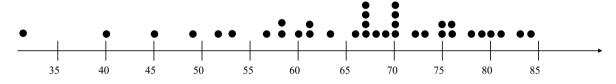
Respuestas Trabajo Práctico 1. Estadística Descriptiva

Ej. 1. Cada gráfica presentada subraya mejor un determinado mensaje. No hay respuestas que estén bien o mal. Son subjetivas, pero lo importante es detenerse a pensar en ello.

Ej. 2. Porcentajes que representan los gráficos:


3	G1: % de	G2: % de	G3: % de	G4∙ % de	G5: % de	G6∙ % de
	ventas	activos	utilidades	muertes	volumen	impuestos
a	5	37	58	7	7	5
b	7	31	32	6	15	7
c	11	10	3	17	18	11
d	24	14	4	16	25	24
e	53	8	3	54	35	53

Ej. 4. a)

	Media	Mediana	Moda	Dispersión
CI {1; 2; 3; 4; 5; 6}	3,50	3,50		1,87
CII {1; 1; 1;6; 6; 6}	3,50	3,50	1 y 6	2,74
CIII {-13; 2; 3;4;5;20}	3,50	3,50		10,48

b) i. n=36; $x_{min}=31$; $x_{MAX}=84$; **ii.** $\bar{x}=65,86$; media recortada al 10% (2 datos de cada extremo recortados) 66,66; **iii.** s=12,16; **iv.** $q_1=59$; $q_2=67,5$; $q_3=75$; $q_4=84$; **v.** $\cong 28\%$; **vi.** $\cong 69\%$; $\cong 94\%$.

31 40 45 49 52 53 57 58 58 60 61 61 63 66 67 67 67 67 68 69 70 70 70 70 72 73 75 76 76 78 79 80 81 83 84,

d) Tabla que da el Excel

Desvío estándar $s = \sqrt{s^2}$. Error típico $\frac{s}{\sqrt{n}}$.

Coef. de asimetría
$$\gamma = \frac{n}{(n-1)(n-2)s^3} \sum_{i=1}^{n} (x_i - \overline{x})^3$$
.

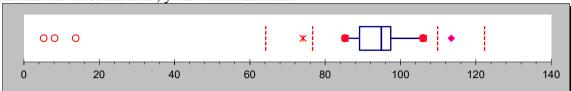
Medida de la asimetría de una distribución con respecto a su dispersión. Mayor, menor o igual a cero indican, respectivamente, simetría positivo (sesgo positivo), negativo o simétrica. (Si tiene un sólo pico).

$$\kappa = \left[\frac{n(n+1)}{(n-1)(n-2)(n-3)s^4} \sum_{i=1}^n (x_i - \overline{x})^4 \right] - 3 \frac{(n-1)^2}{(n-2)(n-3)} :$$

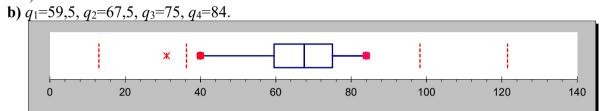
Medida de qué tan puntiaguda es una distribución.

Media	65,8611111
Error típico	2,02647273
Mediana	67,5
Moda	67
Desviación estándar	12,1588364
Varianza de la muestra	147,837302
Curtosis	0,84318992
Coeficiente de asimetría	-0,91814993
Rango	53
Mínimo	31
Máximo	84
Suma	2371
Cuenta	36

Si es mayor a 3 presenta un pico relativamente alto y recibe el nombre de leptocúrtica; si es menor a 3, la distribución es relativamente plana y recibe el nombre de platocúrtica; si es igual a 3, el pico de la distribución no es muy alto ni muy bajo y recibe el nombre de mesocúrtica. (Si tiene un sólo pico).

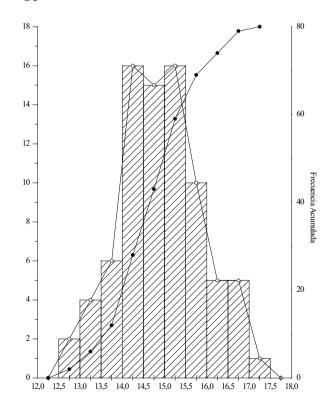

Ej. 5. Conjunto de datos $x_1, x_2, ..., x_n$ donde $x_i \in \mathbb{R}$ con i=1, 2, ..., n.

a)
$$c = \overline{x}$$
; **c)** $\overline{y} = a\overline{x} + b$, $\widetilde{y} = a\widetilde{x} + b$, $s_y^2 = a^2 s_x^2$, $s_y = |a| s_x$;


d)
$$\bar{c} = \frac{5}{9} (\bar{f} - 32) = \frac{5}{9} (65,86 - 32) \cong 18,81C$$
; $s_c = \frac{5}{9} s_f = \frac{5}{9} (12,16) \cong 6,76C$.

Ej. 6. a) Las cantidades importantes son \tilde{x} =94,8; q_1 =90,2; q_3 =96,7; f_s =6,5; 1,5 f_s =9,75; 3 f_s =19,50. Cualquier observación menor que 90,2–9,75=80,45 o mayor que 96,7+9,75=106,45 es un valor atípico. Hay un valor de ese tipo en el extremo superior de la muestra y cuatro en el extremo inferior. Como 90,2–19,5=70,7, las tres observaciones 5,3, 8,2 y 13,8 son valores extremos; los otros dos son valores son moderados. Los bigotes se prolongan hasta 85,3 y hasta 106,0, valores más alejados que no son

atípicos. Del diagrama de caja resultante se puede observar que hay mucha asimetría negativa en la mitad intermedia de la muestra, y en toda la muestra.



 $\bar{x} = 84,86$; media recortada al 10% (1 dato de cada extremo) 87,07 (difieren en el orden del 3% ambas medias).

Ej. 8. Por ejemplo, se puede proponer un diagrama de tallo y hoja (pero es válido cualquier otro):

Frecuencia	Tallo	Hoja
2	12	68
10	13	3 1 7 3 7 4 6 9 7 8
31	14	5 3 8 5 6 1 3 6 3 9 5 1 8 9 8 0 1 8 3 3 2 9 4 6 2 9 3 4 0 4 5
25	15	3 3 2 5 4 2 2 3 6 8 4 2 2 9 1 8 1 2 2 7 3 6 2 6 6
11	16	18549940116
1	17	0
80	_	

Mínimo = 12,6 Máximo = 17,0 Rango = 17,0 - 12,5 = 4,4 Media = 14,8988 Mediana: 14,9

Moda: 15,2