Alumno: Especialidad:

Profesor con quien cursó: Mes y año de firma TP.

Totesor con quien curso												• • • • • • • • • • • • • • • • • • • •
	Ejercicio 1			2			3				Calificación	
-	Corrector	a	b	c	a	b	С	a	b	c	d	final
			·					·	·			

Calificación Final:

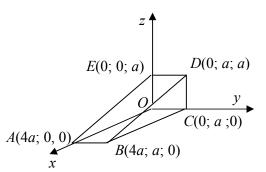
Ejercicio: 1

El prisma con vértices en *OABCDE*, es como se muestra en la figura.

D es un punto del plano: (y; z).

B es un punto del plano (x; y).

- a) Escribir la ecuación normal para el plano π , que contiene a los puntos A, B, D y E.
- b) Calcular el área del paralelogramo que tiene por vértices a los puntos: A, B, D y E.
- c) Determinar las coordenadas del punto Q(x; y; z), simétrico del punto P(a; 0; 0), respecto del plano π .



Ejercicio: 2

Dada la matriz: $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, analizar el valor de verdad de cada una de las siguientes

proposiciones. Si resulta verdadera, demostrarla y si es falsa, realizar un ejemplo donde no se cumple.

- a) $\forall n \in \mathbb{N} : A^n = A$.
- **b)** A no tiene inversa.
- c) Los autovalores de la matriz A son: $\lambda_1 = \lambda_2 = \lambda_3 = 1$.

Ejercicio: 3

Dado
$$S = \{(x; y; z) \in \mathbb{R}^3 / x - y - z = 0\}$$
:

- a) Probar que S es subespacio de ${\bf R}^3$. Interpretar geométricamente a S.
- **b)** Hallar una base ortogonal para S, $B_S = \{\overrightarrow{v_1}, \overrightarrow{v_2}\}$.
- c) Si $f: \mathbb{R}^3 \to \mathbb{R}^3$, es tal que $f(\vec{x}) = proy_S \vec{x} = \langle \vec{x}, \vec{v_1} \rangle \vec{v_1} + \langle \vec{x}, \vec{v_2} \rangle \vec{v_2}$, demostrar que $f(\vec{x})$, es transformación lineal.
- d) Interpretar geométricamente los subespacios de autovectores de f, indicando en cada caso sus correspondientes autovalores.

CONDICIÓN DE APROBACIÓN: TENER BIEN AL MENOS LA MITAD DE CADA EJERCICIO