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Prefacio

— Para el instructor

Filosofia

En esta serie de Matemdticas he intentado preservar intacto mi objetivo original de compilar un
texto de cdlculo que no sea s6lo una coleccién de definiciones y teoremas, habilidades y férmu-
las para memorizar, asi como problemas para resolver, sino un material que se comunique con
sus lectores mds importantes: los estudiantes. Deseo que estos cambios hagan mds relevante e
interesante el texto tanto para el estudiante como para el profesor.

Caracteristicas de esta obra

Secciones y ejercicios El material que se ha seleccionado para esta serie es actual. Los conjun-
tos de ejercicios se han organizado en problemas que requieren el uso de calculadora y compu-
tadora, problemas conceptuales y problemas de proyectos. En su mayorfa, las aplicaciones con-
sideradas pertenecen al dmbito de la “vida real” en el sentido de que se han investigado
exhaustivamente usando fuentes originales. También se han incluido problemas relacionados con
la interpretacion de gréaficas. Ademads, se ha hecho énfasis en las funciones trigonométricas tanto
en los ejemplos como en los conjuntos de ejercicios a lo largo del texto. La serie completa (Mate-
mdticas 1, Matemdticas 2 'y Matemdticas 3) contiene mds de 7 300 problemas.

Como ayuda en la asignacién de problemas, cada conjunto de ejercicios esta dividido clara-
mente en grupos de problemas identificados con titulos como Fundamentos, Aplicaciones, Mode-
los matemdticos, Proyectos, Problemas con calculadora/SAC, etcétera. Creo que la mayoria de
los titulos son autosuficientes, de modo que los problemas que aparecen bajo el encabezado Pien-
se en ello tratan aspectos conceptuales del material cubierto en esa seccion y son idéneos como
tareas o para discutir en clase. En el texto no se proporciona respuesta alguna para estos proble-
mas. Algunos estdn identificados como Cldsicos matemdticos y reflejan el hecho de que han
existido durante largo tiempo, aparecen en la mayor parte de los textos o presentan algtin deta-
lle interesante, mientras que otros problemas identificados como Un poco de historia muestran
algtin aspecto histdrico.

Una caracteristica sobresaliente de Matemdticas 1, Cdlculo diferencial, es que se estudian
los conceptos sobre los que se construye todo el cdlculo: niimeros reales, variable, funcién, limi-
te y derivada, lo que permite analizar razones de cambio entre dos variables, nocién de trascen-
dental importancia en las aplicaciones de la ingenierfa.

Esta asignatura contiene los conceptos bdsicos y esenciales para cualquier drea de la inge-
nierfa y contribuye a desarrollar en el estudiante un pensamiento formal y heuristico que le per-
mitird modelar fenémenos y resolver problemas.

En los apéndices se proporciona material de gran utilidad para los diferentes cursos. Al final
de las secciones correspondientes aparecen esbozos biograficos de algunos matematicos que han
impactado de manera importante el desarrollo del calculo bajo la rdbrica de Posdata: Un poco
de historia.

Caracteristicas especiales Cada unidad empieza con una introduccién al material referido y
con las competencias especificas de esa unidad. En la parte final del libro el lector encontrard la
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seccién Formulas matemdticas, que constituye una revisiéon compacta de conceptos basicos de
dlgebra, geometria, trigonometria y cdlculo: las leyes de los exponentes, férmulas de factoriza-
cién, desarrollos binomiales, tridngulo de Pascal, formulas de geometria, graficas y funciones,
funciones trigonométricas, funciones exponenciales y logaritmicas, y férmulas de diferenciacién
e integracion.

La seccién denominada Evaluacion diagnostica consta de 56 reactivos sobre cuatro amplias
areas de precdlculo en matemadticas. Esta evaluacion intenta alentar a los estudiantes a revisar por
si mismos algunos de los temas de prerrequisito esenciales, como valores absolutos, plano carte-
siano, ecuaciones de rectas, circulos, etc., que se aplican a lo largo del texto. En la seccién de res-
puestas se proporcionan las soluciones a todos estos reactivos.

Cada unidad incluye la seccién Notas desde el aula. Se pretende que estas notas sean un
andlisis informal dirigido directamente al estudiante. Este andlisis varia desde advertencias sobre
errores algebraicos, de procedimiento y de notacién comunes, pasando por la interpretacion errd-
nea de teoremas y consejos, hasta preguntas que piden al estudiante pensar en el tema y ampliar
las ideas recién presentadas.

Asimismo, esta obra contiene un considerable nimero de notas al margen y anotaciones de
orientacion en los ejemplos.

Figuras, definiciones, teoremas Debido a la gran cantidad de figuras, definiciones y teoremas
que hay en este texto, se ha adoptado un sistema de numeracién doble decimal. Por ejemplo, la
interpretacién de “figura 1.2.3” es

Unidad Seccion de la unidad 1

1.2.3 « Tercera figura de la seccién 1.2

Considero que este tipo de numeracion facilita encontrar, por ejemplo, un teorema o una figura
a la que se hace referencia en una seccién o en una unidad posterior. Ademas, para relacionar
mejor una figura con el texto, la primera referencia textual a cada figura aparece con el mismo
estilo y color de letra que el nimero de la figura. Por ejemplo, la primera referencia a la prime-
ra figura en la seccion 3.5 se proporciona como FIGURA 35.1, y todas las referencias subsecuentes
se escriben en el estilo tradicional de la figura 3.5.1. También, en esta obra cada figura en el texto
presenta un breve subtitulo explicatorio.

Materiales de apoyo

Esta obra cuenta con interesantes complementos para fortalecer los procesos de ensenanza-apren-
dizaje y su evaluacién, y se otorgan a profesores que adoptan este texto para sus cursos. Para
obtener mas informacién respecto de estos materiales, contacte a su representante McGraw-Hill.

= Para el estudiante

Usted se ha matriculado en uno de los cursos mds interesantes de matemdticas. Hace muchos
afios, cuando yo era estudiante de Calculo I, me sorprendieron el poder y la belleza del material.
Era distinto de cualquier tipo de matematicas que hubiera estudiado hasta ese momento. Era
divertido, emocionante y constituia un desafio. Después de enseflar matemadticas universitarias
por muchos afios, he conocido infinidad de tipos de estudiante, desde el genio incipiente que
inventd su propio cdlculo hasta estudiantes que luchaban por dominar la mecdnica mas elemen-
tal del tema. A lo largo de estos afios también he sido testigo de un fendmeno triste: algunos estu-
diantes fracasan en calculo no porque encuentren que el tema es imposible, sino porque tienen
habilidades deficientes de dlgebra y un conocimiento inadecuado del trabajo en trigonometria.
El célculo construye de inmediato sobre su conocimiento y habilidades previos, donde hay
mucho terreno nuevo por cubrir. En consecuencia, hay muy poco tiempo para repasar las bases
en el planteamiento formal del aula. Asi, quienes enseflamos cédlculo debemos asumir que usted
puede factorizar, simplificar y resolver ecuaciones, resolver desigualdades, manejar valores
absolutos, usar una calculadora, aplicar las leyes de los exponentes, encontrar ecuaciones de rec-
tas, graficar puntos, trazar graficas elementales y aplicar importantes identidades logaritmicas y
trigonométricas, la habilidad de hacer dlgebra y trigonometria, trabajar con exponentes y loga-
ritmos, asi como trazar a mano, con rapidez y precision, graficas bdsicas que son claves para
tener éxito en un curso de célculo.



En las primeras pdginas encontrard la secciéon “Evaluacién diagndstica”, que contiene 56
preguntas. Esta “prueba” es una oportunidad para que usted verifique sus conocimientos acerca
de algunos temas que se tratan en este texto. Reldjese, tome su tiempo, lea y trabaje cada pre-
gunta, y luego compare sus respuestas con las que se proporcionan en las paginas finales. Sin
tomar en cuenta su “calificacién”, lo alentamos a que revise material de precdlculo en algtin texto
acerca de la materia.

Unas palabras para los estudiantes que han cursado célculo en preparatoria: por favor, no
asuman que pueden lograrlo con un esfuerzo minimo porque identifican algunos de los temas en
célculo diferencial e integral. Un sentimiento de familiaridad con el tema combinado con una
actitud de complacencia a menudo es la razén del fracaso de algunos estudiantes.

Aprender matemadticas no es como aprender a andar en bicicleta: en que una vez que se
aprende, la habilidad permanece para siempre. Las matemadticas son mds como aprender otro
idioma o tocar un instrumento musical: requiere tiempo, esfuerzo y mucha practica para desarro-
Ilar y mantener la habilidad. Aun los musicos experimentados contindan practicando escalas fun-
damentales. Por lo anterior, usted, el estudiante, s6lo puede aprender matemdticas (es decir,
hacer “que se le pegue’”’) mediante el trabajo arduo de hacer matemadticas. Aunque he intentado
hacer mas claros para el lector la mayoria de los detalles en la solucién de un ejemplo, inevita-
blemente usted tiene que completar los pasos faltantes. No puede leer un texto de este tipo como
si fuese una novela; debe abrirse camino a lo largo de €l con l4piz y papel en mano.

En conclusién, le deseo la mejor de las suertes en este curso.

PROLOGO A ESTA EDICION

Vivimos tiempos de cambio, y la educacién no es ajena a este proceso. Los planes de estudio de
las instituciones de educacién superior se renuevan constantemente para estar a la altura de las
necesidades actuales, y se establecen nuevas metodologias que deben ser respaldadas con obras
editoriales de calidad.

Como una contribucién a esta revolucién educativa se desarrolla esta obra, dirigida a algu-
na materia del drea bdsica, cursada en las principales escuelas de ciencias e ingenieria.

Los libros elaborados cubren los planes de estudio mds recientes que se imparten en los ins-
titutos tecnoldgicos.

Aunado a lo anterior, nuestros reconocidos autores siguen ofreciendo el estilo cientifico pre-
ciso y de facil comprension que ha caracterizado a cada una de las obras.

Entre las principales caracteristicas de esta serie se pueden mencionar:

* Adaptacién al nuevo modelo de competencias.

* Ejemplos y ejercicios renovados.

» Utilizacién de las tecnologias de informacién y comunicacién (TIC).

* Notas histéricas que fundamentan los conceptos basicos.

* Notacién formal de ficil accesibilidad para los alumnos.

» Estructura que contribuye a desarrollar un pensamiento 16gico, heuristico y algoritmico
para modelar fendmenos y resolver problemas.

* Actividades encaminadas al desarrollo de competencias genéricas, instrumentales, sisté-
micas y especificas.

Joel Ibarra Escutia
Instituto Tecnolégico de Toluca

= Las competencias y el calculo diferencial

Una de las caracteristicas mds sobresalientes de esta edicién es que ha sido organizada para con-
tribuir al desarrollo de competencias especificas, genéricas, instrumentales y sistémicas, listadas
a continuacion.

Competencias especificas
UNIDAD 1 Los niimeros reales
Comprender las propiedades de los nimeros reales para resolver desigualdades de primero y
segundo grados con una incégnita y desigualdades con valor absoluto, representando las solu-
ciones en la recta numérica real.

Prefacio  wii
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Scott Wilde, Baylor University

UNIDAD 2 Funciones
Comprender el concepto de funcién real e identificar tipos de funciones, asi como aplicar sus
propiedades y operaciones.

UNIDAD 3 Limite de una funcion

Comprender el concepto de limite de funciones y aplicarlo para determinar de manera analitica
la continuidad de una funcién en un punto o en un intervalo, y mostrar graficamente los diferen-
tes tipos de discontinuidad.

UNIDAD 4 La derivada
Comprender el concepto de derivada para aplicarlo como la herramienta que estudia y analiza la
variacién de una variable con respecto a otra.

UNIDAD 5 Aplicaciones de la derivada
Aplicar el concepto de la derivada para la solucién de problemas de optimizacion y variacion de
funciones, y el de diferencial en problemas que requieren aproximaciones.

Competencias genéricas

* Procesar e interpretar datos.

* Representar e interpretar conceptos en diferentes formas: numérica, geométrica, alge-
braica, trascendente y verbal.

e Comunicarse en lenguaje matemdtico de manera oral y escrita.

* Modelar matemdticamente fendmenos y situaciones.

e Lograr un pensamiento légico, algoritmico, heuristico, analitico y sintético.

* Potenciar las habilidades para el uso de tecnologias de la informacion.

* Resolver problemas.

* Analizar la factibilidad de las soluciones.

* Tomar decisiones.

* Reconocer conceptos o principios generales e integradores.

* Establecer generalizaciones.

* Argumentar con contundencia y precision.

e Optimizar soluciones.

Competencias instrumentales

* Capacidad de andlisis y sintesis.

* Comunicacién escrita.

* Habilidades basicas de manejo de la computadora.
* Solucién de problemas.

Competencias sistémicas

» Capacidad de aplicar los conocimientos en la prictica.
* Habilidades de investigacion.

» Capacidad para aprender.

* Capacidad para generar nuevas ideas.

* Habilidad para trabajar en forma auténoma.

* Busqueda de logros.
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Evaluacion diagnéstica

Las respuestas de los problemas impares comienzan en la pagina RES-1.

Como preparacion para el calculo

= Matematicas béasicas

1. (Falso/verdadero) Va* + b* = a + b.
2. (Falso/verdadero) Para a > 0, (a*?)* = a.

3. (Falso/verdadero) Para x # 0, x %2 = %
2"

2" 1
4. (Falso/verdadero) o
5. (Llene el espacio en blanco) En el desarrollo de (1 — 2x)°, el coeficiente de x° es
6. Sin usar calculadora, evalie (—27)°°.

7. Escriba lo siguiente como una expresion sin exponentes negativos:
1 _
500+ 4720+ 2V + 4

8. Complete el trinomio cuadrado: 2x* + 6x + 5.

9. Resuelva las ecuaciones:

a) x> =T7x b)xX*+2x=35 c)le_l—%=0 dx+Vx—-1=1

10. Factorice completamente:
a) 10x*> — 13x—3
b) x* — 2x* — 15x?
c) x> —27
d) x*—16

= Nimeros reales

11. (Falso/verdadero) Si a < b, entonces a> < b>.

12. (Falso/verdadero) V(—9)> = —9.
13. (Falso/verdadero) Si a < 0, entonces _7“ < 0.

14. (Llene el espacio en blanco) Si |3x| = 18, entonces x = ox=

15. (Llene el espacio en blanco) Si a — 5 es un nimero negativo, entonces |[a — 5| =

16. ;Cudles de los siguientes nimeros son racionales?

a) 0.25 b) 8.131313 ... c) w
d) 27—2 ) V16 R
g) 0 h) -9 i) 1%
. V5 V3 —2
o o DT
17. Relacione el intervalo dado con la desigualdad idénea.
i) (2,4] ii) [2,4) iii) (2, 4) iv) [2, 4]
a) x—=3 <1 b x—3=1 ) 0=x—-2<2 d1<x—-1=3

18. Exprese el intervalo (—2, 2) como
a) una desigualdad y  b) una desigualdad que implique valores absolutos.

19. Trace la gréfica de (—oo, —1]U [3, 00) en la recta numérica.
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FIGURA A2 Grifica para
el problema 32

20.

21.

22,

Encuentre todos los nimeros reales x que satisfacen la desigualdad |3x — 1| > 7. Escriba
su solucién usando notacién de intervalos.

Resuelva la desigualdad x> = —2x + 15y escriba su solucién usando notacién de intervalos.

Resuelva la desigualdad x = 3 — T12Y escriba su solucién usando notacién de intervalos.

= Plano cartesiano

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.
34.

35.

36.

37.

(Llene el espacio en blanco) Si (a, b) es un punto en el tercer cuadrante, entonces (—a, b) es
un punto en el cuadrante.
(Llene el espacio en blanco) El punto medio del segmento de recta desde P;(2, —5) hasta
P>(8,—9) es
(Llene el espacio en blanco) Si (—2, 6) es el punto medio del segmento de recta desde P;(x,
3) hasta P,(8, y,), entonces x; = Yy, =
(Llene los espacios en blanco) EI punto (1, 5) estd en una grafica. Proporcione las coorde-
nadas de otro punto de la gréfica si la gréfica es:
a) simétrica con respecto al eje x.
b) simétrica con respecto al eje y.
¢) simétrica con respecto al origen.
(Llene los espacios en blanco) Las intersecciones x y y de la grafica de |y| = 2x + 4 son,
respectivamente, y
(En cudles cuadrantes del plano cartesiano es negativo el cociente x/y?
La coordenada y de un punto es 2. Encuentre la coordenada x del punto si la distancia del
punto a (1, 3) esV26.
Encuentre una ecuacién del circulo para el cual (=3, —4) y (3, 4) son los puntos extremos de
un didmetro.
Si los puntos Py, P, y P5 son colineales como se muestra en la FIGURA A.1, encuentre una
ecuacién que relacione las distancias d(P;, P»), d(P», P3), y d(Py, P3).
P,
P
P, -
FIGURA A.1  Grifica para el problema 31
(Cual de las siguientes ecuaciones describe mejor el circulo de la FIGURA A.2? Los simbolos
a, b, c, d'y e representan constantes diferentes de cero.
a) ax*+ by’ +ex+dy+e=0
b) ax>*+ay’* +ex+dy+e=0
) a> +ay* +ex+dy=0
d ax*+a*+c=0
e) a> +ay*+cx+e=0
= Rectas
(Falso/verdadero) Las rectas 2x + 3y =5 y —2x + 3y = 1 son perpendiculares.
(Llene el espacio en blanco) Las rectas 6x + 2y = 1 y kx — 9y = 5 son paralelas si k =
(Llene el espacio en blanco) Una recta con intercepcion x (—4, 0) e interseccién y (0, 32)
tiene pendiente
(Llene los espacios en blanco) La pendiente y las intersecciones x y y de la recta 2x — 3y +
18 = 0 son, respectivamente, , , ¥
(Llene el espacio en blanco) Una ecuacién de la recta con pendiente —5 e interseccion y
0, 3)es
Encuentre la ecuacion de la recta que pasa por (3, —8) y es paralela a la recta 2x —y =—7.

38.



39. Encuentre la ecuacidn de la recta que pasa por los puntos (=3, 4) y (6, 1).

40. Encuentre la ecuacion de la recta que pasa por el origen y por el punto de interseccion de

41.

42,

las graficasde x +y=1y2x—y=7.

Una recta tangente a un circulo en un punto P del circulo es una recta que pasa por Py es
perpendicular a la recta que pasa por Py el centro del circulo. Encuentre la ecuacién de la
recta tangente L indicada en la FIGURA A3.

=37+ (—4’=4

~

X

4
FIGURA A.3  Gréfica para
el problema 41

Relacione la ecuacién dada con la grafica idénea en la FIGURA A4.

i) x+y—-1=0 ii) x+y=0 iii) x—1=0

v) y—1=0 v) 10x+y—10=0 vi) —10x+y+10=0
Vi) x+ 10y —10=0  wvii) —x+ 10y — 10 =0

a vy b)

2+

&
l/mk‘l{

c) y
£
2 X
nH oy
2
2 X

g h)

| &}
4
=
T
[\S)
=

FIGURA A4 Grificas para el problema 42

= Trigonometria

43.
44.
45.
46.
47.
48.
49.

(Falso/verdadero) 1 + sec’6 = tan?#.
(Falso/verdadero) sen(2¢) = 2 sen .

(Llene el espacio en blanco) El dngulo 240 grados es equivalente a radianes.

(Llene el espacio en blanco) El dngulo 77/12 radianes es equivalente a grados.
(Llene el espacio en blanco) Si tan t = 0.23, tan(t + 7) =

Encuentre cos 7 si sen 7 =1 y el lado terminal del dngulo 7 estd en el segundo cuadrante.
Encuentre los valores de las seis funciones trigonométricas del 4ngulo 6 dado en la FIGURA A5.
3
[
4

FIGURA A5 Tridngulo
para el problema 49

Evaluacion diagnéstica
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50. Exprese las longitudes b y ¢ de la FIGURA A6 en términos del dngulo 6.

/) ]

10
FIGURA A6 Tridngulo
para el problema 50

= Logaritmos

51.
52.
53.

54.

55.
56.

Exprese el simbolo k en la declaracién exponencial e®* = 5 como un logaritmo.

.z 3 . 1 .2 . .
Exprese la declaracion logaritmica loggs 4 =3 como una declaracion exponencial equivalente.

Exprese log, 5 + 3log, 10 — log,40 como un logaritmo simple.
logy 13

Use una calculadora para evaluar .
logo3

(Llene el espacio en blanco) b0 =

(Falso/verdadero) (log,x)(log,y) = log,( ylogb ).



La historia del calculo

Por Roger Cooke
University of Vermont

Suele considerarse que el cdlculo es una creacion de los matemadticos europeos del siglo XVII,
cuyo trabajo mas importante fue realizado por Isaac Newton (1642-1727) y Gottfried Wilhelm
Leibniz (1646-1711). Esta percepcion tradicional en general es correcta. No obstante, cualquier
teorfa a gran escala es un mosaico cuyas baldosas fueron colocadas a lo largo de mucho tiempo;
y en cualquier teoria viviente las baldosas continidan colocdndose de manera continua. La decla-
racién mas poderosa que los historiadores se arriesgan a hacer es que un patrén se hizo eviden-
te en cierto momento y lugar. Es el caso del cilculo. Podemos afirmar con cierta confianza que
los primeros trabajos del tema aparecieron en el siglo Xxvil y que el patrén se aclaré6 mucho mas
gracias al trabajo de Newton y Leibniz. Sin embargo, muchos de los principios esenciales del
calculo se descubrieron desde mucho antes, en la época de Arquimedes (287-211 a.C.), y algu-
nos de esos mismos descubrimientos se lograron de manera independiente en China y en Japdn.
Ademas, si se escudrifia con mds profundidad en los problemas y métodos del célculo, uno pron-
to se encuentra en la persecucién de problemas que conducen a las areas modernas de la teoria
de funciones analiticas, geometria diferencial y funciones de una variable real. Para cambiar la
metéafora del arte al transporte, podemos pensar que el cdlculo es una gran estacién de ferroca-
rril, donde los pasajeros que llegan de muchos sitios diferentes estan juntos durante un tiempo
breve antes de embarcarse hacia destinos diversos. En este ensayo tratamos de mirar en ambas
direcciones desde esta estacion, hacia los puntos de origen y los destinos. Empecemos con la
descripcion de la estacion.

;Qué es el calculo? El célculo suele dividirse en dos partes, denominadas cdlculo diferencial
y cdlculo integral. El calculo diferencial investiga las propiedades de las razones de cambio com-
parativas de variables que estan vinculadas por medio de ecuaciones. Por ejemplo, un resultado
fundamental del cdlculo diferencial es que si y = x", entonces la razén de cambio de y con res-
pecto a x es nx"'. Resulta que cuando se usa la intuicién para pensar en ciertos fenémenos
—movimiento de los cuerpos, cambios en la temperatura, crecimiento de poblaciones y muchos
otros—, se llega a postular ciertas relaciones entre estas variables y sus razones de cambio. Estas
relaciones se escriben en una forma conocida como ecuaciones diferenciales. Asi, el objetivo
principal de estudiar calculo diferencial consiste en comprender qué son las razones de cambio
y cdémo escribir ecuaciones diferenciales. El calculo integral proporciona métodos para recupe-
rar las variables originales conociendo sus razones de cambio. La técnica para hacer esto se
denomina integracion, y el objetivo fundamental del estudio del célculo integral es aprender a
resolver las ecuaciones diferenciales proporcionadas por el calculo diferencial.

A menudo estos objetivos estdn encubiertos en libros de calculo, donde el calculo diferen-
cial se utiliza para encontrar los valores maximo y minimo de ciertas variables, y el cdlculo inte-
gral se usa para calcular longitudes, areas y volimenes. Hay dos razones para recalcar estas apli-
caciones en un libro de texto. Primero, la utilizacién completa del calculo usando ecuaciones
diferenciales implica una teoria mas bien complicada que debe presentarse de manera gradual;
entre tanto, al estudiante debe ensefidrsele algiin uso de las técnicas que se proponen. Segundo,

Isaac Newton

Gottfried Leibniz
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estos problemas fueron la fuente de las ideas que condujeron al calculo; los usos que ahora hace-
mos del tema sélo se presentaron después del descubrimiento de aquél.

Al describir los problemas que llevaron al cédlculo y los problemas que pueden resolverse
usando cdlculo, ain no se han indicado las técnicas fundamentales que hacen de esta disciplina
una herramienta de andlisis mucho mds poderosa que el dlgebra y la geometria. Estas técnicas
implican el uso de lo que alguna vez se denomind andlisis infinitesimal. Todas las construcciones
y las férmulas de la geometria y el dlgebra de preparatoria poseen un caricter finito. Por ejemplo,
para construir la tangente de un circulo o para bisecar un dngulo se realiza un nimero finito de
operaciones con regla y compds. Aunque Euclides sabia considerablemente mds geometria que la
que se ensefia en cursos actuales modernos de preparatoria, €l también se autoconfiné esencial-
mente a procesos finitos. Sélo en el contexto limitado de la teoria de las proporciones permitié la
presencia de lo infinito en su geometria, y aun asi estd rodeado por tanto cuidado légico que las
demostraciones implicadas son extraordinariamente pesadas y dificiles de leer. Lo mismo ocurre
en dlgebra: para resolver una ecuacién polinomial se lleva a cabo un nimero finito de operacio-
nes de suma, resta, multiplicacién, divisién y extraccién de raiz. Cuando las ecuaciones pueden
resolverse, la solucién se expresa como una férmula finita que implica coeficientes.

Sin embargo, estas técnicas finitas cuentan con un rango limitado de aplicabilidad. No es
posible encontrar las dreas de la mayoria de las figuras curvas mediante un nimero finito de ope-
raciones con regla y compds, y tampoco resolver ecuaciones polinomiales de grado mayor o igual
que cinco usando un niimero finito de operaciones algebraicas. Lo que se queria era escapar de
las limitaciones de los métodos finitos, y esto condujo a la creacion del célculo. Ahora considera-
remos algunos de los primeros intentos por desarrollar técnicas para manipular los problemas mas
dificiles de la geometria, luego de lo cual trataremos de resumir el proceso mediante el que se tra-
bajé el célculo, y finalmente exhibiremos algo de los frutos que ha producido.

Las fuentes geométricas del calculo Uno de los problemas mds antiguos en matematicas es la
cuadratura del circulo; es decir, construir un cuadrado de drea igual a la de un circulo dado.
Como se sabe, este problema no puede resolverse con regla y compas. Sin embargo, Arquimedes
descubri6 que si es posible trazar una espiral, empezando en el centro de un circulo que hace
exactamente una revolucién antes de llegar al circulo, entonces la tangente a esa espiral, en su
punto de interseccion con el circulo, forma la hipotenusa de un tridngulo rectdngulo cuya drea es
exactamente igual al circulo (vea la figura 1). Entonces, si es posible trazar esta espiral y su tan-
gente, también lo es cuadrar el circulo. Arquimedes, no obstante, guardé silencio sobre como
podria trazarse esta tangente.

Observamos que uno de los problemas cldsicos en matemdticas puede resolverse sélo si es
posible trazar cierta curva y su tangente. Este problema, y otros parecidos, originaron que el pro-
blema puramente matematico de encontrar la tangente a una curva se volviera importante. Este
problema constituye la fuente mds importante del cdlculo diferencial. El truco “infinitesimal”

Tangente

FIGURA 1 La espiral de Arquimedes. La tangente al final de la primera
vuelta de la espiral y los dos ejes forman un tridngulo con drea igual a la
del circulo centrado en el origen y que pasa por el punto de la tangente



que permite la solucién del problema es considerar la tangente como la recta determinada por
dos puntos en la curva “infinitamente proximos” entre si. Otra forma de decir lo mismo es que
una pieza “infinitamente corta” de la curva es recta. El problema es que resulta dificil ser preci-
so sobre los significados de las frases “infinitamente préximos” e “infinitamente cortos”.

Poco avance se logré en este problema hasta la invencién de la geometria analitica en el
siglo xv11 por Pierre de Fermat (1601-1665) y René Descartes (1596-1650). Una vez que se pudo
representar una curva por medio de una ecuacion, fue posible afirmar con mas confianza lo que
se entendia por puntos “infinitamente préximos”, al menos para ecuaciones polinomiales como
y = x*. Con simbolismo algebraico para representar puntos en la curva, era posible considerar
dos puntos sobre la curva con coordenadas x, y x;, de modo que x; — x, es la distancia entre las
coordenadas x. Cuando la ecuacién de la curva se escribia en cada uno de estos puntos y una de
las dos ecuaciones se restaba de la otra, un lado de la ecuacién resultante contenia el factor x; —
X0, que entonces podia eliminarse por divisién. Por lo tanto, si y, = x} y y; = x{, entonces

Vi — Yo = X7 — x5 = (x; — Xo) = (x; + xp), de modo que 711 — i]() = x; + xy. Cuando (x; = xp),
1 0
se concluye que (y; = yp), y la expresion Y170 carece de sentido. Sin embargo, la expresion
X1 = Xo

X1 + xo tiene el valor perfectamente definido 2x,. Entonces, es posible considerar a 2x, como la
razén de la diferencia infinitamente pequefia en y; es decir, y; — y, a la diferencia infinitamente
pequeia en x; es decir, x; — xo, cuando el punto (x, y;) estd infinitamente cerca del punto (yy,
yo) sobre la curva y = x*. Como aprenderd al estudiar cdlculo, esta razén proporciona suficiente
informacién para trazar la recta tangente a la curva y = x°.

Excepto por pequefios cambios en la notacidn, el razonamiento anterior es exactamente la
forma en que Fermat encontrd la tangente a una pardbola. Sin embargo, estaba abierta a una
objecién légica: en un momento, ambos lados de la ecuacién se dividen entre x; — x,, entonces
en un paso posterior decidimos que x; — xo = 0. Puesto que la divisién entre cero es una opera-
cion ilegal, parece que estamos tratando de comernos nuestro pastel y no hacerlo; es decir, no se
pueden hacer ambas cosas. Tuvo que pasar algin tiempo para responder de manera convincente
a esta objecion.

Hemos visto que Arquimedes no pudo resolver el problema fundamental del célculo dife-
rencial: trazar la tangente a una curva. Sin embargo, Arquimedes pudo resolver algunos de los
problemas fundamentales del calculo integral. De hecho, encontré el volumen de una esfera
mediante un sistema extremadamente ingenioso: consider6 un cilindro que contenia un cono y
una esfera e imaginé cortar esta figura en una infinidad de rebanadas delgadas. Al suponer las
areas de estas secciones del cono, la esfera y el cilindro, pudo demostrar cémo el cilindro equi-
libraria al cono y a la esfera si las figuras se colocan en los platos opuestos de una balanza. Este
equilibrio proporcioné una relacién entre las figuras, y como Arquimedes ya conocia los vold-
menes del cono y del cilindro, entonces pudo calcular el volumen de la esfera.

Este razonamiento ilustra la segunda técnica infinitesimal que se encuentra en los funda-
mentos del cdlculo: un volumen puede considerarse como una pila de figuras planas, y un drea
puede considerarse como una pila de segmentos de rectas, en el sentido de que si cada seccién
horizontal de una regién es igual a la misma seccion horizontal de otra regién, entonces las dos
regiones son iguales. Durante el Renacimiento europeo este principio se volvié de uso muy
comtn bajo el nombre de método de los indivisibles para encontrar las dreas y los volimenes de
muchas figuras. Hoy en dia se denomina principio de Cavalieri en honor de Bonaventura
Cavalieri (1598-1647), quien lo usé para demostrar muchas de las férmulas elementales que
ahora forman parte del célculo integral. El principio de Cavalieri también fue descubierto en
otras tierras donde jamds llegé la obra de Euclides. Por ejemplo, los matematicos chinos del
siglo v Zu Chongzhi y su hijo Zu Geng hallaron el volumen de una esfera usando una técnica
bastante parecida al método de Arquimedes.

Asi, encontramos matematicos que anticiparon el calculo integral usando métodos infinite-
simales para encontrar dreas y volimenes en una etapa muy temprana de la geometria, tanto en
la Grecia como la China antiguas. Asi ocurre con el método infinitesimal para trazar tangentes;
no obstante, este método para encontrar dreas y volimenes estaba sujeto a objeciones. Por ejem-
plo, el volumen de cada seccién plana de una figura es cero; ;como es posible reunir una colec-
cion de ceros para obtener algo que no es cero? Ademads, jpor qué el método no funciona en una
dimensién? Considere las secciones de un tridngulo rectdngulo paralelas a uno de sus catetos.

Ensayo xxi
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Cada seccion corta a la hipotenusa y al otro cateto en figuras congruentes; a saber, en un punto
a cada uno. Sin embargo, la hipotenusa y el otro cateto no miden lo mismo. Objeciones como
ésta eran preocupantes. Los resultados obtenidos con estos métodos fueron espectaculares. No
obstante, los matemadticos prefirieron aceptarlos como un acto de fe, seguir usandolos e intentar
construir sus fundamentos mds tarde, justo como en un drbol cuando la raiz y las ramas crecen
al mismo tiempo.

La invencion del calculo A mediados del siglo xvil se conocian muchas de las técnicas y
hechos elementales del cdlculo, incluso métodos para encontrar las tangentes de curvas simples
y férmulas de dreas acotadas por estas curvas. En otras palabras, muchas de las férmulas que
usted encontrard en los primeros capitulos de cualquier libro de texto de calculo ya eran conoci-
das antes de que Newton y Leibniz iniciaran su obra. Lo que faltaba hasta fines del siglo xvi1I era
tomar conciencia de que estos dos tipos de problemas estdn relacionados entre si.

Para ver cémo se descubri6 la relacién, es necesario abundar mds en las tangentes. Ya men-
cionamos que para trazar una tangente a una curva en un punto dado se requiere saber como
encontrar un segundo punto en la recta. En la etapa inicial de la geometria analitica este segun-
do punto solia tomarse como el punto en que la tangente corta al eje x. La proyeccién sobre el
eje x de la porcién de la tangente entre el punto de tangencia y la interseccién con el eje x se
denominaba subtangente. En el estudio de las tangentes surgié un problema muy natural: recons-
truir una curva, dada la longitud de su subtangente en cualquier punto. Por medio del estudio
de este problema fue posible percibir que las ordenadas de cualquier curva son proporcionales
al drea bajo una segunda curva cuyas ordenadas son las longitudes de las subtangentes a la curva
original. El resultado es el teorema fundamental del calculo. El honor de haber reconocido de
manera explicita esta relacion pertenece a Isaac Barrow (1630-1677), quien lo indicé en un libro
denominado Lectiones Geometricae en 1670. Barrow plante6 varios teoremas semejantes al teo-
rema fundamental del cdlculo. Uno de ellos es el siguiente: Si se traza una curva de modo que
la razon de su ordenada a su subtangente [esta razén es precisamente lo que ahora se denomi-
na derivada] es proporcional a la ordenada de una segunda curva, entonces el drea bajo la
segunda curva es proporcional a la ordenada de la primera.

Estas relaciones proporcionaron un principio unificado para el gran nimero de resultados
particulares sobre tangentes y dreas que se habian encontrado con el método de indivisibles a
principios del siglo XviI: para encontrar el drea bajo una curva habia que hallar una segunda
curva para la cual la razén de la ordenada a la subtangente sea igual a la ordenada de la curva
dada. Asi, la ordenada de esa segunda curva proporciona el drea bajo la primera curva.

En este punto el cdlculo estaba preparado para surgir. S6lo requeria de alguien que pro-
porcionara métodos sistematicos para el cdlculo de tangentes (en realidad, subtangentes) e in-
vertiera ese proceso para encontrar areas. Es el trabajo realizado por Newton y Leibniz. Estos
dos gigantes de la creatividad matemadtica siguieron senderos bastante distintos en sus descubri-
mientos.

El método de Newton era algebraico y desarrollé el problema de encontrar un método efi-
ciente para extraer las raices de un nimero. Aunque apenas empez6 a estudiar dlgebra en 1662,
ya alrededor de 1665 las reflexiones de Newton sobre el problema de extraer raices lo conduje-
ron al descubrimiento de la serie infinita que actualmente se denomina teorema del binomio; es
decir, la relacion

r(r—1) 2 4 r(r — D(r —2)

2 ¥ 2.3

dI+x"=1+rx+

Al combinar el teorema del binomio con técnicas infinitesimales, Newton pudo deducir las
férmulas bésicas del cdlculo diferencial e integral. Crucial en el enfoque de Newton fue el uso
de series infinitas para expresar las variables en cuestion, y el problema fundamental que Newton
no resolvié fue establecer que tales series podian manipularse justo como sumas finitas. Por
tanto, en un sentido Newton llevé al infinito desde una entrada a su madriguera sélo para encon-
trar que una cara estaba frente a la otra.

A partir de la consideracion de las variables como cantidades fisicas que cambian su valor
con el tiempo, Newton inventé nombres para las variables y sus razones de cambio que refleja-
ban esta intuicién. Segin Newton, un fluent (x) es una cantidad en movimiento o que fluye; su
fluxion (x) es su razén de flujo, lo que ahora se denomina velocidad o derivada. Newton expuso



sus resultados en 1671 en un tratado denominado Fluxions escrito en latin, pero su obra no fue
publicada sino hasta que aparecié una versién en inglés en 1736. (La version original en latin
fue publicada por primera vez en 1742.)

A pesar de la notacion y de sus razonamientos que parecen insuficientes y rudimentarios hoy
en dia, el tremendo poder del cdlculo brilla a través del método de las fluxiones de Newton en la
solucién de problemas tan dificiles como encontrar la longitud de arco de una curva. Se pensa-
ba que esta “rectificacién” de una curva era imposible, pero Newton demostré que era posible
encontrar un nimero finito de curvas cuya longitud podia expresarse en términos finitos.

El método de Newton para el cdlculo era algebraico, como hemos visto, y hered6 el teore-
ma fundamental de Barrow. Por otro lado, Leibniz trabaj6 el resultado fundamental desde 1670,
y su enfoque era diferente al de Newton. Se considera a Leibniz como el pionero de la légica
simbdlica, y su opinién acerca de la importancia de la buena notacién simbdlica era mucho
mejor que la de Newton. Inventé la notacioén dx y dy que sigue en uso. Para €1, dx era una abre-
viacién de “diferencia en x”, y representaba la diferencia entre dos valores infinitamente proxi-
mos de x. En otras palabras, expresaba exactamente lo que tenfamos en mente hace poco cuan-
do consideramos el cambio infinitamente pequefio x; — xy. Leibniz consideraba que dx era un
nimero “infinitesimal”, diferente de cero, pero tan pequefio que ninguno de sus multiplos podia
exceder cualquier niimero ordinario. Al ser diferente de cero, podia servir como denominador en
una fraccion, y asi dy/dx era el cociente de dos cantidades infinitamente pequefias. De esta forma
esperaba superar las objeciones al nuevo método establecido para encontrar tangentes.

Leibniz también realizé una aportacién fundamental en la técnica controvertida de encon-
trar dreas al sumar secciones. En lugar de considerar el area [por ejemplo, el drea bajo una curva
y = f(x)] como una coleccién de segmentos de recta, la consideraba como la suma de las dreas
de rectangulos “infinitamente delgados” de altura y = f(x) y base infinitesimal dx. Por tanto, la
diferencia entre el drea hasta el punto x + dx y el drea hasta el punto x era la diferencia infinite-
simal en drea dA = f(x) dx, y el 4rea total se encontraba sumando estas diferencias infinitesima-
les en drea. Leibniz invent la S alargada (el signo integral [) que hoy en dia se usa universal-
mente para expresar este proceso de suma. Asi expresaba el drea bajo la curva y = f(x) como
A= [dA = [ f(x) dx, y cada parte de este simbolo expresaba una idea geométrica simple y clara.

Con la notacién de Leibniz, el teorema fundamental del cédlculo de Barrow simplemente
indica que el par de ecuaciones

A= Jf(x)dx, dA = f(x)dx

son equivalentes. Debido a lo que acaba de plantearse, esta equivalencia es casi evidente.

Tanto Newton como Leibniz lograron grandes avances en matematicas, y cada uno posee
bastante crédito por ello. Resulta lamentable que la estrecha coincidencia de su obra haya con-
ducido a una enconada discusién sobre la prioridad entre sus seguidores.

