Alumno: Especialidad:

Profesor con quien cursó:..... Mes y año de firma TP:

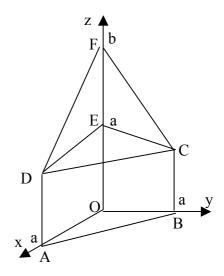
Ejercicio	1				2	3			4		Calificación
Corrector	a	b	c	d		a	b	c	a	b	final
	-										

Calificación Final:

Ejercicio 1.

Los prismas con vértices en OABCDE y OABCFD, son tales como lo muestra la figura de análisis. Se sabe que D es un punto del plano (x;z) y C un punto del plano (y;z); $a \in \mathbb{R}_{>0}$, b=2a.

- a) Escribir las ecuaciones del plano α , que contiene a los puntos B, D y F, y del plano β , que contiene a los puntos D, C y E.
- b) Determinar la intersección de los planos α y β .
- c) Calcular las distancias del punto A, a los planos α y β , respectivamente.
- d) Hallar la forma explícita y la expresión matricial de una transformación lineal que al aplicarla al trapecio OADF, lo transforme en el trapecio OBCF.



Ejercicio 2.

Dadas las matrices: A, B, C y E de orden tres, tales que: $E \cdot A = B \wedge C = A \cdot E^T y$ la fila 1 de B es igual a la fila 2 de A, la fila 2 de B es igual a la fila 3 de A y la fila 3 de B se obtiene sumando las fila 1 y 2 de A. ¿Qué relación existe entre las columnas de C y las columnas de A?

Ejercicio 3.

En
$$\mathbf{R}^3$$
, se define el subespacio: $S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{R}^3 / \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \forall \alpha \in \mathbf{R} \land \forall \beta \in \mathbf{R} \right\}$

- a) Interpretar geométricamente a S y obtener una base ortonornal para dicho subespacio.
- b) Encontrar el subespacio ortogonal a $S\left(S^{\perp}\right)$, una base ortonormal para el mismo, indicando su dimensión e interpretación geométrica.
- c) Si una matriz A, tiene por columnas a los vectores de las bases ortonormales de S y S^{\perp} , ¿Qué tipo de matriz se obtiene? ¿Cuál es su inversa?

Ejercicio 4.

Sea la transformación lineal
$$f: \mathbf{R}^{2x2} \to \mathbf{R}^{2x2} / f(X) = A \cdot X - X \cdot A^T$$
, con $A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$.

- a) Determinar el conjunto de las matrices X que resulten invariantes mediante f.
- b) Verificar que $f(A) = -2 A^T$.