INTEGRALES IMPROPIAS
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Para el calculo de la integral definida, hemos exigido que la funcién f
sea continua y acotada en el intervalo [a,b].

Si eliminara alguna de estas condiciones, se puede generalizar la idea
de integral definida mediante las llamadas:

INTEGRALES
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a) Impropia de 1° especie
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Si al calcular el limite

v’ L es finito, la integral es

v’ L es infinito, la integral es divergente

v Si el limite no existe la integral es oscilante




Ejemplos
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La integral converge a 1/e

Como f(x) > 0 el resultado obtenido es el area bajo
la curva.
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La integral diverge.

f(x)=x*
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j e*dx = lim | e*dx = thr_n (eM)|? —tln_n (e’ +ef) =1-0=1
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Como f(x) > 0 el resultado obtenido es el area bajo la curva.
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La integral converge a it
En este caso también es el area bajo la curva el resultado obtenido



b) Impropia de 2° especie

v’ La funcién tiene una DISCONTINUIDAD en el extremo del intervalo o en un punto

interior a él
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a) b)

La discontinuidad esta en a La discontinuidad esta en b
b b )
| reodx = tim||"reeax) f fGdx = lim|| fxd
F(t) F(t)
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Si el limite existe y es finito la integral impropia converge, si es infinito
diverge y si no existe oscila.



c)

La discontinuidad esta en x = ¢, punto interior del intervalo [a,b]

Lbf(x)dx = L

Si ambos limites convergen la integral impropia converge, si por lo menos uno de los
limites es infinito la integral diverge y si por lo menos uno de los dos no existe oscila.
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4 Converge

No representa el area bajo la curva
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8-30) Resolver las siguientes integrales impropias e indique si
son convergentes o divergentes

a)f+OO dx .
0o X*+1

b dx

lim = i — 1 _ T CONVERGE
p+oo ), x2 4+ 1 b1_1)r+nooa7"Ctg x| 0 bl_lgloo(arctg b —arctg 0) =3




+°°dx + oo

— = f x73 dx

X 2

b - x%lb
X de:bl—l>r-l¥loo—_22 B
2

1 1\,
202\ 2-22)) T poree




e) | 1
f—oo (1 _ x)Z 4=

° 1
a1—1>r—noo (1 — X)Z dx =

a
B a—1>r—noo 1—x

0
a

0
= lim (1—@)
a——oo

~ 1  converee

Sustitucion:
t=1—x
dt = —dx
—dt = dx
L ix= Jt_zdt
A-x2 7
t—1 _1_ 1
=___1 _?_ 1—x




EJ-8-31

1
Hallar el area situada a la derecha de x = 3 y limitada por la curva de ecuacion z—7 yelejex.
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8-32) Hallar el area limitada por la curva de ecuacion y = yon.
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