Algunas partes del cdlculo, que implican series infinitas, fueron inventadas en India duran-
te los siglos X1v y Xv. Jyesthadeva, matemdtico indio de fines del siglo XV, proporcion la serie

_ (sen 0 sen’f sen’ 6 )
0 = — — ...
cost  3cos’h  Scos’ O

para la longitud de un arco de circulo, demostr6 este resultado y de manera explicita planteé que esta
serie converge s6lo si 6 no es mayor que 45°. Si se escribe § = arctan x y se usa el hecho de que
sen 0
cos 0

De modo independiente, otras series fueron desarrolladas en Japdn casi al mismo tiempo que
en Europa. El matemadtico japonés Katahiro Takebe (1664-1739) encontré un desarrollo en serie
equivalente a la serie para el cuadrado de la funcién arcsen. El consider6 el cuadrado de la mitad

= tan 0 = x, esta serie se convierte en la serie normal para arctan x.

2
de arco a la altura % en un circulo de diametro d; esto resulté ser la funcion f(h) = (g arcsen g) .

Takebe carecia de notacién para el término general de una serie, aunque descubrid patrones en
los coeficientes al calcular geométricamente la funcién en el valor particular de 2 = 0.000001,
d =10 hasta un valor muy grande de cifras decimales —mas de 50—, y luego al usar esta pre-
cisién extraordinaria para refinar la aproximacion al sumar sucesivamente términos correctivos.
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Al proceder de esta manera pudo discernir un patrén en las aproximaciones sucesivas, a partir de
lo cual, por extrapolacién, pudo plantear el término general de la serie:

3 o) 22n+1(n!)2 hn
S = dh) 1+ “~(n+ 2)!(3) }

Después de Newton y de Leibniz quedaba el problema de dar contenido al esqueleto inven-
tado por estos dos genios. La mayor parte de su obra fue completada por matematicos de la
Europa continental, en especial por el circulo creado por los matematicos suizos James Bernoulli
(1655-1705) y John Bernoulli (1667-1748), asi como el estudiante de este ultimo, el marqués de
L Hopital (1661-1704). Estos y otros matematicos trabajaron las conocidas férmulas para las
derivadas e integrales de funciones elementales que ain se encuentran en libros de texto actua-
les. Las técnicas esenciales de calculo eran conocidas a principios del siglo xviil, y un libro
de texto del siglo xvIiI como la Introduccion al andlisis del infinito, de Euler (1748), en caso de
haber estado traducida al espafiol se veria bastante como un libro de texto moderno.

El legado del calculo Una vez que hemos abordado las fuentes del célculo y el procedimiento
con el que fue elaborado, a continuacién analizaremos brevemente los resultados que produjo.

El calculo obtuvo una cantidad impresionante de triunfos en sus dos primeros siglos.
Resulté6 que docenas de fendmenos fisicos previamente oscuros que implican calor, fluidez,
mecdnica celeste, elasticidad, luz, electricidad y magnetismo poseian propiedades mensurables
cuyas relaciones podian describirse como ecuaciones diferenciales. La fisica se comprometio
para siempre en hablar el lenguaje del célculo.

Sin embargo, de ninguna manera fueron resueltos todos los problemas surgidos de la fisica.
Por ejemplo, no era posible encontrar, en términos de funciones elementales conocidas, el area
bajo una curva cuya ecuacién implicaba la raiz cuadrada de un polinomio ctbico. Estas integra-
les surgieron a menudo tanto en geometria como en fisica, y llegaron a conocerse como integra-
les elipticas porque el problema de encontrar la longitud sélo podia comprenderse cuando la
variable real x se sustituye por una variable compleja z = x + iy. El replanteamiento del calculo
en términos de variables complejas condujo a mucho descubrimientos fascinantes, que termina-
ron por ser codificados como una nueva rama de las matematicas denominada teorfa de funcio-
nes analiticas.

La definicién idénea de integracion siguié siendo un problema durante algin tiempo. Como
consecuencia del uso de procesos infinitesimales para encontrar dreas y volimenes surgieron las
integrales. ;Debia la integral definirse como una “suma de diferencias infinitesimales” o como
la inversa de la diferenciacién? ;Qué funciones podian integrarse? En el siglo XIX se propusie-
ron muchas definiciones de la integral, y la elaboracion de estas ideas llevé al tema conocido
actualmente como andlisis real.

Mientras las aplicaciones del cdlculo han continuado cosechando cada vez mds triunfos en
un flujo interminable durante los dltimos trescientos afios, sus fundamentos permanecieron en un
estado insatisfactorio durante la primera mitad de este periodo. El origen de la dificultad era el
significado que habia de asociarse a la dx de Leibniz. ;Qué era esta cantidad? ;Cémo podia no
ser positiva ni cero? De ser cero, no podia usarse como denominador; de ser positiva, entonces
las ecuaciones en que aparecia no eran realmente ecuaciones. Leibniz consideraba que los infi-
nitesimales eran entes verdaderos, que las dreas y los volimenes podian sintetizarse al “sumar”
sus secciones, como habian hecho Zu Chongzhi, Arquimedes y otros. Newton tenia menos con-
fianza acerca de la validez de los métodos infinitesimales, e intentd justificar sus razonamientos
en formas que pudiesen cumplir las normas del rigor euclideano. En su Principia Mathematica
escribio:

Estos lemas tienen el cometido de evitar el tedio de deducir ad absurdum demostraciones impli-
citas, segin el método de los geémetras de la antigiiedad. Las demostraciones son mds breves
segtin el método de indivisibles, pero debido a que la hipétesis de indivisibles parece ser algo mds
dura y, en consecuencia, ese método se acepta como menos geométrico, en lugar de ello elijo
reducir las demostraciones de las siguientes proposiciones a las sumas y razones primera y ulti-
ma de cantidades que desaparecen; es decir, a los limites de estas sumas y razones... En conse-
cuencia, si en lo sucesivo debo considerar que las cantidades estdn formadas de particulas, o debo
usar pocas lineas curvas por las [rectas] idoneas, no debe interpretarse que estoy queriendo decir
cantidades indivisibles, sino cantidades divisibles que desaparecen. . .



... En cuanto a estas tltimas razones con las que desaparecen las cantidades, no son en verdad
las razones de cantidades ultimas, sino limites hacia los cuales las razones de cantidades decre-
cientes sin limite siempre convergen; y a los que tienden de manera mds proxima que con cual-
quier diferencia dada, aunque nunca van mds alld, ni en el efecto alcanzado, hasta que las canti-
dades disminuyen in infinitum.

En este pasaje Newton afirma que la falta de rigor implicado en el uso de razonamientos
infinitesimales puede compensarse con el uso de limites. Sin embargo, su planteamiento de este
concepto en el pasaje citado no es tan claro como uno desearia. Esta falta de claridad condujo al
filésofo Berkeley a referirse desdefiosamente a los fluxiones como ‘“fantasmas de cantidades”.
Sin embargo, los avances alcanzados en fisica usando célculo fueron tan sobresalientes que
durante mas de un siglo nadie se preocupé en proporcionar el rigor al que aludia Newton (jy los
fisicos siguen sin preocuparse al respecto!). Una presentacién completamente rigurosa y siste-
matica del célculo lleg6 sélo hasta el siglo XIX.

Segun la obra de Augustin-Louis Cauchy (1789-1856) y Karl Weierstrass (1815-1896), la
percepcion era que los infinitesimales eran meramente de naturaleza heuristica y que los estu-
diantes estaban sujetos a un riguroso enfoque “epsilon-delta” de los limites. De manera sorpren-
dente, en el siglo XX Abraham Robinson (1918-1974) demostré que es posible desarrollar un
modelo l6gicamente consistente de los nimeros reales en el que hay infinitesimales verdaderos,
como crefa Leibniz. Sin embargo, parece que este nuevo enfoque, denominado “andlisis no
estandar”, no ha sustituido a la presentacion tradicional actual del célculo.

Ejercicios

1. El tipo de espiral considerada por Arquimedes ahora se denomina asi en su honor. Una espi-
ral de Arquimedes es el lugar geométrico de un punto que se mueve a velocidad constante
a lo largo de un rayo que gira con velocidad angular constante alrededor de un punto fijo.
Si la velocidad lineal a lo largo del rayo (la componente radial de su velocidad) es v, el
punto estd a una distancia vt del centro de rotacién (suponiendo que es donde empieza) en
el instante ¢. Suponga que la velocidad angular de rotacion del rayo es w (radianes por uni-
dad de tiempo). Dados un circulo de radio R y una velocidad radial de v, ;cudl debe ser w
para que la espiral llegue al circulo al final de su primera vuelta? Res. (ZZ”)

El punto tendrd una velocidad circunferencial row = vt w. Segtin un principio enunciado
en la Mecdnica de Aristételes, la velocidad real de la particula estd dirigida a lo largo de la
diagonal de un paralelogramo (en este caso un rectangulo) cuyos lados son las componen-
tes. Use este principio para mostrar como construir la tangente a la espiral (que es la recta
que contiene a la diagonal de este rectdngulo). Compruebe que los lados de este rectingulo
guardan la relacién 1 : 27r. Observe la figura 1.

2. La figura 2 ilustra como Arquimedes encontrd la relacién entre los volimenes de la esfera,
el cono y el cilindro. El didmetro AB esta duplicado, haciendo BC = AB. Cuando esta figu-
ra se hace girar alrededor de esta recta, el circulo genera una esfera, el tridngulo DBG gene-
ra un cono y el rectingulo DEFG genera un cilindro. Demuestre los hechos siguientes:

a) Si B se usa como fulcro, el cilindro tiene como centro de gravedad el centro K del circu-
lo y, en consecuencia, todo puede concentrarse ahi sin cambiar la torsién alrededor de B.

b) Cada seccion del cilindro perpendicular a la recta AB, permaneciendo en su posicion
actual, equilibraria exactamente la misma seccién del cono més la seccion de la esfera
si éstos dos se desplazaran al punto C.

¢) Por tanto, el cilindro concentrado en K equilibraria al cono y a la esfera que se concen-
tran en C.

d) En consecuencia, el cilindro es igual al doble de la suma del cono y la esfera.

e) Puesto que se sabe que el cono es un tercio del cilindro, se concluye que la esfera debe
ser un sexto de éste.

f) Que el volumen del cilindro es 877>,
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FIGURA 2 Seccién de la esfera, el cono y el cilindro de Arquimedes

3. El método con el que Zu Chongzhi y Zu Geng encontraron el volumen de la esfera es el

siguiente: imagine que la esfera es una pelota fuertemente adherida dentro de la interseccién
de dos cilindros que forma dngulos rectos entre si. Luego, el sélido formado por la intersec-
ci6n de los dos cilindros (denominado paraguas doble en chino) y que contiene la pelota se
ajusta perfectamente dentro de un cubo cuya arista es igual al didmetro de la esfera.

A partir de esta descripcion, trace una seccién de la esfera dentro del paraguas doble
formado por los ejes de los dos cilindros y a una distancia / debajo de este pleno. Comprue-
be los hechos siguientes:

a) Si el radio de la esfera es r, el didmetro de su seccién circular es 2V r* — K2
b) Por tanto, el drea del cuadrado formado por esta seccién del paraguas doble es 4(r* — h?),
de modo que el drea entre la seccidn del cubo y la seccion del paraguas doble es

4r* — 4% — 1Y) = 4.

¢) La seccion correspondiente de una pirdmide cuya base es la parte inferior de un cubo y
cuyo vértice estd en el centro de la esfera (o del cubo) también tiene un drea de 4h*. Por
tanto, el volumen entre el paraguas doble y el cubo es exactamente el volumen de esta
pirdmide mds su imagen especular arriba del plano central. Concluya que la region entre
el paraguas doble y el cubo es un tercio del cubo.

d) En consecuencia, el paraguas doble ocupa dos tercios del volumen del cubo; es decir, su
volumen es ‘273,

e) Cada seccién circular de la esfera estd inscrita en la seccién cuadrada correspondiente
del paraguas doble. Por tanto, la seccion circular es 7 de la seccion del paraguas doble.

S En consecuencia, el volumen de la esfera es § del volumen del paraguas doble; es decir,

4
§7Tr3.

. Proporcione un razonamiento “infinitesimal” de que el drea de la esfera es tres veces su

volumen dividido entre su radio, al suponer que la esfera es una coleccién de pirdmides
“infinitamente delgadas™ donde todos los vértices se encuentren adheridos al origen. [Suge-
rencia: parta del hecho de que el volumen de una pirdmide es un tercio del drea de su base
multiplicada por su altura. Arquimedes afirmaba que €ste es el razonamiento que lo condu-
jo al descubrimiento del area de la esfera.]



Unidad 1

Los numeros reales

En esta unidad Una de las herramientas mas poderosas de las matematicas es el calculo. Su
evolucion ha ocurrido de manera paralela a los diferentes sistemas numéricos, desde los prime-
ros conteos hasta la era tecnoldgica. El calculo fundamenta su estudio en las propiedades de los
numeros reales. En esta unidad estudiaremos los axiomas fundamentales, los de orden y los de
completitud como predmbulo para otras aplicaciones mas complejas.

Competencia especifica

Comprender las propiedades de los nimeros reales para resolver desigualdades
de primer y segundo grado con una incognita y desigualdades con valor absoluto,
representando las soluciones en la recta numérica real.



2 UNIDAD 1 Los niimeros reales

Los nimeros naturales estdn
contenidos en los nimeros
enteros N C Z

La resta de dos niimeros es una p»
operacion derivada de la suma,

y se define como la suma de un
nimero con el inverso aditivo de
otro.

1.1 Los nimeros reales

Hoy en dia la ciencia y la tecnologia han alcanzado niveles extraordinarios. El desarrollo de la
fisica, la quimica, la biologia, la astronomia, la medicina, la ingenieria y muchas ramas mads, fun-
damentan su progreso en la aplicacién de una de las herramientas mas poderosas de las matema-
ticas: el cdlculo infinitesimal.

En términos histdricos el desarrollo del calculo se produjo al buscar soluciones a problemas
de la vida real, entre los mas conocidos podemos mencionar:

* Describir la velocidad de una particula con velocidad constante.

* Determinar la ecuacién de la tangente a una curva en un punto.

* Analizar la razén de cambio entre dos variables.

e Calcular el drea de una superficie y el volumen de un sélido.
El célculo sustenta su estudio en el conjunto de los nimeros reales, por esta razén es necesario
conocer sus axiomas y sus principales propiedades.

Existen diversas maneras de iniciar el estudio del sistema de los niimeros reales, pero una

de las mds utilizadas considera los sistemas numéricos mds sencillos, el primero de ellos es el
conjunto de los niimeros naturales.

Definicion del conjunto de nimeros naturales

El conjunto de los nimeros naturales se denota por N, y se define como
N={1,2,3,4,56,7,8,9,...}

Una de las primeras aplicaciones de las matematicas en la vida real ha sido el conteo y los nime-
ros naturales han sido la herramienta. Entre las propiedades mds importantes de este conjunto
podemos mencionar la existencia de un orden, la existencia del 1 como primer elemento, que
todo nimero natural tiene otro como sucesor y que todo nimero natural, excepto el nimero 1,
tiene otro nimero natural como antecesor. En términos formales se tiene:

I Propiedades de los niimeros naturales
1. 1<nparatodoneN.
2. Sike N se define su sucesor como k+ 1y ademds k+ 1 e N.

3. SikeN, k#1, se define su antecesor como k — 1 y ademds k+ 1 e N.

En N se definen dos operaciones: la suma y el producto. Se verifica que ambas operaciones son
cerradas, conmutativas y asociativas, la suma distribuye respecto al producto. El niimero natu-
ral 1 es el neutro multiplicativo. Sin embargo, estas propiedades no son suficientes para descri-
bir algunos fendmenos fisicos, por ejemplo, las temperaturas bajo cero, las altitudes por debajo
del mar o la distancia entre dos puntos iguales; en concreto, carecen de un elemento neutro adi-
tivo y de inversos aditivos.

Un conjunto “mds grande” que resuelve este inconveniente se define como el conjunto de
los nimeros enteros.

Definicion del conjunto de los niimeros enteros

Se define el conjunto de los nimeros enteros como
Z={ ..,—2,-1,0,1,2,...}

En Z también estan definidas las operaciones de suma y producto que son, de nueva cuenta,
cerradas, conmutativas y asociativas, también se verifica la propiedad distributiva de la suma,
existe el elemento neutro multiplicativo, pero ademds se agregan el “cero” como elemento neu-
tro aditivo y los “nimeros negativos” como inversos aditivos. Estas propiedades permiten la defi-



nicién de la resta como una operacién derivada de sumar un nimero con el inverso aditivo de
otro, es decir x —y =x + (—y).

No obstante lo anterior, la solucién a problemas elementales como repartir una naranja entre
dos personas o describir qué parte representa un minuto de una hora, o simplemente para dar el
resultado exacto de dividir 46 dulces entre 5 nifios, no pueden resolverse en términos de nime-
ros naturales ni de nimeros enteros. Se hace necesaria, entonces, la introduccion de los nu-
meros fraccionarios, también conocidos como los nimeros racionales que tienen otras propieda-
des de mayor aplicacién.

Definicion del conjunto de los niumeros racionales

Se define el conjunto de los niimeros racionales como
a
b

)3\ [JHe BN Algunos nimeros racionales

Los siguientes son ejemplos de niimeros racionales.

Q=

a,beZ,b= 0}

14 -24 3 4

Cualquier nimero natural.
Cualquier nimero entero.

Cualquier expansion decimal finita como 0.25, 3.1, —7.05, 1.1

M

Cualquier expansién decimal infinita periddica, por ejemplo
3.4 =3.44444444444 . . ., =52.04 = —52.040404040404 . . ..

5.123 = 5.123123123 . . . (la linea arriba de los digitos indica que se repiten infinita-
mente).

Los nimeros racionales histéricamente se definen como cocientes de nimeros enteros, la condi-
cién es que el denominador sea diferente de cero. Dado que todo nimero entero n puede expre-
sarse como el cociente ¥, entonces se considera que todo nimero entero es un nimero racional.
Es decirN C Z C Q.

Todas las propiedades de los enteros siguen siendo validas en @, pero ademds se verifica la
existencia de los inversos multiplicativos para cualquier nimero racional, excepto el cero. Si
4 < @ el inverso multiplicativo se define por £ € Q y satisface 4 2 = 1. Se define la divisién
de dos ntimeros como el producto de uno por el inverso de otro distinto de cero, esto es

E:a-l:wb’l,

b b
Dado un nimero racional ¢ es posible realizar la division de a entre b, para obtener como

resultado un niimero decimal. El teorema 1.1.1, presentado sin demostracién, expresa las opcio-
nes de este resultado.

Teorema 1.1.1 Todo niimero racional puede expresarse como una expansion decimal
finita 0 como una expansion decimal infinita periddica.

H]5\"[]Xe BN Una expansion decimal finita es un nimero racional

Demostrar que la expansién decimal 0.14 es un nimero racional.

1.1 Los nimeros reales 3

o La definicién antigua de la
unidad fundamental de longi-
tud, como la diezmillonésima
parte del meridiano terrestre a
lo largo de un cuadrante, es un
ejemplo de nimero racional.

o La letra Q se tom original-
mente de la palabra “cociente”
en inglés.

| Todo nimero entero puede
expresarse como el cociente de
él mismo y del 1, de manera
que todo entero es un nimero
racional.

NCZcCQ

o Para todo 7e€Q, +#0,se
define el inverso multiplicativo

L e Qy satisface ¢ 2 =1,



4 UNIDAD 1 Los nimeros reales

Si x = 0.14, entonces

x=0.14 <« multiplicar por 10>
100x = 14 <« despejar

_ 7
7700 50

A\ [N BN Otra expansion decimal finita que es un nimero racional

Demostrar que la expansién decimal 0.2124 es un nimero racional.

Si x = 0.2124, entonces

x=0.2124 <« multiplicar por 10*
10 000x =2 124 <« despejar
2124 531

710000 2500
En general, dada la expansién decimal finita 0.a a,a3 . . . a, se supone

x=0.a1a5as . . . a, <« multiplicar por 10"
10"x = aaras . . .d, <« despejar x
a,a,a,...q,
10"

)3\ [Nl N Una expansion decimal infinita periédica es un niimero racional

Demostrar que la expansion decimal infinita 0.543543543543 . . . = 0.543 es un ndmero ra-
cional.

Sea x = 0.543 = 0.543543543543 . . ., entonces

x =0.543543543543 . . . <« multiplicar por 10
10 x = 543.543543543543 . . . < restar a esta nueva expresion la anterior
10 x = 543.543543543543 . . .
x =0.543543543543 . .. < despejar
999x = 543
L
999

SHIS\Y[JXe BN Una expansion decimal infinita periddica es un niimero racional

Demostrar que la expansién decimal infinita 0.1241414141 . . .= 0.1241 es un nimero racional.
Sea x = 0.1241 = 0.1241414141 . . . , entonces
x=0.1241414141 . . . <« multiplicar por 10* y por 10

10*x=1241.41414141 . ..
10°x=12.41414141 . . . < restar estas ecuaciones



10°x = 1241.41414141 . . .

10°x= 12.41414141 . .. < despejar
9900x = 1229

1229
7 9900

Dados dos niimeros racionales cualesquiera, siempre es posible determinar un nuevo nimero
racional comprendido entre ellos, esto puede realizarse tantas veces como se desee; por ejemplo,
entre los racionales m y n se encuentra el nimero racional (m + n)/2. Sin embargo, los nimeros
racionales no “llenan” toda la recta numérica.

Al intentar responder preguntas como: ;cudl es la longitud de la arista de un cuadrado que
tiene drea 27 o ;cudl es la razén entre el perimetro de una circunferencia y su radio?, encontra-
mos que las respuestas V2 y 7, respectivamente, no pueden expresarse como un nimero racio-
nal (vea los problemas 23 y 24 de la seccién 1.4). Niimeros de este tipo se conocen como irra-
cionales y grdficamente se “intercalan” en toda la recta numérica en los “huecos” que existen
entre los elementos del conjunto Q.

Una de las primeras aplicaciones de los nimeros racionales fue construir nimeros irracio-
nales, esto después de un sofisticado proceso.

La necesidad de utilizar nimeros irracionales se presentd en algunos problemas de geome-
tria en la Grecia antigua; sin embargo, fue hasta el siglo X1xX que se obtuvieron avances signifi-
cativos gracias a los estudios realizados por Karl Weierstrass, George Cantor y Richard Dedekin.
La construccion total se dio a partir de los axiomas que establecié Giuseppe Peano en 1889.

Los ndmeros irracionales son todos aquellos que no pueden expresarse como el cociente
de dos enteros, o bien como aquellos nimeros que tienen una expansion decimal infinita no
periodica. En ocasiones basta entender que los irracionales son un conjunto disjunto de los racio-
nales.

Definicion del conjunto de nimeros irracionales

Se define el conjunto de los ndmeros irracionales I como el conjunto de todos los nimeros que
no son racionales.

I'= {x|x es una expansién decimal infinita no periédica}

NI\ [JXeBM:N Algunos ndmeros irracionales

Algunos nimeros irracionales son:
I. e
2.
3. V2
4. \/p, con p nimero primo.
5

a+Vp, si a es un nimero racional y p un nimero primo.

A\ |JKe VA Otros nimeros irracionales

Un ndmero primo sdlo es divisible por €l mismo y por la unidad, los nimeros primos son 2, 3,
5,7,11,13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 57, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . . El
ntimero Vp es irracional siempre que p sea un nimero primo.

Se deja como ejercicio al lector determinar cudles propiedades de los racionales se satisfa-
cen para los irracionales. No todas las propiedades siguen siendo vélidas; por ejemplo, podemos
mencionar que la suma no es cerrada, basta considerar que —2 + 7 y 7 — 7 son dos nimeros irra-
cionales que sumados resultan un nimero entero.

1.1 Los nimeros reales

5
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FIGURA 1.2.1 La recta real

El conjunto de los nimeros >

reales es un conjunto denso.

Ya estamos en condiciones de obtener la definicién de un conjunto mds general, el conjun-
to de los nlimeros reales.

Definicion del conjunto de nimeros reales

Se define al conjunto de los nimeros reales como la unién disjunta de nimeros racionales e irra-
cionales. Es decir R=QU L

Es importante observar que los racionales y los irracionales son conjuntos disjuntos, esto es,
que dado un ndmero real o estd en @ o estd en I pero nunca en ambos. Ademds se verifican las
contenciones propias

NCZCQCR e ICR

1.2 Los nameros reales y la recta numeérica

Los nimeros reales se pueden representar graficamente como puntos sobre una linea recta cono-
cida como la recta real. Sobre esta recta se fijan dos puntos representados por O y 1. Estos dos
puntos permiten construir todos los demds, ya que para representar cualquier nimero real x
se toma un segmento de longitud x a la derecha del cero si x es positivo o a la izquierda si x es
negativo.

El extremo de este segmento es el punto correspondiente al nimero x. El cero se conoce
como origen de la recta real y el 1 como la escala. Por lo anterior, sobre la recta real se repre-
sentan los reales positivos, el cero y los reales negativos, y se verifica una regla de correspon-
dencia: cada punto de la recta corresponde a un nimero real y cada nimero real lo podemos
representar como un punto de esta recta. La recta real se muestra en la FIGURA 1.2.1.

Los nimeros definidos a la derecha del cero se conocen como reales positivos y el conjun-
to de todos ellos se representa por R*. De manera andloga, se define R~ como el conjunto de
todos los reales a la izquierda del cero.

Otra propiedad importante de los nimeros reales es que entre dos nimeros reales diferentes
cualesquiera, sin importar cudn cercanos estén, siempre existe otro nimero real y, en consecuen-
cia, entre dos nimeros reales cualesquiera diferentes, siempre existe una infinidad de nimeros
reales. A diferencia de Q y de I los reales no contienen “huecos”. En términos matemadticos se
dice que el conjunto de los niimeros reales es un conjunto denso.

1.3 Propiedades de los niimeros reales

El sistema de los nimeros reales es uno de los pilares fundamentales en el desarrollo de las mate-
maticas a cualquier nivel, existen muchos resultados que muestran su importancia histérica. No
obstante, la presente obra no realiza un estudio mas profundo de este conjunto numérico y sim-
plemente se establece el conjunto de axiomas a partir de los cuales se derivan todas las propie-
dades utilizadas en un curso bésico de célculo.

Axiomas de los nimeros reales

Dados dos niimeros reales cualesquiera x y y se define la suma x +y € R y el producto xy € R,
que satisfacen los siguientes axiomas:

I Axioma 1 Propiedad conmutativa de la suma

xty=y+x

I Axioma 2 Propiedad asociativa de la suma

x+@+z=x+y +z



1.3 Propiedades de los nimeros reales 7

I Axioma 3 Existencia del neutro aditivo

Existe el 0 € R tal que x + 0 =x.

I Axioma 4 Existencia de inversos aditivos

Para todo niimero real x existe —x € R, tal que x + (=x) = 0.

I Axioma 5 Propiedad conmutativa del producto

Xy =yx

I Axioma 6 Propiedad asociativa del producto

x(yz) = (xy)z

I Axioma 7 Existencia del neutro multiplicativo

Existeel 1 e Rtal que x - 1 = x.

I Axioma 8 Existencia de inversos aditivos

Para todo nimero real distinto de cero x existe x ' € R, tal que x - x ' = 1.

I Axioma 9 Propiedad distributiva
x(y+z)=xy+axz

Todas las propiedades conocidas de los nimeros reales pueden demostrarse a partir de los axiomas

anteriores, por esta razén se dice que la teoria de los nimeros reales es una teoria axiomdtica. o La teorfa de los nimeros reales
es una teoria axiomatica.

d

—__ NOTAS DESDE EL AULA

7 e

Si existiera la division entre O . . .
(En dénde esta el error del siguiente desarrollo?

Supongamos que es un nimero real distinto de cero.

Entonces sea x=y#0
Multiplicar la ecuacién por x X =xy
Restar y* en ambos lados =y =xy—y*
Factorizar xtx—y)=yx—y)
Despeiar x+»Nx—y
Pl (x—y)
. @Ee=3
—y) y
xX+y=y
Y como inicialmente x =y yty=y
. y
Se tiene 2y=y = 2=;=1 ?

(Qué ocurri6?
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Ley de tricotomia:

Dados dos nimeros reales cua-
lesquiera uno es mayor que otro
o son iguales.

>

Los axiomas de los nimeros reales permiten definir operaciones complementarias como la
diferencia de dos nimeros y el cociente de dos nimeros.

Definicion de resta y division de nimeros reales
Se define la resta y la divisién de nimeros reales como sigue:
a x—y=x+(y)

X
b) ; = xy ', siempre que y # 0

Propiedades de orden de los nimeros reales

En los nimeros reales se define una relacién de orden <, que satisface los siguientes axiomas:

I Axiomas de orden en R

Sean x, ye R

I Axioma 10 Ley de tricotomia

Se cumple una y s6lo una de las siguientes condiciones: x <y, x=y, x>y.

x>y significay <x

I Axioma 11 Si y < x, entonces y + z < x + z para cualquier z € R
I Axioma 12 Si 0 <yy 0 <ux, entonces 0 < xy

I Axioma 13 Propiedad de transitividad

Six<yyy<z entonces x <z

Definicion de los simbolos de desigualdad estricta <y >

Los simbolos <'y > se conocen como simbolos de desigualdad estricta y se leen “menor que” y
“mayor que”.

Definicion de los simbolos de desigualdad no estricta =y =

Los simbolos = y = se conocen como simbolos de desigualdad no estricta y se leen “menor o
igual que” y “mayor o igual que”.

La expresion y = x abrevia los casos y <x o0y =x.
La expresion y = x abrevia los casos y > x 0y = x.

En el teorema 1.3.1 se muestran otras propiedades de orden.

Teorema 1.3.1 Otras propiedades de orden

1. Siy<uxy0<gz entonces yz < xz
Siy<xyz<0, entonces yz > xz7
Si0<xyO0<y,entonces 0 <x+y

Sio<y<xyO<w<gzentoncesy+w<x+z

A

Sio<y<xyO0<w<gz entonces yw < x7
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Si y < x, entonces por el axioma 11 y —y <x—y, es decir, 0 <x—y, y si
0 <z por el axioma 12 se cumple 0 < (x — y)z, luego 0 < xz — yz. De nueva cuenta por el axio-
ma 11 tenemos yz < xz — yz + yz, donde finalmente yz < xz.

Siy<xyz<0,entonces 0 <x—yy0<—z porel axioma 12 se cumple
0 <(x —y)(—z), luego 0 < —xz + yz. De nueva cuenta por el axioma 11 tenemos xz < yz.

Si0<xy0<y,entonces por el axioma 11 si0<xyO+x<x-+y,

por tricotomia (axioma 10) se tiene 0 <x + y.

Si0<y<xy0<w<gzentonces 0 <<x—yy0<z—w,porelinciso 3 de
este teorema se tiene 0 < (x —y) + (z —w) luego 0 <x + z— (y + w). Por dltimo y + w < x + z.

Sio<y<xyO0<w<g entonces yw < xw y wx < xz. Por tricotomia se
concluye la demostracion.

El conjunto de los nameros reales es un conjunto ordenado

Los axiomas de orden inducen de manera natural un orden en el conjunto de los nimeros reales,
y se tiene la siguiente convencion:

1. y<xsiysblosiO<x—y
2. y=xsiysblosi0O=x—y

3. y=xsiysolosi0=x—y

En la recta real la desigualdad y < x se representa como un nimero y a la izquierda de un nime-
ro x (FIGURA 1.3.1).

En otras palabras, se dice que un nimero x es mayor que otro ndmero y si y sélo si la dife-
rencia x — y es un nimero real positivo. De la misma manera se dice que un nimero x es menor
que otro nimero y si y solo si la diferencia x — y es un nimero real negativo. Se dice que los
nimeros son iguales si la diferencia x — y es cero.

Lo anterior define un orden de manera natural en el conjunto de los niimeros reales, porque
para saber cudl es la ubicacion correcta de un nimero basta compararlo con el cero.

infimo y supremo

Introducimos las siguientes cuatro definiciones antes de presentar un ultimo axioma de los
nimeros reales que estudiaremos en esta seccion:

I Definicion de cota superior Sea A C R, si existe x € R tal que a < x para todo a € A, enton-
ces x se llama una cota superior de A y se dice que el conjunto A estd acotado por arriba o que
A estéd acotado superiormente.

I Definicion de cota inferior Si existe x € R tal que x < a para todo a € A, entonces x se llama
una cota inferior de A y se dice que el conjunto A estd acotado por abajo o que A estd acotado
inferiormente.

I Definicion de supremo de un conjunto Sea A C R un conjunto acotado por arriba y supon-
gamos que existe x € R que satisface las siguientes dos condiciones:

* xes una cota superior de A.

* Siye R es una cota superior de A, entonces x = y.

Entonces x se dice el supremo de A y tiene la propiedad de ser “la menor de todas las cotas supe-
riores”.

4—'—'—»
y X

FIGURA 1.3.1 Representacion
grifica de y < x.

9
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Si existen, el infimo y el supre- pp
mo de un conjunto son tnicos.

Los nimeros reales forman un
conjunto denso.

I Definicion de infimo de un conjunto Sea A C R acotado por abajo y supongamos que exis-
te x € R que satisface las siguientes dos condiciones:

e xes una cota inferior de A.

* Siye R es una cota inferior de A, entonces y = x.

Entonces x se dice el infimo de A y tiene la propiedad de ser “la mayor de todas las cotas infe-
riores”.

Ya se tienen las condiciones para poder enunciar un tltimo axioma de los nimeros reales,
conocido como el axioma de complitud o de completitud:

Axioma de completitud
I Axioma 14 Axioma de completitud
1. Todo conjunto no vacio de nimeros reales acotado por arriba tiene un supremo.

2. Todo conjunto no vacio de nimeros reales acotado por abajo tiene un infimo.

Como un conjunto de nimeros reales puede constar de un solo nimero real, se verifica por el
axioma 14 que los reales son densos.

1.4 Intervalos en R

Al utilizar una variable en cualquier problema de aplicacién es necesario definir el subconjunto
de nimeros reales que le corresponde como conjunto de sustitucién. Sin lugar a dudas, unos de
los subconjuntos mas importantes en R son los intervalos y son definidos a continuacién:

Definicion de intervalo en R

Se definen los siguientes subconjuntos de nimeros reales, conocidos como intervalos reales:

1. Intervalo abierto (a, b) = {x|a <x < b}
2. Intervalo cerrado [a, b] = {x]a = x = b}
3. Intervalos mixtos (a, b] = {x|a<x = b}

[a, b) = {x|a = x < b}
4. Intervalos infinitos (=00, b) = {x|x < b}
(=00, b) = {x|x = b}
[a, ) = {x|a < x}
[a, ) = {x|a = x}
5. Los nimeros reales (=00, ) =R
En la FIGURA 1.4.1 se pueden observar las representaciones graficas de los diferentes tipos de inter-

valos. Algunos autores denotan los extremos de un intervalo abierto con puntos “huecos” y los
extremos de un intervalo cerrado con puntos “sélidos”.

(] 5\"|JXeB¥:N Operaciones con intervalos

Determine el conjunto de nimeros reales definido por (—2, 16] M [12, 20) y por (—2, 16] U
[12, 20).
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( AY ( .| C A
\ ] \ d C yJ
a b a b a b
(a, b) (a, b] [a, b)
C .| C L
L J L \
a b a a
[a, b] [a, c0) (a, 00)
A .|
] |
b b
(—00, b) (—o0, b]

FIGURA 1.4.1 Intervalos reales

Los intervalos son conjuntos, de manera que al utilizar operaciones de conjuntos, se

tiene:
(—2, 16] N [12,20) = {x]-2 <x = 16} N {x]12 = x <20} = {x12 = x = 16} = [12, 16] ~———FF)—
(-2, 161 U [12,20) = {x| -2 <x = 16} U {x|12 = x <20} = {x| -2 <x <20} = (-2,20) 2 121620

FIGURA 1.4.2

Los resultados graficos se observan en la FIGURA 1.4.2.

“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-2.

1. Demuestre que la division entre cero no existe. .
q 27. Demuestre que si x, y € Q, entonces x + y € Q.

En %05 ejercicios 2 a 9 exprese los racionales dados en forma 28. Justificar si la suma de dos irracionales es un irracional.
decimal. 29. Demuestre que si x, z € @, x < z, entonces existe y € Q
2.2 3.0 tal que x <y <z
4. 1 5 —& 30. Demuestre que si x, z € I, x < z, entonces existe y € [
11 123 tal que x <y <z
6. 1 7. T00 . .
o . 31. Demuestre que si x, z € R, x < z, entonces existe y € R
8. 4 9. » tal que x <y < z.
En los ejercicios 10 a 21 escriba los nimeros decimales 52 ]ia;ios x,y € R, si x <y ordenar los nimeros x, y, \fxy.
dados, si es posible, en forma de fraccién. 7z
10. 0123321123321 . . . 11. 3.141615 En los ejer.cicios 3.3 a.38 determine si el resultado es un
ndmero racional o irracional.
12. 0.12121212121 . . . 13. 0.25555555 . .. 3 5 /3 V3
33. (V3 +1 34. (V5 +4 —4
14. 2.213213 15. 5.71715 ( ) ( )(2 )
16. 0.0144444 17. 0.0134134134 38V 36. (Vr + )
o T 37.7° 38.(1-1—\/5)4
18. 1.3132313231 . . . 19. 0.123123123123 . . . . .
39. Demuestre que si x y y son dos nimeros pares, enton-
20. 0.123456789123456 . . . 21. 4.022022022 . . . ces xy es otro ndmero par.
22. Determine el menor natural, el menor entero positivo, el 40. Demuestre que si x y y son dos nimeros impares, enton-
menor racional positivo y el menor irracional positivo. ces xy es otro nimero impar.
23. Demuestre que 7 es irracional. 41. Demuestre que el cuadrado de un nimero par es otro
24. Demuestre que /2 es irracional. nimero par.
25. Demuestre que la raiz cuadrada de un nimero primo es 42. Demuestre que el cuadrado de un niimero impar es otro
irracional. ndmero impar.

26. Determine un racional que aproxime a 7. 43. Demuestre que si x € Q y y € I, entonces xy € I
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En los ejercicios 44 a 51 determine si existen el infimo y el 54, [1, 6.5] 55. [2, 14)
supremo para cada uno de los conjuntos dados. 56. (—o0, —1) 57. (=00, 0]
4. A=1{2,4,06,8, 10} 58. (1, o0) 59. [9, o)
45.A4=1{0,4,0, 49,0499, ...} En los ejercicios 60 a 72, realice las operaciones con inter-
4. A=1{1,%4% 4 ...} valos indicadas.

— Ly 141
7. A={1, 1 =5 1-51-5...} 60. (2, 121 U (-7, 8) 61. (=0, 2] U (=4, 10)
48. A = {1, 1.1, 1.11, 1.111, .. } 62. (—OO, 5] U (2, OO) 63. (_9’ 9] N (_3’ 3)
49.4=1{2,4,6,8,10... .} 64. [0, 21 N (=2, 1] 65. (=00, 1) N (—4, 10]
50. A = {xlx = 1), ne Z} 66. (1,91 U (=2, 4) N [0, 2)

- =1
S1.A={x|x= 1y neZ} 67. ((1, 3] N (=4, 0)) 68. [—5, 00] — (4, 12)
En los ejercicios 52 a 59 represente graficamente cada uno  69. R — ((1, 51U (—1, 8)) 70. R — (=0, 3)
de los intervalos dados. 71. ((()’ 41U (-3, 3)) -2, 5)
52. (3, 8) 53. (-10, —2] 72. ((—8, 41 U (-3, 1)) N2, 6)

1.5 Desigualdades y valor absoluto

En esta seccion estudiaremos dos conceptos fundamentales en el calculo infinitesimal, el con-
cepto de desigualdad (o inecuacién) y el concepto de valor absoluto.

Definicion de desigualdad en una variable

Una desigualdad en una variable es una expresion de la forma f(x) A 0, donde A es alguna de las
relaciones de orden <, >, =, =.

Por resolver una desigualdad se entiende determinar el intervalo o combinacién de interva-
los (de niimeros reales) cuyos elementos satisfacen la desigualdad.

Para resolver una desigualdad se utilizan los axiomas de los nimeros reales como se ilustra
en los siguientes ejemplos.

