UTN FRH- FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA - 17 de diciembre de 2015

Alumno:	Especialidad:
Profesor con quien cursó la asignatura:	Año de Cursada:

Ejercicio	1		2		3		4		Calificación		
Corrector	a	b	a	b	c	a	b	c	a	b	

Calificación final:

Ejercicio 1. En \mathbb{R}^3 se consideran las rectas $r = \begin{cases} x+z=1 \\ \alpha x+y+z=0 \end{cases}$ y $s = \begin{cases} 2\alpha x+y+z=1 \\ x+y+z+2=0 \end{cases}$, y sea π el segundo plano que define a s.

- a) Hallar α de manera que r y s resulten perpendiculares.
- **b)** Analizar la intersección de la recta r y el plano π para los distintos valores reales de α , identificando geométricamente el conjunto intersección en cada caso.

Ejercicio 2. Determinar el valor de cada una de las siguientes afirmaciones. Si es verdadera demostrarla, mencionando las propiedades utilizadas y si es falsa proponer un contraejemplo o justificarlo claramente.

- a) Si A y S son dos matrices cuadradas de orden n, siendo S simétrica entonces $A^T \cdot S \cdot A$ es una matriz simétrica.
- b) Sea $A \cdot X = B$ la forma matricial de un sistema de ecuaciones lineales inhomogéneo, donde $A \in \mathbf{R}^{n \times n}, X \in \mathbf{R}^{n \times 1}, B \in \mathbf{R}^{n \times 1}$. Si $\det(A) = 0$ entonces el sistema resulta incompatible.
- c) Sea $f: \mathbf{R}^{\mathbf{n}} \to \mathbf{R}^{\mathbf{n}}$ una transformación lineal con matriz asociada A. Si \vec{v}_1 y \vec{v}_2 son autovectores de f asociados a autovalores reales distintos λ_1 y λ_2 , respectivamente, entonces el vector $(\vec{v}_1 + \vec{v}_2)$ es autovector asociado a la matriz A, con autovalor igual a $(\lambda_1 + \lambda_2)$.

Ejercicio 3. Sea la transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que a cada vector del espacio $\vec{x} = (x, y, z)$ le hace corresponder su proyección ortogonal sobre el plano $\pi: x + y = 0$.

- a) Hallar la forma explícita de f y su matriz asociada en la base canónica.
- **b)** Demostrar que f es una transformación lineal.
- c) Describir geométricamente cuáles son los subespacios imagen de f y núcleo de f.

Ejercicio 4. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal cuya matriz asociada en la base canónica es A:

$$A = \begin{pmatrix} 1 & -\alpha & \alpha \\ 1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

- a) Obtener los autovalores de A.
- b) Hallar los subespacios de autovectores de f, en función de $\alpha \in \mathbb{R}$, y estudiar si f es diagonalizable.