R.Gray, P. Hurst