Resuelva la desigualdad 2x+ 4 < 6x+ 1

2x+4<6x+1 Por el axioma 11, restar 1

x+4—-—1<6x+1-—1 Simplificar

2x +3 < 6x Por el axioma 11, restar 2x

2x —2x + 3 < 6x — 2x Simplificar

3 <dx Por el inciso 1 del teorema 1.3.1, multiplicar por %
()3 < 4()x Simplificar

% <x De manera equivalente

RS

Resuelva la desigualdad —6x+3 = —8x—7

—6x+3=-8—-7 Por el axioma 11, sumar 7

—6x+3+7=-8—7+7 Simplificar



—6x + 10 = —8x
—6x + 6x + 10 = —8x + 6x
10 = —2x

()10 = —2(H)x

S5 =x

x € (—00, —5]

A3V [JHe BN Resuelva la desigua

1.5 Desigualdades vy valor absoluto

Por el axioma 11, sumar 6x

Simplificar

Por el inciso 2 del teorema 1.3.1, multiplicar por *%
Simplificar

De manera equivalente

ldad 3<(5x—7)/2 =10

5x—17
2
6<5x—7=20

6+7<5x—7+7=20+7

3<

I

10

13 < 5x =27
13(4) < 5(3)x = 27(3)

Por el inciso 1 del teorema 1.3.1, multiplicar por 2

Por el axioma 11, sumar 7

Simplificar

Por el inciso 1 del teorema 1.3.1, multiplicar por %
Simplificar

De manera equivalente

Resuelva la desigualdad 2 <<(6 —2x)/4 <5

—2<6 =5
—8<6—-2x=20

8 -6<6—-6—2x=20—
“14<-2x=14

1) > 2Ly = 14
T>x=-

T =x<T7

xel[-7,7)

=05\ Resolver la desigua

Por el inciso 1 del teorema 1.3.1, multiplicar por 4

Por el axioma 11, restar 6
6 Simplificar
Por el inciso 2 del teorema 1.3.1, multiplicar por *%
Simplificar
De manera equivalente

En forma de intervalo

Idad x* > 3x—2

Al reescribir la desigualdad en la forma x%—3x+2>0, tenemos (x—Dx—2)>0.

Si consideramos la parte izquierda de la desigualdad como el producto de dos factores, este pro-
ducto es positivo, lo cual implica que los factores son del mismo signo.

Se tienen los siguientes casos.

Si(x—Dx—2)>0

entonces x — 1 >0yx—2>0

De donde x > 1y x> 2

13
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El conjunto solucion de este par de desigualdades es (1, 00) M (2, 00) = (2, ©0). Vea la FIGURA

[ 15.1a).
\
@ 12 Si(x—H(x—2)>0
entonces x — 1 <0y x—2<0.
j Dedonde x <1yx<2
b) 1 2
El conjunto solucién de este par de desigualdades es (—00, 1) M (=00, 2) = (=00, 1). Vea la FIGU-
}—€ RA 15.1b)
— 5.1b).
) 1 2 De manera que la solucién de la desigualdad se obtiene al unir las soluciones obtenidas en
FIGURA 1.5.1 los casos 1y 2. Es decir, la solucién es el conjunto x e (—00, 1) U (2, 00). Vea la FIGURA 1.5.1¢).

AZVIIEN Resolver la desigualdad X¥* —2x—8 <0
Al considerar la desigualdad x> —2x—8 =0, tenemos (x —4)(x +2) =0

Si consideramos la parte izquierda de la desigualdad como el producto de dos factores, este pro-
ducto es menor o igual a cero, lo cual ocurre cuando los factores son de signos diferentes o cero.
Se tienen los siguientes casos.

Six—4)x+2)=0
entoncesx —4 =0yx+2=0.

:g: De donde x = 4y x = —2.

—2 4 El conjunto solucién de este par de desigualdades es (—00, 4] M [—2, 00) = [—2, 4]. Vea la FIGU-
FIGURA 1.5.2 RA 15.2.

Six—4)(x+2)=0,
entoncesx —4=0yx+2=0.

De donde x = 4y x = 2.
El conjunto solucién de este par de desigualdades es (—00, —2] M [4, 00) = &,

La solucién de la desigualdad se obtiene al unir las soluciones obtenidas en los casos 1y 2. En
este caso la solucion es el conjunto x e [-2, 4] U & = [-2, 4]. Vea la figura 1.5.2.

Resuelva la desigualdad (x—8)/(x+4) =5

X
Al considerar la desigualdad = 5 se tienen los siguientes dos casos, depen-

diendo del signo del denominador.

Si x +4 >0 (observe que no se puede dar el caso x +4 = 0),
entonces x — 8 = 5(x +4) con x > —4.
De manera que —4x = 28 y x > —4
Al dividir entre —4, tenemos x = —7 y x > —4.
Es decir x € (—00, =7] N [—4, o0) = &,

Si x +4 <0 (observe que no se puede dar el caso x + 4 = 0),
entonces x — 8 = 5(x + 4) con x < —4.

De manera que —4x = 28 y x < —4.



1.5 Desigualdades vy valor absoluto 15

Al dividir entre —4, tenemos x = =7 y x < —4.

Es decir, x € [-7, 00) N (o0, —4) = [-7, —4).

Por tltimo, la solucidn es la unién de los intervalos solucion obtenidos en los dos casos, es decir,
xe[-7,-4)U B =[-7,—4).

Otra manera de resolver una desigualdad es a través de un andlisis grafico.

Para esto, es necesario recordar que dada una funcién y = f(x) los puntos de interseccion
entre su gréifica y el eje x se determinan al resolver la ecuacién f(x) =0.Y que, por otra parte, si
f(x) >0, entonces la grafica estd por “arriba” del eje x y si f(x) <0, entonces la grafica estd por
“abajo” del eje x. Vea la FIGURA 1.5.3.

Resolver la desigualdad X’ +2x—8 <0

Los puntos de corte de la gréfica de f(x) = P +2x—8= (x—2)(x+4)yelejexson
x=2yx=—4.

La gréfica de la funcién puede observarse en la FIGURA 1.5.4.
Se verifica que f(x) = (x — 2)(x + 4) = 0 en el intervalo [—4, 2].
(También puede observarse que f(x) = (x — 2)(x +4) > 0 en (—00, —4) U (2, o0).

Valor absoluto de un nimero real

Hemos visto que a cada nimero real se le asocia un tinico punto de la recta numérica, conside-
rando la distancia entre el origen (el cero) y el nimero dado. Esta distancia también se define
como el valor absoluto o como la magnitud del nimero. Formalmente se tiene la siguiente defi-
nicién.

Definicion de valor absoluto de un niimero real

Si x es un nimero real, se define el valor absoluto de x como

x six=0
el = —x six<O0

A3\ [JHe BN Algunos ejemplos de valores absolutos

1L 2[=2
2. 10]=0
3. 13 =13
x+x six=0 2x six=0
+ |x|+x={—x+x six<0={0 six <0

e
|
I

|x] I o§5ix=0 1 six=0
X {‘7" six<0:{—1 six <0

x—24+x six—2=0 2x—2 six=2
z{—(x—2)+x six—2<0 ={ 2 six<2

Definicion de distancia entre dos niimeros

Si x, y € R, se define su distancia como |x — y|.

y
J@) ?\[ /f(x) >0
+ \/ X
fn<o0 / J) <0
FIGURA 1.5.3
y
10

|
s
§)
\\C’
[\
~ 4

—10+

FIGURA 1.5.4
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Propiedades del valor absoluto

En el siguiente teorema se enuncian las propiedades mds importantes del valor absoluto. La
demostracion se deja como ejercicio al lector (basta aplicar la definicién de valor absoluto).

Teorema 1.5.1 Propiedades del valor absoluto

. |x]=0
2. |x|=0siysélosix=0
3. |x =]
4 oyl =[xl [yl
o= b0

Desigualdades y valor absoluto

En el siguiente teorema se presentan las propiedades del valor absoluto aplicadas a las desigual-
dades.

Teorema 1.5.2 Propiedades del valor absoluto

. |x|<asiysélosi—-a<x<a

2. |x|>asiysélosix<—aox>a
3. |x+y| =|x| +|y| Desigualdad del tridngulo
4. x=|x|y —x = |x|
x=y six=0
5. Siy = 0, entonces |x| =y si y sélo si {—x “y six<0

Por definicién, si |x| < a, entonces se tienen los siguientes casos:

) ) x<a six=0
Las propiedades anteriores [ 2 . 0 Multiplicar la segunda rama por —1
siguen siendo vélidas al cam- —x<a six<
biar los simbolos de desigualdad .
trictos < v > por o . x<a six=0
estrictos <y = por los no estric- . Aplicar transitividad a ambas ramas
tos <y =. x>—a six<0

—a<x<a Para toda x € R

Por definicién, si |x| > a, entonces se tienen los siguientes casos:

{ x>a six=0

. Multiplicar la segunda rama por —1
—x>a six<O0 diHp e P

Aplicar transitividad a ambas ramas

x>a six=0
x<—a six<O0

Es decir, x<—aox>a Para toda x € R
La demostracién de las propiedades 3, 4 y 5 se proponen como ejercicio.

Las propiedades anteriores siguen siendo validas al cambiar los simbolos de desigualdad
estrictos <y > por los no estrictos =y =.
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Resuelva la desigualdad [x — 4| <30

lx — 4] < 30
30<x—4<30
30+4<x—4+4<30+4
26 < x <34

x € (—26, 34)

Por el inciso 1, teorema 1.5.2
Por el axioma 11, sumar 4 a cada rama
Simplificar

En forma de intervalo

Unas de las desigualdades mas utilizadas en el cdlculo de limites son mostradas a continuacién

en los ejemplos 11 y 12.

Resuelva la desigualdad |f(x) — L| <&

fx) — L| <&
—e<f(x)—L<e
L—e<f(x)—L+L<L+s
L-—e<fx)<L+e
fe(L—e L+e)

Por el inciso 1, teorema 1.5.2
Por el axioma 11, sumar L a cada rama
Simplificar

En forma de intervalo

]\ | {Ko M VA Resuelva la desigualdad [x—a| <§

|x — a| <o Por el inciso 1, teorema 1.5.2

S <x—a<$é Por el axioma 11, sumar a y simplificar

a—06<x<a-+éd

xe(a—0,a+ )

En forma de intervalo

Resuelva la desigualdad |-5x+ 8| < 10

|-5x + 8| = 10
—-10=-5x+8=10
—-10-8=-5x+8—-8=10—38

18 = S5y =2
~18  —5¢ 2
—_—— > —
5~ 5~ S
2< <§
575

2 18
XE[T5, ?]

Por el inciso 1, teorema 1.5.2
Por el axioma 11, restar 8 a cada rama
Simplificar

Por el inciso 2 del teorema 1.3.1, dividir entre —5

Simplificar y reordenar

En forma de intervalo

17
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Resuelva la desigualdad [3x+ 5| > 20

|3x + 5| > 20 Por el inciso 2, teorema 1.5.2, se tienen los dos casos
3x +5>20, 3x+5<-20 Resolver las desigualdades simultdneamente
3x>15, 3x<-25 Simplificar

25
x>5 x< —? En forma de intervalo

X e (_OO, _%) U (5’ OO)

=4) 3\ [JKo M [} Resuelva la desigualdad |-2x+17| = 10

|—2x + 17| =10 Por el inciso 2, teorema 1.5.2, se tienen los dos casos
—2x + 17 =10, —2x+ 17 = —10  Resolver estas desigualdades simultaneamente
—2x =7, —2x=-27

7 27

X = — En forma de intervalo

2 2

X =

xe(—o0, 3] U [%, )

=4] 3\ [JKoMN [} Resuelva la desigualdad [4x+7| = x+ 4

|4x + 7| =x+4 Por el inciso 2, teorema 1.5.2, se tienen los siguientes dos casos
dx+ T =x+4, 4x+ 7 = —(x +4) Resolver estas desigualdades simultdneamente
3x=-3, 5x=-11

11

x=-1, x=—— En forma de intervalo

5
xe(-00, —4]U (1,00

“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-2.

1. Demostrar los incisos 3, 4 y 5 del teorema 1.5.2. 17. (x + H)x - 9) = 0 18. 2 +5¢+6 =0
En los ejercicios 2 a 29, resolver la desigualdad indicada, dar 19.22+x—-1=0 20. X >x+2
la solucién en términos de intervalos y representarla en la 2M. 2 +2x—3=0 22. 22 +5x <0
recta real. 23. %+ 6x < 0 24. 2 < 16
2. 2x <4 — 10x 3. 14x — 6 <24 — 4x 25. (x + Dx + 2)(x +3) <0
4. 5x + 14 > 40 — 8x 5.32x +2)>4x— 10 26.x2(x—4)50 27. 22 + 50 < —2 + 1
6. (2x—3)=4-(2x+t4 28. 2 > (x — 2)° 29. sen x < cos x
. _»n < _3 4 = _1
7.xm2=3x"3 8. +8= 3(1 3x) En los ejercicios 30 a 51, resolver la desigualdad mostrada,
9. —4<6x+8<8 10. 40 <20 — 10x = 100 dar la solucién en términos de intervalos y representarla en
11. 5=4-9x <2 12. 2=12-3x =5 la recta real.
13. 2x — 10 < 8 + 8x 4. x+4Hx—6)<0 x—3 x—6
15.4x— Dx—5 >0 16. (x —2)x+5) =0 30'x+5>0 3. x—9<0
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x+1 x+4
32.x_150 33. x+12>10 56. 2 +x| =10 57. |x+ 5| = 2x
4 2x i1 58. |(x + 2)(x — 2)| <22 — x)
34. < =8 35. 3 =-1 17 — 6| 8x
59. =1 60. =1
9 1 |6x — 2| 2x —2
36. — =x 37. — =x-1
X X 2x+3 lx + 2]
X o) 4 61. 3 = 62. 1 = m
38, —— >3x 39. = — * *
x+5 2—x X lx—2|
x 2 x 10 63.1< 64.2x — 8| =3
40. == 41. = — e+ 3
x+1 x x+4 X 5y 6
1 2 1 L—dx =3 = . - >
2. - = - 43. 2> —9x+4>0 65.[~dx -3 = 8 66 133 %13 0
by x+1 x4+2
x+3 X ¥ 3y _4 67 Demuestre que el cuadrado de cualquier real no cero es
44. = 45, —— < itivo.
3—x  x+1 x*—4x+5 0 POSIEVO ) 5
2x 68. Demuestre que si |x| = 1, entonces x~ = x.
2
46. 1 = 1—x 47. 3x" —Ix + 14 = 10 69. Demuestre que si |x| = 1, entonces 2= x
1 —1 x+1 1 70. Suponga que 0 < a < b < c, resuelva para x la siguiente
48. 18 —2x = 3x+6 49. 2x — 4 < 1y _1 desigualdad:
3
3x -2 2 — b)x —ab
50. 3x — 2 < 2 51 = +4>0 Ctla-bx-ab
x+1 xX+c
En los ejercicios 52 a 66, resolver la desigualdad mostrada, a c
dar la solucién en términos de intervalos y representarla en 71. Si a, b, ¢, d > 0 son niimeros reales tales que ; < E
la recta real. demuestre que
52.13x + 15| = 10 53. 10 <|x + 5| a adec o
x—1 b btd d
54. |2x + 3| < 10}x| 55. ‘— > 1
x+1







Unidad 2

Funciones

(3, f(x3))

(%2, f(xp))

En esta unidad ;Ha escuchado frases como “el éxito esta en funcion del trabajo arduo” y “la
demanda esta en funcion del precio”? La palabra funcién se usa a menudo para sugerir una
relacion o una dependencia de una cantidad con respecto a otra. Como tal vez sepa, en
matematicas el concepto de una funcion posee una interpretacion similar pero ligeramente

mas especializada.
El calculo trata, en esencia, sobre funciones. Asi, resulta conveniente empezar su estudio con

una unidad dedicada a un repaso de este importante concepto.
Competencia especifica

Comprender el concepto de funcion real e identificar tipos de funciones, asi como
aplicar sus propiedades y operaciones.

21
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* f(x)
Rango

FIGURA 2.1.1 Dominio y rango
de una funcién f

. e

Correspondencia estudiante/escri-
torio

Consulte la seccion Pdginas de
recursos, al final del libro, para
tener un repaso del desarrollo
del binomio.

>

2.1 Funciones y graficas

I Introduccion Al usar los objetos e interactuar con las personas que nos rodean, resulta facil
establecer una regla de correspondencia que asocie, o apareje, a los miembros o elementos de un
conjunto con los elementos de otro conjunto. Por ejemplo, para cada nimero de seguridad social
hay una persona; para cada libro corresponde por lo menos un autor; para cada estado hay un
gobernador, etcétera. En matemadticas estamos interesados en un tipo especial de corresponden-
cia: una correspondencia con valor tinico denominada funcion.

Definicion 2.1.1 Funcién

Una funcién de un conjunto X en un conjunto Y es una regla de correspondencia que asigna
a cada elemento x en X exactamente un elemento y en Y.

I Terminologia Una funcién suele denotarse por una letra como f, g o h. Entonces podemos
representar una funcién f de un conjunto X en un conjunto Y por medio de la notacién f: X — Y.
El conjunto X se llama dominio de f. El conjunto de elementos correspondientes y en el conjun-
to Y se denomina rango de la funcién. El tnico elemento y en el rango que corresponde a un ele-
mento x selecto en el dominio X se denomina valor de la funcién en x, o imagen de x, y se escri-
be f(x). Esta expresion se lee “fde x” o “fen x”, y se escribe y = f(x). Algunas veces también
conviene denotar una funcién por y = y(x). Observe en la FIGURA 2.1.1 que el rango de f no nece-
sariamente debe ser todo el conjunto Y. A muchos profesores les agrada llamar a un elemento x
en el dominio entrada de la funcién, y al elemento correspondiente f(x) en el rango salida de la
funcién. Puesto que el valor de y depende de la eleccidn de x, y se denomina variable depen-
diente; x se denomina variable independiente. A partir de este momento consideraremos que
los conjuntos X y Y constan de nimeros reales; asi, la funcion f se denomina funcién con valor
real de una sola variable real.

En todos los andlisis y ejercicios de este texto, las funciones se representan de varias formas:

* analitica, es decir, por medio de una férmula como f(x) = xz;

* verbal, es decir, mediante una descripcién con palabras;
* numérica, es decir, mediante una tabla de valores numéricos, y
* visual, es decir, con una grafica.

A3\ |JXe N Funcion elevar al cuadrado
2

La regla para elevar al cuadrado un nimero real estd dada por la ecuacién f(x) = x> 0 y = x°.
Los valores de fen x = —5 y x = /7 se obtienen al sustituir x, a la vez, por los nimeros

-5y V7.

f(=9)=(=9"=25 y [V =] =7
Correspondencia estudiante y escritorio

Una correspondencia natural ocurre entre un conjunto de 20 estudiantes y un conjunto de, por
ejemplo, 25 escritorios en un salén de clases cuando cada estudiante escoge y se sienta en un
escritorio diferente. Si el conjunto de 20 estudiantes es el conjunto X y el conjunto de 25 escri-
torios es el conjunto Y, entonces esta correspondencia es una funcién del conjunto X al con-
junto Y, en el supuesto de que ningilin estudiante se sienta en dos escritorios al mismo tiempo.
El conjunto de 20 escritorios ocupados realmente por los estudiantes constituye el rango de la
funcioén.

Algunas veces, para destacar el argumento, escribiremos una funcién representada por una
férmula usando paréntesis en lugar del simbolo x. Por ejemplo, al escribir la funcién elevar al
cuadrado f(x) = x* como

—(
JO)r=0)" (1

Entonces, para evaluar (1) en, por ejemplo, 3 + /h, donde & representa un nimero real, escri-

bimos 3 + & entre paréntesis y realizamos las operaciones algebraicas correspondientes:

f3G+h =@+ h?*=9+ 6h+ h°



Si una funcién f estd definida por medio de una férmula o ecuacién, entonces por lo regu-
lar el dominio de y = f(x) no se plantea explicitamente. Por lo general es posible deducir el
dominio de y = f(x) ya sea a partir de la estructura de la ecuacién o del contexto del pro-
blema.

A1 [JXe BN Dominio y rango

En el ejemplo 1, puesto que cualquier nimero real x puede elevarse al cuadrado y el resultado
¥ es otro nimero real, f(x) = x* es una funcién de R en R; es decir, f: R — R. En otras pala-
bras, el dominio de f es el conjunto R de nimeros reales. Al usar notacién de intervalos, el
dominio también puede escribirse como (—oco, 00). Debido a que x* = 0 para todo niimero real
x, es fécil ver que el rango de f es el conjunto de niimeros reales no negativos o [0, co).

I Dominio de una funcion Como ya se menciond, el dominio de una funcién y = f(x) que estd
definido por una férmula no suele especificarse. A menos que se indique o implique lo contra-
rio, se entiende que

e El dominio de una funcién f es el mayor subconjunto del conjunto de nimeros reales
para los que f(x) es un nimero real.

Este conjunto a veces se refiere como dominio implicito o dominio natural de la funcion.
Por ejemplo, no es posible calcular f(0) para la funcién reciproca f(x) = 1/x puesto que 1/0
no es un ndmero real. En este caso se dice que f estd indefinida en x = 0. Puesto que todo
nimero real diferente de cero tiene un reciproco, el dominio de f(x) = 1/x es el conjunto
de niimeros reales excepto cero. Por el mismo razonamiento, la funcién g(x) = 1/ (x* — 4)no
estd definida en x = —2 ni en x = 2, de modo que su dominio es el conjunto de nimeros rea-
les sin los nimeros —2 y 2. La funcién raiz cuadrada (x) = Vx no estd definida en x = —1
porque V—1 no es un ndmero real. Para que 4(x) = Vx esté definida en el sistema de nime-
ros reales, debe pedirse que el radicando, en este caso simplemente x, sea no negativo. A par-
tir de la desigualdad x = 0 observamos que el dominio de la funcién /4 es el intervalo [0, c0).
El dominio de la funciéon constante f(x) = —1 es el conjunto de nimeros reales (—oco, 00) y
su rango es el conjunto que consta sélo del nimero —1.

A3\ [JEel'8 Dominio y rango

Determine el dominio y el rango de f(x) = 4 + Vx — 3.

El radicando x — 3 debe ser no negativo. Al resolver la desigualdad x — 3 = 0 se
obtiene x = 3, de modo que el dominio de f es [3, co). Luego, como el simbolo V' denota
la raiz cuadrada no negativa de un nimero, Vx — 3 =0 para x =3 y en consecuencia
4 + Vx — 3 = 4. El menor valor de f(x) ocurre en x = 3 y es f(3) = 4 + VO = 4. Ademis,
debido a que x — 3 y Vx — 3 aumentan cuando x crece, se concluye que y = 4. Por consi-
guiente, el rango de fes [4, c0).

A\ Dominios de dos funciones

Determine el dominio de

a) f() = Va+2x—15 b) g(x) = X

x2—3x—4

a) Como en el ejemplo 4, la expresion dentro del radical —el radicando— debe ser no
negativa; es decir, el dominio de f es el conjunto de nimeros reales x para los cuales

2.1 Funciones y gréaficas

23

>+ 2x—15=0 o (x — 3)(x +5) = 0. El conjunto solucién de la desigualdad # En precilculo se suelen resolver
desigualdades cuadraticas como

(=00, =5] U [3, 00) es también el dominio de f.

b) Una funcién que estd dada por una expresion fraccionaria no estd definida en los valo-
res x para los cuales el denominador es igual a 0. Puesto que el denominador de g(x)
se factoriza como x> — 3x — 4 = (x + D(x — 4), vemos que x+ DHx—4) =0
para x = —1 y x = 4. Estos son los sinicos nimeros para los cuales g no estd defi-
nida. Por tanto, el dominio de la funcién g es el conjunto de nimeros reales, a excep-
cionde x=—-1yx = 4.

(x — 3)(x + 5) = 0 utilizando
una tabla de signos.
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| (x, f(x2)) i
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FIGURA 2.1.2  Puntos sobre la
grafica de una ecuacién y = f(x)

Rango
def ™

N
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Dominio
de f

FIGURA 2.1.4 Dominio y rango
interpretados graficamente

Al usar notacién de intervalos, el dominio de g en el inciso b) del ejemplo 5 puede escri-
birse como (—oo, —1) U (—1,4) U (4, co). Como alternativa para esta desgarbada unién de
intervalos ajenos, este dominio también puede escribirse usando notacién de construccién
de conjuntos {x|x # —1y x # 4}.

I Graficas En campos como ciencia, ingenieria y negocios, a menudo se usa una funcién para
describir los fenémenos. A fin de interpretar y utilizar datos, es ttil representar estos datos en
forma de grafica. En el sistema de coordenadas cartesianas o rectangulares, la grifica de una
funcién fes la gréfica del conjunto de pares ordenados (x, f(x)), donde x estd en el dominio de f.
En el plano xy, un par ordenado (x, f(x)) es un punto, de modo que la gréfica de una funcién es
un conjunto de puntos. Si una funcién se define por medio de una ecuacién y = f(x), entonces
la gréfica de fes la grafica de la ecuacion. Para obtener los puntos sobre la grafica de una ecua-
ciéon y = f(x), escogemos prudentemente nimeros X, X, X3, . . . €n su dominio, calculamos
JxD, f(x), f(x3), . . ., trazamos los puntos correspondientes (x;, f(x;)), (X2, (X)), (x3, f(x3)), . . .,
y luego unimos estos puntos con una curva suave (en caso de ser posible). Vea la FIGURA 2.1.2. No
olvide que

* un valor de x es una distancia dirigida desde el eje y, y
* un valor funcional f(x) es una distancia dirigida desde el eje x.

A continuacién se hacen algunos comentarios sobre las figuras en este texto. Con pocas
excepciones, suele ser imposible representar la grifica completa de una funcién, por lo que a
menudo s6lo se muestran las caracteristicas mds importantes de la grafica. En la FIGURA 2.1.3a)
observe que la grédfica se dirige hacia abajo en sus lados izquierdo y derecho. A menos que se
indique lo contrario, puede asumirse que no hay sorpresas mayores mds alld de lo que se ha
mostrado y que la grafica continda simplemente de la manera indicada. La grafica en la figura
2.1.3a) indica el denominado comportamiento extremo o comportamiento global de la fun-
cién. Si una grifica termina ya sea en su extremo derecho o izquierdo, este hecho se indica
por medio de un punto cuando es necesario. Para representar el hecho de que el punto extremo
estd incluido en la grafica se usa un punto sélido, y para indicar que el punto extremo no estd
incluido en la gréfica se usa un punto vacio.

I Prueba de la recta vertical A partir de la definicién de una funcién se sabe que para toda x
en el dominio de f corresponde un solo valor f(x) en el rango. Esto significa que una recta verti-
cal que corta la grafica de una funcién y = f(x) (esto equivale a escoger una x) puede cortar a la
grafica de una funcién en cuanto mucho un punto. A la inversa, si toda recta vertical que corte
la gréfica de una ecuacion lo hace en cuanto mucho un punto, entonces la grafica es la grafica
de una funcién. La dltima declaracién se denomina prueba de la recta vertical para una fun-
cioén. Por otra parte, si alguna recta vertical corta la grafica de una ecuacién mds de una vez,
entonces la grafica no es la grafica de una funcién. Vea las figuras 2.1.3a)-c). Cuando una recta
vertical corta una grafica en varios puntos, el mismo niimero x corresponde a diferentes valores
de y, en contradiccién con la definicion de funcioén.

=

a) Funcién b) No es una funcién ¢) No es una funcién
FIGURA 2.1.3 Prueba de la recta vertical

Si se cuenta con una grafica exacta de una funcién y = f(x), a menudo es posible ver el
dominio y el rango de f. En la FIGURA 2.1.4 suponga que la curva mostrada es la grafica entera,
o completa, de alguna funcién f. Asi, el dominio de f es el intervalo [a, b] sobre el eje x, y el
rango es el intervalo [c, d] sobre el eje y.
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A partir de la grafica de f(x) = 4 + Vx — 3 dada en la FIGURA 2.1.5, podemos ver que el domi-
nio y el rango de f son, respectivamente, [3, co) y [4, c0). Esto concuerda con los resultados
del ejemplo 4.

I Intersecciones Para graficar una funcion definida por una ecuacién y = f(x), una buena idea
suele ser determinar primero si la grafica de f tiene intersecciones. Recuerde que todos los pun-
tos sobre el eje y son de la forma (0, y). Entonces, si 0 es el dominio de una funcion f, la inter-
seccion y es el punto sobre el eje y cuya coordenada y es f(0); en otras palabras, (0, f(0)). Vea la
FIGURA 2.1.6a). De manera semejante, todos los puntos sobre el eje x tienen la forma (x, 0). Esto
significa que para encontrar las intersecciones x de la grafica de y = f(x), se determinan los valo-
res de x que hacen y = 0. Es decir, es necesario resolver la ecuacién f(x) = 0 para x. Un nime-
ro ¢ para el que f(c) = 0 se denomina cero de la funcién f o raiz (o solucién) de la ecuacién
f(x) = 0. Los ceros reales de una funcién f son las coordenadas x de las intersecciones x de la
grafica de f. En la figura 2.1.6b) se ha ilustrado una funcién que tiene tres ceros xi, X, y X3 por-
que f(x;) = 0, f(x,) = 0y f(x3) = 0. Las tres intersecciones x correspondientes son los puntos
(x15 0), (x2, 0) ¥ (x3, 0). Por supuesto, la grafica de la funcién puede no tener intersecciones. Este
hecho se ilustra en la figura 2.1.5.

y y =
. y = fx) v

/\/ ©, f(0)) /\ ©, f(0))

* @O\ 00 \@0 . 0) Vo 0)

a) Interseccion y b) Tres intersecciones x ¢) Una interseccion y, dos intersecciones x

X

FIGURA 2.1.6 Intersecciones de la grafica de una funcién f

Una grafica no necesariamente tiene que cruzar un eje de coordenadas en una intersec-
cion; una grafica puede simplemente tocar, o ser fangente, a un eje. En la figura 2.1.6¢), la
grafica de y = f(x) es tangente al eje x en (x, 0).

NS\ BWA [ntersecciones

Encuentre, de ser posible, las intersecciones x y y de la funcién dada.

a) fx)=x>+2x—2 b) f(x)=xz_2+_3

a) Puesto que 0 estd en el dominio de f; f(0) = —2 y asi la interseccién y es el punto
(0, —2). Para obtener las intersecciones x, es necesario determinar si f tiene ceros rea-
les, es decir, soluciones reales de la ecuacién f(x) = 0. Puesto que el miembro
izquierdo de la ecuacion x>+ 2x — 2 = 0 no tiene factores evidentes, se usa la for-
mula general para polinomios cuadriticos para obtener x = —1 = /3. Las intersec-
ciones x son los puntos (—1 — V3, 0) y(—1+ V/3,0).

b) Debido a que 0 no estd en el dominio de f, la grafica de f no posee interseccidn y.
Ahora, puesto que f es una expresion fraccionaria, la inica forma en que es posible
que f(x) = 0 es que el numerador sea igual a cero y el denominador sea diferente de
cero al evaluar la funcién en el mismo nidmero. Al factorizar el miembro izquierdo
de x> — 2x — 3 = 0 se obtiene (x + 1)(x — 3) = 0. En consecuencia, los ceros de
f son los nimeros —1 y 3. Las intersecciones x son los puntos (—1, 0) y (3, 0).

I Funciones definidas por partes Una funcién f puede implicar dos o mds expresiones o
férmulas, cada una definida en partes distintas sobre el dominio de f. Una funcién definida de
esta manera se denomina funcién definida por partes. Por ejemplo,

X2, x<0

f(x):{x+1, x=0

2.1 Funciones y gréficas 25

y —
El rango 1 y=4+vx-3
de f
es [4,©) T
4] (3.4

+ + + + X
El dominio de

fes[3, 007>
FIGURA 2.1.5 Gréfica de la fun-
cion fen el ejemplo 6
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\y:x+1,x>0

+ + + X
y=0,x=0

FIGURA 2.1.7  Grifica de una
funcién definida por partes en el
ejemplo 8

y=—x, x<0 y=x,x=0

Esta porcion de y = x
se refleja en el eje x
b)
FIGURA 2.1.9  Funci6n valor
absoluto (3)

no son dos funciones, sino una sola funcién donde la regla de correspondencia estd dada en
dos partes. En este caso, una parte se usa para los nimeros reales negativos (x < 0) y la otra
parte para los nimeros reales no negativos (x = 0); el dominio de f es la unién de los inter-
valos (—00, 0) U [0, 00) =(—00, 00). Por ejemplo, puesto que —4 < 0, la regla indica que se
eleve al cuadrado el nimero: f(—4) = (—4)> = 16; por otra parte, puesto que 6 = 0 se suma 1
al ndmero: f(6) =6+ 1=17.

N1\ [Xel¥: N Grafica de una funcién definida por partes

Considere la funcién definida por partes

-1, x <0
fx) =40, x=0 (2
x+1, x>0.

Aunque el dominio de f consta de todos los nimeros reales (—oo, co), cada parte de la fun-
cion estd definida sobre una parte diferente de su dominio. Se grafican

e la recta horizontal y = —1 para x < 0,
e el punto (0, 0) parax = 0y
* larectay = x + 1 parax > 0.

La gréfica se proporciona en la FIGURA 2.1.7.

I Semicirculos Como se muestra en la figura 2.1.3b), un circulo no es la grifica de una fun-
cién. En realidad, una ecuacién como x> + y* = 9 define (por lo menos) dos funciones de x. Si
esta ecuacién se resuelve para y en términos de x, se obtiene y = =9 — x2 Debido a la con-
vencién del valor tinico del signo V', ambas ecuaciones y = V9 — x’yy = =9 — x? defi-
nen funciones. La primera ecuacion define un semicirculo superior, y la segunda un semi-
circulo inferior. Con base en las gréficas mostradas en la FIGURA 2.1.8, el dominio de y = V9 — x?
es [—3, 3] y el rango es [0, 3]; el dominio y el rangode y = -V 9 — x?son [-3, 3] y [=3, 0],
respectivamente.

Y y=\}9—x2

a) Semicirculo superior b) Semicirculo inferior

FIGURA 2.1.8  Estos semicirculos son gréficas de funciones

I Funcion valor absoluto La funcién f(x) = |x|, denominada funcién valor absoluto, aparece
a menudo en el andlisis de unidades ulteriores. El dominio de fes el conjunto de todos los niime-
ros reales (—oo, 00) y su rango es [0, co). En otras palabras, para cualquier niimero real x, los
valores de la funcién f(x) son no negativos. Por ejemplo,

@) =13 =3, fO) = [0 = 0. f(—é>=‘—§‘=—(—é>=§.

Por definicién del valor absoluto de x, observamos que f es una funcién definida por partes o
pedazos, que consta de dos partes

£ = x| = {_x’ sir =0 3)

X, six =0.

Su gréfica, mostrada en la FIGURA 2.1.9a), consta de dos semirrectas perpendiculares. Puesto que
f(x) = 0 para toda x, otra forma de graficar (3) consiste en simplemente trazar la recta y = x
y luego reflejar en el eje x esa porcion de la recta que estd abajo del eje x. Vea la figura
2.1.9b).



I Funcion entero mayor A continuacion se considerard una funcién f definida por partes deno-
minada funcién entero mayor. Esta funcién, que tiene muchas notaciones, se denotara aqui por
f(x) = | x] y estd definida por la regla

|x| = n, donde n es un entero que satisfacen = x < n + 1. 4)
La expresion (4), traducida a lenguaje coloquial, significa lo siguiente:

* El valor funcional f(x) es el entero mayor n que es menor o igual a x.
Por ejemplo,
f(=1.5) = =2, f(0.4) =0, f() = 3, f(5) =5,

y asi en lo sucesivo. El dominio de f es el conjunto de nimeros reales y consta de la unién
de una infinidad de intervalos ajenos; en otras palabras, f(x) = |x] es una funcién definida por
partes dada por

-2, 2=x< -1
I, —-1=x<0
f&x) =|x| = 0, 0=x<1 (@)
1, l=x<?2
2, 2=x<3

El rango de f es el conjunto de enteros. La porcién de la grafica de f sobre el intervalo cerrado
[—2, 5] se proporciona en la FIGURA 2.1.10.

En informadtica la funcién entero mayor se conoce como funcién redondeo hacia el ente-
ro inferior anterior. Una funcion relacionada denominada funcién redondeo hacia el entero
superior siguiente* g(x) = [x] se define como el menor entero n que es mayor o igual a x. Vea
los problemas 57 a 59 en la seccién “Desarrolle su competencia 2.1”.

I Un modelo matematico A menudo resulta aconsejable describir el comportamiento de algtin
sistema o fenémeno de la vida real, ya sea fisico, sociolégico e incluso econémico, en términos
matematicos. La descripciéon matemdtica de un sistema o fenémeno se denomina modelo mate-
matico y puede ser tan complicada como cientos de ecuaciones simultdneas o tan sencilla como
una sola funcién. Esta seccién concluye con una ilustraciéon del mundo real de una funcién defi-
nida por partes denominada funcion timbre postal. Esta funcién es semejante a f(x) = |x| en el
sentido de que ambos son ejemplos de funciones escalon; cada funcién es constante sobre un
intervalo y luego salta a otro valor constante al siguiente intervalo colindante.

Al momento de escribir esto, la tarifa de primera clase del Servicio Postal de Estados Unidos
de América para el porte de una carta en un sobre de tamafio normal dependia de su peso en
onzas:

$042, 0 < peso = 1onza
$0.59, 1 < peso = 2onzas

Porte = § $0.76, 2 < peso = 3 onzas (6)
$2.87, 12 < peso = 13 onzas.

La regla en (6) es una funcién de P que consta de 14 partes (las cartas que pesan mas de 13
onzas se envian como correo prioritario). Un valor de la funcién P(w) es una de 14 constan-
tes; la constante cambia dependiendo del peso w (en onzas) de la carta.” Por ejemplo,

P(0.5) = $0.42, P(1.7) = $0.59, P(2.2) = $0.76, P(2.9) = $0.76 y P(12.1) = $2.87.
El dominio de la funcién P es la unién de los intervalos:

0,11U,21U2,3]1U---U12,13] = (0, 13].

* Las funciones redondeo hacia el entero inferior anterior y redondeo hacia el entero superior siguiente y sus notaciones
se deben al renombrado cientifico canadiense Kenneth E. Iverson (1920-2004).

7 En (6) no se muestra que el porte de una carta cuyo peso se encuentra en el intervalo (3, 4] es determinado por si su
peso estd en (3, 3.5] o en (3.5, 4]. Este es el tnico intervalo dividido de esta manera.
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| La funcién entero mayor también

se escribe como f(x) = [x].

4 y=Llx] —
3 —o
2 —o
1 —o

R T2 3 4 5
*~—C

—o

FIGURA 2.1.10 Funcién entero
mayor
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Cuando se traza la grafica de una funcién, nunca se debe acudir a graficar muchos puntos
manualmente. Esto es algo que una calculadora grafica o un sistema de dlgebra computacio-
nal (SAC) hacen bien. Por otra parte, usted no debe volverse dependiente de una calculadora
para obtener una grafica. Lo crea o no, hay muchos profesores de cdlculo que no permiten el
uso de calculadoras graficas al aplicar cuestionarios o exdmenes. Por lo general, no hay obje-
cioén para que usted use calculadoras o computadoras como ayuda para comprobar algunos
problemas de tarea, pero en el salén de clases los maestros desean ver el producto de su pro-
pio esfuerzo, es decir, su capacidad de analizar. Asi, estd usted fuertemente motivado a des-
arrollar sus habilidades para graficar hasta el punto en que pueda trazar a mano rdpidamente
la grafica de una funcién a partir de alguna propiedad conocida de tipos de funciones y trazar

un minimo de puntos bien escogidos.

“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-2.

= Fundamentos

En los problemas 1-6, encuentre los valores funcionales indi-
cados.

L Sif(x) =x>— 1, f(=5),f(=V3), f3) y f(6)

2. Sif) = 22>+ x f(=5).f(=3). f2) y (D)

3. Siflo) = Vx+1; f(=D,f0),f3) yf5)

4. Sif) = Vax + & f(=)fG).fG) y @

5. 810 = 3 S S0LA() Y FV)
2

6. Sif(0) =—"— f=V2),f(—1),f0) yf()

X =2
En los problemas 7 y 8, encuentre
f@), fQa), f(a*), f(—5x), fRa + 1), f(x + h)

para la funcién dada f'y simplifique lo mds que pueda.

7. 00 )= =2 ¥ +3()

8. f()=( ) —20)Y+20

9. (Para qué valores de x f(x) = 6x* — 1 es igual a 23?
10. ;Para qué valores de x f(x) = Vx — 4 es igual a 4?

En los problemas 11-26, encuentre el dominio de la funcién
f dada.

1. f(x) = Vax — 2 12 f(x) = V15 — 5x

10 _ 2x
13. () = = M. f) = =
15. f(x) = % 16. f(x) = xzx_ 1

S S - x*+1
U IO= s B oo

2
-9

N T A et

21. f(x) = V25 — x? 22. f(x) = Vx4 — x)
23. f(x) = Vx* — 5x 24. f(x) = Vx> —3x — 10

3—x _ /5—x
x+2 26. fix) = X

25. f(x) =

En los problemas 27-30, determine si la grafica en la figura
es la grafica de una funcidn.

27. y 28. y

D x
E FIGURA 2.1.12  Grafica

™~ para el problema 28

FIGURA 2.1.11  Grifica
para el problema 27

29. \y’\ 30. y
T %

FIGURA 2.1.13  Gréfica FIGURA 2.1.14  Gréfica
para el problema 29 para el problema 30

En los problemas 31-34, use el rango de la funcién f dada
en la figura para encontrar su dominio y rango.

31. y 32. y
T 1
2
X
-1 1
x
FIGURA 2.1.15  Grifica para el _T

problema 31
FIGURA 2.1.16  Grifica

para el problema 32

33. »

FIGURA 2.1.17  Grifica para el
problema 33




34.

FIGURA 2.1.18  Gréfica para el problema 34

En los problemas 35-44, encuentre las intersecciones x y y
de la grifica de la funcién dada f, en caso de haberlas. No
grafique.

35. f(x) = %x -4 36. fx) =x*—6x+5

37. fx) = 4(x — 2 — 1
38. f(x) = 2x — 3)(x* + 8x + 16)
39. f(x) = = xr = 2x 40. f(x) = xt =1

2 —
41. f(x) = ;2 -+ 14 . ret D = 6) 22(); %)

43.f(x)=%\/4—x2 44.f(x)=%\/x2—2x—3

4. fix) =

En los problemas 45 y 46, use la grafica de la funcién f dada
en la figura para estimar los valores f(—3), f(—2), f(—1),
f(1), f(2) y f(3). Calcule Ia interseccién y.

45. \ Z
\ \
L1

N
L

FIGURA 2.1.19  Grifica para el problema 45

46. y
4 /\

N

FIGURA 2.1.20 Grifica para el problema 46
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En los problemas 47 y 48, use la gréfica de la funcion f dada
en la figura para estimar los valores f(—2), f(—1.5), f(0.5),
f(), f(2) y f(3.2). Calcule las intersecciones x.

47. v
A4

[

/1

4 Y,
FIGURA 2.1.21 Grifica para el problema 47
48. y

—4 2 / 4 x
l

| \
,I /

FIGURA 2.1.22  Grifica para el problema 48

&

En los problemas 49 y 50, encuentre dos funciones y = f;(x)
y ¥y = f>(x) definidas por la ecuacion dada. Encuentre el
dominio de las funciones f; y f>.

49. x =y* -5 50. x> — 4y* =16
51. Algunas de las funciones que encontrard después en este
texto tienen como dominio el conjunto de enteros posi-

tivos n. La funcion factorial f(n) = n! se define como
el producto de los n primeros enteros positivos; es decir,

fm)=n!'=1-2-3---(n—1) n
a) Evalde f(2), f(3), f(5) y f(7).
b) Demuestre que f(n + 1) = f(n) - (n + 1).

¢) Simplifique f(5)/f(4) y f(D)/f(5).
d) Simplifique f(n + 3)/f(n).

52. Otra funcién de un entero positivo n proporciona la
suma de los n primeros enteros positivos al cuadrado:

S(n) = én(n + D2n + 1).

a) Encuentre el valor de la suma
12422+ - + 992 + 100%.

b) Encuentre n tal que 300 < S(n) < 400. [Sugeren-
cia: Use calculadora.]
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53.

54.

55.

56.

UNIDAD 2 Funciones

Determine una ecuacién de una funcién y = f(x) cuyo
dominio es

a) [3,00) b) (3, c0).

Determine una ecuacién de una funcién y = f(x) cuyo
rango es

a) [3,00) b) (3, 00).

Con base en la grifica de f(x) = —x*> + 2x + 3 dada en
la FIGURA 2.1.23, determine el rango y dominio de la fun-
cién g(x) = Vf(x). Explique su razonamiento en una o
dos frases.

1 1 2

FIGURA 2.1.23  Grifica para el problema 55

Sea P cualquier punto (x, f(x)) sobre la grifica de una
funcién f. Suponga que los segmentos de recta PT'y PS
son perpendiculares a los ejes x y y. Sean M, M, y M3,
respectivamente, los puntos medios de PT, PS y ST
como se muestra en la FIGURA 2.1.24. Encuentre una fun-
cién que describa la ruta de los puntos M;. Repita lo
anterior para los puntos M, y M;.

y=fx

-————————
=

X

~

FIGURA 2.1.24  Grifica para el problema 56

57.

58.

59.

60.

Anteriormente se vio que la funcién redondeo hacia el
entero superior siguiente g(x) = [x] se define como el
menor entero n que es mayor o igual a x. Llene los espa-
cios en blanco.

, —3<x=-2
, —2<ux

A IA

gx) = [x] = , 0<x=1

) 1<x=2
) 2<x=3

\:

Grafique la funcién redondeo hacia el entero superior
siguiente g(x) = [x] definida en el problema 57.

La funcién definida por partes

. [x], x=0
int(x) = {(ﬂ c<0

se denomina funcién entero. Grafique int(x).

Analice cémo graficar la funcién f(x) = |[x| + |x — 3].
Lleve a cabo sus ideas.

En los problemas 61 y 62, describa con palabras cémo difie-
ren las graficas de las funciones dadas.

_x2=9
6. fo ===
x2—9 x2—9
gx)y =4 x—3° x¢3, h(x) =49 x—3° x#3
4, X = 6, x=3
xt =1
62. [ = .
=1 xt—1
1
gr)y=4¢x—1° X7 , h(x)y=<x*—1 x# 1
07 x_l 2, .x—]

2.2 Combinacion de funciones

I Introduccion Dos funciones fy g pueden combinarse en varias formas para obtener nuevas
funciones. En esta seccidn se analizaran dos formas en que es posible combinar funciones:
mediante operaciones aritméticas y a través de la operacién de composicién de funciones.

I Funciones potencia Una funcién de la forma

J) = x" ey

se denomina funcién potencia. En esta seccién consideraremos que 7 es un nimero racional.

El dominio de la funcién potencia depende de la potencia n. Por ejemplo, paran = 2, n = 3

yn= -1, respectivamente,

1

* el dominio de f(x) = x* es el conjunto R de nimeros reales o (—oo, 00),
« el dominio de f(x) = x'/2 = Vx es [0, c0),

e el dominio de f(x) = x~

1 . .
= el conjunto R de nimeros reales excepto x = 0.



Las funciones potencia simples, o versiones modificadas de estas funciones, ocurren tan a
menudo en problemas en cdlculo que no es conveniente desperdiciar tiempo valioso trazando
sus graficas. Se sugiere conocer (memorizar) el breve catdlogo de graficas de funciones poten-
cia que se proporciona en la FIGURA 2.2.1. Usted debe reconocer la grifica en el inciso a) de la
figura 2.2.1 como una recta y la gréfica en el inciso ») como una parabola.

A= AL

an=1, fo)=x byn =2, f(x)=x> on=3, fx=x

y
y

; K
N —

_ 1
dyn =4, fx)=x* on=-1, fo=x"'=1 Pn=-2 fw=x7=5

y y 1/ y
X
T x '/‘ [ x

gn= % foy=x"2=x h)n:%’ foy=x"=x i)n=%v foy =x?3 = A

FIGURA 2.2.1 Breve catdlogo de graficas de funciones potencia

I Combinaciones aritméticas Dos funciones pueden combinarse por medio de las cuatro
conocidas operaciones aritméticas de suma, resta, multiplicacion y division.

Definicion 221 Combinaciones aritméticas

Si fy g son dos funciones, entonces la suma f + g, la diferencia f — g, el producto fg y el
cociente f/ g se definen como sigue:

(f + ) = fx) + gx), (2)
(f = ) = f(x) — gx), 3)
(S = f(x)gx), 4)
VAP €]

<g>(x) = 2(x) da g(x) # 0. 5)

I Dominio de una combinacion aritmética Al combinar dos funciones aritméticamente es
necesario que ambas f'y g estén definidas en el mismo nimero x. Por tanto, el dominio de las
funciones f + g, f— g y fg es el conjunto de niimeros reales que son comunes a ambos dominios;
es decir, el dominio es la interseccion del dominio de f con el dominio de g. En el caso del
cociente f/ g, el dominio también es la interseccién de los dos dominios, pero también es nece-
sario excluir cualquier valor de x para el que el denominador g(x) sea cero. En otras palabras, si
el dominio de f es el conjunto X; y el dominio de g es el conjunto X, entonces el dominio de
f+ g f-gyfgesX;MNX,, yel dominio de f/g es {x|x € X; N X,, g(x) # 0}.

2.2 Combinacién de funciones

31
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A\ [LXe BN Suma de dos funciones potencia

Ya se ha visto que el dominio de f(x) = X2 es el conjunto R de nimeros reales, o (—oo, 00),
y el dominio de g(x) = Vx es [0, o0). En consecuencia, el dominio de la suma

f) + gx) = x* + Vi

es la interseccion de los dos dominios: (—o0, c0) N [0, 00) = [0, 00).

I Funciones polinomiales Muchas de las funciones con las que se trabaja en calculo se cons-
truyen al realizar operaciones aritméticas sobre funciones potencia. De especial interés son las
funciones potencia (1) donde n es un entero no negativo. Paran = 0, 1, 2, 3, . . ., la funcién
f(x) = X" se denomina funcién polinomial de un solo término. Al usar las operaciones aritmé-
ticas de suma, resta y multiplicacién es posible construir funciones polinomiales con muchos tér-
minos. Por ejemplo, si f(x) = x°, fo(x) = x*, f3(x) = x y fi(x) = 1, entonces

[ — H0) + A0 + i) = x> —xF+x + 1.
En general, una funcién polinomial y = f(x) es una funcién de la forma
f) =ax" + a,x" '+ o 4 ax® + ax + ag, (6)

donde n es un entero no negativo y los coeficientes a;, i = 0, 1, . . ., n son nimeros reales.
El dominio de cualquier funcién polinomial f es el conjunto de todos los nimeros reales
(—o0, 00). Las siguientes funciones no son polinomiales:

no es un entero no negativo no es un entero no negativo

y =5x* = 3x7! y y =2 — 4.

A\ [JXe BV A Suma, diferencias, producto y cociente
Considere las funciones polinomiales f(x) = x> + 4x y g(x) = x> — 9.

a) Con base en los numerales (2)-(4) de la definicion 2.2.1 es posible producir tres nue-
vas funciones polinomiales:

(f+ 9@ =f0) + g) = (& + 4x) + (x> = 9) = 2" + 4x — 9,

(f— ) =fx) — gx) = (x> + 4x) — (x> — 9) = 4x + 9,
(f)@) = f(0)g(x) = (& + 40)(x* — 9) = x* + 4x’ — 9x” — 36w

b) Finalmente, con base en el numeral (5) de la definicion 2.2.1,

<f>(x):f(x):x2+4x
8 g ¥ -9’

Observe en el ejemplo 2, puesto que g(—3) = 0y g(3) = 0, que el dominio del cociente
(f/ g)(x) es (—oo, 00) con x = 3 y x = —3 excluidos; en otras palabras, el dominio de (f/ g)(x)
es la union de tres intervalos: (—oo, —3) U (=3, 3) U (3, o).

I Funcionesracionales La funcidn en el inciso b) del ejemplo 2 es un caso de funciones racio-
nales. En general, una funcion racional y = f(x) es una funcién de la forma

Las funciones polinomiales y [ 3 fx) = p (x)’ (7)
racionales se analizardn con mds q(x)

detalle en la seccion 2.3. donde p y ¢ son funciones polinomiales. Por ejemplo, las funciones

polinomio
A
X e e 1
YT +sy YT a3 0 YTy
T

polinomio




son funciones racionales. La funcion

\/;C <—no es un polinomio

_x2—1

no es una funcidn racional.

I Composicion de funciones Otro método para combinar las funciones 'y g se denomina com-
posicion de funciones. Para ilustrar la idea, se supondra que para una x dada en el dominio de
g el valor funcional g(x) es un nimero en el dominio de la funcién f. Esto significa que es posi-
ble evaluar f en g(x); en otras palabras, f(g(x)). Por ejemplo, suponga f(x) = x> yglx) =x+ 2.
Entonces, parax = 1, g(1) = 3, y como 3 es el dominio de f, es posible escribir f(g(1))= f(3) =
3% = 9. En efecto, para estas dos funciones particulares resulta que es posible evaluar f en cual-
quier valor funcional g(x); es decir,

flg) = flx +2) = (x + 2)%

A continuacién se define la funcién resultante, denominada composicion de fy g.

Definicién 22.2 Composicién de funciones

Si fy g son dos funciones, la composicion de fy g, denotada por f ° g, es la funcion definida
por

(f°8)x) = f(gkx). (®)
La composicion de g y f, denotada por g ° f, es la funcién definida por
(&) = g(f(x)). ©))

)3\ [JHe BN Dos composiciones
Si f(x) = x* + 3x y g(x) = 2x* + 1, encuentre
a) (feo y b (gofH).
Solucion
a) Para hacer énfasis se sustituye x por el conjunto de paréntesis ( ) y f se escribe en la
forma f(x) = ( )2 + 3( ). Entonces, para evaluar (f° g)(x), cada conjunto de parén-
tesis se llena con g(x). Se encuentra
(fo @) = f(g(x) = f(2x* + 1)
=27+ DP+32xr+ 1)
=dx* + 47+ 1+3- 207+ 31
= 4x* + 10x* + 4.
b) En este caso, g se escribe en la forma g(x) = 2( ) + 1. Asi,
(g o NHx) = g(f(x0) = g(x’* + 3x)
=2(x>+ 30>+ 1
=2(x" + 6xF + 9x%) + 1
=2x* + 12x% + 18x% + 1.

Los incisos @) y b) del ejemplo 3 ilustran que la composicién de funciones no es conmu-
tativa. Es decir, en general

feg#Fgef.

)3\ JHelW'N Escritura de una funcién como una composicion
Exprese F(x) = V6x® + 8 como la composicién de dos funciones fy g.

Solucion  Si fy g se definen como f(x) = Vx y g(x) = 6x° + 8, entonces
Fx) = (fo )(x) = f(gx) = f(6x" + 8) = V6x’ + 8.

2.2 Combinacién de funciones

33
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y=fx)

| X

FIGURA 2.2.2 Grifica de y = f(x)

b) Desplazamiento vertical hacia abajo

FIGURA 2.2.3 Desplazamientos
vertical y horizontal de y = f{x)
por una cantidad ¢ > 0

Hay otras dos soluciones para el ejemplo 4. Por ejemplo, si las funciones fy g se defi-

nen por f(x) = Vbx + 8y glx) = X3, observe entonces que (fog)(x) = f(x3) = V6x* + 8.

I Dominio de una composicion Para evaluar la composicién (f° g)(x) = f(g(x)) el nimero
g(x) debe estar en el dominio de f. Por ejemplo, el dominio de f(x) = Vx es [0, co) y el domi-
nio de g(x) = x — 2 es el conjunto de nimeros reales (—oco, o). Observe que no es posible
evaluar f(g(1)) porque g(1) = —1 y —1 no estd en el dominio de f. Para poder sustituir g(x)
en f(x), g(x) debe satisfacer la desigualdad que define al dominio de f, a saber: g(x) = 0. Esta
dltima desigualdad es la misma que x — 2 =0 o x = 2. El dominio de la composicién
flg(x)) = Vgx) = Vx — 2 es [2, 00), que s6lo es una porcién del dominio original (—oo, o)
de g. En general, el dominio de la composicion f ° g es el conjunto de ndimeros x en el domi-
nio de g tales que g(x) esta en el dominio de f.

Para una constante ¢ > 0, las funciones definidas por y = f(x) + ¢y y = f(x) — ¢ son la
suma y la diferencia de la funcién f(x) y la funcién constante g(x) = c. La funcién y = cf(x)
es el producto de f(x) y la funcién constante g(x) = c. Las funciones definidas por y = f(x + ¢),
y = f(x — ¢) yy = f(cx) son las composiciones de f(x) con las funciones polinomiales
gx) =x + ¢, glx) = x — cy glx) = cx, respectivamente. Como veremos dentro de poco, la
grafica de cada una de éstas no es una transformacion rigida ni una transformacion no
rigida de la grifica de y = f(x).

I Transformaciones rigidas Una transformacion rigida de una grifica es una transformacién
que cambia solo la posicion de la gréfica en el plano xy, pero no su forma. Para la grafica de una
funcién y = f(x) se analizan cuatro tipos de desplazamientos o traslaciones.

Traslaciones

Suponga que y = f(x) es una funcién y ¢ es una constante positiva. Entonces la
grafica de

° y = f(x) + c es la grafica de f desplazada verticalmente hacia arriba c unidades,

° y = f(x) — c es la gréfica de f desplazada verticalmente hacia abajo ¢ unidades,

°* y=f(x + ¢) es la grafica de f desplazada horizontalmente hacia la izquierda c
unidades,

°* y=f(x — ¢) es la grifica de f desplazada horizontalmente hacia la derecha c
unidades.

Considere la grafica de una funcién y = f(x) dada en la FIGURA 2.2.2. Desplazamientos ver-
tical y horizontal de esta gréifica son las graficas mostradas en los incisos a)-d) de la FIGURA
2.23. Si (x, y) es un punto sobre la grafica de y = f(x) y la gréfica de f estd desplazada, por
ejemplo, hacia arriba por ¢ > 0 unidades, entonces (x, y + ¢) es un punto sobre la nueva gra-
fica. En general, las coordenadas x no cambian como resultado de un desplazamiento vertical.
Vea las figuras 2.2.3a) y 2.2.3b). En forma semejante, en un desplazamiento horizontal las
coordenadas y de puntos sobre la grafica desplazada son las mismas que sobre la grafica ori-
ginal. Vea las figuras 2.2.3¢) y 2.2.3d).

y y
y=flx+c) y =) y=f y=fx—o

- (/-\ %y)

(x — ¢, y) ] X, )
X

¢) Desplazamiento horizontal d) Desplazamiento horizontal
hacia la izquierda hacia la derecha

A3\ NN Graficas desplazadas

Las grificasde y=x>+1,y=x>—1,y=(x+ 1)*y y = (x — 1) se obtienen a partir de la
grifica de f(x) = x” en la FIGURA 2.2.4a) al desplazar esta gréfica, a la vez, 1 unidad hacia arriba
(figura 2.2.4b)), 1 unidad hacia abajo (figura 2.2.4c)), 1 unidad hacia la izquierda (figura
2.2.4d)) y 1 unidad hacia la derecha (figura 2.2.4e)).
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y y:xz+1

a) Punto inicial b) Desplazamiento hacia arriba ) Desplazamiento hacia abajo ) Desplazamiento hacia la izquierda ) Desplazamiento hacia la derecha
FIGURA 2.2.4 Gréficas desplazadas en el ejemplo 5

I Combinacion de desplazamientos En general, la grafica de una funcién

y=fx £ c) * o, (10) o El orden en que se hacen los

. . . . L desplazamientos es irrelevante.
donde c; y ¢, son constantes positivas, combina un desplazamiento horizontal (a la izquierda

0 a la derecha) con un desplazamiento vertical (hacia arriba o hacia abajo). Por ejemplo, la
grifica y = (x + 1)> — 1 es la gréifica de f(x) = x* desplazada 1 unidad hacia la izquierda
seguida por un desplazamiento vertical 1 unidad hacia abajo. La gréfica se proporciona en la
FIGURA 2.2.5.

Otra forma de transformar rigidamente la grifica de una funcién es por medio de una
reflexion en un eje de coordenadas.

FIGURA 2.2.5 Gréfica obtenida
Reflexiones por desplazamientos horizontal y
vertical

Suponga que y = f(x) es una funcién. Entonces la grafica de

* y = —f(x) es la grifica de f reflejada en el eje x,
* y = f(—x) es la grifica de f reflejada en el eje y.

En la FIGURA 2.2.6a) se ha reproducido la grafica de una funcién y = f(x) dada en la figura
2.2.2. Las reflexiones de esta grafica en los ejes x y y se ilustran en las figuras 2.2.6b) y 2.2.6¢).
Cada una de estas reflexiones es una imagen especular de la grifica de y = f(x) en el eje
coordenado respectivo.

Reflexién o imagen especular

y=f(x)

a) Punto inicial b) Reflexion en el eje x c) Reflexién en el eje y
FIGURA 2.2.6 Reflexiones con respecto a los ejes coordenados

N5\ [N Reflexiones

Grafique
a) y=—Vx b) y=V—-x

Solucién El punto inicial es la grifica de f(x) = Vx dada en la FIGURA 2.2.7a).

a) La gréificadey = —Vx es la reflexion de la gréfica de f(x) = Vx en el eje x. Observe
en la figura 2.2.7b) que como (1, 1) estd en la gréifica de f; el punto (1, —1) estd en
la grifica de y = — V.

b) La grificadey = V—x es la reflexién de la grifica de f(x) = Vx en el eje y. Observe
en la figura 2.2.7¢) que como (1, 1) estd en la grifica de f, el punto (—1, 1) estd en
la grifica de y = V/—x. La funcién y = V/—x parece algo extrafia, pero no olvide
que su dominio estd determinado por el requerimiento de que —x = 0, o, de manera
equivalente, x = 0, y asf la gréfica reflejada estd definida en el intervalo (—o0,0].
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(=1.2)

1, -1

a) Punto inicial b) Reflexién en el eje x ¢) Reflexion en el eje y

FIGURA 2.2.7 Gréficas en el ejemplo 6

I Transformaciones norigidas Si una funcién f se multiplica por una constante ¢ > 0, la forma
de la grafica cambia pero retiene, aproximadamente, su forma original. La grafica de y = cf(x)
es la grafica de y = f(x) distorsionada verticalmente; la gréafica de f se estira (o elonga) vertical-
mente o se comprime (o aplana) verticalmente, dependiendo del valor de c. En otros términos,
un estiramiento vertical es un estiramiento de la grafica de y = f(x) alejandose del eje x, mien-
tras que una compresion vertical es una compresion de la grafica de y = f(x) hacia el eje x. La
gréfica de la funcién y = f(cx) estd distorsionada horizontalmente, ya sea por un estiramiento de
la grafica de y = f(x) alejandose del eje y o por una compresién de la grafica de y = f(x) hacia
el eje y. El estiramiento o la compresién de una grafica constituyen ejemplos de transformacio-
nes no rigidas.

Estiramientos y compresiones

Suponga que y = f(x) es una funcién y que ¢ es una constante positiva. Entonces
la grifica de

° y = ¢f(x) es la grafica de f estirada verticalmente por un factor de ¢ si ¢ > 1,
° y = c¢f(x) es la grifica de f comprimida verticalmente por un factor de 1/c si

0<c<l,

* y = flcx) es la grifica de f estirada horizontalmente por un factor de 1/c si

0<c<l,

e y = f(cx) es la grafica de f comprimida horizontalmente por un factor de ¢ si

c>1.

A3/ Xe By A Dos compresiones

Dada f(x) = x* — x, compare las gréficas de

2.2)

(1,0)

a) y=f(x)

=X
2

a)

a)

b)

y=af@ y B y=f@v.

La gréfica de la funcién polinomial dada f se muestra en la FIGURA 2.2.8.

Con la identificacién ¢ = 3, la grifica de y = 3f(x) es la grifica de f comprimida ver-
ticalmente por un factor de 2. De los tres puntos mostrados sobre la grafica de la
figura 2.2.8a), observe en la figura 2.2.8b) que las coordenadas y de los tres puntos
correspondientes miden la mitad. La grafica original estd girada hacia el eje x.

Con la identificacién ¢ = 2, la grifica de y = f(2x) es la grafica de f comprimida
horizontalmente por un factor de 2. De los tres puntos mostrados sobre la grafica de
la figura 2.2.8a), en la figura 2.2.8¢) las coordenadas x de los tres puntos correspon-
dientes estan divididos entre 2. La grafica original estd girada hacia el eje y.

! | y
3A (72,2) x (1,2)

—L1 1+ 2,1

3 o 5 " -1 10)1 2
>

by =3 O y=f20

FIGURA 2.2.8 Grificas de las funciones en el ejemplo 7
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El siguiente ejemplo ilustra el desplazamiento, la reflexion y el estiramiento de una gréfica.

N5\ [N Combinacion de transformaciones
Grafique y = 2 — 2Vx — 3.

Solucion  Usted debe reconocer que la funcion dada consta de cuatro transformaciones de la
funcién bésica f(x) = Vx:

desplazamiento vertical hacia arriba desplazamiento horizontal hacia la derecha
\ \
y=2-—2Vx — 3.
T

reflexion en el eje x estiramiento vertical

Empezaremos con la gréfica de f(x) = Vx en la FIGURA 2.29a). Las cuatro transformaciones se
ilustran en las figuras 2.2.9b)-e).

y y y y y
L oy=w 1 1 | 1 3,2)
T : T y=2x + + y=-2vx—-3 + \
m X ©0.0) + + X ©.0) + + X + (:3’ 0; t X - + + X
T T T\ y=—-2Vx T T y=2-2¥-3
a) Punto inicial b) Estiramiento vertical c) Reflexién en el eje x d) Desplazamiento hacia la derecha e¢) Desplazamiento hacia arriba

FIGURA 2.2.9 Gréfica de la funcién en el ejemplo 8

I Simetria Si la grifica de una funcién es simétrica con respecto al eje y, decimos que f es
una funcién par. Se dice que una funcion cuya grafica es simétrica con respecto al origen es una
funcion impar. Contamos con las siguientes pruebas para simetria.

Pruebas para simetria de la grafica de una funcién

La gréfica de una funcién f con dominio X es simétrica con respecto al

* ejey sif(—x) = f(x) para toda x en X, o bien, (11)
e origen si f(—x) = —f(x) para toda x en X. (12) itk I
f=x)!
En la FIGURA 2.2.10, observe que si f es una funcién par y - | x )
FIGURA 2.2.10  Funcién par; la
S J=x) grafica tiene simetria con respecto
i i al eje y

(x,y) es un punto en su grafica, entonces necesariamente (—x, y)

también es un punto sobre su grifica. De manera semejante, en la FIGURA 2.2.11 se observa que
si f es una funcién impar y

f) fx) = ()
\: !
(x, ¥) es un punto en su grafica, entonces necesariamente (—x, —y) *)ff( ; N
1f(—x)”
es un punto sobre su grafica. |
FEEIEIE] Funciones pares e impares FIGURA 2211  Funcién impar; la
graﬁca tiene simetria con respecto
a) f(x) = x’ es una funcién impar, ya que por (12), al origen

f=x) = (=07 = (=1)’x%° = =x* = —f(»).

Una inspeccién de la figura 2.1.2¢) muestra que la gréafica de f es simétrica con respec-
to al origen. Por ejemplo, puesto que f(1) = 1, (1, 1) es un punto sobre la grafica de
y = x°. Debido a que f es una funcién impar, f(—1) = —f(1) implica que (—1, —1)
estd sobre la misma gréfica.
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b) f(x) = x*/* es una funcién par, ya que por (11) y las leyes de los exponentes,
la raiz cibica de —1 es —1
\
f(—x) — (_x)2/3 — (_1)2/3x2/3 — (13/_1)2x2/3 — (_1)2x2/3 — x2/3 =f(x)

En la figura 2.2.1i) observamos que la grafica de f es simétrica con respecto al eje y.
2/3

Por ejemplo, (8, 4) y (—8, 4) son puntos sobre la griafica de y = x~.
¢) f(x) = x>+ 1 no es par ni impar. Con base en
f(—x) = (=) +1=—-x*+1
se observa que f(—x) Zf(x) y f(—x) # —f(x).
Las gréficas en la figura 2.2.1, con el inciso g) como Unica excepcion, presenta simetria

con respecto al eje y o al origen. Las funciones en las figuras 2.2.1b), d), f) e i) son pares,
mientras que las funciones en las figuras 2.2.1a), c), ¢) y h) son impares.

m DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-3.

= En los problemas 21 y 22, encuentre fo (2f) y fo (1/f).

En los problemas 1-6, encuentre f+ g, f— g, fe y f/g. 21. f(x) = 243 22. f(x) = 1

L f(x) = 2x + 5, 8() = —4x + 8 x—1

2. f(x) = 5x2, gx) =7x — 9 La composicién de tres funciones f, g y & es la funcién
1 o o =
&m5ﬁwwﬁ (f°g° M) = flgh(x))).
En los problemas 23 y 24, encuentre fo g © h.

4. fo) = 2 e = z

S =TT 8W T ) 23, f(x) =x"+ 6,gx) =2x + 1, h(x) = 3x — 2
5. f(x) = X2+ 2x — 3, g(x) = 2 4+3x—4 24. f(x) = Vx — 5,gx) = X2+ 2, h(x) = V2x + 1
6. f(x) = x% gx) = Vx En los problemas 25 y 26, encuentre una funcién de g.

25. f(x) =2x — 5,(feog)x) = —4x + 13

En los problemas 7-10, sean f(x) = Vx — 1y gkx) = 26. f(x) = V2x + 6, (fo g)(x) = 42>
V2 — x. Encuentre el dominio de la funcién dada.

En los problemas 27 y 28, exprese la funcién F como una
7. f+g 8. fe 9. f/g 10. g/f P y P

composicion fo g de dos funciones f'y g.
En los problemas 11-16, encuentre fo gy g o f.

1
—hd 2 _
1. f(x) = 3x — 2, g(x) = x + 6 27. F(x) = 2x X 28. F(x) = 2109
12. f(x) = 4x + 1, g(x) = x>

En los problemas 29-36, los puntos (—2, 1) y (3, —4) estan

13, f(x) = %, g0) = x* + x° sobre la gréafica de la funcién y = f(x). Encuentre los pun-
B _ tos correspondientes sobre la grafica, obtenidos por las trans-
4. f(x) = 2x + 4, 8(0) = 2% + 4 formaciones dadas.
3 X 29. La gréfica de f desplazada 2 unidades hacia arriba.
15, f() = 2, g0 = gréfica de  desp ! ta il
X X 30. La gréfica de f desplazada 5 unidades hacia abajo.

16. f(x) = x* + Vi, g(x) = x* 31. La gréfica de f desplazada 6 unidades hacia la izquierda.

32. La grafica de f desplazada 1 unidad hacia la derecha.
En los problemas 17 y 18, sean f(x) = Vx — 3y gx) = & J desp

%% + 2. Encuentre el dominio de la funcién dada. 3. a‘adgrégca. dfif fiesp.laz;da 1 unidad hacia arriba y 4 uni-
17. fog 18. gof ades hacia la izquierda.

34. La grafica de f desplazada 3 unidades hacia abajo y 5

En los problemas 19 y 20, sean f(x) = 5 — x>y g(x) =2 — unidades hacia la derecha.

Vx. Encuentre el dominio de la funcién dada. 35. La gréfica de f reflejada en el eje y.
19. gof 20. fog 36. La grifica de f reflejada en el eje x.



En los problemas 37-40, use la grafica de la funcion y = f(x)
dada en la figura para graficar las siguientes funciones:

a) y = f(x) +2 by y =f(x) —2

) y=fx+2) d) y=fx—Y5)

e) y= —fx) )y =f(=x
37. y 38.

FIGURA 2.2.12  Grifica
para el problema 37

FIGURA 2.2.13  Grifica para
el problema 38

39, y 40. y

FIGURA 2.2.14  Grifica
para el problema 39

FIGURA 2215 Grifica
para el problema 40
En los problemas 41 y 42, use la grifica de la funcién y = f(x)
dada en la figura para graficar las siguientes funciones:

a) y=fx)+1 b) y =/ -1
¢) y=fx+m) d)y=flx—m/2)
e)y=—f f)y=f(=x
9y = 3w By = —3f()
41. y 42, y
1
N2 3

+ + t X + t + X
T - K ™ T
1 -1

FIGURA 2.2.16  Graéfica para
el problema 41

FIGURA 2.2.17  Gréfica para

el problema 42

En los problemas 43-46, encuentre la ecuacion de la gréfica

final después que las transformaciones dadas se aplican a la

grifica de y = f(x).

43. La gréfica de f(x) = x° desplazada 5 unidades hacia
arriba y 1 unidad a la derecha.

44. La grifica de f(x) = x* estirada verticalmente por un
factor de 3 unidades y luego desplazada 2 unidades a la
derecha.

45. La grifica de f(x) = x” reflejada en el eje x y luego des-
plazada 7 unidades hacia la izquierda.

46. La gréfica de f(x) = i reflejada en el eje y, luego des-

plazada 5 unidades hacia la izquierda y 10 unidades
hacia abajo.

En los problemas 47 y 48, complete la grafica de la funcién
dada y = f(x) si

a) fesuna funcion par 'y b) fes una funcién impar.

2.2 Combinacién de funciones 39

47. y 48. y

FIGURA 2.2.19 Griéfica

FIGURA 2.2.18 Grafica para el problema 48

para el problema 47

49. Complete la tabla, donde f es una funcién par.

X 0 1 2 3 4
J) -1 2 10 8
g(x) 2 -3 0 1 —4
(fe8)x)
50. Complete la tabla, donde g es una funcién impar.
X 0 1 2 3 4
J) -2 -3 0 -1 —4
g(x) 9 7 -6 -5 13
(g°f)x)

Un clasico matematico En el andlisis matemadtico de cir-
cuitos o sefales, resulta conveniente definir una funcién espe-
cial que es 0 (apagado) hasta cierto nimero y luego es 1
(encendido) después de lo anterior. La funcién de Heaviside

0, x<a
Ux—a)=19,
( ) {1, X = a,
recibe su nombre en honor al brillante y controvertido inge-
niero eléctrico y matematico inglés Oliver Heaviside (1850-
1925). La funcién U también se denomina funciéon escalon
unitario.

En los problemas 51 y 52, trace la funcién dada. La funcién
en el problema 52 algunas veces se denomina funcién vagén
0 ventana.

51. y=2Ux— 1)+ Ux — 2)

52. y = U(x-l—%)—U(x—%)

53. Encuentre la ecuacién para la funcién f ilustrada en la
FIGURA 2.2.20 en términos de U(x — a).

y=f

fF—t—t>x
I

=+

FIGURA 2.2.20 Griéfica para
el problema 53

54. La funcién de Heaviside U(x — a) suele combinarse con
otras funciones por adicién y multiplicacién. Dado que
f(x) = x?, compare las grificas de y =f(x —3) y
v =f&x = )UK - 3).
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En los problemas 55 y 56, trace la funcién dada.

5S.

y=Q2x —5Ux—1) 56. y =x —xUx — 3)

= Piense en ello

57.

58.

59.

60.

Determine si fo (g + h) = fo g + fo h es falsa o ver-
dadera.

Suponga que [—1, 1] es el dominio de f(x) = x> ;Cudl
es el dominio de y = f(x — 2)?

Explique por qué la gréfica de una funcién no puede ser
simétrica con respecto al eje x.

(Cudles puntos, en caso de haber, sobre la grifica de
y = f(x) permanecen fijos; es decir, los mismos sobre la
gréfica resultante después de un estiramiento o compre-
sién vertical? ;Después de una reflexion en el eje x?
(Después de una reflexién en el eje y?

61.

62.

63.

64.

Suponga que el dominio de fes (—o0, 00). ;Cudl es la
relacién entre la gréifica de y = f(x) y y = f(|x|)?
Revise las gréficas de y =xy y = 1/x en la figura 2.2.1.
Luego analice cémo obtener la grifica de y = 1/f(x) a
partir de la grafica de y = f(x). Trace la grafica de y =
1/f(x) para la funcién f cuya grifica se proporciona en
la figura 2.2.15.

Suponga que f(x) = x y g(x) = |x] es la funcién redon-
deo hacia el entero inferior anterior. La diferencia de f
y g es la funcién frac(x) = x — |x| denominada parte
fraccionaria de x. Explique el nombre y luego grafique
frac(x).

Use la notacién de la reflexion de una grafica en un eje
para expresar la funcién redondeo hacia el entero supe-
rior siguiente g(x) = [x] en términos de la funcién
redondeo hacia el entero inferior anterior f(x) = |x|.

2.3 Funciones polinomiales y racionales

I Introduccion En esta seccion continda el repaso de las funciones polinomiales y de las fun-
ciones racionales. Funciones comoy = 2x — 1, y=5x>—2x+ 4y y = x°, donde la variable x
se eleva a una potencia entera no negativa, son ejemplos de funciones polinomiales. En la sec-
cién precedente se vio que una funcién polinomial general y = f(x) tiene la forma

Fx) = ax" + a, X" '+ + ax? + ax + ay, (1)

donde n es un entero no negativo. Una funcién racional es el cociente

_ P
0 =05 @)

donde p y ¢ son funciones polinomiales.

I Funciones polinomiales Las constantes a,, a,_1, ..

., a;, ag en (1) se denominan coeficien-

tes; el nimero a,, se llama coeficiente principal y g, se denomina término constante del poli-
nomio. Se dice que la mayor potencia de x en un polinomio es el grado de éste. De modo que si
a, # 0, entonces se dice que f(x) en (1) es de grado n. Por ejemplo,

5
grado 1

coeficiente principal

flx) =3x" —4x* = 3x + 8
1 1

término constante

es una funcién polinomial de grado 5.

Los polinomios de grados n = 0, n =

fx) = aq,
fx) =ax + b,

f(x) = ax* + bx + ¢,

fx) = ax® + bx* + cx + d,

1, n = 2 y n = 3 son, respectivamente,
funcion constante,
funcion lineal,
funcion cuadratica,

funcion cubica.

La funcién constante f(x) = 0 se denomina polinomio cero.

I Rectas Sin duda, usted estd familiarizado con el hecho de que las grificas de una funcién
constante y una funcién lineal son rectas. Puesto que el concepto de recta juega un papel impor-
tante en el estudio del cdlculo diferencial, resulta conveniente revisar las ecuaciones de las rec-
tas. En el plano xy hay tres tipos de rectas: rectas horizontales, rectas verticales y rectas inclina-

das u oblicuas.
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I Pendiente Se empezard con la recoleccion de geometria plana de que por dos puntos distin-
tos (x;, ¥1) Y (x2, ¥») en el plano pasa una sola recta L. Si x; # x,, entonces el nimero
"= Y2 ™ 0N 3)
X T X

se denomina pendiente de la recta determinada por estos dos puntos. Suele acostumbrarse
denotar el cambio en y o ascenso vertical de la recta por Ay = y, — y, y el cambio en x o
recorrido horizontal de la recta por Ax = x, — x;, de modo que (3) se escribe m = Ay/Ax.
Vea la FIGURA 2.3.1. Como se indica en la FIGURA 2.3.2, cualquier par de puntos distintos sobre una
recta con pendiente, por ejemplo, por (x;, ¥1), (X2, ¥2) ¥ (x3, y3), (x4, y4), determina la misma
pendiente. En otras palabras, la pendiente de una recta es independiente de la eleccién de los
puntos sobre la recta.

En la FIGURA 2.3.3 se comparan las gréificas de rectas con pendientes positiva, negativa, cero
e indefinida. En la figura 2.3.3a) vemos, al leer la grafica de izquierda a derecha, que una recta
con pendiente positiva (m > 0) asciende cuando x crece. La figura 2.3.3b) muestra que una
recta con pendiente negativa (m < 0) cae cuando x crece. Si (x1, y;) y (xp, y) son puntos sobre
una recta horizontal, entonces y; = y, y asi su ascenso vertical es Ay = y, — y; = 0. Por
tanto, con base en (3) la pendiente es cero (m = 0). Vea la figura 2.3.3¢). Si (x1, y;) y (x2, y2)
son puntos sobre una recta vertical, entonces x; = x, y asi su recorrido horizontal es
Ax = x, — x; = 0. En este caso se dice que la pendiente de la recta estd indefinida o que la
recta no tiene pendiente. Vea la figura 2.3.3d). S6lo rectas con pendiente son graficas de fun-
ciones.

)’T YT v

(X, V) Ax>0
22 Gy~ |7 ! ey (x5 1)
1 Ay>0 -l 1Ay <0 I
X : X Ay=0
Cpy) I___! | \
Ax>0 (3 3,)
aym=>0 bym<0 c)m=0

FIGURA 2.3.3 Rectas con pendiente a)-c); recta sin pendiente d)

I Ecuaciones de rectas Para encontrar la ecuacién de una recta L con pendiente m, se supone
que (xq, y;) estd sobre la recta. Si (x, y) representa cualquier otro punto sobre L, entonces (3) pro-
porciona

Y= _
X — X

m.

Al multiplicar ambos miembros de la dltima igualdad por x — x; se obtiene una ecuacién impor-
tante. La ecuacién punto-pendiente de la recta que pasa por (x;, y;) con pendiente m es

y =y = mx — x). 4)

Cualquier recta que no sea vertical debe cruzar el eje y. Si la interseccion y es (0, b), enton-
ces con x; = 0,y; = b, (4) proporciona y — b = m(x — 0). La dltima ecuacién se reduce a la
ecuacion pendiente-intercepto de la recta

y = mx + b. 5)

)3\ Ko BN Ecuacion de una recta dadas su pendiente y su ordenada en el origen
Encuentre una ecuacién de la recta que pasa por los puntos (4, 3) y (=2, 5).

Solucion  Primero se calcula la pendiente de la recta que pasa por los puntos. Con base en (3),

5—-3 2 1
m = — =

T 2-4 -6 3

Luego, la ecuacién (4) de una recta dadas su pendiente y su ordenada en el origen proporciona
y=3=-ix—4oy=—jx+75

! I
1

X
X

FIGURA 2.3.1

recta

Pendiente de una

| ascenso

! vertical y, — y;

recorrido horizontal
REE)

ascenso

vertical y, =y,

1

‘ X

FIGURA 2.3.2 Tridngulos seme-
jantes

d) m indefinida
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Una ecuacion de cualquier recta en el plano es un caso especial de la ecuacién lineal
general

Ax + By + C =0, ©6)

donde A, By C son constantes reales. La caracteristica que proporciona a (6) su nombre lineal

es que las variables x y y s6lo aparecen a la primera potencia. Los casos de interés especial son

A=O,B¢O,day=—%, @)
C
A#O,Bzo,daxZ—X, (®)
__A _C
A#0,B#0,day= 3 & (&)

De estas ecuaciones, la primera y la tercera definen funciones. Al volver a identificar a —C/B
en (7) como a se obtiene una funcién constante y = a. Al reidentificar a —A/B y —C/B en (9)
como a y b, respectivamente, se obtiene la forma de una funcién lineal f(x) = ax + b que,
excepto por algunos simbolos, es la misma que (5). Al volver a identificar —C/A en (8) como
a se obtiene la ecuacién de una recta vertical x = a, que no es una funcioén.

I Funciones crecientes-decrecientes Recién acabamos de ver en las figuras 2.3.3a) y 2.3.3D)
que si a > 0 (lo cual, desempefia la parte de m), los valores de una funcién lineal f(x) = ax + b
crecen cuando x crece, mientras que para a < 0, los valores de f(x) disminuyen cuando x crece.
Los conceptos creciente y decreciente pueden extenderse a cualquier funcién. Se dice que una
funcién fes
* creciente sobre un intervalo si f(x;) < f(x), ¥ (10)
e decreciente sobre un intervalo si f(x;) > f(x,). (11

En la FIGURA 2.3.4a) la funcién f es creciente sobre el intervalo [a, b], mientras f es decreciente
sobre el intervalo [a, b] en la figura 2.3.4b). Una funcién lineal f(x) = ax + b crece sobre el
intervalo (—00, 00) para a = 0 y decrece sobre el intervalo (—00, o0) para a < 0.

%) DU o)

R fx)

a X, x, b

@ fx) < f(x,) b) f(x) > f(x,)

FIGURA 2.3.4 Funcién creciente en a); funcién decreciente en b)

Esta suposicion significa que L, J» I Rectas paralelas y perpendiculares Si L, y L, son dos rectas distintas con pendiente, enton-
y L, son rectas no verticales.

\

-\

e

FIGURA 2.3.5 Rectas paralelas en

el ejemplo 2

ces necesariamente L, y L, son paralelas o se cortan. Si las rectas se cortan formando un dngu-
lo recto, se dice que son perpendiculares. Es posible determinar si dos rectas son paralelas o per-
pendiculares al examinar sus pendientes.

Rectas paralelas y perpendiculares

Suponga que L; y L, son rectas con pendientes m; y m,, respectivamente. Entonces

e L, es paralela a L, siy solo si m; = m,, y
e L, es perpendicular a L, siy sélo si mm, = —1.

NI\ Xe BV N Rectas paralelas

Las ecuaciones lineales 3x + y = 2y 6x + 2y = 15 pueden volver a escribirse en las formas
de la ecuacién de la recta dadas su pendiente y su ordenada en el origen y = —3x + 2 y
y = —3x + £, respectivamente. Como se destaca en color, la pendiente de cada recta es —3.
En consecuencia, las rectas son paralelas. Las graficas de estas ecuaciones se muestran en la
FIGURA 2.35.
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A3\ [JEe BN Rectas perpendiculares

Encuentre una ecuacién de la recta que pasa por (0, —3) y es perpendicular a la grafica de
4x — 3y + 6 = 0.

Al despejar y, la ecuacion lineal dada produce la forma de la ecuacidn de la recta
dadas su pendiente y su ordenada en el origen y = $x + 2. Esta recta, cuya grafica se propor-
ciona en la FIGURA 236, tiene pendiente 3. La pendiente de cualquier recta perpendicular a ésta
es el reciproco negativo de 3, a saber: —3. Puesto que (0, —3) es la interseccién y de la recta
requerida, por (5) se concluye que su ecuacién es y = —3x — 3. La gréfica de la tltima ecua-
cion es la recta por (0, —3) en la figura 2.3.6.

I Funciones cuadraticas La funcién elevar al cuadrado y = x? que se abordé en las secciones
2.1y 2.2 es un elemento de una familia de funciones denominadas funciones cuadraticas; es
decir, funciones polinomiales de la forma f(x) = ax®> + bx + ¢,dondea # 0, b y ¢ son constan-
tes. Las graficas de funciones cuadraticas, denominadas parabolas, simplemente son transfor-
maciones rigidas y no rigidas de la grafica de y = x*> mostrada en la FIGURA 2.3.7.

I Verticey eje Si la grafica de una funcidn cuadritica se abre hacia arriba a > 0 (o hacia abajo
a < 0), el punto mds bajo (mds alto) (A, k) sobre la pardbola se denomina vértice. Todas las pa-
rabolas son simétricas con respecto a una recta vertical que pasa por el vértice (h, k). La recta
x = h se denomina eje de la pardbola. Vea la FIGURA 2.3.8.

I Forma normal El vértice (h, k) de una pardbola puede determinarse al volver a plantear la
ecuacién f(x) = ax®> + bx + c en forma normal

fx) = ax — h)? + k. (12)

La forma (12) se obtiene a partir de f(x) = ax> + bx + ¢ al completar el cuadrado en x. Con
la ayuda del calculo diferencial es posible encontrar el vértice de la pardbola sin completar el
cuadrado.

Como se muestra con el siguiente ejemplo, al trazar las intersecciones y el vértice puede
obtenerse un bosquejo razonable de la pardbola. La forma en (12) indica que su grafica es la
grifica de y = ax” desplazada horizontalmente || unidades y desplazada verticalmente |k| uni-
dades.

R\ JNelW'N Grafica usando las intersecciones y el vértice
Grafique f(x) = x> — 2x — 3.

Puesto que @ = 1 > 0, se sabe que la pardbola se abre hacia arriba. A partir de
f(0) = —3 obtenemos la interseccién (0, —3). Para averiguar si hay alguna interseccién ux,
resolvemos la ecuacién x> — 2x — 3 = 0 por factorizacién o aplicando la férmula cuadratica.
Con base en (x + 1)(x — 3) = 0 encontramos las soluciones x = —1 y x = 3. Las interseccio-
nes x son (—1, 0) y (3, 0). Para localizar el vértice, se completa el cuadrado:

fO)=@—2x+1)—1-3=x>—2x+1) — 4.

Asi, la forma estdndar es f(x) = (x — 1) — 4. Al comparar la Gltima ecuacién con (12) se
identifica h = 1 y k = —4. Podemos concluir que el vértice se encuentra en el punto (1, —4).
Al usar esta informacidn se traza una parabola que pasa por estos cuatro puntos como se mues-
tra en la FIGURA 2.39.

Al encontrar el vértice de una pardbola, de manera automatica se determina el rango de
la funcién cuadrética. Como se muestra claramente en la figura 2.3.9, el rango de f es el inter-
valo [ —4, c0) sobre el eje y. En la figura 2.3.9 también se muestra que f es decreciente sobre
el intervalo (—o0, 1], pero creciente sobre [1, 00).

I Funciones polinomiales de orden superior La gréfica de toda funcién lineal f(x) = ax + b
es una recta y la grafica de foda funcién cuadritica f(x) = ax> + bx + c es una paribola. Estas
declaraciones descriptivas definitivas no pueden hacerse con respecto a la grafica de una funcién
polinomial de orden superior. ;Cudl es la forma de la grafica de una funcién polinomial de quin-
to grado? Resulta que la grafica de una funcién polinomial de grado n = 3 puede tener varias
formas posibles. En general, graficar una funcién polinomial f de grado n = 3 demanda el uso

ny%X*3

FIGURA 2.3.6 Rectas perpendicu-
lares en el ejemplo 3

FIGURA 2.3.7 Gréfica de la
parabola més simple

y Eje

x=h

(h, k) El vértice es el
’: punto mds bajo

a)y=ax2+bx+c, a>0

Eje
x=h
1
1
El vértice es el |
punto mds alto i

(h, k)

y

b)y=ax2+bx+c, a<0

FIGURA 2.3.8 Vértice y eje de
una parabola
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)‘:XZ*Z)C*:;

El rango de f
es [—4,®)

FIGURA 2.3.9 Parabola en el
ejemplo 4

] X

FIGURA 2.3.11 Grificas de
y=xiy=x'yy=x%y=x

)

/1

FIGURA 2.3.12 Grificas de y = x,
y=x'yy=x,y=x

de un instrumento de cdlculo o graficado. No obstante, al tener en cuenta el desplazamiento, el
comportamiento extremo, las intersecciones y la simetria, es posible en muchos casos trazar rapi-
damente una grafica razonable de una funcién polinomial de orden superior a la vez que el tra-
zado de puntos se mantiene en un minimo.

I Comportamiento final En términos aproximados, el comportamiento final de cualquier
funcién f es simplemente la forma en que f se comporta para valores muy grandes de |x|. En el
caso de una funcién polinomial f de grado n, su grafica semeja la grafica de y = a,x" para valo-
res grandes de |x|. Para ver por qué la gréfica de una funcién polinomial como f(x) = —2x +
4x* + 5 se parece a la gréfica de la funcién polinomial con un solo término y = —2x* cuando |x]|
es grande, se factorizard la potencia mds alta de x; es decir, x>

estos dos términos se vuelven
despreciables cuando |x| es grande

) = x3<—2 +24 53> (13)

X
Al dejar que |x| crezca sin limite, tanto 4/x como 5/x° pueden aproximarse a cero tanto como
se quiera. Asi, cuando |x| es grande, los valores de la funcién f en (13) son muy bien aproxi-
mados por los valores de y = —2x°. En general, sélo puede haber cuatro tipos de comporta-
miento extremo para funciones polinomiales. Para interpretar las flechas en la FIGURA 2.3.10 se
analizardn las flechas en, por ejemplo, la figura 2.3.10c), donde se supone que n es impar y
que a, > 0. La posicién y la direccién de la flecha izquierda (la flecha izquierda apunta hacia
abajo) indica que cuando x se vuelve no acotada en la direccidn negativa, los valores de f(x)
son decrecientes. Planteado en otros términos, la grafica estd apuntando hacia abajo. En forma
semejante, la posicidn y la direccién de la flecha derecha (la flecha derecha apunta hacia arriba)
indica que cuando x se vuelve no acotada en la direccién positiva, los valores de f(x) son cre-
cientes (la grafica apunta hacia arriba). El comportamiento extremo ilustrado en las figuras
2.3.10a) y 2.3.10c) puede verse en las grificas que se muestran en la FIGURA 2.3.11 y FIGURA
2.3.12, respectivamente. Las graficas de las funciones y = —x, y = —x2, y = - .,
y = —x® son las graficas en las figuras 2.3.11 y 2.3.12 reflejadas en el eje x, de modo que su
comportamiento extremo es como se muestra en las figuras 2.3.10b) y 2.3.10d).

1A } 14 A
a,<0 a,>0 a,<0
| X X X X
/ol / \
a) n par b) n par ¢) n impar d) n impar

FIGURA 2.3.10  El comportamiento extremo de una funcién polinomial f depende de su grado n y el signo de su
coeficiente principal

I Simetria de las funciones polinomiales Resulta fécil identificar por inspeccién las funcio-
nes polinomiales cuyas grificas poseen simetria con respecto al eje y o al origen. La palabras
par e impar tienen un significado especial para las funciones polinomiales. Las condiciones

f(=x) = f(x) y f(—x) = —f(x) se cumplen para funciones polinomiales donde todas las poten-
cias de x son enteros pares y enteros impares, respectivamente. Por ejemplo,
potencias pares potencias impares potencias mixtas

f(x) = 5x* — T2 [ = 10x° + 7x° + 4x J&x) = =3+ 2t + P+ 2
~—_ —
funcién par funcién impar ni par ni impar

Una funcién como f(x) = 3x® — x* + 6 es una funcién par porque todas las potencias son
enteros pares; el término constante 6 es en realidad 6x°, y 0 es un entero no negativo par.

I Intersecciones de las funciones polinomiales La grifica de toda funcién polinomial f pasa
por el eje y puesto que x = 0 estd en el dominio de la funcién. La interseccion y es el punto
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(0,£(0)). Los ceros reales de una funcioén polinomial son las coordenadas x de las interseccio-
nes x de su grafica. Un nimero c es un cero de una funcién polinomial /' de grado n si y sélo si
x — ¢ es un factor de f; es decir, f(x) = (x — ¢)g(x), donde g(x) es un polinomio de grado n — 1.
Si (x — ¢)" es un factor de f, donde m > 1 es un entero positivo, y (x — ¢)"*! no es un factor de
f, entonces se dice que ¢ es un cero repetido o cero de multiplicidad m. Cuando m = 1, ¢ se
denomina cero simple. Por ejemplo, —% y % son ceros simples de f(x) = 6x> — x — 1 puesto que
fpuede escribirse como f(x) = 6(x + %)(x — %), mientras que 5 es un cero repetido o un cero de
multiplicidad 2 para f(x) = x> — 10x + 25 = (x — 5)*. El comportamiento de la grifica de fen
una interseccion x (¢, 0) depende de si ¢ es un cero simple o un cero de multiplicidad m > 1,
donde m es un entero impar o par. Vea la FIGURA 2.3.13.

Intersecciones x de polinomios

* Si ¢ es un cero simple, entonces la grifica de f pasa directamente por el eje x en
(c, 0). Vea la figura 2.3.13a).

* Si ¢ es un cero de multiplicidad impar m = 3, 5, . . . , entonces la grafica de f
pasa directamente por el eje x pero se achata en (c, 0). Vea la figura 2.3.13b).
* Si ¢ es un cero de multiplicidad par m = 2, 4, . . ., entonces la gréfica de f no

pasa por el eje x, sino que es tangente a €ste, o lo toca, el eje x en (¢, 0). Vea la
figura 2.3.13c¢).

En el caso en que ¢ es un cero simple o un cero de multiplicidad impar, f(x) cambia de
signo en (¢, 0), mientras que si ¢ es un cero de multiplicidad par, f(x) no cambia de signo en
(c, 0). Observamos que dependiendo del signo del coeficiente principal del polinomio, las gra-
ficas en la figura 2.3.13 pueden estar reflejadas en el eje x.

N[N N Graficas de funciones polinomiales
Grafique

a) fx) = x> — 9x b) gx) = (1 —x)(x + 1)? ¢) h(x) = —(x + H(x — 2)°.

a) Al ignorar todos los términos menos el primero observamos que la grifica de f semeja
la grifica de y = x° para |x| grande. Este comportamiento final de f se muestra en la
figura 2.3.10c). Puesto que todas las potencias son enteros impares, f es una funcién
impar y su grafica es simétrica con respecto al origen. Al hacer f(x) = 0, a partir de

diferencia de dos cuadrados

)
xx> =9 =0 obien x(x—3)(x+3)=0

notamos que los ceros de fson x = 0 y x = *=3. Puesto que estos nimeros son ceros
simples, la gréfica pasa directamente por las intersecciones x en (0, 0), (=3, 0) y
(3, 0) como se muestra en la FIGURA 2.3.14.

b) Al distribuir la multiplicacién de los factores, g es la misma que g(x) = —x° — x> +
x + 1 de modo que se observa que la grifica de g semeja la gréfica de y = —x° para
|x| grande, justo lo opuesto del comportamiento final de la funcién en el inciso a).
Debido a que hay potencias pares e impares de x, g no es par ni impar; su grafica no
posee simetria con respecto al eje y o al origen. En virtud de que —1 es un cero de
multiplicidad 2, la gréfica es tangente al eje x en (—1, 0). Puesto que 1 es un cero
simple, la grafica pasa directamente por el eje x en (1, 0). Vea la FIGURA 2.3.15.

¢) Al inspeccionar / se observa que su grifica semeja la grifica de y = —x* para |x|
grande. Este comportamiento final de /4 se muestra en la figura 2.3.10b). La funcién
h no es par ni impar. A partir de la forma factorizada de h(x), se ve que —4 es un
cero simple y asi la grafica de h pasa directamente por el eje x en (—4, 0). Puesto
que 2 es un cero de multiplicidad 3, su gréfica se achata cuando pasa por la intersec-
cién x (2, 0). Vea la FIGURA 2.3.16.

(¢, 0)

a) Cero simple

(¢, 0)

b) Cero de multiplicidad
imparm=3,5, ...

(c,0)
¢) Cero de multiplicidad
parm=2,4, ...

FIGURA 2.3.13  Intersecciones x
de una funcién polinomial f

Y
y= ¥ —0ox Y

X
(—3,0) (0,0) (3,0)

FIGURA 2.3.14  Grifica de la fun-
cién en el ejemplo S5a)

y=(—x)(x+1)
y

(—1,0) (1,0)

FIGURA 2.3.15 Grifica de la fun-
cién en el ejemplo 5b)

y=—(+4Hx—-2)7°

(0, 32)

(—4,0)

FIGURA 2.3.16  Grifica de la fun-
cién en el ejemplo 5¢)
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FIGURA 2.3.17 Grifica de la fun-
cién en el ejemplo 6a)

I Funciones racionales Graficar una funcién racional f(x) = p(x)/g(x) es un poco mas com-
plicado que graficar una funcién polinomial porque ademds de estar atento a las intersecciones,
simetria y desplazamiento/reflexién/estiramiento de gréificas conocidas, también es necesario
prestar atencién al dominio de f'y los grados de p(x) y g(x). Estas dos ultimas cuestiones son
importantes para determinar si la grafica de una funcién racional posee asintotas.

I Intersecciones de funciones racionales La interseccion y de la grifica de f(x) = p(x)/q(x)
es el punto (0, f(0)) en el supuesto de que O estd en el dominio de f. Por ejemplo, la grafica de la
funcién racional f(x) = (1 — x)/x no cruza el eje y puesto que f(0) no esté definido. Si los poli-
nomios p(x) y g(x) no tienen factores comunes, entonces las intersecciones x de la grafica de la
funcién racional f(x) = p(x)/g(x) son los puntos cuyas coordenadas x son los ceros reales del
numerador p(x). En otras palabras, la tinica forma en que es posible que f(x) = p(x)/q(x) = Oes
cuando p(x) = 0. Asi, para f(x) = (1 — x)/x, | — x = 0 se obtiene x = 1 y entonces (1, 0) es una
interseccién x de la gréfica de f.

I Asintotas La gréfica de una funcién racional f(x) = p(x)/q(x) puede tener asintotas. Para los
objetivos de este libro, las asintotas pueden ser una recta horizontal, una recta vertical o una recta
inclinada. En un nivel practico, las asintotas vertical y horizontal de la grafica de una funcién
racional f pueden determinarse por inspeccion. Asi, por el bien del andlisis se supondrd que

px) ax" + a,_x" '+ -+ ax + a

g hx™ + by X"+ o+ bx + by

J) a, # 0, b, #0, (14)

representa una funcién racional general. El grado de p(x) es n y el grado de g(x) es m.

Asintotas de gréficas de funciones racionales

Suponga que las funciones polinomiales p(x) y g(x) en (14) no tienen factores
comunes.

* Si a es un cero real de ¢g(x), entonces x = a es una asintota vertical para la
grafica de f.

e Sin = m, entonces y = a,/b,, (el cociente de los coeficientes principales) es una
asintota horizontal para la gréfica de f.

* Sin < m,entonces y = 0 es una asintota horizontal para la grifica de f.

* Si n > m, entonces la grifica de f no tiene asintota horizontal.

e Sin = m + 1, entonces el cociente y = mx + b de p(x) y g(x) es una asintota
inclinada para la gréfica de f.

Con base en Ia lista anterior observamos que las asintotas horizontal e inclinada son mutua-
mente excluyentes. En otras palabras, la grifica de una funcién racional f no puede tener una
asintota inclinada y una asintota horizontal.

NS\ |JHeM:N Graficas de funciones racionales
Grafique

a) flx) =

X P —x—6
p— b) g =~

a) Se empieza con la observacién de que el numerador p(x) = x y el denominador g(x)
=1 — 2% no tienen factores comunes. También, puesto que f(—x) = —f(x), la funcién
fes impar. En consecuencia, su grafica es simétrica con respecto al origen. Debido a
que f(0) = 0, la interseccién y es (0, 0). Ademds, p(x) = x = 0 implica x = 0, de
modo que la tnica interseccion es (0, 0). Los ceros del denominador g(x) = 1 — x*
son *1. Asi, las rectas x = —1 y x = 1 son asintotas verticales. Puesto que el grado
del numerador x es 1 y el grado del denominador 1 — x? es 2 (y 1 < 2), se concluye
que y = 0 es una asintota horizontal para la grifica de f. La gréafica consta de tres
ramas distintas: una a la izquierda de la recta x = —1, una entre las rectas x = —1y
x =1y una a la derecha de la recta x = 1. Vea la FIGURA 2.3.17.
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b) De nuevo, observe que el numerador p(x) = x> — x — 6 y el denominador g(x) =
x — 5 de g no tienen factores comunes. Asimismo, f no es impar ni par. A partir de
f0) = 2 se obtiene la interseccion y (0, %) Con base en p(x) =x>* —x—6=00
(x + 2)(x — 3) = 0 observamos que —2 y 3 son ceros de p(x). Las intersecciones x
son (=2, 0) y (3, 0). Resulta evidente que el cero de g(x) =x — 5 es 5, de modo que
la recta x = 5 es una asintota vertical. Por dltimo, a partir del hecho de que el grado
de p(x) = x* — x — 6 (que es 2) es exactamente mayor por uno que el grado de g(x)
=x — 5 (que es 1), la grifica de f(x) tiene una asintota inclinada. Para encontrarla,
p(x) se divide entre g(x). Ya sea por divisién larga o division sintética, el resultado

FIGURA 2.3.18 Grifica de la fun-

y = x + 4 es la asintota inclinada cién en el ejemplo 6b)
2 )
x*—x—6 14
—F—— =x+t4+
x—35 x—35

muestra que la asintota inclinada es y = x + 4. La grafica consta de dos ramas: una
a la izquierda de la recta x = 5 y otra a la derecha de la recta x = 5. Vea la
FIGURA 2.3.18.

I Posdata: Grafica con un hueco En todo el andlisis de las asintotas se supuso que las funcio-

nes polinomiales p(x) y g(x) en (14) no tenian factores comunes. Se sabe que si g(a) = 0y p(X) o si p(a) = 0y g(a) = 0, entonces
y q(x) no tienen factores comunes, entonces la recta x = a necesariamente €s una asintota verti-  por el teorema de factorizacion
cal para la gréafica de f. Sin embargo, cuando p(a) = 0y g(a) = 0, entonces x = a puede no ser  del dlgebra, x — a es un factor

una asintota; en la grafica puede haber simplemente un hueco. tanto de p como de g.
2 [JXe Ry A Grafica con un hueco
Xt —2x—3

Grafique la funcién f(x) = T
¥ —

Aunque los ceros de x> —1=0 son =1, sélo x = 1 es una asintota vertical.

Observe que el numerador p(x) y el denominador g(x) tienen el factor comun x + 1, que puede
cancelarse en el supuesto de que x # —1:

la igualdad se cumple para x # —1

!
+ Dx — - L
Fo) = (+ D=3 _ x 3 (15) |
x+Dx—1 x—1 FIGURA 2.3.19  Gréfica de la fun-
3 ci6n en el ejemplo 7

X — . ., . .,
Graficamos y = x # —1, al observar que la interseccion y es (0, 3), una interseccion x

x— T
es (3, 0), una asintota vertical es x = 1 y una asintota horizontal es y = 1. Aunque x = —1
no es una asintota vertical, el hecho de que f no estd definida en ese nimero se representa al
dibujar un circulo o hueco abierto en la gréfica en el punto correspondiente a (—1, 2). Vea la o La coordenada y del hueco es el
FIGURA 2.3.19. valor de la fraccion reducida
(I5)enx=—1.

f(x) NOTAS DESDE EL AULA

En las dos ultimas secciones hemos trabajado principalmente con funciones polinomiales.
Las funciones polinomiales constituyen los objetos fundamentales de una clase conocida como
funciones algebraicas. En esta secciéon vimos que una funcién racional es el cociente de
dos funciones polinomiales. En general, una funcién algebraica implica un nimero finito
de sumas, restas, multiplicaciones, divisiones y raices cuadradas de funciones polinomiales. Asf,

y = 2x* — 5x, y=\3/;, y=x4+\/m Y Y= 3 5 & \/;;
% =2 a7
son funciones algebraicas. Empezando con la siguiente seccién consideraremos funciones
que pertenecen a una clase diferente conocida como funciones trascendentes. Una funcién
trascendente f se define como una funcién que no es algebraica. Las seis funciones
trigonométricas y las funciones exponencial y logaritmica son ejemplos de funciones trascen-
dentes.
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m DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-4.

= Fundamentos

En los problemas 1-6, encuentre una ecuacién de la recta que
pasa por (1, 2) con la pendiente indicada.

2 1
1. 3 2. 10
3.0 4, -2
5. —1 6. indefinida

En los problemas 7-10, encuentre la pendiente y las intersec-
ciones x y y de la recta dada. Grafique la recta.

7.3 — 4y +12=0 8.%x—3y=3

9. 2xr —3y=9 10. —4x—2y+6=0

En los problemas 11-16, encuentre una ecuacion de la recta

que satisface las condiciones dadas.

11. Pasa por (2, 3) y (6, —5)

12. Pasa por (5, —6) y (4, 0)

13. Pasa por (—2,4) yes paralelaa3x +y — 5 =0

14. Pasa por (5, —7) y es paralela al eje y.

15. Pasa por (2, 3) y es perpendicular a x — 4y + 1 = 0

16. Pasa por (=5, —4) y es perpendicular a la recta que pasa
por (1, 1) y (3, 11).

En los problemas 17 y 18, encuentre una funcién lineal
f(x) = ax + b que cumpla las dos condiciones dadas.

17. f(=1) = 5,f(1) = 6

18. f(—=1) = 1 + f(2), f(3) = 4f(1)

En los problemas 19 y 20, encuentre una ecuacién de la recta
L que se muestra en la figura dada.

9.\
y=1+ x

S S
-1 2 P x
FIGURA 2.3.20 Grifica 3
para el problema 19 FIGURA 2.3.21 Grifica
para el problema 20

En los problemas 21-26, considere la funcién cuadratica f.
a) Encuentre todas las intersecciones de la grafica de f.
b) Exprese la funcién f en forma normal.
¢) Encuentre el vértice y el eje de simetria.
d) Trace la gréfica de f.
e) (Cudl es el rango de f?
f) (En qué intervalo es creciente f? ;Y decreciente?
21. f(x) = x(x +5) 22, f(x) = —x> + 4x
23. f) =B —x)(x + 1) 24, fx) = (x — 2)(x — 6)
25. fx) = x> —3x + 2 26. f(x) = —x>+6x—5

En los problemas 27-32, describa con palabras la forma en
que es posible obtener la grafica de la funcién dada a partir
de y = x* por medio de transformaciones rigidas o no rigidas.

27. f(x) = (x — 10y 28. f(x) = (x + 6)
29. f(x) = —%(x + 42 +9 30, f(x) = 10(x — 2> — 1

3L ) =(—x—62—4 32 fx)=—-(1—x>+1

En los problemas 33-42, proceda como en el ejemplo 5 y
trace la grafica de la funcién polinomial dada f.
33. f(x) = x° — 4x 34. f(x) = 9x — x°
35. f) = —x* + x* + 6x 36, f(x) =x° + Tx* + 12x
37. fx) = (x + D(x — 2)(x — 4)
38. fr) =2 — )+ 2x+ 1)
39. f(x) = x* — 4x* + 3x* 40, f(x) = F*(x — 2)?
41, fx) = —x* + 27 — 1 42, f(x) = x° — 4x°
En los problemas 43-48, relacione la grafica dada con una
de las funciones polinomiales en a)-f).
a) fx) = x*(x — 1)? b) fx) = —x’(x — 1)
) flx) = x’(x — 1)° d) fx) = —x(x = 1)°
e) fx) = —x*(x — 1) H &) =xx—=1)7°
43. y 4. | y

FIGURA 2.3.22 Griéfica

para el problema 43 FIGURA 2.3.23 Grifica

para el problema 44
45. y 46. y

= x

FIGURA 2.3.25 Griéfica
FIGURA 2.3.24 Grafica

para el problema 46
para el problema 45
47. y 48.

AN
%

FIGURA 2.3.26  Grifica
para el problema 47

\ X
FIGURA 2.3.27  Grifica
para el problema 48




En los problemas 49-62, encuentre todas las asintotas para

la grafica de la funcién racional dada. Encuentre las inter-
secciones x y y de la grafica. Trace la grifica de f.

4x — 9
4. fx) = 2x + 3
_2x+4
50. f(x) = P
1
51. =—
J) = 1)
4
52. f(x) = ——
@ (x+2)°
X
53. f(x) =
f =
2
X
54. f(x) =
fo ==
1 —x°
55. f(x) = 2z
56. /) x(x —5)
. fx) = ———
=9
x* =9
57. fx) = T
2 _ —
58. f(x) = X 3x — 10
X
2
X
59. f(x) = P
oxr = 2x
60. f(x) = PR
X —2x—3
61. f(x) = P
== 1)?
2 I0="
63. Determine si los niimeros —1 y 2 estdn en el rango de
. . _2x— 1
la funcién racional f(x) = Y14
-3 2
64. Determine los puntos donde la gréfica de f(x) = %
x° — 5x

A

66.

. Temperaturas relacionadas

corta su asintota horizontal.

La relacién funcional
entre grados Celsius Ty grados Fahrenheit 7 es lineal.
Exprese T como una funcién de T¢ si (0 °C, 32 °F) y
(60 °C, 140 °F) estdn en la grafica de Tr. Muestre que
100 °C es equivalente al punto de ebullicion Fahrenheit
212 °F. Vea la FIGURA 2.3.28.

Temperaturas relacionadas La relaciéon funcional
entre grados Celsius T y unidades kelvin Ty es lineal.
Exprese Tx como una funcién de T dado que (0 °C,
273 K) y (27 °C, 300 K) estdn en la grifica de Tkg.
Exprese el punto de ebullicién 100 °C en unidades kel-
vin. El cero absoluto se define como 0 K. ;A qué es
igual esto en grados Celsius? Exprese Tk como una fun-
cién lineal de Tp. ;A qué es igual 0 K en grados
Fahrenheit? Vea la figura 2.3.28.
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Fahrenheit (F) Celsius (C) Kelvin (K)

f - —Hierve- — — —
H H

Se ‘
—congela- - 273 H

FIGURA 2.3.28 Termémetros para los problemas 65 y 66

67. Interés simple En interés simple la cantidad A deven-

68.

69.

70.

71.

72.

73.

74.

gada con el paso del tiempo es la funcién lineal A = P
+ Prt, donde P es el capital, 7 se mide en afios y r es
la tasa de interés anual (expresada como un decimal).
Calcule A al cabo de 20 afios si el capital es P = 1 000
y la tasa de interés anual es 3.4%. (En qué instante se
cumple que A = 2 200?

Depreciacion lineal La depreciacion de linea recta, o
depreciacion lineal, consta de un articulo que pierde toda
su utilidad inicial de A délares a lo largo de un periodo
de n afios por una cantidad A/n anual. Si un articulo que
cuesta $20 000 cuando estd nuevo se deprecia lineal-
mente a lo largo de 25 afios, determine la funcién lineal
que proporciona el valor V después de x afios, donde
0 = x = 25. ;Cudl es el valor del articulo al cabo de 10
afios?

Una pelota se lanza hacia arriba desde el nivel del piso
con una velocidad inicial de 96 pies/s. La altura que
alcanza la pelota con respecto al suelo esta dada por la
funcién cuadritica s(f) = —16¢> + 96¢. ;En qué instante
la pelota estd en el suelo? Grafique s sobre el intervalo
de tiempo para el cual s(r) = 0.

En el problema 69, ;en qué instante la pelota estd a 80
pies por arriba del piso? ;Cudn alto asciende la pelota?

Considere la funcién lineal f(x) = %x — 4. Si x se cam-
bia por 1 unidad, ;cudntas unidades cambia y? ;Si x se
cambia por 2 unidades? ;Si x se cambia por n unidades
(n un entero positivo)?

Considere el intervalo [x;,x,] y la funcién lineal
f(x) = ax + b, a # 0. Demuestre que

<X1 + Xz) :f(xl) + f(x)
f 2 2 9

e interprete este resultado geométricamente para a > 0.

(Coémo encontraria una ecuacién de la recta que es per-
pendicular a la bisectriz del segmento de recta que pasa
por (3. 10)y (5.4)?

Usando sélo los conceptos presentados en esta seccidn,
(coémo demostraria o refutaria que el tridngulo con vér-
tices (2, 3), (—1, —3) y (4, 2) es rectangulo?
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2.4 Funciones trascendentes

I Introduccion En las dos primeras secciones de esta unidad analizamos varias propiedades y
graficas de funciones algebraicas. En las tres secciones siguientes estudiaremos las funciones
trascendentes. Basicamente, una funcion trascendente f es una funcién que no es algebraica.
Una funcién trascendente puede ser tan simple como la funcién potencia y = x", donde la poten-
cia es un nimero irracional, pero las conocidas funciones trascendentes de precalculo en mate-
maticas son las funciones trigonométricas, las funciones trigonométricas inversas y las funcio-

Para un repaso de las bases de la » nes exponencial y logaritmica. En esta seccion se analizan las seis funciones trigonométricas y

circunferencia unitaria y trigono-
metria de tridngulos rectangulos,

vea las Pdginas de recursos al
final del texto.

sus graficas. En la seccion 2.5 se considerardn las funciones trigonométricas inversas y en la sec-
cién 2.6, las funciones exponencial y logaritmica.

I Graficas del seno y coseno Recuerde de precilculo en matematicas que las funciones trigo-
nométricas seno y coseno tienen periodo 27:

sen(x + 27) = sen x y cos(x + 27) = cos x. (N

Se dice que la gréifica de cualquier funcién periddica sobre un intervalo de longitud igual a
su periodo es un ciclo de su grafica. La grafica de una funcién periddica se obtiene facilmente
al trazar de manera repetida un ciclo de su grafica. En la FIGURA 2.4.1 se muestra un ciclo de la
grafica de f(x) = sen x; la grafica de f sobre, por ejemplo, el intervalo [—2m,0] y [27, 47]
es exactamente la misma que la grafica sobre [0, 27]. Debido a que f(—x) = sen (—x) =
—sen x = —f(x), la funcién seno es una funcién impar y su grafica es simétrica con respecto

al origen.
y =senx
: t t / X

*271'/ — 27 2 57 34 1w fog
1
1
1
1

U)

SIS

|

3
STEES
3+

SINY

_1 +
1
<«—— Un ciclo ——>!

FIGURA 2.4.1 Gréfica de y = sen x

La FIGURA 2.4.2 muestra un ciclo de g(x) = cos x sobre [0, 277 ] junto con la extension de ese
ciclo hacia los intervalos adyacentes [—27,0] y [27, 47 ]. En contraste con la grifica de
f(x) = sen x donde f(0) = f(2m) = 0, para la funcién coseno se tiene g(0) = g(27) = 1. La
funcién coseno es una funcién par: g(—x) = cos (—x) = cos x = g(x), de modo que en la figura
2.4.2 puede verse que su grafica es simétrica con respecto al eje y.

y
'\ /\ /\ o /‘
oy 3w\ -m [T LN 3w )17 ax
2 2 2 2 2 2
_1.

«—— Un ciclo ——>!

FIGURA 2.4.2 Grifica de y = cos x

Las funciones seno y coseno estdn definidas para todos los nimeros reales x. También,

resulta evidente en las figuras 2.4.1 y 2.4.2 que
—1=senx=1 y —1=cosx=1, 2)

o bien, de manera equivalente, [sen x| = 1y |cosx| = 1. En otras palabras,

* el dominio de sen x y cos x es (—00, 00), y el rango de sen x y cos x es [—1, 1].



I Intersecciones En este curso y en cursos subsecuentes de matematicas es importante cono-
cer las coordenadas x de las intersecciones x de las graficas seno y coseno; en otras palabras, los
ceros de f(x) = sen x y g(x) = cos x. A partir de la gréifica seno de la figura 2.4.1 observamos
que los ceros de la funcién seno, o los nimeros para los cuales sen x =0, son x =0, =, =277,
*3, . .. Estos nimeros son multiplos enteros de 7. A partir de la grifica coseno de la figura
2.4.2 notamos que cos x = 0 cuando x = *=7/2, *37/2, £57/2, . . . Estos nimeros son multi-
plos enteros impares de /2.

Si n representa un entero, entonces 2n + 1 es un entero impar. En consecuencia, los ceros
de f(x) = sen x y g(x) = cos x pueden escribirse en forma breve como:

e sen x = ( para x = nm, n un entero, 3)
e cosx = (Qparax = (2n + l)g, 7 un entero. 4)

Valores numéricos adicionales importantes de las funciones seno y coseno sobre el inter-
valo [0, 7] se proporcionan en la tabla siguiente.

ol T | T | @™ |@ |2m | 3w | 5w
. 6 4 312 |3 4 6 | ™
1 V2 | V3 V3| V2 1
sen x| 0 5 5 7 1 7 > 3 0 (5)
cosxl 1 [ M2 1 |1 | _v2|_v3|_,
> 2 2 2 2 2 2

Usted debe poder discernir los valores sen x y cos x sobre [, 277 ] a partir de esta tabla usando
el concepto de circunferencia unitaria y un dngulo de referencia. Por supuesto, fuera del inter-
valo [0, 2] es posible determinar valores funcionales correspondientes usando periodicidad.

I Otras funciones trigonométricas Cuatro funciones trigonométricas adicionales se definen en
términos de cocientes o reciprocos de las funciones seno y coseno. La tangente, cotangente,
secante y cosecante se definen, respectivamente, por

sen x coS X
tan x = R cotx = s (6)
coSs X sen x
1 1
sec x = s csc x = . (7)
cos X sen x

El dominio de cada funcién en (6) y (7) es el conjunto de nimeros reales excepto aquellos
nimeros para los cuales el denominador es cero. A partir de (4) se observa que

el dominio de tan x y de sec x es {x|x # 2n + D)7/2,n =0, £1, *2,...}.
De manera semejante, a partir de (3) se concluye que

* el dominio de cot x y de csc x es {x|x # nw,n =0, £1, £2,...}.
Ademads, a partir de (2),

_ 1
|cos x|

= 1 =
[senx| —

|secx| = =1 8)

COS x

1
sen x

©))

lcscx| =

Recuerde que una desigualdad con valor absoluto como (8) significa secx = 1 o sec x = —1.
Por tanto, el rango de las funciones secante y cosecante es (—00, —1] U [1, 00). Las funcio-
nes tangente y cotangente tienen el mismo rango: (—0o0, 00). Al usar (5) pueden determinarse
algunos valores numéricos de tan x, cot x, sec x y csc x. Por ejemplo,
2w _ sen(2w/3 3/2
Qu/3) _ V3/2_ -V3.

BT os@a/3) | —1)2

2.4 Funciones trascendentes
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I Graficas Los nimeros que hacen cero los denominadores de tan x, cot x, sec x y €sc x corres-
ponden a asintotas verticales de sus graficas. En virtud de (4), las asintotas verticales de las gra-
ficasdey =tanxyy = secxsonx=*7/2, *37/2, =57 /2, ... Por otra parte, a partir de (3),
las asintotas verticales de las graficas de y=cotxy y=csc x son x =0, £, £27, £37, . ..
Estas asintotas son las rectas discontinuas en las FIGURAS 2.4.3-2.4.6.

y y=tanx
I I I I 1|
1 [ 1 I
I I I I I
I I 4 I I I
1 1 1 1 1
1 1 -+ 1 1 1
I I I I I
I I T I I I
il ) !
. . | N H
T/ w/l @/ 3w ) —r T
2 2/ 1 2 2 !
I I I I 1
I I -+ I I I
I I I I 1
I I T I I |
i I i !
1 1 1 1 :
FIGURA 2.4.3 Grifica de y = tan x FIGURA 2.4.4  Grafica de y = cot x
. y , y=secx | | y , y=cscx
I I I ] ] I I
I 4 I I 1 1 4 I I
I I I ] ] I I
1 1 1 1 1 1 I
1 4 1 1 1 1 4 ! !
| | | | | : |
T 1 3
. R I | 5! 5
t t t t T ==X t t t t + t t X
oy 3m —-m _T T m 3T o oy 3 —m m T 2
2 -1p 2 ? e U '
\ | \ 1 I I I
\ 1 | | 1 I 1 I I
| | H 1 I I I
| 1 \ 1 1 1 1
I T 1 I ! ! 1 | I
\ | \ 1 I I I
\ | \ 1 I I I
I I I I

FIGURA 245 Grifica de y = sec x

FIGURA 2.4.6 Gréfica de y = csc x

Porque las funciones seno y coseno son periddicas con periodo 27, sec x y csc x también son
periddicas con periodo 2. Pero a partir de las figuras 2.4.3 y 2.4.4 debe resultar evidente que
el periodo de las funciones tangente y cotangente es 7r:

tan(x + ) = tan x y cot(x + ) = cot x. (10)

También, tan x, cot x y csc x son funciones impares; sec x es una funcién par.

I Transformaciony graficas Es posible obtener variaciones de las gréficas de las funciones tri-
gonométricas por medio de transformaciones rigidas y no rigidas. Gréficas de funciones de la
forma

y=D+ A sen(Bx + C) o bien, y =D + A cos(Bx + O), (1

donde A, B > 0, C y D son constantes reales, representan desplazamientos, compresiones y
estiramientos de las graficas seno y coseno bdsicas. Por ejemplo,

desplazamiento vertical estiramiento/compresion/reflexion vertical
y =D + A sen(Bx + O).
T 1

estiramiento/compresion desplazamiento horizontal
horizontal al cambiar el periodo

El nimero |A| se denomina amplitud de las funciones o de sus grificas. La amplitud de las
funciones bésicas y = sen x y y = cos x es |A| = 1. El periodo de cada funcién en (11) es

27/B, B > 0, y la porcién de la gréfica de cada funcién en (11) sobre el intervalo [0, 27/B]
se denomina un ciclo.



A\ |Je NN Periodos

a) El periodo de y = sen 2x es 27r/2 = ar, y en consecuencia un ciclo de la gréfica se
completa en el intervalo [0, 7 ].
b) Antes de determinar el periodo de sen(—%x) primero es necesario que volvamos a

escribir la funcién como sen(—3x) = —sen(3x) (el seno es una funcién impar). Ahora,
el periodo es 277/5 = 4, y por consiguiente un ciclo de la grafica se completa en el
intervalo [0, 47 ].

A\ Graficas de transformaciones verticales

Grafique
a) yz—%cosx b) y =1+ 2 sen x.
a) La grificade y = —% cos x es la grifica de y = cos x comprimida verticalmente por
un factor de 2, y el signo menos indica que luego la grifica es reflejada en el eje x.
Con la identificacion A = —% se observa que la amplitud de la funcién es

|A| = |=%| = 5. La gréfica de y = —3 cos x sobre el intervalo [0, 2] se muestra en
la FIGURA 2.4.7.

b) La grafica de y = 2 sen x es la grafica de y = sen x estirada verticalmente por un fac-
tor de 2. La amplitud de la gréfica es |[A| = |2] = 2. La grificade y =1+ 2 sen x es
la grifica de y = 2 sen x desplazada una unidad hacia arriba. Vea la FIGURA 2.4.8.

]\ [N &N Grafica coseno comprimida horizontalmente

Encuentre el periodo de y = cos 4x y grafique la funcién.

Con la identificacién de que B =4, se ve que el periodo de y = cos 4x es 27/4 = /2
. Se concluye que la grafica de y = cos 4x es la grafica de y = cos x comprimida horizontalmente.
Para graficar la funcidn, se traza un ciclo de la grafica coseno con amplitud 1 sobre el intervalo
[0, 7/2] y luego se usa la periodicidad para extender la grdfica. La FIGURA 2.49 muestra cuatro
ciclos completos de y = cos 4x (el ciclo basico y la grafica extendida) y un ciclo de y = cos x
sobre [0, 27]. Observe que y = cos 4x alcanza su minimo en x = /4 puesto que
cos 4(7/4) = cos m = —1 y su mdximo en x = 7/2 puesto que cos 4(w/2) = cos2m = 1.

Por la seccién 2.2 se sabe que la gréfica de y = cos(x — 7/2) es la gréfica coseno bésica
desplazada hacia la derecha. En la FIGURA 2.4.10 la grifica de y = cos(x — 7r/2) sobre el inter-
valo [0, 27r] es un ciclo de y = cos x sobre el intervalo [—/2,37/2] desplazada horizontal-
mente 7r/2 unidades a la derecha. En forma semejante, las graficas de y = sen(x + w/2) y y =
sen(x — 7/2) son las grificas seno bésicas desplazadas horizontalmente 7/2 unidades a la
izquierda y a la derecha, respectivamente. Vea la FIGURA 24.11 y la FIGURA 2.4.12.
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y=cos x

FIGURA 2.4.7 Gréfica de la fun-
cion en el ejemplo 2a)

N g 7\ 37 fon

FIGURA 2.4.8 Gréfica de la fun-
cién en el ejemplo 2b)
y=cos4x

AN
TR

y=cosx
FIGURA 2.4.9 Gréfica de la fun-
cién en el ejemplo 3

y Y y T
)'ICOS(X *%) 1 y=senx y=sen( 75)
/ 14
_m 7 ™ 2T 2 - - eadd T ™ 3
2 2 2 ) 2 2 2 - /; WW
— 1 + - 1 T — 1 4
y=cosx y=sen (x +E) y=senx
FIGURA 2.4.10 Gréfica coseno FIGURA 2.4.11  Grafica seno desplazada FIGURA 2.4.12  Grifica seno desplazada
desplazada horizontalmente horizontalmente horizontalmente

Al comparar las graficas en las figuras 2.4.10-2.4.12 con las gréficas en las figuras 2.4.1
y 2.4.2 se observa que

* la grifica coseno desplazada /2 unidades a la derecha es la gréfica seno,

¢ la gréfica seno desplazada 7r/2 unidades a la izquierda es la gréfica coseno, y

* la gréfica seno desplazada 7r/2 unidades a la derecha es la gréfica coseno reflejada en
el eje x.
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y= 3sen(2x—%)

WA
WY

y = 3 sen 2x

FIGURA 2.4.13  Grifica de la fun-
cién en el ejemplo 5a)

y =2cos Tx
FIGURA 2.4.14  Grifica de la fun-
cién en el ejemplo 5b)

En otras palabras, se han comprobado graficamente las siguientes identidades

cos(x — g) = sen x, sen(x + g) = cosx y sen(x — g) = —cosx. (12)

Suponga que f(x) = A sen Bx. Entonces
C C
fx+§ =Asean+E = A sen(Bx + C). (13)

El resultado en (13) muestra que la grafica de y = A sen(Bx + C) puede obtenerse al desplazar
la gréfica de f(x) = A sen Bx horizontalmente una distancia |C|/B. Si C <0, el desplazamiento
es hacia la derecha, mientras que si C > 0, el desplazamiento es hacia la izquierda. El nimero
|C|/B se denomina desplazamiento de fase de las grificas de las funciones en (3).

=8]3)7 | e l' 8 Grafica coseno desplazada horizontalmente

La gréfica de y = 10 cos 4x estd desplazada 7/12 unidades a la derecha. Encuentre su ecua-
cién.

Al escribir f(x) = 10 cos 4x y usar (13) encontramos

LI _ T : - _T
f(x - 12) = 10 cos 4<x 12) obien, y=10 cos<4 3 >
En la dltima ecuacién se identifica C = —ar/3. El desplazamiento de fase es 7/12.

Como cuestion préctica, el desplazamiento de fase para y = A sen(Bx + C) o
y = A cos(Bx + C) puede obtenerse al factorizar el nimero B a partir de Bx + C. Por ejemplo,

y=Asen(Bx + C) = AsenB(x + %)

A\ [N BN Graficas desplazadas horizontalmente
Grafique

a) y=3sen2x — w/3) b) y = 2cos(mx + ).

a) Para efectos de comparacion, primero graficaremos y = 3 sen 2x. La amplitud de y =3
sen 2x es |A| = 3 y su periodo es 27/2 = . Asi, un ciclo de y = 3 sen 2x se com-
pleta sobre el intervalo [0, 7 ]. Luego, extendemos esta gréfica hacia al intervalo adya-
cente [7r, 27| como se muestra en la FIGURA 2.4.13. A continuacién, volvemos a escri-
bir y = 3 sen(2x — 7/ 3) al factorizar 2 de 2x — 7/3:

— _T) = S
y—33en<2x 3> 3sen2<x 6)'

A partir de la forma de la dltima expresiéon vemos que el desplazamiento de fase es
/6. La grifica de la funcién dada, mostrada en la figura 2.4.13, se obtiene al des-
plazar la grifica de y = 3 sen 2x /6 unidades a la derecha.

b) La amplitud de y = 2 cos mx es |A| = 2 y el periodo es 27/7 = 2. Asi, un ciclo de
y =2 cos 7x se completa sobre el intervalo [0, 2]. En la FIGURA 2.4.14 se muestran dos
ciclos de la grafica de y = 2 cos mx. Las intersecciones x de esta grafica correspon-
den a los valores de x para los que cos 7x = 0. Por (4), esto implica 7x =
@n+ Dm/20x=02n+ 1)/2, con n un entero. En otras palabras, para n = 0, —1,
1, =2, 2, =3, ... obtenemos x = i%, i%, i%, y asi sucesivamente. Luego, al volver
a escribir la funcién dada como

y=2cos m(x + 1)

observamos que el desplazamiento de fase es 1. La grafica de y =2 cos(7x + 77) mos-
trada en la figura 2.4.14 se obtiene al desplazar 1 unidad a la izquierda la gréafica de
y = 2 cos mx. Esto significa que las intersecciones x son las mismas para ambas gra-
ficas.



En matematicas aplicadas, las funciones trigonométricas sirven como modelos matemaéti-
cos para muchos fenémenos periddicos.

NS\ [N Corriente alterna

Un modelo matemdtico para la corriente / (en amperes) en un alambre de un circuito de
corriente alterna estd dado por I(f) = 30 sen 1207, donde ¢ es el tiempo medido en segun-
dos. Trace un ciclo de la gréfica. ;Cudl es el valor mdximo de la corriente?

La gréfica tiene una amplitud 30 y periodo 27/1207 = 6]*0. En consecuencia, tra-
zamos un ciclo de la curva seno bdsica sobre el intervalo [0, é], como se muestra en la FIGURA
2.4.15. A partir de la figura, resulta evidente que el valor mdximo de la corriente es / = 30 ampe-
res y ocurre en el intervalo [0, &] en t = 5j5 puesto que

1) _ LY T _
I(@) =30 sen<l207r 240) = 30 sen >~ 30.

I Parareferencia futura Las identidades trigonométricas se usan en todo el célculo, especial-
mente en el estudio del cdlculo integral. Para facilitar las referencias, a continuacion se enume-
ran algunas identidades que revisten particular importancia.

Identidades pitagoricas

sen’x + cos’x = 1 (14)
1 + tan’x = sec’x (15)
1 + cot?x = csc’x (16)
Formulas de suma y diferencia

sen(x; *£ Xx,) = senx; Cos X, = COSX; Sen x, (17)
cos(x; £ Xx,) = COSX| COS X, + Sen xj sen x, (18)

Formulas para el doble de un angulo
sen 2x = 2 sen x cos x (19)
cos 2x = cos® x — sen’ x (20)

Formulas para la mitad de un angulo
senzg = %(1 — Ccosx) 21
coszg = %(1 + cosx) (22)

Identidades adicionales pueden encontrarse en las Pdginas de recursos al final de este texto.
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301 1(r) = 30sen 1207 ¢
} .y
A 1
240 120 60
-30

FIGURA 2.4.15 La gréfica de la
corriente en el ejemplo 6, muestra
que hay 60 ciclos en un segundo

El-1+--

m DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-5.

= Fundamentos

En los problemas 1-6, use técnicas de desplazamiento, esti-
ramiento, compresion y reflexiéon para dibujar por lo menos
un ciclo de la grafica de la funcién dada.

l.y:l—i-cosx

> 2. y=—1+ cosx

3. y=2— senx 4. y =3 + 3senx

5. y=—-2+4cosx 6. y=1—2senx

En los problemas 7-14, encuentre la amplitud y el periodo
de la funcién dada. Trace por lo menos un ciclo de la gra-
fica.

y = —5sen >

7. y = 4 sen mx 8. 5

9. y = —3cos 2mx 10. y = 3 cos 4x

2
11. y=2 —4senx 12. y =2 — 2 senmx

2x

3

mx

13. y =1+ cos >

14. y = —1 + sen
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En los problemas 15-18, la figura dada muestra un ciclo de
una grafica seno o coseno. A partir de la figura, determine
Ay Dy escriba una ecuacién de la formay = D + A sen x
oy =D + A cos x para la grifica.

15. y
34
A, .
21
_3__

FIGURA 2.416  Grifica para el problema 15
16. Y

1
4

T T X
- <~> w

17. Y

=

FIGURA 2.4.18  Grifica para el problema 17
18. 7

t X
27
1

_1__

FIGURA 2.4.19  Gréfica para el problema 18

En los problemas 19-24, la figura dada muestra un ciclo de
una grafica seno o coseno. A partir de la figura, determine
Ay By escriba una ecuacién de la forma y = A sen Bx o
y = A cos Bx para la gréfica.

19. Y 20. VY
34 24

73 4

FIGURA 2.4.21
el problema 20

Gréfica para
FIGURA 2.4.20 Gréfica para

el problema 19
21. Y 22, Y

N~ N
NANEN R

FIGURA 2.4.22  Gréfica para
el problema 21

FIGURA 2.4.23 Gréfica para
el problema 22

23. Y 24. Y

AN
VAN

-1 FIGURA 2.4.25 Gréfica para

I problema 24
FIGURA 2424 Grifica para  _ Prooona
el problema 23

En los problemas 25-34, encuentre la amplitud, el periodo y
el desplazamiento de fase de la funcién dada. Trace por lo
menos un ciclo de la grafica.

— _T — _m
25. y = sen(x 6) 26. y sen(3x 4>

28. y = —2 cos<2 - E)

27. y = cos(x + E) 6

4

29. y =4 cos<2 — ?ﬂ)

5 30. y =3 sen(2x + 1)

4

aw

31. y =3 sen(% — ?)

- _ LT
33. y= 4sen<3x 3>

32. y= —cos(g - 7T>

4. y=2 cos<—277x - 4?77)

En los problemas 35 y 36, escriba una ecuacién de la fun-

cién cuya grafica se describe con palabras.

35. La gréafica de y = sen mx estd estirada verticalmente
hacia arriba por un factor de 5 y estd desplazada 3 uni-
dad hacia la derecha.

36. Lagrificadey =4 cos% estd desplazada 8 unidades hacia

abajo y estd desplazada 277/3 unidades hacia la izquierda.

En los problemas 37 y 38, encuentre las intersecciones x de la
grafica de la funcién dada sobre el intervalo [0, 27 ]. Luego,
use periodicidad para encontrar todas las intersecciones.

37.y=—1 +senx 38. y=1—2cosx

En los problemas 39-44, encuentre las intersecciones x de la
grafica de la funcién dada. No grafique.

39. y = sen wx 40. y = —cos 2x

X

41. y =10 cosy

42. y = 3 sen(—5x)

43. y = sen(x - %) 44. y = cos(2x — )

En los problemas 45-52, encuentre el periodo, las intersec-
ciones x y las asintotas verticales de la funcién dada. Trace
por lo menos un ciclo de la gréfica.

45. y = tan mx 46. y = tan%

47. y = cot 2x 48. y = —cot%
(X T _1 ( _ z)

49. y = tan(2 4> 50. y 4cot X5

51. y = —1 + cot mx 52. y = tan(x + %ﬂ)



En los problemas 53-56, encuentre el periodo y las asintotas
verticales de la funcién dada. Trace por lo menos un ciclo
de la grafica.

X

3
56. y = csc(4x + )

53. y = 3 csc mx 54, y = —2 csc

55. y= sec<3x — g)

= Modelos matematicos

57. Profundidad del agua La profundidad del agua d a la
entrada de un puerto pequefo en el instante ¢ es mode-
lada por una funcién de la forma

d(ty = D + A sen B(t — g)

donde A es la mitad de la diferencia entre las profundi-
dades de la marea alta y la marea baja, 27/B, B > 0 es
el periodo de mareas y D es la profundidad media.
Suponga que el periodo de mareas es 12 horas, la pro-
fundidad media en la marea alta es 18 pies y que la
profundidad en la marea baja es 6 pies. Dibuje dos ciclos
de la grafica de d.

58. Temperatura Fahrenheit Suponga que
™

es un modelo matemdtico de la temperatura Fahrenheit
a las ¢ horas después de medianoche durante un cierto
dia de la semana.

T(t) = 50 + 10 sen 0=r=24

a) (Cudl es la temperatura a las 8 a.m.?

b) (A qué hora(s) se cumple 7(f) = 60?

¢) Trace la grafica de 7.

d) Encuentre las temperaturas maxima y minima, asi
como las horas a que ocurren.

= Problemas con calculadora/SAC

59. Aceleracion debida a la gravedad Debido al movi-
miento de rotacion de la Tierra, la forma de ésta no es
esférica, sino que se elonga en el ecuador y se achata en
los polos. Como resultado, la aceleracién debida a la
gravedad no es la constante 980 cm/sz, sino que varia
con la latitud 0. Estudios satelitales han sugerido que la
aceleracion debida a la gravedad g es aproximada por el
modelo matematico

g = 978.0309 + 5.18552 sen” # — 0.00570 sen’ 26.
Encuentre g

a) en el ecuador (6 = 0°),
b) en el polo norte y
¢) a 45° latitud norte.

2.5 Funciones inversas
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60. Lanzamiento de bala EIl alcance de una bala soltada
desde una altura 4 por arriba del nivel del piso con una
velocidad inicial vy a un dngulo ¢ con respecto a la hori-
zontal puede aproximarse por el modelo matemédtico

R = W[vo seng + V3 sen’ ¢ + 2gh],

donde g es la aceleracién debida a la gravedad. Vea la

FIGURA 2.4.26.

a) Sivy=13.7 m/s, ¢ = 40° y g = 9.8 m/s*, compare
los alcances que se obtienen para las alturas 2 =2.0 m
yh=24m.

b) Explique por qué un incremento en A produce un
incremento en el alcance R si los otros pardmetros se
mantienen fijos.

¢) (Qué implica lo anterior respecto a la ventaja que la
altura otorga a un lanzador de bala?

4

Yo

R
FIGURA 2.4.26 Proyectil en el problema 60

= Piense en ello

61. La funcién f(x) = senjx + sen 2x es periédica. ;Cudl es
el periodo de f?

62. Analice y luego dibuje las grificas de y = |sen x|
y y =|cos x|.

63. Analice y luego dibuje las grdficas de y = [sec x]
y y =]csc x|.

64. ;Es posible que la solucién de la ecuacion dada sea un
nimero real?

a) 9cscx=1 b) 7+ 10secx=0

c) sec x =—10.5

En los problemas 65 y 66, use las grificas de y = tan x y
y = sec x para encontrar nimeros A y C para los que se cum-
pla la igualdad dada.

65. cot x = A tan(x + O) 66. csc x = A sec(x + O)

I Introduccion En la seccién 2.1 vimos que una funcién f es una regla de correspondencia que
a cada valor x en su dominio X asigna un solo valor o un valor dnico y en su rango. Esta regla no
excluye el hecho de que el mismo niimero y se asocie con varios valores diferentes de x. Por ejem-
plo, para f(x) = —x?> + 2x + 4, el valor y = 4 en el rango de focurre en x =0 0o en x =2 en el
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y =741

—Xi—>x

a) No es uno a uno

_ .3
y=x
X1 /
X

y=c¢

==

b) Uno a uno
FIGURA 25.1 Dos tipos de fun-
ciones en el ejemplo 1

Dominio de f f Rango de f

8

Rango de g Dominio de g

FIGURA 25.2 Una funcién fy su
funcién inversa g

En (3) y (4), el simbolo g de-
sempefa la parte del simbolo

.

dominio de f. Por otra parte, para la funcién f(x) = 2x + 3, el valor y =4 sélo ocurre en x = 3. En
efecto, para cada valor y en el rango de f(x) = 2x + 3, corresponde sélo un valor de x en el domi-
nio. A las funciones de este dltimo tipo se ha asignado el nombre especial de uno a uno.

Definicion 25.1 Funcién uno a uno

Se dice que una funcién es uno a uno si cada nimero en el rango de f se asocia con exacta-
mente un nimero en su dominio X.

I Prueba de la recta horizontal Cuando la definicién 2.5.1 se interpreta geométricamente, sig-
nifica que una recta horizontal (y = constante) puede cortar la grafica de una funcién uno a uno
en cuanto mucho un punto. Ademads, si foda recta horizontal que corta la grafica de una funcién
lo hace en cuanto mucho un punto, entonces la funcién necesariamente es uno a uno. Una fun-
cién no es uno a uno si alguna recta horizontal corta su grafica mas de una vez.

A\ [JXe BN Prueba de la recta horizontal

a) En la FIGURA 25.1a) se muestra la grafica de la funcién f(x) = x* + 1 y una recta hori-
zontal y = ¢ que corta la grafica. La figura indica claramente que hay dos nimeros
X1y x, en el dominio de f para los cuales f(x;) = f(x,) = c. Por tanto, la funcién f
no s uno a uno.

b) Al analizar la figura 2.5.1b) se encuentra que para toda recta horizontal y = ¢ que corta
la grifica de f(x) = x°, sélo hay un nimero x, en el dominio de f tal que f(x;) = c.
La funcién f es uno a uno.

I Inversa de una funcion uno a uno  Suponga que f es una funcién uno a uno con dominio X'y
rango Y. Puesto que todo niimero y en Y corresponde a precisamente un nimero x en X, la fun-
cién f debe realmente determinar una funcién “reversa” g cuyo dominio es Yy cuyo rango es X.
Como se muestra en la FIGURA 252, f'y g deben satisfacer

o=y 'y gy=x (D
Las ecuaciones en (1) son en realidad composiciones de las funciones fy g:
fegm=y 'y 8(fx) = x. 2

La funcién g se denomina inversa de f o funcién inversa de f. Al seguir la convencién de que
cada elemento del dominio se denota por el simbolo x, la primera ecuacién en (2) vuelve a
escribirse como f(g(x)) = x. A continuacién se resumen los resultados proporcionados en (2).

Definicion 2.5.2 Funcion inversa

Sea f una funcién uno a uno con dominio X y rango Y. La inversa de f es la funcién g con
dominio Y y rango X para la cual

f(g(x)) = x paratodaxenY (3)
g(f(x)) = x para toda x en X. (4)

Por supuesto, si una funcién no es uno a uno, entonces no tiene funcién inversa.

I Notacion La inversa de una funcién fsuele escribirse como f~ 'y se lee “finversa”. Esta tlti-
ma notacion, aunque es estandar, es algo desafortunada. De inmediato se sefiala que en el sim-
bolo £~ '(x) el “—1” no es un exponente. En términos de la nueva notacion, (3) y (4) se vuelven,
respectivamente,

oy =x y ) = x &)



I Propiedades Antes de analizar un método para encontrar la inversa de una funcién uno a uno
f, se enumeran algunas propiedades importantes sobre fy su inversa /.

Teorema 2.5.1 Propiedades de la funcién inversa

i) Dominio de f~' = rango de f.

ii) Rango de f~' = dominio de f.
iti) Una funcién inversa f ~' es uno a uno.
iv) La inversa de f~ ! es f.

v) La inversa de f es tnica.

I Método para encontrar f ' Sif ' es la inversa de una funcién uno a uno y = f(x), entonces
por (1), x = f~'(y). Por tanto, basta hacer las dos cosas siguientes para encontrar f L

Directrices para encontrar la funcién inversa

Suponga que y = f(x) es una funcién uno a uno. Entonces para encontrar f :

* Se resuelve y = f(x) para el simbolo x en términos de y (en caso de ser posible).
Asf se obtiene x = f~'(y).
* La variable x vuelve a etiquetarse como y y la variable y como x. Asi se obtiene

y=f"'®.

Algunas veces resulta conveniente intercambiar los pasos en las directrices anteriores:

e Volver a etiquetar x y y en la ecuacién y = f(x) y despejar (de ser posible) x = f(y)
para y. Asf se obtiene y = f'(x).

A\ |JKe A [nversa de una funcion

Encuentre la inversa de f(x) = X

En el ejemplo 1 se vio que esta funcién es uno a uno. Para empezar, la funcién
se vuelve a escribir como y = x>. Al despejar x se obtiene x = y'/>. Luego las variables vuel-
ven a etiquetarse para obtener y = x'3. Asi f '(x) = x'* o0, de manera equivalente,

£l x) = Va.

Encontrar la inversa de una funcién uno a uno y = f(x) algunas veces es dificil y otras
imposible. Por ejemplo, la FIGURA 253 sugiere (y es posible demostrar) que la funcién
f(x) = x>+ x + 3 es uno a uno, por lo que tiene una inversa f~'. Pero al despejar x en la
ecuacién y = x* + x + 3 es dificil para todo mundo (incluyendo su profesor). Puesto que f es
una funcién polinomial, su dominio es (—00, 00) y, debido a que su comportamiento extremo
eseldey= x3, el rango de fes (—00, 00). En consecuencia, el dominio y el rango de f*1 son
(—00, ©0). Aun cuando f ~! ho se conoce explicitamente, tiene perfecto sentido hablar sobre
los valores como f~'(3) yffl(S). En el caso de f'(3), observe que f(0) = 3. Esto significa
que f'(3) = 0. ;Puede imaginar el valor de f~'(5)?

I Graficas de fy f~'  Suponga que (a, b) representa cualquier punto sobre la gréifica de una
funcién uno a uno f. Entonces f(a) = by

7o) =f(fl@) =a

implica que (b, @) es un punto sobre la grafica de f~'. Como se muestra en la FIGURA 2.54a4),
los puntos (a, b) y (b, a) son reflexiones uno del otro en la recta y = x. Esto significa que la
recta y = x es la bisectriz perpendicular del segmento de recta que va de (a, b) a (b, a). Debido
a que cada punto sobre una gréfica es la reflexién de un punto correspondiente sobre la otra
gréfica, en la figura 2.5.4b) se observa que las gréficas de f~' y f son reflexiones entre si con
respecto a la recta y = x. Ademds se dice que las grificas de f~' y f son simétricas con res-
pecto a la recta y = x.

2.5 Funciones inversas

59

_10 +

_20 +

FIGURA 2.53 La grafica sugiere

que fes uno a uno
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FIGURA 2.56 Grificas de fy f~'
en el ejemplo 4

Y (a, b) J y=£)
° (a, b)

y=F"'m

a+ ® (b, a) / (b, a)
+ + X X
a b /

a) b)

FIGURA 254 Las gréficas de fy f~' son reflexiones en la recta y = x

Gréficas de fy f~'

En el ejemplo 2 vimos que la inversa de y = x° es y = x"/>. En las FIGURAS 255a) y 2.5.5b) se
muestran las graficas de estas funciones; en la figura 2.5.5¢), las gréficas estdn superpuestas
en el mismo sistema de coordenadas para ilustrar que las gréificas son reflexiones entre si en
larectay = x.

13 y= \/

A
y=x

X t t X

a) b) c)
FIGURA 2,55 Graficas de fy f~ ' en el ejemplo 3

Toda funcién lineal f(x) = ax + b, a # 0, es uno a uno.

1A 5\Y|JHe NN |nversa de una funcion

Encuentre la inversa de la funcién lineal f(x) = 5x — 7.

Puesto que la grafica de y = 5x — 7 es una recta no horizontal, por la prueba de
la recta horizontal se concluye que f es una funcién uno a uno. Para encontrar f~ ', x se des-
pejaeny = 5x — 7:

L 1 7
Sx=y+7 implica X =3y + 5

Al reetiquetar las variables en la tltima ecuacién se obtiene y = tx + Z. En consecuen-
cia, f!(x) = 1x + L. Las gréficas de fy f ' se comparan en la FIGURA 2.56.

Ninguna funcién cuadritica f(x) = ax> + bx + ¢, a # 0, no es uno a uno.

I Dominios restringidos Para una funcidn f que no es uno a uno, puede ser posible restringir
su dominio de modo que la nueva funcién que consta de f definida sobre este dominio restringi-
do sea uno a uno y asf tenga una inversa. En la mayor parte de los casos es aconsejable restrin-
gir el dominio de modo que la nueva funcién retenga su rango original. El siguiente ejemplo ilus-
tra este concepto.

)3\ [N BN Dominio restringido

En el ejemplo 1 se demostré graficamente que la funcién cuadritica f(x) = x* + 1 no es uno
a uno. El dominio de f es (—00,00), y como se observa en la FIGURA 25.7a), el rango de f es
[1,00). Luego, al definir f(x) = x? + 1 s6lo en el intervalo [0, c0), vemos dos cosas en la
figura 2.5.7b): el rango de f se preserva y f(x) = x> + 1 confinada al dominio [0, c0) pasa la
prueba de la recta horizontal; en otras palabras, es uno a uno. La inversa de esta nueva fun-
cién uno a uno se obtiene como de costumbre. Al despejar x de y = x> + 1 y volviendo a eti-
quetar las variables se obtiene

x=*Vy—1 y asi y=*Vx —1.




El signo algebraico idéneo en la dltima ecuacién se determina a partir del hecho de que el
dominio y rango de f~' son [1,00) y [0, 00), respectivamente. Esto obliga a escoger

£ '(x) = Vx — 1 como la inversa de f. Vea la figura 2.5.7¢c).

y=x2+l y=x2+1
sobre (—, ®) sobre [0, )
y y
y=vx—1
sobre [1, o)
y
— —t— X
a) No es una funcién uno a uno b) Funcién uno a uno ¢) Inversa de la funcién en el inciso b)

FIGURA 2.5.7 Funcién inversa en el ejemplo 5

I Funciones trigonométricas inversas Aunque ninguna de las funciones trigonométricas es uno
a uno, al restringir convenientemente cada uno de sus dominios es posible definir seis funciones
trigonométricas inversas.

I Funcion seno inverso A partir de la FIGURA 2.5.8a) se observa que la funcién y = sen x sobre
el intervalo cerrado [—7r/2, 77/2] asume todos los valores en su rango [—1, 1]. Observe que cual-
quier recta horizontal trazada para cortar la porcién entre —/2 y 7r/2 de la gréfica puede hacer-
lo a lo sumo una vez. Por tanto, la funcién seno sobre este dominio restringido es uno a uno y
tiene una inversa. Entre los matematicos hay dos notaciones de uso comun para denotar la inver-
sa de la funcién que se muestra en la figura 2.5.8D):

sen” ! x 0o arcsen x,

que se leen seno inverso de x y arcseno de x, respectivamente.

J y=senx Y
1 sobre (—o, ) y=senx 1
/ sobre [—m/2, w/2]
t X +
™
2
a) No es una funcién uno a uno b) Funcién uno a uno

FIGURA 2.5.8 Restriccién del dominio de y = sen x para obtener una funcién uno a uno

En la FIGURA 25.9a) se ha reflejado la porcidn de la grafica de y = sen x sobre el intervalo
[—7/2,7/2] (figura 2.5.8b) en la recta y = x para obtener la grafica de y = sen ' x. Por razo-
nes de claridad, esta grafica se ha reproducido en la figura 2.5.9). Como se muestra en esta
gréfica, el dominio de la funcién seno inverso es [=1, 1] y el rango es [—m/2, 7/2].

77)_} y=x ; y=sen 'x
2 2
1+ 5 y=senx
t t t t X } + X
T -] 17 -1 1
2 77 2
/// -1t
R S Ut
) 2
y=sen ' x
a) b)

FIGURA 2.5.9 Grifica de la funcién seno inverso

2.5 Funciones inversas

o El sistema algebraico compu-
tacional Mathematica usa la
notacion arcsin.

61
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Definicion 2.5.3 Funcién seno inverso

La funcion seno inverso, o funcion arcseno, se define por

y=sen 'x  siysélosi X = sen y, (6)

donde —l=x=ly—-7w/2 =y= 7/2.

En palabras:

* FEl seno inverso del nimero x es el nimero y (o dngulo medido en radianes) entre
—/2y /2 cuyo seno es x.

Los simbolos y = arcsen x y y = sen” ' x son sinénimos en matematicas y sus aplicacio-
nes, de modo que se alternard su uso para que usted se sienta cémodo con ambas notaciones.

(A S\ [JHeMN Evaluacion de la funcion seno inverso

Encuentre

a) arcsen% b) sen_l(—%> y ¢) sen !(—1).

a) Si se hace y = arcsen 3, entonces por (6) es necesario encontrar el nimero y (o angulo
medido en radianes) que satisface sen y =3y —7/2 = y = 7/2. Puesto que sen(7/6)
=1y /6 satisface la desigualdad —/2 =<y = 7r/2, se concluye que

T
=6
b) Si se hace y = sen_l(—;), entonces sen y = —é Puesto que es necesario escoger y tal
que —7/2 =<y = /2, encontramos que y = —1/6.
¢) Al hacer y = sen '(—1), tenemos que sen y = —1 y —m/2 =y = /2. Por tanto,
y = —m/2.
Lea este pdrrafo varias veces. P En los incisos b) y c) del ejemplo 6 se tuvo cuidado para escoger y de modo que
—m/2 =y = /2. Por ejemplo, un error comdn suele ser pensar que como sen(37/2) = —1,

entonces necesariamente senfl(—l) puede tomarse como 37/2. Recuerde: si y = sen”! x, enton-

ces y estd sujeto a la restriccién —7/2 =y < /2, y 37/2 no satisface esta desigualdad.

A3\ [N BV A Evaluacion de una composicion

Sin usar calculadora, encuentre tan(sen71 }‘)

Es necesario encontrar la tangente del dngulo de ¢ radianes con seno igual a 1, es
decir, tan ¢ donde 7 = sen”'}. El 4ngulo 7 se muestra en la FIGURA 2.5.10. Puesto que

1 1 /
i\ta tant=Sent—14

——; cost cost’

queremos determinar el valor de cos 7. A partir de la figura 2.5.10 y la identidad pitagérica
sen®  + cos” t = 1, vemos que

) 2 A/TE
FIGURA721.51.10 Angulo 1V 4 cos?t =1 obien, cost= 715.
t=sen = zen el ejemplo 7 4 4
1/4 1 VI5
P tant N t = = = s
or o RV 7RV, TR T
asf tan(sen_l l) =tant = VIS
Y 4 15

El procedimiento que se ilustra en el ejemplo 10 constituye un método alterno para resol-
ver el ejemplo 7.



I Funcion coseno inverso  Si el dominio de la funcién coseno se restringe al intervalo cerrado
[0, 7r], la funcién resultante es uno a uno y entonces tiene una inversa. Esta inversa se denota
por

cos 'x obien, arccos x,

lo cual proporciona la siguiente definicion.

Definicion 25.4 Funcién coseno inverso

La funcion coseno inverso, o funcion arccoseno, se define por
y =cos 'x siy sélo si X = cos Yy, (7)

donde —1=x=1y0 =y=m.

La grafica mostrada en la FIGURA 25.11 ilustra la forma en que la funcién y = cos x res-
tringida al intervalo [0, 7r] se vuelve una funcién uno a uno.

2.5 Funciones inversas

y y y
1 1 T
/ y =cosx y =cosx
sobre (—, ©) sobre [0, 7] 1
y=cos X
T
t X + X E
0 T ™ z &
2 2
-1+ -1+ t > X
-1 1
a) No es una funcién uno a uno b) Funcién uno a uno FIGURA 2512 Gréfica de
FIGURA 2.5.11 Restriccién del dominio de y = cos x para obtener una funcién uno a uno la funcién coseno inverso

Al reflejar la grafica de la funcién uno a uno en la figura 2.5.115) en la recta y = x se obtiene
la grifica de y = cos™ ' x mostrada en la FIGURA 25.12. La figura muestra con toda claridad que
el dominio y el rango de y = cos ' x son [—1, 1] y [0, 7], respectivamente.

(A |JXeM:N Evaluacion de la funcion coseno inverso
Evaltie arccos(—V/3/2).

Siy = arccos(— \/§/2), entonces cos y = —\/3/2. El tnico nimero en [0, 7] para
el cual se cumple esto es y = 577/6. Es decir,

arccos(—ﬁ> R
2 6"

H]5\Y (/XN Evaluacién de composicion de funciones

Escriba sen(cos ! x) como una expresion algebraica en x.

En la FIGURA 25.13 se ha construido un dngulo de 7 radianes cuyo coseno es igual a
x. Asi, t = cos! X, 0 x =cos t, donde 0 = ¢t = 7. Luego, para encontrar sen(cos_1 X) = sen t,
usamos la identidad sen’ 7 + cos® t = 1. Asi

sen’f + x2 =1
sen’t=1— x*

sent=\V1-—x*
sen(cos”'x) = V1 — x%

Se usa la rafz cuadrada positiva de 1 — x%, puesto que el rango de cos™ ' x es [0, 7], y el seno
del 4angulo 7 en los cuadrantes primero o segundo es positivo.

sent
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FIGURA 2.5.13 Angulo
t=cos ' xen el ejemplo 9
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I Funcion tangente inversa Si el dominio de tan x se restringe al intervalo abierto
(—/2,/2), entonces la funcién resultante es uno a uno y, por tanto, tiene una inversa. Esta se
denota por

tan”!x obien,  arctan x.

Definicion 25.5 Funcidn arctangente

La funcion tangente inversa, o funcién arctangente, se define por
y =tan 'x siysélosi  x = tany, (8)

donde —00 < x < ooy —7/2 <y < 7/2

Las graficas mostradas en la FIGURA 2.5.14 ilustran cémo la funcién y = tan x restringida al
intervalo abierto (—/2, 7/2) se vuelve una funcién uno a uno. Al reflejar la grifica de la
funcién uno a uno en la figura 2.5.14b) en la recta y = x se obtiene la grifica de y = tan ' x
mostrada en la FIGURA 25.15. En la figura se observa que el dominio y el rango de y = tan ' x
son, respectivamente, los intervalos (—00,00) y (—a/2,/2). Por ejemplo, y = tan '(—1) =
—m/4 puesto que —m/4 es el dnico ndmero en el intervalo (—a/2,7/2) para el cual
tan(—m/4) = —1.

y = tanx
sobre (—/2, w/2)
y = tanx y y
I 1 1 I \ \
I 1 1 I \ \
1 I I 1 I I
1 I I 1 I I
I 1 1 I | |
I 1 1 I | |
I 1 1 I \ \
| : : | : : y
| 1 1 | 1 o ’]_T 777777777
| 7 (3 o 7 7 2
: 2 2 : 2 2 y = tan "x
1 | | 1 ! ! x
I 1 1 I | |
I 1 1 I | |
I I I I | I 7
I L [ ettt [ttt
1 ! ! ! | I 2
a) No es una funcién uno a uno b) Funcién uno a uno FIGURA 2515 Gréfica de la
FIGURA 2.5.14 Restriccién del dominio de y = tan x para obtener una funcién uno a uno funcién tangente inversa
=1\ Xe BN Evaluacion de composiciones de funciones
Sin usar calculadora, encuentre cos(arctan3).
13 ) Si se hace y = arctan %, entonces tan y = % Al usar el tridngulo rectdngulo en la
FIGURA 2.5.16 como ayuda, se ve que
- cos(arctan 2) =cosy = 3
3 3 RV}
FIGURA 2.5.16  Triangulo en el

ejemplo 10
I Propiedades de las inversas Recuerde por (5) que f '(f(x)) = x y f(f '(x)) = x se cum-
plen para cualquier funcién f'y su inversa si hay restricciones idéneas sobre x. Por tanto, para las
funciones trigonométricas inversas tenemos las siguientes propiedades.

Teorema 2.5.2 Propiedades de las funciones trigonométricas inversas

i) sen”'(sen x) = arcsen(sen x) = xsi —7/2 = x = 7/2
i) sen(sen 'x) = sen(arcsen x) = xsi—1 <x =1
jii) cos '(cos x) = arccos(cos x) = xsi0<=x <

iv) cos(cos 'x) = cos(arccos x) = xsi—1 =x =1

v) tan '(tan x) = arctan(tan x) = xsi —7/2 < x < 7/2
vi) tan(tan”' x) = tan(arctan x) = x si —00 < x < 00




2.5 Funciones inversas

)3\ KB LR Aplicacion de las propiedades inversas

Sin usar calculadora, evalde

3 ()
a) COS(COS 3 b) tan tan4 .

a) Por el teorema 2.5.2iv), cos(cos_lé) =i
b) En este caso no es posible aplicar la propiedad v), puesto que 37/4 no estd en el
intervalo (—/2, 7r/2). Si primero se evalda tan(37/4) = —1, entonces se tiene

_ 377) _ T
1 — = l— = ——
tan (tan n tan (—1) 1

I Inversas de otras funciones trigonométricas Con los dominios restringidos de manera con-
veniente, las funciones trigonométricas restantes y = cot x, y = sec x y y = csc x también tie-
nen inversas.

Definicion 2.5.6 Otras funciones trigonométricas inversas

i) y=-cot 'xsiysélosi x =coty, —co < x<ooy0<y<m
iiy y=sec 'xsiysélosi x =secy, x| =1y 0=y=my#7/2
iii) y=csc 'xsiysolosi x =cscy, x| =1y —m/2<y=m/2,y#0

Las graficas de y =cot ' x, y=sec ' xy y=csc ' x, asi como sus dominios y rangos,
se resumen en la FIGURA 2.5.17.

2  TTmmTmssopsm oo } t + t X
\\ ? / -2 b2
— ——+—x —t —>x .\ .

t t t t * t |_T
-2 -1 1 2 -2 -1 1 2 2
a)y= cot x b)y= sec” 'x o)y = esex
dominio: (—oo, ) dominio: (—, —1]U[1, o) dominio: (—o, —1]U[1, )
rango: (0, m) rango: [0, 7/2) U(7/2, ] rango: [—/2, 0) U(0, 7/2]

FIGURA 2.5.17 Gréficas de las funciones cotangente inversa, secante inversa y cosecante inversa

Los rangos especificados en las definiciones 2.5.3,2.5.4, 2.5.5 y 2.5.6i) son reconocidos inter-
nacionalmente y surgieron de la limitacién mds légica y conveniente de la funcién original.
Asi, cuando vemos arccos x o tan” ! x en cualquier contexto, sabemos que 0 = arccos x = 7
y —m/2 < tan”' x < m/2. Estas convenciones son las mismas que las usadas en calcu-
ladoras cuando se usan las teclas [sen | [cos ] y ltan_J. Sin embargo, no existe ningtin acuer-
do universal sobre los rangos de y =sec ' x 0 y =csc ' x. Los rangos especificados en ii) y
iii) en la definicién 2.5.6 son cada vez mds populares porque se trata de los rangos emplea-
dos en sistemas algebraicos computacionales como Mathematica 'y Maple. Sin embargo, es
necesario tener en cuenta que hay textos conocidos de calculo que definen el dominio y el
rango de y = sec” ' x como

dominio: (—oo, —1] U [1, 00), rango: [0, 7/2) U [, 37/2),
y el dominio y el rango de y = csc™ ' x como

dominio: (—oo, —1] U [1, 00), rango: (0, /2] U (ar, 37/2].

65
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m DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-7.

= Fundamentos

En los problemas 1 y 2, vuelva a leer la introduccion de esta
seccién. Luego explique por qué la funcién f dada no es uno
a uno.

1. fx) =1+ x(x —5) 2. f(x) = x* + 2x?

En los problemas 3-8, determine si la funcién dada es uno a
uno al analizar su gréfica.

3. fx)=5 4. f(x) = 6x — 9
5. f(x)Z%x+3 6. f(x) = |x + 1]
7. fx) =x>—8 8. f(x) = x* — 3x

En los problemas 9-12, la funcién f dada es uno a uno.
Encuentre f~'.

9. fx) =3x*+ 7

10. f(x) = V2x — 4

11 f(x) = f:i
1zﬂ@=5—%

En los problemas 13 y 14, compruebe que f(f '(x)) = x y
ff@) = x.

1&ﬂ@=5x—1af%m=éx+z

1 —x
X

14, ) = 1./ =

En los problemas 15-18, la funcién f dada es uno a uno. Sin
determinar la inversa, encuentre el dominio y el rango de £~ .

15. f(x) = Vx + 2
16. f(x) =3 + V2x — 1

17. f(x) =

x+3
x—1

18. f(x) = '
En los problemas 19 y 20, la funcién f dada es uno a uno.
Sin determinar la inversa, encuentre el punto sobre la gréifica
de f~! correspondiente al valor indicado de x en el domi-
nio de f.

19. f(x) =2x° +2x; x=2

20. f(x) =8x —3; x=15

En los problemas 21 y 22, la funcién f dada es uno a uno.
Sin determinar la inversa, encuentre x en el dominio de fﬁl
que satisface la ecuacion indicada.

21 fx) =x+ Va;, f'x)=9

2. fo) =2

X P |
PR

En los problemas 23 y 24, trace la grifica de f~ ' a partir de
la grafica de f.

B0 24, \

<

(1,0)
y=fx®

FIGURA 2.5.19  Griéfica para
el problema 24

FIGURA 2.5.18  Gréfica para
el problema 23

En los problemas 25 y 26, trace la grafica de f a partir de la
gréfica de £ .
25. y 26. y

@%) (1,0

y=1"'w

0, —1) y=f"'w

(=1,0)

FIGURA 2520 Grifica
para el problema 25

FIGURA 2.5.21 Grifica
para el problema 26

En los problemas 27-30, encuentre una funcidn inversa f_1
cuyo rango sea el mismo que el de la funcién dada al res-
tringir de manera conveniente el dominio de f.

27. f(x) = (5 — 2x)* 28. f(x) =3x*+ 9
29. fx) =x*+2x + 4 30. f(x) = —x*> + 8x

31. Si las funciones f'y g tienen inversas, puede demostrarse
que

(fee) =g lof™"
Compruebe esto para f(x) = x° y g(x) = 4x + 5.

32. La ecuacién y = Vi — \S/y define una funcién uno a
uno y = f(x). Encuentre fﬁl(x).

En los problemas 33-44, obtenga el valor exacto de la expre-
sion dada. No use calculadora.

w@) 41

33. arccos( ) 34. cos >

35, arctan(1) 36. tan"'\V3

37. cot {(—1) 38. sec '(—1)
39, arcsen(—%) 40. arccot(—V?3)
41. sen(arctan %) 42. cos<senfl%)

1 2
43. tan(cot 2) 44. csc(tan 3>



En los problemas 45-48, evaltie la expresién dada por medio
de una identidad trigonométrica idénea.

46. cos(Zcosf ! §)

45. sen (2 sen”! l) )

3

47. sen(arcsen% + arccos%) 48. cos(tan ' 4 —tan ' 3)

En los problemas 49-52, escriba la expresién dada como una
cantidad algebraica en x.

50. tan(sen 'x)

52. sen(sec 'x),x =1

49. cos(sen 'x)
51. sec(tan 'x)

En los problemas 53 y 54, compruebe graficamente las iden-
tidades por una reflexién y un desplazamiento vertical.

53. sen'x + cos ' x = g

T
54. arccot x + arctan x = bl

55. Demuestre que sec ' x = cos '(1/x) para|x| = 1.

56. Demuestre que csc ' x = sen”'(1/x) para|x| = 1.

57. Sit= sen_l(—2/ V/5), encuentre los valores exactos de
cos t, tan £, cot , sec t y csc .

58. Si 6 = arctan%, encuentre los valores exactos de sen 6,
cos 6, cot 0, sec 6y csc 0.

= Problemas con calculadora/SAC

La mayoria de las calculadoras carece de teclas para csc™ ' x
y sec” ' x. En los problemas 59 y 60, use una calculadora y
las identidades en los problemas 55 y 56 para calcular la can-
tidad dada.

59. a) sec '((—V?2) b) csc ' 2

60. a) sec '(3.9) b) csc'(—1.25)

61. Use una calculadora para comprobar:
a) tan(tan ' 1.3) =13 y tan '(tan 1.3)=1.3
b) tan(tan ! 5) =5 y tan_l(tan 5) =—1.2832
Explique por qué tan™ '(tan 5) # 5.

62. Sea x = 1.7 radianes. Compare, de ser posible, los valores
de sen” !(sen x) y sen(sen_1 x). Explique las diferencias.

= Aplicaciones

63. Considere una escalera de longitud L apoyada en un
muro con una carga en el punto P como se muestra en
la FIGURA 25.22. El dngulo B, al que la escalera estd al
borde de deslizarse, estd definido por

X c

—=7—">5(c + tan B),

L 1+ c2( 2

donde c es el coeficiente de friccién entre la escalera y

el piso.

a) Encuentre B cuando ¢ = 1 y la carga estd en la parte
superior de la escalera.

2.5 Funciones inversas 67

b) Encuentre 8 cuando ¢ = 0.5 y la carga estd a 5 de la
longitud de la escalera empezando desde el piso.

FIGURA 2.5.22 Escalera en el problema 63

64. Un avién se desplaza hacia el oeste a velocidad cons-
tante v; cuando sopla viento desde el norte a velocidad
constante v,. El rumbo del avién al sur del oeste estd
dado por 6 = tan '(v,/v,). Vea la FIGURA 25.23. Encuentre
el rumbo de un avién que se desplaza hacia el oeste a
300 km/h si sopla viento desde el norte a 60 km/h.

FIGURA 2.5.23  Avi6n en el problema 64

= Piense en ello

En los problemas 65 y 66, use calculadora o un sistema alge-

braico computacional para obtener la grafica de la funcién

dada donde x es cualquier nimero real. Explique por qué las
gréaficas no violan los teoremas 2.5.2i) y 2.5.2iii).

65. f(x) = sen” !(sen x) 66. f(x) = cos” (cos x)

67. Analice: jes posible que una funcién uno a uno sea perié-
dica?

68. ;Como estan relacionadas las funciones uno a uno y =
f(x) en las FIGURAS 2.5.24a) y 2.5.24b) con las funciones
inversas y = f~ '(x)? Encuentre por lo menos tres fun-
ciones explicitas con esta propiedad.

y y

0,

Ve y=f)

X
. (a, 0) .

a) b)
FIGURA 2.5.24  Grifica para el problema 68
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2.6 Funciones exponencial y logaritmica

I Introduccion En las secciones precedentes se consideraron funciones como f(x) = x7; es
decir, una funcién con una base variable x y una potencia o exponente constante 2. A continua-
cién abordaremos funciones como f(x) = 2" con una base constante 2 y exponente variable x.

Definicién 2.6.1 Funcién exponencial

Sib >0y b # 1, entonces una funcion exponencial y = f(x) es una funcién de la forma

En (1), la base b se restringe a P fx) = b (1)
nlimeros positivos para garanti-
zar que b* sea un nimero real. El nimero b se denomina base y x se denomina exponente.

También, b = 1 carece de interés
puesto que fix) = 1" = 1.

El dominio de una funcién exponencial f definida en (1) es el conjunto de nimeros rea-
les (—00, 00).

I Exponentes Debido a que el dominio de una funcién exponencial (1) es el conjunto de
numeros reales, el exponente x puede ser un niimero racional o irracional. Por ejemplo, si la base
b =3y el exponente x es un niimero racional, x = +y x = 1.4, entonces

315 = \73 y 314 = 314/10 — 37/5 — \5/37

La funcién (1) también estd definida para todo niimero irracional x. El siguiente procedimiento
ilustra una forma para definir un nimero como 3VZ A partir de la representacién decimal \/2
= 1.414213562 . . . se observa que los nimeros racionales

1, 1.4, 141, 1.414, 1.4142, 1.41421, ...

Una definicion de b*, para x irra- b SON sucesivamente mejores aproximaciones a V2. Al usar estos nimeros racionales como

cional, estd dada por exponentes, es de esperar que los nimeros
= i t 1 1.4 1.41 1.414 1.4142 1.41421
bx—gl}b, 34,30 304 303 ,3 Y

donde 7 es racional. Esto se lee sean sucesivamente mejores aproximaciones a 3Y2 De hecho, puede demostrarse que esto
@CpX o fmi r . “ ., . . . . L L.
b 35 el llm]ite C:e b cuando ¢ es cierto con una definicién precisa de b* para un valor irracional de x. Pero a nivel préctico es
tiende a x”. Los limites se es- . . .,

e et posible usar la tecla de una calculadora para obtener la aproximacién 4.728804388 para
tudiaran en detalle en la
unidad 3. 3V2,

I Leyes de los exponentes Puesto que b" estd definido para todos los nimeros reales x cuan-
do b > 0, puede demostrarse que las leyes de los exponentes se cumplen para todos los exponen-
tes que sean nimeros reales. Sia >0, b >0y x, x; y x, denotan nimeros reales, entonces

i) bY - b= = pite if) Z: = Db iii) (b)) = b"*
. L — X X XX ; g>x — Cﬁ
iv) bo b v) (ab)' = a'b Vi) (b b

I Graficas Para (1) se distinguen dos tipos de grificas, dependiendo de si la base b satisface
b > 100 < b < 1. El siguiente ejemplo ilustra las graficas de f(x) = 3'y f(x) = (%)x Antes de
graficar es posible hacer algunas observaciones intuitivas sobre ambas funciones. Puesto que las
bases b = 3 y b =1 son positivas, los valores de 3*y (%)x son positivos para todo nimero real x.
Ademds, ni 3" ni (%)x pueden ser O para ninguna x, de modo que las graficas de f(x) = 3" y
fx) = (%))C no tienen intersecciones x. También, 3° =1y (%)0 = 1 significan que las gréficas

de f(x) = 3"y f(x) = (%)X tienen la misma interseccion y (0, 1).

N\ [Xe BN Graficas de funciones exponenciales
Grafique las funciones

@) f) = 3 b o0 = (5.
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a) Primero se elabora una tabla de algunos valores funcionales correspondientes a valo-
res de x seleccionados de antemano. Como se muestra en la FIGURA 2.6.1a), se trazan los
puntos correspondientes obtenidos a partir de la tabla

2,9

X =31 -2 —1 0 1 2

1 1

1 3 9 (71,

y se unen con una curva continua. La grifica muestra que f es una funcion creciente
sobre el intervalo (—0o0, 00).
b) Procediendo como en el inciso a), se elabora una tabla de algunos valores

(=2,9
X -3 | -2 -1 0 1 2
1 1
fx) | 27 9 3 1 = = [\
319 (5)
(=1,3)
de la funcién correspondientes a valores de x seleccionados de antemano. Observe, . l)
por ejemplo, por las leyes de los exponentes f(—2) = ()" 2= (3")"2=3>=09. R e
Como se muestra en la figura 2.6.1b), se trazan los puntos correspondientes obteni-
b)

dos a partir de la tabla y se unen con una curva continua. En este caso, la grafica
muestra que f es una funcién decreciente sobre el intervalo (—oo, 00). [ |

Nota: Las funciones exponenciales con bases que satisfacen 0 < b < 1, como b = %, a
menudo se escriben en forma alterna. Al escribir y = (%))C como y = (37)" y usando iii) de las

leyes de los exponentes se observa que y = (%)A es lo mismo que y = 37"

I Asintota horizontal La FIGURA 262 ilustra las dos formas generales que puede tener la grafica
de una funcién exponencial f(x) = b". Pero hay un aspecto mds importante de todas estas grificas.
Observe en la figura 2.6.2 que para 0 < b < 1, los valores de la funcién f(x) tienden a 0 cuando x
crece sin cota en la direccidn positiva, y para b > 1 los valores funcionales f(x) tienden a 0 cuan-
do x se crece sin cota en la direccion negativa. En otras palabras, la recta y = 0 (el eje x) es una
asintota horizontal para ambos tipos de graficas exponenciales.

I Propiedades de una funcion exponencial La lista siguiente resume algunas de las propieda-
des importantes de la funcién exponencial f con base b. Vuelva a analizar las graficas en la figu-
ra 2.6.2 mientras lee la lista.

* El dominio de f es el conjunto de nimeros reales; es decir, (—00, 00).

* El rango de f es el conjunto de nimeros reales positivos; es decir, (0, 00).

* La interseccién y de fes (0, 1). La grafica no tiene interseccion x.

e La funcién f es creciente sobre el intervalo (—00, 00) para b > 1 y decreciente sobre
el intervalo (—00,00) para 0 < b < 1.

* El eje x, es decir y = 0, es una asintota horizontal para la grafica de f.

e La funcién f es uno a uno.

Aunque todas las graficas de y = b* cuando b > 1 comparten la misma forma bésica y
todas pasan por el mismo punto (0, 1), hay algunas diferencias sutiles. Mientras mds grande
es la base b, el ascenso de la grifica es mds pronunciado cuando x crece. En la FIGURA 2.6.3 se
comparan las grificas de y = 5%,y = 3%, y = 2"y y = (1.2)", sobre los mismos ejes de coor-
denadas. A partir de esta grafica observamos que los valores de y = (1.2)" crecen lentamente
cuando x crece.

El hecho de que (1) es una funcién uno a uno se concluye a partir de la prueba de la recta
horizontal que se analizé en la seccién 2.5.

I El nimero e La mayoria de los estudiantes de matemadticas ha escuchado acerca del famoso
ntimero irracional m = 3.141592654. . . , y quizas haya trabajado con él. En cdlculo y matema-
ticas aplicadas, podria decirse que el nimero irracional

e = 2.718281828459. . . 2)

FIGURA 2.6.1

Grifica de las fun-

ciones en el ejemplo 1

y=b",b>1

v=0 1
asintota
horizontal

y=0
asintota
horizontal

FIGURA 2.6.2 f creciente para
b > 1; f decreciente para 0 <

b <1

Y

©.1)

y=(12)"

FIGURA 2.6.3 Grificas de y = b*

parab=12,2,3,5
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FIGURA 26,4 y = e es una asin-
tota horizontal de la grafica de f

FIGURA 2.6.5 Funcién exponen-

cial natural en a)

desempefa un papel mas importante que el nimero 7. La definicién usual del nimero e es
que se trata del namero al que se acerca la funcién f(x) = (1 + 1/x)* cuando se deja que x
crezca sin cota en la direccién positiva. Si el simbolo de flecha — representa la expresion se
acerca, entonces el hecho de que f(x) — e cuando x — 00 es evidente en la tabla de valores
numéricos de f

X 100 1 000

2.716924

10 000
2.718146

100 000
2.718268

1 000 000

(1 + 1/x)*| 2.704814 2.718280

y a partir de la grifica en la FIGURA 26.4. En la figura, la recta horizontal discontinua y = e es
un asintota horizontal de la griafica de f. También se dice que e es el limite de f(x) =
(I + 1/x)" cuando x — 0 y se escribe

. LY
e = llm<1 +*>. €)
X—>00 X
A menudo observard una definicién alterna del nimero e. Si en (3) se hace & = 1/x, entonces
cuando x — 00 tendremos simultdneamente 7 — 0. Por tanto, una forma equivalente de (3) es

e = lim(1 + W'/" @

h—0

I La funcion exponencial natural Cuando la base en (1) se escoge como b = e, la funcién f(x)
= ¢" se denomina funcién exponencial natural. Puesto que b=e¢> 1y b= 1/e <, las grifi-
cas de y =¢"y y = ¢ " se proporcionan en la FIGURA 2.65. A la vista de ello, f(x) = e¢* no
cuenta con ninguna caracteristica observable que la distinga, por ejemplo, de la funcién f(x)
= 3%, y no tiene ninguna propiedad especial diferente a las que se proporcionaron en la lista
de la pagina anterior. Preguntas de por qué f(x) = e¢” es una funcién “natural” y francamente
la funcién exponencial mds importante, se responderdn en las siguientes unidades y en sus cur-
sos mds alld de célculo.

I Inversa de la funcion exponencial Puesto que una funcién exponencial y = b* es uno a uno,
se sabe que tiene una funcién inversa. Para encontrar su inversa, se intercambian las variables x
y y para obtener x = b”. Esta tltima férmula define a y como una funcién de x:

* yes el exponente de la base b que produce x.

Al sustituir la palabra exponente por la palabra logaritmo, la linea precedente puede volver a
escribirse como:

e yes el logaritmo de la base b que produce x.

La tltima linea se abrevia usando la notacién y = log, x y se denomina funcién logaritmica.

Definicion 2.6.2 Funcién logaritmica

La funcién logaritmica con base » > 0,b # 1, se define por

y = log, x siy solo si x = Db’ @)

Para b > 0 no hay ninglin nimero real y para el cual b” sea 0 o negativo. Asi, a partir de
x = b” se concluye que x > 0. En otras palabras, el dominio de una funcién logaritmica
y = log,, x es el conjunto de nimeros reales positivos (0, 00).

Para enfatizar, todo lo que se ha dicho en las frases precedentes es:

» La expresion logaritmica y = log, x y la expresién exponencial x = b” son equivalentes.

es decir, significan lo mismo. Como una consecuencia, dentro de un contexto especifico como
al resolver un problema, es posible usar cualquier forma que sea la mds conveniente. La lista
siguiente ilustra varios ejemplos de declaraciones logaritmicas y exponenciales equivalentes:
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Forma logaritmica Forma exponencial
log; 9 =2 9 = 3?
logg 2 =14 2 =28
log;p 0.001 =3 0.001 =107
log, 5 =—1 5=0b"

I Graficas Debido a que una funcién logaritmica es la inversa de una funcién exponencial, es
posible obtener la grafica de la primera al reflejar la grafica de la segunda en la recta y = x. A
medida que inspeccione las dos graficas en la FIGURA 2.6.6, recuerde que el dominio (—00, 00) y
el rango (0,00) de y = b* se vuelven, a su vez, el rango (—00,00) y el dominio (0, 00) de
y = log, x. Observe que la interseccion y (0, 1) de la funcién exponencial se vuelve la intersec-
cion x (1, 0) de la funcién logaritmica. También, cuando la funcién exponencial se refleja en la
recta y = x, la asintota horizontal y = 0 para la grafica de y = b" se vuelve una asintota vertical
para la grafica de y = log,, x. En la figura 2.6.6 se observa que para b > 1, x =0, que es la ecua-
cion del eje y, es una asintota vertical para la grafica de y = log, x.

I Propiedades de la funcion logaritmica En la lista siguiente se resumen algunas de las pro-
piedades importantes de la funcién logaritmica f(x) = log,, x:

* El dominio de f es el conjunto de nimeros reales positivos; es decir, (0, 00).

e El rango de f es el conjunto de nimeros reales; es decir, (—00, 00).

* La interseccién x de fes (1, 0). La grafica de f no tiene interseccion y.

* La funcién f es creciente sobre el intervalo (0, c0) para b > 1 y decreciente sobre el
intervalo (0, 00) para 0 < b < 1.

* El eje y, es decir, x = 0, es una asintota vertical para la grafica de f.

e La funcién f es uno a uno.

Se pide su atencién especial para el tercer elemento de la lista anterior
log, 1 =0 puesto que b’ =1. (6)
También, log, b=1 puesto que b' =b. @)

El resultado en (7) significa que ademas de (1, 0), la grifica de cualquier funcién logaritmica
(5) con base b también contiene al punto (b, 1). La equivalencia de y = log, x y x = b’ tam-
bién produce dos identidades utiles algunas veces. Al sustituir y = log;, x en x = °, y luego
x = b” en y = log, x, se obtiene

x=b"%" y  y=log, V. (8)

Por ejemplo, a partir de 2'°% '© =10 y logy 37 = 7.

I Logaritmo natural Los logaritmos con base » = 10 se denominan logaritmos comunes y los
logaritmos con base b = ¢ se llaman logaritmos naturales. Ademads, suele ser costumbre escri-
bir el logaritmo natural log, x como In x. Puesto que b = ¢ > 1, la grifica de y = In x tiene
la forma logaritmica caracteristica que se muestra en la figura 2.6.6. Para la base b = ¢, (5) se
vuelve

I
N

y=Inx si y s6lo si X Y. 9)
Los andlogos de (6) y (7) para el logaritmo natural son

In1=0 puesto que L =1. (10)

Ine=1 puesto que  e' =e. (11)
Las identidades en (8) se vuelven

x = elnx

y y= In €’V. (12)
Por ejemplo, a partir de (12), ¢ > = 25.

x=0
asintota
vertical
FIGURA 2.6.6 Grafica de la fun-
cién logaritmica con base b > 1
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I Leyes de los logaritmos Las leyes de los exponentes pueden volver a plantearse de manera
equivalente como las leyes de los logaritmos. Por ejemplo, si M = b™ y N = b™, entonces por
(5), x;, =log, M y x, =log,, N. Por i) de las leyes de los exponentes, MN = b*1"*>, Esto, expre-
sado como un logaritmo, es x; + x, = log;, MN. Al sustituir x; y x, se obtiene log, M + log, N =
log;,, MN. Las partes restantes del siguiente teorema pueden demostrarse de la misma manera.

Teorema 2.6.1 Leyes de los logaritmos

Para cualquier base b > 0, b # 1, y nimeros enteros positivos M y N:

i) log, MN = log, M + log, N

ir) log,,(%) = log, M — log, N

iii) log, M° = clog, M, para cualquier nimero real c.

A\ [JXe BN Leyes de los logaritmos

Simplifique y escriba 3 In 36 + 2 In 4 como un logaritmo tnico.

Por iii) de las leyes de los logaritmos, puede escribirse

%1n36+21n4=ln(36)1/2+1r142=1r16+ln16.

Entonces, por i) de las leyes de los logaritmos,

%1n36+21n4=1n6+1n16=1n(6-16)=ln96. [ ]

NI\ [N BN Reescribir expresiones logaritmicas

Use las leyes de los logaritmos para volver a escribir cada expresion y evalde.

a) InVe b) In 5e ) lné

a) Puesto que Ve = e'? por iii) de las leyes de los logaritmos se tiene:

InVe = In e'? = %lne = % < a partir de (11), Ine = 1

b) Por i) de las leyes de los logaritmos y con una calculadora:
InSe=In5+Ine=In5+1=2.6094. < apartirde (11), Ine = 1
¢) Por ii) de las leyes de los logaritmos:
lni =Inl—-—-Ilne=0—-1=—1. <« a partir de (10) y (11)

Observe que iii) de las leyes de los logaritmos también puede usarse aqui:

ln£=lne”=(—l)lne=—l. |

A5\ |JKe N Solucion de ecuaciones

a) Resuelva la ecuacién logaritmica In 2 + In(4x — 1) = In(2x + 5) para x.
b) Resuelva la ecuacién exponencial ¢'% = 7 para k.
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a) Por i) de las leyes de los logaritmos, el miembro izquierdo de la ecuacién puede escri-
birse

In2 +In(4x — 1) =In24x — 1) = In(8x — 2).
Entonces, la ecuacién original es

n8x—2:
2x+ 5

InBx —2) —In2x +5) =0 obien 1 0.
Por (9) se concluye que

= =1 obien 8x—2=2x+5.

A partir de la ltima ecuacién encontramos que x = ..
b) Se usa (9) para volver a escribir la expresién exponencial e'% = 7 como la expresién
logaritmica 10k = In 7. En consecuencia, con ayuda de una calculadora

1

k= 0 In 7 = 0.1946. ]
I Cambio de base La griaficadey = 2* — 5 esla grafica de y = 2" desplazada 5 unidades hacia y
abajo. Como se observa en la FIGURA 2.6.7, la grafica tiene una interseccidn x. Al hacer y=0 vemos — —+—+— " ;/ > x

que x es la solucién de la ecuacién 2* — 5 = 0 0 2° = 5. Asi, una solucién perfectamente valida
es x =log, 5. Pero desde un punto de vista computacional (es decir, el hecho de expresar x como
un nimero), la dltima respuesta no es aconsejable porque ninguna calculadora tiene una funcién
logaritmica con base 2. Podemos calcular la respuesta al cambiar log, 5 al logaritmo natural al g

interseccion x

y=2"—5

tomar simplemente el log natural de ambos miembros de la ecuacién exponencial 2*=5: T~ """ y=577
In2*=1n5 FIGURA 2.6.7 Interseccion x de
xIn2=1M5 y=2-3
Nota: En realidad dividimos
. In5
los logaritmos aqui — X = m ~ 2.3219.

Por cierto, puesto que se empezd con x = log, 5, el tltimo resultado también demuestra la igualdad
log, 5= % Entonces, la interseccién x de la grifica es (log, 5, 0) = (log 5/In 2, 0) = (2.32, 0).

En general, para convertir un logaritmo con cualquier base b > 0 en logaritmo natural,
primero reescribimos la expresion logaritmica x = log;, N como una expresién exponencial
equivalente b* = N. Luego se toma el logaritmo natural a ambos miembros de la dltima igual-
dad x In b = 1In N y se despeja x. Esto produce la formula general de cambio de base:

In N

logh N = m (13)

m DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-7.

= Fundamentos En los problemas 7-10, encuentre una funcion exponencial

= b* tal que la gréfica de f pase por el punto dado.
En los problemas 1-6, trace la grafica de la funcién dada. 1 au & fpase p b

Encuentre la interseccién y y la asintota horizontal de la gra- 7. (3,216) 8. (=L,5)
frea. 9. (—1,€) 10. (2, ¢)
—(3Y _(4Y
Lj& = <4> 2 J0 = (3) En los problemas 11-14, use una gréfica para resolver la des-
3. flx) = —2¢ 4. f(x) = —27* igualdad dada para x.

5. f(x) = =5 + &* 6. f) =2+ e * 11. 28 > 16 12. " <1
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13. et 2 < 1 14. @) =3
En los problemas 15 y 16, use f(—x) = f(x) para demostrar
que la funcién dada es par. Trace la grifica de f.

15. f(x) = " 16. f(x) = ¢

En los problemas 17 y 18, use la grafica obtenida en los pro-

blemas 15 y 16 como ayuda para trazar la grafica de la fun-

cion f dada.

17. fx) =1 — e* 18. f(x) = 2 + 3¢ M

19. Demuestre que f(x) = 2"+ 27" es una funcién par.
Trace la gréfica de f.

20. Demuestre que f(x) = 2* — 27" es una funcién impar.
Trace la gréfica de f.

En los problemas 21 y 22, trace la gréfica de la funcién f
dada definida por partes.

—e”, <0
ol 7 1

o x=0

e
2. f(x){—ex, x>0
En los problemas 23-26, vuelva a escribir la expresion expo-
nencial dada como una expresion logaritmica equivalente.

1

23. 4712 = 3 24. 9° =1

25. 10* = 10 000 26. 10%3010 = 2

En los problemas 27-30, vuelva a escribir la expresion loga-
ritmica dada como una expresion exponencial equivalente.

27. log, 128 =7 28. logs % = -2

30. logs 2 = -

29. logv; 81 =8 1

En los problemas 31 y 32, encuentre una funcién logaritmica

f(x) = log, x tal que la grifica de f pase por el punto dado.
31. (49,2) 32. (4,%)

En los problemas 33-38, encuentre el valor exacto de la
expresion dada.

33. Inef 34. In(e*e)
35. 1000 @ 36. 25°=*
37. ¢ 38, e

En los problemas 39-42, encuentre el dominio de la funcién
f dada. Encuentre la interseccién x y la asintota vertical de
la grafica. Trace la grafica de f.

39. f(x) =—In x
41. f(x) = —In(x + 1)

40. fx)=—-1+1Inx

42. fx) =1+ In(x — 2)
En los problemas 43 y 44, encuentre el dominio de la fun-
cién f dada.

43. f(x) =In9 — x?) 4. f(x) = In(x* — 2x)

45. Demuestre que f(x) = In|x| es una funcién par. Trace la
gréfica de f. Encuentre las intersecciones x y la asintota
vertical de la gréfica.

46. Use la gréfica obtenida en el problema 45 para trazar la
grifica de y = In|x — 2|. Encuentre las intersecciones x
y la asintota vertical de la grafica.

En los problemas 47-50, use las leyes de los logaritmos para
volver a escribir la expresion dada como un logaritmo.

47. In(x* — 4) — In(x> + 2)  48. 1n(’y‘> — 2 —4lny

49. n5+In5+In5-In550. 5n2+2m3—-3In4

En los problemas 51-54, use las leyes de los logaritmos de
modo que In y no contenga productos, cocientes ni potencias.

VX2 + 5 5 \/(2x + D@Bx + 2)
XY VxT+ O y=

YT e 2 4x + 3
X3 =30t + 32+ 1)8
53y = &I )

Vx(Tx + 5)°
54. y = 64xVx + 1Vax2 +2

En los problemas 55 y 56, use el logaritmo natural para
encontrar x en el dominio de la funcién dada para el que f
asume el valor indicado.

55. f) = 6% flx) =51  56. f(x) = G)X; fx) =1

En los problemas 57-60, use el logaritmo natural para des-
pejar x.

57. 29 =9 58. 4.7 =9

59. 5 = 2¢**! 60, 320D =23

En los problemas 61 y 62, despeje x.

61. Inx + In(x —2)=1In3

62. In3 + In2x—1)=1In4 + In(x + 1)

= Modelos matematicos

63. Crecimiento exponencial Un modelo exponencial
para el nimero de bacterias en un cultivo en el instante
t estd dado por P(f) = PyeX, donde P, es la poblacion
inicial y k > 0 es la constante de crecimiento.

a) Después de 2 horas, se observa que el nimero ini-
cial de bacterias en un cultivo se ha duplicado.
Encuentre un modelo de crecimiento exponencial
P(1).

b) Segun el modelo del inciso a), jcudl es el nimero de
bacterias presentes en el cultivo al cabo de 5 horas?

¢) Encuentre el tiempo necesario para que el cultivo
crezca hasta 20 veces su tamafio inicial.

64. Desintegracion exponencial Un modelo exponencial
para la cantidad de sustancia radiactiva remanente en el
instante ¢ estd dado por A(f) = Aye’, donde A es la can-
tidad inicial y k < O es la constante de desintegracion.

a) Al inicio estaban presentes 200 mg de una sustancia
radiactiva. Después de 6 horas, la masa habia decre-
cido 3%. Elabore un modelo exponencial para la can-
tidad de la sustancia en desintegracién remanente
después de ¢ horas.



b) Encuentre la cantidad remanente después de 24 horas.
¢) Encuentre el instante en que A(f) = %AO se denomina
vida media de la sustancia. ;Cudl es la vida media
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miento de Newton pronostica que la temperatura del
objeto en el instante ¢ estd dada por

Tt =T, + (T, — T,)e" k < 0.

de la sustancia en el inciso a)?
a) Un pastel se retira de un horno donde la temperatura

era 350 °F y se coloca en una cocina donde la tem-
peratura es constante a 75 °F. Un minuto después se
mide que la temperatura del pastel es 300 °F. ;Cual
es la temperatura del pastel después de 6 minutos?
b) (En qué instante la temperatura del pastel es 80 °F?

65. Crecimiento logistico Un estudiante contagiado con el
virus de influenza vuelve a un campus aislado de una uni-
versidad donde hay 2 000 estudiantes. El niimero de estu-
diantes infectados después de ¢ dias del regreso del estu-
diante se pronostica por medio de la funcién logistica

2000
1 + 1999 08905 = Piense en ello

P(n) =

a) Segin este modelo matemdtico, ;cudntos estudiantes g7, Analice: ;cmo es posible obtener las gréficas de las
estardn contagiados por la influenza después de 5 dias? funciones dadas a partir de la gréfica de f(x) = In x por

b) (En cgénto tiemp(? estard infectada la mitad de la medio de una transformacion rigida (desplazamiento o
poblacién de estudiantes? reflexion)?

¢) (Cuantos estudiantes pronostica el modelo que esta- x
rén infectados al cabo de un muy largo periodo? a) y =1In 5x b) y =1In 4

d) Trace la gréfica de P(¢). ) y=Inx"! d) y =In(—x)

66. Ley de enfriamiento de Newton Si un objeto o 68.
cuerpo se coloca en un medio (como aire, agua, etc.) que
se mantiene a temperatura constante 7,,, y si la tempera-
tura inicial del objeto es Ty, entonces la ley de enfria-

a) Use un instrumento de graficado para obtener la gra-
fica de la funcién f(x) = In(x + Vx% + 1).
b) Demuestre que f es una funcién impar; es decir,

f(=x) = —f(x).

2.7 De las palabras a las funciones

I Introduccion En la unidad 5 hay varias instancias en las que se espera que usted traduzca las
palabras que describen una funcion o una ecuacion en simbolos matematicos.

En esta seccién el centro de atencién lo constituyen problemas que implican funciones.
Se empieza con una descripcién verbal sobre el producto de dos nimeros.

NS\ |JEe BN Producto de dos nimeros

La suma de dos nimeros no negativos es 5. Exprese el producto de uno y el cuadrado del otro
como una funcién de uno de los nimeros.

Primero, los niimeros se representan por los simbolos x y y y se recuerda que no
negativos significa que x = 0 y y = 0. Al usar estos simbolos, las palabras “la suma. . . es 57
se traduce en la ecuacién x + y = 5; ésta no es la funcién que se busca. La palabra producto
en la segunda oracién sugiere el uso del simbolo P para denotar la funcidén que se quiere. Asf,
P es el producto de uno de los nimeros; por ejemplo, x y el cuadrado del otro, por ejemplo, y*:

P = xy*. (1)
No, ain no hemos terminado porque se supone que P “es una funcién de uno de los nime-

ros”. Ahora usamos el hecho de que los nimeros x y y estdn relacionados por x + y = 5. A
partir de esta dltima ecuacion, sustituimos y = 5 — x en (1) para obtener el resultado deseado:

P(x) = x(5 — x)%. 2)m
A continuacién se muestra un diagrama simbdlico del andlisis del problema dado en el
ejemplo 1:
x+ty=15
|
sean los nimeros x = 0y y = 0
DEIDEIEIEIEII:\{&]DD \:IE'EI
La suma de dos nimeros no negativos es 15. Exprese el producto de 3)

2
X

y use x
ooo QOooOodn oDOoOo0On
uno y el cuadrado del otro como una funcién de uno de los nimeros.
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Si se permite x > 5, entonces
y =5-x <0, lo cual contradice
la hipétesis de que y > 0.

Valla

X

FIGURA 2.7.1  Terreno rectangular
en el ejemplo 3

My =252

Rectangulo

a)

(x, y)

=]

X
===l

=5 szﬂ 5

b)
FIGURA 2.7.2 Rectdngulo en el
ejemplo 4

X

Observe que la segunda oracién es vaga respecto a cudl nimero se eleva al cuadrado. Esto
implica que en realidad no importa: (1) también podria escribirse como P = yx?. También hubié-
ramos podido usar x =5 — y en (1) para llegar a P(y) = (5 — y)y". En un entorno de calculo
no importarfa si trabajamos con P(x) o P(y) porque al encontrar uno de los niimeros automati-
camente hallamos el otro a partir de la ecuacién x + y = 5. Esta ultima ecuacién se denomina
restriccion. Una restriccion no s6lo define una relacion entre las variables x y y, sino que a
menudo impone una limitacién sobre la forma en que pueden variar x y y. Como veremos en
el siguiente ejemplo, las restricciones ayudan a determinar el dominio de la funcién.

1]\ [{Xe BN Continuacion del ejemplo 1

(Cudl es el dominio de la funcién P(x) en (2)?

Tomado fuera del contexto del planteamiento del problema en el ejemplo 1, podria
concluirse que puesto que

P(x) = x(5 — x)> = 25x — 10x* + x°

es una funcién polinomial, su dominio es el conjunto de nimeros reales (—00, 0). Pero en el
contexto del problema original, los nimeros eran no negativos. A partir del requerimiento de

Pquex=0yy=5—x=0seobtiene x =0y x =5, lo cual significa que x debe satisfacer

la desigualdad simultdnea 0 = x = 5. Al usar notacién de intervalos, el dominio de la funcién
producto P en (2) es el intervalo cerrado [0, 5]. [ |

A menudo en problemas que requieren la traduccién de palabras en una funcién, una buena
idea es trazar una curva o imagen e identificar cantidades dadas en el dibujo. Este debe ser
sencillo.

A5\ |JMeN Cantidad de valla

Un ranchero desea cercar un terreno rectangular cuya drea es de 1 000 m?. El terreno serd cer-
cado y dividido en porciones iguales mediante una cerca paralela a dos lados del terreno. Exprese
la cantidad de valla usada como una funcién de la longitud de uno de los lados del terreno.

El dibujo debe ser un rectidngulo con una recta trazada en su parte media, seme-
jante a la FIGURA 2.7.1. Como se muestra en la figura, sea x > 0 la longitud del terreno rectan-
gular y sea y > 0 su ancho. La funcién que se busca es la “cantidad de valla”. Si el simbolo
F representa esta cantidad, entonces la suma de las longitudes de las cinco porciones —dos
horizontales y tres verticales— de la valla es

F =2x + 3y. “4)

Pero el 4rea del terreno cercado debe ser de 1 000 m?, de modo que x y y deben estar rela-
cionados por la restricciéon xy = 1 000. A partir de la dltima ecuacién se obtiene y = 1 000/x,
que puede usarse para eliminar y en (4). Asi, la cantidad de valla F' como una funcién de la
longitud x es F(x) = 2x + 3(1 000/x), o bien,

F(x) =2x + 3000 (;00. (5)
Puesto que x representa una dimensién fisica que satisface xy = 1000, se concluye que es
positiva. Pero ademds de esta restriccion, sobre x no hay ninguna otra. Entonces, a diferencia
del ejemplo previo, la funcién (5) no estd definida sobre un intervalo cerrado. El dominio de
F(x) es el intervalo (0, 00). [ |

AEVIN Area de un rectangulo

Un rectangulo tiene dos vértices sobre el eje x y dos vértices sobre el semicirculo cuya ecua-
cién es y = V25 — x* Vea la FIGURA 2.7.2a). Exprese el drea del rectdngulo como una funcién
de x.

Si (x,y),x > 0,y > 0, denota el vértice de un rectdngulo sobre el circulo en el pri-
mer cuadrante, entonces como se muestra en la figura 2.7.2b), el drea A es longitud X ancho,
o bien,

A= (2x) X y = 2xy. (6)
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La ecuacién del semicirculo y = V25 — x? es la restriccion en este problema. Esta ecuacién
se usa para eliminar y en (6) y obtener el drea del rectingulo como una funcién de x,

Ax) = 2xV25 — x%. (7

El dominio implicito de (7) es el intervalo cerrado [—5, 5], pero debido a que asumimos que
(x, y) era un punto sobre el semicirculo en el primer cuadrante, debemos tener x > 0. Asi, el
dominio de (7) es el intervalo (0, 5). |

A\ JHOMN Distancia

Exprese la distancia de un punto (x, y) en el primer cuadrante sobre el circulo x* + y* = 1
hasta el punto (2, 4) como una funcién de x.

Sea (x, y) un punto en el primer cuadrante sobre el circulo y sea d la distancia de
(x, y) a (2, 4). Vea la FIGURA 2.7.3. Entonces, a partir de la férmula de la distancia,

d=Vx -2+ —42=Va+y> —4x — 8y + 20. ®)

La restriccién en este problema es la ecuacién del circulo x> + y* = 1. A partir de esta ecua-
cién es posible sustituir de inmediato x*> + y? en (8) por el nimero 1. Ademds, al usar la res-
triccién para escribir y = V1 — x* es posible eliminar el simbolo y en (8). Asf, la distancia
d como una funcién de x es:

dex) = V21 — 4x — 8V1 — 2 )

Puesto que (x, y) es un punto sobre el circulo en el primer cuadrante, la variable x puede variar
entre 0 y 1; es decir, el dominio de la funcién en (9) es el intervalo abierto (0, 1). [ |

Si un problema en lenguaje coloquial implica tridngulos, es necesario estudiar el problema
con cuidado y determinar qué es aplicable: el teorema de Pitdgoras, tridngulos semejantes o
trigonometria con tridngulos rectangulos.

=]\ (XN Longitud de una sombra

Un drbol se planta a 30 pies de la base de un poste que mide 25 pies de altura. Exprese la
longitud de la sombra del drbol como una funcién de su altura.

Como se muestra en la FIGURA 2.7.4a), h y s denotan la altura del arbol y la longitud
de su sombra, respectivamente. Debido a que los tridngulos mostrados en la figura 2.7.4b) son
rectangulos, podria pensarse en utilizar el teorema de Pitdgoras. Para este problema, no obs-
tante, el teorema de Pitdgoras llevaria por mal camino. La cuestién importante que debe obser-
varse aqui es que los tridngulos ABC y AB'C’ son semejantes. Luego aplicamos el hecho de
que las razones de lados correspondientes de tridngulos semejantes son iguales para escribir

h 25 . _
P obien (s + 30)h = 25s.
— @ C’
25 25 c
h
Y 3 [
B' 30 B s A
I 30 I s !
a) b)

FIGURA 2.7.4 Poste y arbol en el ejemplo 6

/\Jﬁ( »)
t X

L

x +_yz =1

77

FIGURA 2.7.3 Distancia d en el

ejemplo 5

« Se considera que un punto en el

eje x o en el eje y no estd en

ningin cuadrante.
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Escalera

Edificio Piso

FIGURA 2.7.5 Escalera en el
ejemplo 7

3 000 pies

¢

FIGURA 2.7.6  Avién en el ejem-
plo 8

Al despejar s en la dltima ecuacién en términos de & se obtiene la funcién racional

30h
s(h) = %I

(10)

Tiene sentido fisico tomar el dominio de la funcién (10) definido por 0 = h < 25. Si h > 25,
entonces s(h) es negativo, lo cual no tiene sentido en el contexto fisico del problema. [ ]

1]\ [JXe WA Longitud de una escalera

Una pared de 10 pies de altura estd a 5 pies de un edificio. Una escalera, sostenida por la
pared, se coloca en el piso como se muestra en la FIGURA 2.7.5. Exprese la longitud de la esca-
lera en términos de la distancia x entre la base de la pared y la base de la escalera.

Sea L la longitud de la escalera. Con las variables x y y definidas en la figura 2.7.5,
de nuevo se observa que hay dos tridngulos rectingulos; el mayor tiene tres lados con longi-
tudes L, y y x + 5, y el menor tiene dos lados de longitudes x y 10. La escalera es la hipo-
tenusa del tridngulo rectdngulo mayor, de modo que por el teorema de Pitdgoras,

L= (x + 5%+~ (11)

Los tridngulos rectdngulos en la figura 2.7.5 son semejantes porque ambos contienen un dngulo
recto y comparten el dngulo agudo comin que la escalera forma con el piso. De nuevo se usa
el hecho de que las razones de lados correspondientes de tridngulos semejantes son iguales.
Esto permite escribir lo siguiente:

y _10 _ 10(x +5)
Trs x de modo que y=—_5
Al usar el ultimo resultado, (11) se vuelve
2= (x+ 52+ [10“ i S)T
X
=+ 5)2[1 + 1020}
X
2
=+ 5)2[’“;2100}.

Al tomar la raiz cuadrada se obtiene L como una funcién de x,

Loy =32 1 100, (12)m

X

A\ |4 N Distancia

Un avién vuela a una altura constante de 3 000 pies sobre el nivel del suelo alejandose de un
observador que estd en tierra. Exprese la distancia horizontal entre el avién y el observador
como una funcién del dngulo de elevacién del plano medido por el observador.

Como se muestra en la FIGURA 2.7.6, sea x la distancia horizontal entre el avién y el
observador, y sea 6 el dngulo de elevacion. El tridngulo en la figura es rectdngulo. Asi, por
trigonometria de tridngulos rectos, el cateto opuesto a 6 estd relacionado con el cateto adya-
cente a 6 por tan 6 = op/ady. En consecuencia,

_ 3000

an 60 obien  x(0) = 3000 cot 0, (13)

donde 0 < 6 < 7/2. [ |
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DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-8.

= Fundamentos 14. Exprese el volumen de un cubo como una funcién del

En los problemas 1-32, traduzca las palabras en una funcién drea A de su base. ) )

idénea. Proporcione el dominio de la funcién. 15. Exprese el drea de un tridngulo equildtero como una fun-
3 . cién de su altura h.

1. El producto de dos nimeros positivos es 50. Exprese su L . o
suma como una funcién de uno de los nimeros. 16. E'x/prese el drea .de un tridngulo equildtero como una fun-

h . cién de la longitud s de uno de sus lados.

2. Ex?rese la suma de dos n.u,meros d}ferentes de cero y su 17. Un alambre de longitud x se dobla en forma de circulo.
reciproco como un}a funcion del nu.mero. Exprese el drea del circulo como una funcién de x.

3. La suma de dos mimeros no negativos es 1. Exprese la 18. A un alambre de longitud L se cortan x unidades desde
suma del cuadrado de uno y el doble del cuadrado del un extremo. Una parte del alambre se dobla en forma de
otro como una funcién de uno de los nimeros. cuadrado y la otra parte se dobla en forma de circulo.

4. Sean m y n enteros positivos. La suma de dos nimeros Exprese la suma de las dreas como una funcién de x.
no negativos es S. Exprese el producto de la m-ésima 19. Un ranchero desea cercar un corral rectangular cuya drea
potencia de uno y la n-ésima potencia del otro como una es de 1000 pies® usando dos tipos de valla distintos. A
funcion de uno de los mimeros. lo largo de dos lados paralelos, la valla cuesta $4 por

5. El perimetro de un rectingulo es 200 pulg. Exprese el pie. Para los otros dos lados paralelos, la valla cuesta
area del rectdngulo como una funcién de la longitud de $1.60 por pie. Exprese el costo total para cercar el corral
uno de sus lados. como una funcién de la longitud de uno de los lados con

6. El drea de un rectangulo es 400 pulg®. Exprese el peri- valla que cuesta $4 por pie.
metro del rectangulo como una funcién de la longitud 20, El marco de un cometa consta de seis partes de plastico
de uno de sus lados. ligero. El marco externo del cometa consta de cuatro par-

7. EXprese el area del recténgulo sombreado en la FIGURA tes cortadas de antemano; dos partes de longitud 2 pies y
277 como una funcién de x. dos partes de longitud 3 pies. Exprese el drea del cometa

y como una funcién de x, donde 2x es la longitud de la barra
transversal horizontal mostrada en la FIGURA 2.7.9.
2 pies 2 pies
| X X X
FIGURA 2.7.7  Rectangulo en el
problema 7 3 pies 3 pies

8. Exprese la longitud del segmento de recta que contiene
al punto (2, 4) mostrado en la FIGURA 2.7.8 como una fun-
cién de x. FIGURA 2.7.9 Cometa

y en el problema 20

0,y) 21. Una empresa desea construir una caja rectangular abierta
@.4) con un volumen de 450 pulg®, de modo que la longitud
de su base sea tres veces su ancho. Exprese el drea

superficial de la caja como una funcién de su ancho.
22. Un tanque cénico, con el vértice hacia abajo, tiene un
*.0) radio de 5 pies y una altura de 15 pies. Vea la FIGURA
FIGURA 2.7.8 Segmento de 2.7.10. Hacia el tanque se bombea agua. Exprese el volu-
recta en el problema 8 men del agua como una funcién de su profundidad.

9. Exprese como una funcién de x la distancia de un punto [Sugerencia: El volumen de un cono es V = y7r°h.]
(x, y) sobre la grafica de x + y =1 al punto (2, 3). . 5 N

10. Exprese como una funcién de x la distancia de un punto pies
(x, y) sobre la grifica de y = 4 — x? al punto (0, 1).
11. Exprese el perimetro de un cuadrado como una funcién
de su drea A.
12. Exprese el drea de un circulo como una funcién de su
didmetro d.
13. Exprese el didmetro de un circulo como una funcién de FIGURA 2.7.10 Tanque

su circunferencia C.

conico en el problema 22
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23.

24.
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El automévil A pasa por el punto O en direccién al este
a velocidad constante de 40 mi/h; el automévil B pasa
por el mismo punto 1 hora después en direccion al norte
a velocidad constante de 60 mi/h. Exprese la distancia
entre los automdviles como una funcién del tiempo ¢,
donde 7 se mide empezando cuando el automévil B pasa
por el punto O. Vea la FIGURA 2.7.11.

Norte

Automévil B

Este
Automévil A

Oeste

Sur

FIGURA 2.7.11  Automdviles en el problema 23

En el instante ¢t = 0 (medido en horas), dos aviones con
una separacioén vertical de 1 mi pasan uno encima del
otro, volando en direcciones opuestas. Vea la FIGURA
2.7.12. Los aviones vuelan horizontalmente a velocidades
de 500 mi/h y 550 mi/h.

a) Exprese la distancia horizontal entre los aviones
como una funcién de f. [Sugerencia: Distancia =
velocidad X tiempo.]

b) Exprese la distancia diagonal entre los aviones como
una funcién de .

T%

[
U |
I 1
t=0 t
[
|

1 mi =0
|
! | -
f=d —~—d, —
a)t=0 b)t>0

FIGURA 2.7.12  Aviones en el problema 24

25.

26.

La piscina que se muestra en la FIGURA 2.7.13 mide 3 pies
de profundidad en la parte poco profunda, 8 pies en la
profunda, 40 pies de largo, 30 pies de ancho y el fondo
es un plano inclinado. Hacia la piscina se bombea agua.
Exprese el volumen del agua en la piscina como una
funcién de la altura i del agua por arriba del extremo
profundo. [Sugerencia: El volumen es una funcién defi-
nida por partes con dominio definido por 0 = h = 8.]

FIGURA 2.7.13  Piscina en el problema 25

Las regulaciones del Servicio Postal de Estados Unidos
de América para el envio de paquetes postales estipulan
que la longitud mds la circunferencia (el perimetro de
un extremo) de un paquete no debe exceder 108 pulg.

Exprese el volumen del paquete como una funcién del
ancho x mostrado en la FIGURA 2.7.14.

[e—x—>]
N

N .
~. Longitud

Circunferencia

N
eV

P I ——

FIGURA 2.7.14  Paquete en el problema 26

27. Exprese la altura del globo mostrado en la FIGURA 2.7.15

28.

29.

como una funcién de su dngulo de elevacion.

-

~ |
- |
e
- |
e
- |
e
- |
|

7 /\Angulo de elevaci(’)nI
—— 300 pies—
FIGURA 2.7.15 Globo en el problema 27

A una gran plancha metdlica de 40 pulg de ancho se da
forma de V al doblarla por la mitad a lo largo de su lon-
gitud. Exprese el drea de la seccion transversal triangu-
lar del canal como una funcién del dngulo 6 en el vér-
tice de la V. Vea la FIGURA 2.7.16.

g

20 pulg

i

FIGURA 2.7.16  Seccion transversal
triangular en el problema 28

Como se muestra en la FIGURA 2.7.17, un tablon estd apo-
yado en un burro, de modo que un extremo estd
apoyado en el suelo y el otro contra una construccion.
Exprese la longitud L del tablén como una funcién del
dngulo 0 indicado. [Sugerencia: Use dos tridngulos rec-
tdngulos.]

FIGURA 2.7.17 Tablén en el problema 29



30. Un ranchero desea cercar un terreno de pasto en forma
de tridngulo rectangulo usando 2 000 pies de valla a la
mano. Vea la FIGURA 2.7.18. Exprese el drea de ese terreno
como una funcién del angulo 6. [Sugerencia: Use los
simbolos en la figura para formar cot 6 y csc 6.]

0

X
FIGURA 2.7.18  Terreno de pasto en el problema 30

31. Una estatua se coloca en un pedestal como se muestra
en la FIGURA 2.7.19. Exprese el dngulo de visién 6 como
una funcion de la distancia x desde el pedestal.

S o-
' _ -
Nivelde -~~~
la vista x

FIGURA 2.7.19  Estatua en el problema 31

32. Una mujer en una isla desea llegar a un punto R en una
costa recta desde un punto P en la isla. El punto P estd a
9 mi de la costa'y a 15 mi del punto R. Vea la FIGURA 2.7.20.
Si la mujer rema en un bote a una velocidad de 3 mi/h
hacia un punto Q en tierra, y luego camina el resto del
camino a una velocidad de 5 mi/h, exprese el tiempo total

Competencia final de la unidad 2

Las respuestas de los problemas impares comienzan en la pagina RES-8.

A. Falso/verdadero

Competencia final de la unidad 2 81

necesario para que la mujer llegue al punto R como una
funcién del dangulo 6 indicado. [Sugerencia: Distancia =
velocidad X tiempo.]

b

Costa

FIGURA 2.7.20 Mujer remando hacia la costa en el problema 32

= Piense en ello

33. Suponga que la altura en el ejemplo 7 es 60 pies. ;Cual
es el dominio de la funcién L(x) dada en (12)?

34. En un texto de ingenieria, el drea del octagono mostrado
en la FIGURA 2.7.21 estd dada por A = 3.31r2. Demuestre
que esta férmula es en realidad una aproximacién al
drea; es decir, encuentre el drea exacta A del octdgono
como una funcién de r.

FIGURA 2.7.21 Octégono en el problema 34

En los problemas 1-20, indique si la afirmacién dada es falsa (F) o verdadera (V).

1. Si fes una funcién y f(a) = f(b), entonces a = b.
. La funcién f(x) = x> — 4x* + 2 es una funcién impar.

2
3. La grifica de la funcién f(x) = 5x* cos x es simétrica con respecto al eje y.
4

. La gréfica de la funcién y = f(x + 3) es la grifica de y = f(x) desplazada 3 unidades a

la derecha.

5. La grifica de la funcion f(x) = x% +

1
1 x—-2

no tiene interseccion x.

6. Una asintota es una recta a la que tiende la grifica de una funcién pero sin cruzarla

jamas.

7. La grafica de una funcién puede tener cuanto mucho dos asintotas horizontales.

8. Si f(x) = p(x)/q(x) es una funcién racional y g(a) = 0, entonces la recta x = a es una

asintota vertical para la gréafica de f.
9. La funcién y = —10 sec x tiene amplitud 10.

10. El rango de la funcién f(x) = 2 + cos x es [1, 3].
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11.
12.
13.
14.
15.
16.
17.
18.

19.
20.

Sif(x) =1+ x + 2e* es uno a uno, entonces f '(3) =0.

Si tan(57/4) = —1, entonces tan '(—1) = 57/4. _____

Ninguna funcién par puede ser uno a uno.

Un punto de interseccién de las gréficas de fy f ' debe estar sobre la recta y = x.
La gréfica de y = sec x no corta el eje x. ____

La funcién f(x)
y=10""y y = (0.1)* son la misma funcién.
Ine+e)=1+In2__

eb

In—-=b-a
e

sen” ' x no es periddica.

El punto (b, 1) estd sobre la grifica de f(x) = log;, x.

En los problemas 1-20, llene los espacios en blanco.

1.
2.

10.

11.
12.

El dominio de la funcién f(x) = Vx + 2/x es

Sif(x) = 4x% + 7 ygx) =2x + 3,entonces (feg)(l)=____  (gef))=___
y(feH()=_____.

. El vértice de la grifica de la funcién cuadrética f(x) = x> + 16x + 70 es
. Las intersecciones x de la gréfica de f(x) = x* + 2x — 35 son
. La grafica de la funcién polinomial f(x) = x*(x = D*x—5) es tangente al eje x en

y pasa por el eje x en

. El rango de la funcién f(x) = 10/(x* + 1) es .
. La interseccion y de la gréfica de f(x) = 2x — 4)/(5 — x) es .
. Una funcién racional cuya gréifica tiene la asintota horizontal y = 1 e interseccién x (3, 0)

es f(x) =

. El periodo de la funcién y = 2sen Tyes

3

La grifica de la funcién y = sen(3x — 7/4) es la grifica de f(x) = sen 3x desplazada
unidades a la

sen_l(sen T) =
Si f es una funcién uno a uno tal que f~'(3) = 1, entonces un punto sobre la grifica de f
es

Por transformaciones rigidas, el punto (0, 1) sobre la grifica de y = e¢* se mueve hacia el

13.

punto sobre la grifica de y = 4 + ¢*°
14. eSlnlO —
15. Si 3* = 5, entonces x =

16.
17.
18.

19.
20.

Si 3¢* = 4¢ ¥, entonces x =

Si log; x = —2, entonces x =

Al escribir logg 27 = 1.5 como declaracién exponencial, se encuentra que es equivalente
a

La inversa de y = e" es
Si f(x) = e* — 3, entonces f(—In 2)

. Estime el valor funcional haciendo uso de la gréifica de la funcién y = f(x) en la FIGURA

2R.1.

a) f(—4) b) f(=3)
¢ f(=2) d) f(—1)
e) f0) f) f
g f(.5) h) f(2)

i) f(3.5) NIRIC)
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FIGURA 2.R.1  Gréfica para el problema 1

2. Dado que

0 2 —1<r=1
82, t=—1obien, t> 1

Encuentre para 0 < a < 1:

a) g(1 + a) b) g¢(1 —a)
c) g(1.5 —a) d) g(a)
e) g(—a) f) gQa
3. Determine si los ndmeros 1, 5 y 8 estdn en el rango de la funcién
2x, —2=x<2
fx) =43, x =2
x + 4, x> 2.

4. Suponga que f(x) = Vx + 4, g(x) = V/5 — x y h(x) = x*. Encuentre el dominio de cada
una de las funciones dadas.

a) foh b) goh
¢ fof d geog
e) f+g ) flg
+ h) —
En los problemas 5 y 6, calcule w, h # 0, y simplifique.
5. f0)= —x*+ 2> —x+5 6.f(x)=1+2x—%

En los problemas 7-16, relacione la funcién racional dada con una de las graficas a)-j).

y y
y I 1
y 1y | H ! ,
| | i \ %
I I I 1 7z
! | _ 1 3+ [
; sy 1 ;
T } } X B L el M - R
2 o 2 -3 7 3/ i e — x
I z L] Il 1|
: : x [ —r= A - > i: 3
) 2 | -7 | / -3 )3 7 !
I 1 | 1
a) b) ) d) e)
FIGURA 2.R.2 FIGURA 2.R.3 FIGURA 2.R.4 FIGURA 2.R.5 FIGURA 2.R.6
y Y y y y
2+ 34 o1 \_\\3

__________________________ N
N
N

N
|
K
N
x N
N
N

H 9] ) ) )
FIGURA 2.R.7 FIGURA 2.R.8 FIGURA 2.R.9 FIGURA 2.R.10 FIGURA 2.R.11

X

w 4
|
(38
I
T

I
I
I
I
1
1
I
I
N
I
T
1
I
I
I
1

N

N
N
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7.0 = 8.0 = T
9.f(x)=x2_xz 10-f(x)=2—)%
11. f(x) = ﬁ 12. f(x) = ();%12)2
13. f(x) = xzzx__ lf 14. f(x) = %
15. f(x) = xfjf . 16. f(x) = ﬁ

En los problemas 17 y 18, encuentre la pendiente de la recta L en cada figura.

17. fw=3"¢*Dy

4

—2+h

FIGURA 2.R.12  Gréfica
para el problema 17

FIGURA 2.R.13  Grifica para el
problema 18

En los problemas 19 y 20, suponga que 2" = a 'y 6’ = b. Use las leyes de los exponentes dadas
en la seccidén 2.6 para encontrar el valor de la cantidad dada.

19. a) 12 b) 3' c) 67

20. a) 6> b) 27327 c) 18

21. Encuentre una funcién f(x) = ae* si (0, 5) y (6, 1) son puntos sobre la grafica de f.
22. Encuentre una funcién f(x) = a 10% si fB3) =8y f(0) = %

23. Encuentre una funcién f(x) = a + b*,0 < b < 1, si f(1) = 5.5 y la grafica de f tiene una
asintota horizontal y = 5.

24. Encuentre una funcién f(x) = a + logs(x — ¢) si f(11) = 10 y la gréfica de f tiene una
asintota vertical x = 2.
En los problemas 25-30, relacione las siguientes funciones con las graficas dadas.
a) y=Inkx—2) b) y=2—-Inx
¢) y=2+Inkx + 2) d y=-2-—In(x +2)
e) y= —In(2x) f) y=2+In(—x+2)
25. 26. Y

4_.
4_
z-f\ 2T
. . .
3 4
L2 s _2_/
4t —4

FIGURA 2.R.15 Grifica
para el problema 26

FIGURA 2.R.14  Grifica
para el problema 25

27. y 28. v

=

-4+ -4

' b
—2 \—1 1 2
il _2;[ T2 3 4

FIGURA 2.R.16  Gréfica
para el problema 27

FIGURA 2.R.17  Gréfica para
el problema 28
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29. y 30. y
44 44
//_ \

/w

_2 =+ 72 =+

—4+ 44
FIGURA 2.R.18  Grifica para el FIGURA 2.R.19  Grifica para el
problema 29 problema 30

31. El ancho de una caja rectangular es tres veces su longitud, y su altura es dos veces su lon-
gitud.

a) Exprese el volumen V de la caja como una funcién de su longitud /.
b) Como una funcién de su ancho w.
¢) Como una funcién de su altura h.

32. Se piensa construir una caja cerrada en forma de cubo usando dos materiales distintos. El
material para los lados cuesta 1 centavo por centimetro cuadrado y el material para las
caras superior e inferior cuesta 2.5 centavos por centimetro cuadrado. Exprese el costo
total C de construcciéon como una funcién de la longitud x de un lado.

33. Exprese el volumen V de la caja que se muestra en la FIGURA 2.R.20 como una funcién del
angulo 6 indicado.

5 pies

12 pies

I‘\6 pies‘,"/

FIGURA 2.R.20 Caja en el problema 33

34. Considere el circulo de radio & con centro (k, i) mostrado en la FIGURA 2R.21. Exprese el
area de la regiéon sombreada A como una funcién de A.
y

(h, )

— X

FIGURA 2.R.21 Circulo en el problema 34

35. Se construird un canalén con una lamina metdlica de 30 cm de ancho al doblar los bor-
des de ancho 10 cm a lo largo de cada lado, de modo que los lados formen dngulos ¢
con la vertical. Vea la FIGURA 2R.22. Exprese el area de la seccion transversal del canalén
como una funcién del dngulo ¢.

¢

T

1

1

10 cm ¢ | 10 cm
1

10 cm
FIGURA 2.R.22 Canal6n en el problema 35
36. Un tubo metdlico se instalard horizontalmente alrededor de una esquina en forma de dngulo
recto desde un vestibulo de 8 pies de ancho hacia un vestibulo de 6 pies de ancho. Vea la
FIGURA 2.R.23. Exprese la longitud L del tubo como una funcién del dngulo 6 que se mues-
tra en la figura.

6 pies

8 pies
FIGURA 2.R.23 Tubo en el problema 36
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37. En la FIGURA 2.R.24 se muestra un prisma cuyas caras paralelas son tridngulos equildteros.
La base rectangular del prisma es perpendicular al eje x y estd inscrita en el circulo
x? + y? = 1. Exprese el volumen V del prisma como una funcién de x.

¥ +y2 =1
FIGURA 2.R.24 Prisma en el problema 37

38. El contenedor que se muestra en la FIGURA 2R.25 consta de un cono invertido (abierto en su
parte superior) sujeto a la parte inferior de un cilindro circular recto (abierto en sus par-
tes superior e inferior) de radio fijo R. El volumen V del contenedor es fijo. Exprese el
area superficial total S del contenedor como una funcién del angulo 6 indicado. [Sugeren-

cia: El drea superficial lateral de un cono estd dada por 7RV R? + h?.]

abierto @

!
/

FIGURA 2.R.25 Contenedor en el problema 38



Unidad 3

Limite de una funcion

En esta unidad En un curso tipico de calculo se incluyen muchos temas. Sin embargo, los
tres temas mas importantes en este estudio son los conceptos de /imite, derivada e integral.
Cada uno de estos conceptos esta relacionado con las funciones, razon por la cual
empezamos con una revision de algunos hechos importantes sobre funciones y sus graficas.

Histéricamente, para introducir los enunciados fundamentales del calculo, se han usado
dos problemas: el problema de la recta tangente y el problema del area. En esta unidad y en
unidades posteriores veremos que la solucion de ambos problemas implica el concepto de
limite.

Competencia especifica

Comprender el concepto de limite de funciones y aplicarlo para determinar de manera
analitica la continuidad de una funcién en un punto o en un intervalo, y mostrar gréafi-
camente los diferentes tipos de discontinuidad.

87
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FIGURA 3.1.1 Cuando x estd pré-
xima a —4, flx) estd cerca de 8

3.1 Limites: un enfoque informal

I Introduccion Las dos grandes dreas del cdlculo, denominadas cdlculo diferencial y cdlculo
integral, se basan en el concepto fundamental de limite. En esta seccion, el enfoque que haremos
a este importante concepto sera intuitivo, centrado en la comprension de gué es un limite mediante
el uso de ejemplos numéricos y graficos. En la siguiente seccién nuestro enfoque serd analitico;
es decir, usaremos métodos algebraicos para calcular el valor del limite de una funcién.

I Limite de una funcién: enfoque informal Considere la funcién

16 — x*
f0) = (1)
cuyo dominio es el conjunto de todos los nimeros reales excepto —4. Aunque no es posible
evaluar f en —4 porque al sustituir —4 por x se obtiene la cantidad indefinida 0/0, f(x) puede
calcularse en cualquier nimero x que esté muy proximo a —4. Las dos tablas

X —4.1 —4.01 | —4.001 X -39 —3.99 | —3.999
S 8.1 8.01 8.001 S 7.9 7.99 7.999

@

muestran que cuando x tiende a —4 por la izquierda o por la derecha, parece que los valores
de la funcién f(x) tienden a 8; en otras palabras, cuando x estd proxima a —4, f(x) estd cerca
de 8. Para interpretar de manera grafica la informacién numérica en (1), observe que para todo
nimero x # —4, la funcién f puede simplificarse por cancelacién:

_l6—x*_ (4 +x0@4-—x _
f(x)_4+x_ 4 4+ x 4o
Como se ve en la FIGURA 3.1.1, la grafica de f es esencialmente la grafica de y = 4 — x con la
excepcion de que la grafica de f tiene un hueco en el punto que corresponde a x = —4. Para

x suficientemente cerca de —4, representado por las dos puntas de flecha sobre el eje x, las
dos puntas de flecha sobre el eje y, que representan los valores de la funcién f(x), simultianea-
mente se aproximan cada vez mds al nimero 8. En efecto, en vista de los resultados numéri-
cos en (2), las puntas de flecha pueden hacerse tan proximas como se quiera al nimero 8. Se
dice que 8 es el limite de f(x) cuando x tiende a —4.

I Definicion informal Suponga que L denota un nimero finito. El concepto de f(x) que tiende
a L a medida que x tiende a un nimero a puede definirse informalmente de la siguiente manera.

* Si f(x) puede hacerse arbitrariamente proximo al nimero L al tomar x suficientemente
cerca de, pero diferente de un niimero a, por la izquierda y por la derecha de a, enton-
ces el limite de f(x) cuando x tiende a a es L.

I Notacion El andlisis del concepto de limite se facilita al usar una notacion especial. Si el
simbolo de flecha — representa la palabra fiende, entonces el simbolismo

x—a indica que x tiende al ndmero a por la izquierda,
es decir, a través de los nimeros que son menores que a, y
x—a” significa que x tiende a a por la derecha,
es decir, a través de los nimeros que son mayores que a. Finalmente, la notacién
X — a significa que x tiende a a desde ambos lados,

en otras palabras, por la izquierda y por la derecha de a sobre una recta numérica. En la tabla
izquierda en (2) se hace x — —4"~ (por ejemplo, —4.001 estd a la izquierda de —4 sobre la
recta numérica), mientras en la tabla derecha x — —47.

I Limites laterales En general, una funcién f(x) puede hacerse arbitrariamente proxima a un
nimero L; al tomar x suficientemente cerca, pero sin que sea igual, a un nimero a por la
izquierda; entonces se escribe

f(x) > L, cuando x —>a~ o bien, lim f(x) = L,. 3)
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Se dice que el nimero L, es el limite por la izquierda de f(x) cuando x tiende a a. De
manera semejante, si f(x) puede hacerse arbitrariamente préxima a un nimero L, al tomar x
suficientemente cerca a, pero diferente de, un nimero a por la derecha, entonces L, es el limite
por la derecha de f(x) cuando x tiende a a y se escribe

f(x) = L, cuando x —a™ o bien, Ilim,_f(x) = L,. @)
xX—a
Las cantidades en (3) y (4) también se denominan limites laterales.
I Limites por dos lados Si tanto el limite por la izquierda lim_ f(x) como el limite por la
derecha lim+ f(x) existen y tienen un valor comiin L,
lim fxx) =L y  limf(x) =L,
xX—a X—a

entonces se dice que L es el limite de f(x) cuando x tiende a a y se escribe
lim f(x) = L. (5)

Se dice que un limite como (5) es por los dos lados. Vea la FIGURA 3.1.2. Puesto que las tablas
numéricas en (2) sugieren que

f(x) =8 cuando x = —4~ y  f(x) =8 cuando x — —4%, (6)
es posible sustituir las dos declaraciones simbdlicas en (6) por la declaraciéon

_ 2
f(x) = 8 cuandox — —4 0, en forma equivalente, 11'@4% = 8. (7)
I Existencia o no existencia Por supuesto, un limite (por un lado o por dos lados) no tiene

por qué existir. Pero es importante no olvidar lo siguiente:

e La existencia de un limite de una funcién f cuando x tiende a a (desde un lado o desde
ambos lados) no depende de si f estd definida en a, sino sélo de si estd definida para
x cerca del nimero a.

Por ejemplo, si la funcién en (1) se modifica de la siguiente manera

16 — x?
o= 4+x" x #F —4
5, x = —4,
- 16 — x*
entonces f(—4) estd definida y f(—4) = 5, pero l_f)rg4ﬁ = 8. Vea la FIGURA 3.1.3. En

general, el limite por los dos lados 1i_r>n f(x) no existe
* si alguno de los dos limites laterales, 1im f(x) o lim_f(x) no existe, o
X—a X—a

° silim f(x) = Ly y lim f(x) = L,, pero L; # L,.

=]\ [Xe BN Un limite que existe

La grifica de la funcién f(x) = —x* 4+ 2x + 2 se muestra en la FIGURA 3.1.4. Como se observa
en la grafica y en las tablas acompafiantes, parece vélido que

limf)=-6 y limfx)=—6

x—4*
y, en consecuencia, 11’541 flx) = —6.
x—4" 3.9 3.99 3.999 x—47" 4.1 4.01 4.001
fx) |—5.41000|—5.94010| —5.99400 fx) |—6.61000|—6.06010| —6.00600

Observe que en el ejemplo 1 la funcién dada ciertamente estd definida en 4, pero en nin-
glin momento se sustituye x = 4 en la funcién para encontrar el valor de 11’341 f).

FIGURA 3.1.2  f(x) — L cuando
x—a siy solo sif(x) >L
cuando x —>a~ y f(x) > L
cuando x —a”

FIGURA 3.1.3  El hecho de que f
esté definida o no en a es irrele-
vante con respecto a la existencia
del limite de f(x) cuando x —a

YA y=—x+2x+2

T~

CE <

e —— =

FIGURA 3.1.4 Gréfica de la fun-
ci6n en el ejemplo 1
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FIGURA 3.1.5 Grifica de la fun-

cién en el ejemplo 2

X

5

FIGURA 3.1.6 Gréfica de la fun-

cion en el ejemplo 3

La funcidn entero mayor se
analiz6 en la seccién 1.1.

y
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FIGURA 3.1.7 Gréfica de la fun-

cién en el ejemplo 4

ook

X

FIGURA 3.1.8  Gréfica de la fun-

cién en el ejemplo 5

A3\ [JNe B A Un limite que existe

La gréfica de la funcién definida por partes

_ X2 x<?2
f(x)_{—x-l—G, x> 2

se muestra en la FIGURA 3.1.5. Observe que f(2) no estd definido, aunque esto no tiene ninguna
consecuencia cuando se considera ll’n% f(x). A partir de la grafica y de las tablas acompafantes,
xX—>

1.999 x—2" 2.1 2.01
3.99600 §iEY) 3.90000 | 3.99000

2.001
3.99900

x—2" 1.9 1.99
S 3.61000 | 3.96010

observamos que cuando x se hace préxima a 2, f(x) puede hacerse arbitrariamente préxima a
4,y asi

lim fx) =4y lim f(x) = 4.
Es decir, 11’_1)1% fx) = 4.

(A1 [JXe &Y Un limite que no existe

La gréfica de la funcién definida por partes

) x+ 2,

se muestra en la FIGURA 3.1.6. A partir de la grafica y de las tablas acompafiantes, parece que
cuando x se hace préxima a 5 a través de nimeros menores que 5, h’rgl_ f(x) = 7.Luego, cuando
X—>

x=5
x>5

x tiende a 5 a través de ndmeros mayores que 5 parece que 1£§1+ f(x) = 5. Pero puesto que
lim f(x) # lim, f(v),

se concluye que h'rr% Jf(x) no existe.
X—>.

4.999 x—5" 5.1 5.01
6.99900 S 4.90000 | 4.99000

5.001
4.99900

x—5" 4.9 4.99
S 6.90000 | 6.99000

N3N BW:N Un limite que no existe

P Recuerde que la funcién entero mayor o parte entera f(x) = | x| se define como el mayor

entero que es menor o igual que x. El dominio de f es el conjunto de niimeros reales (—o0, 00).
A partir de la gréfica en la FIGURA 3.1.7 vemos que f(n) estd definida para todo entero n; a pesar
de ello, para cada entero n, lgmn J(x) no existe. Por ejemplo, cuando x tiende, por ejemplo, al
nimero 3, los dos limites laterales existen pero sus valores son diferentes:

lim_ fx) =2 lim, f(x) = 3. ®)

En general, para un entero n,

mientras que

lim f(x) =n — 1 mientras que
xX—n

A SN Y Un limite por la derecha

A partir de la FIGURA 3.1.8 debe resultar evidente que f(x) = Vx—0 cuando x — 07, es decir,

lim_f(x) = n.

lim Vx = 0.
x—0*

Seria incorrecto escribir h’n(l)\/;c = 0 puesto que esta notacion implica la connotacién de que
X—

los limites por la izquierda y por la derecha existen y son iguales a 0. En este caso 11'1})1_\/);
X
no existe puesto que f(x) = Vx no estd definida para x < 0.
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Si x = a es una asintota vertical para la grafica de y = f(x), entonces lim f(x) nunca existe
X—a

porque los valores de la funcién f(x) deben volverse sin limite desde por lo menos un lado de
la recta x = a.

A3\ e lN:] Un limite que no existe

Una asintota vertical siempre corresponde a una ruptura infinita en la gréafica de la funcién f.
En la FIGURA 3.1.9 observamos que el eje y o x = 0 es una asintota vertical para la grafica de
Jf(x) = 1/x. Las tablas

fx)

9 S

x—0"

—0.1

—0.01

—0.001

x—0"

0.1

0.01

0.001

J&)

—10

—100

-1 000

J®)

10

100

1 000

=—--—--

muestran claramente que los valores de la funcién f(x) se vuelven sin limite en valor absoluto
cuando se tiende a 0. En otras palabras, f(x) no tiende a un nimero real cuando x -0~ ni
cuando x —0". En consecuencia, ni el limite por la izquierda ni el limite por la derecha exis-
ten cuando x tiende a 0. Por tanto, es posible concluir que )1(1_13 f(x) no existe.

N3\ JHe WA Un limite trigonométrico importante

Para calcular las funciones trigonométricas sen x, cos x, tan x, etc., es importante darse cuenta
de que la variable x es un niimero real o un dngulo medido en radianes. Con eso en mente,
considere los valores numéricos de f(x) = (sen x)/x cuando x — 0" dados en la tabla siguiente.

x—0" 0.1

Sx) 0.99833416

0.01
0.99998333

0.001
0.99999983

0.0001
0.99999999

Resulta facil ver que se cumplen los mismos resultados proporcionados en la tabla cuando
x—0". Debido a que sen x es una funcién impar, para x > 0 y —x < 0, se tiene sen(—x) =
—sen x y en consecuencia,

sen(—x)  senx

f(=x) = . = f(x).

-X

Como puede verse en la FIGURA 3.1.10, f es una funcion par. La tabla de valores numéricos, asi
como la grifica de f sugieren fuertemente el siguiente resultado:

. Senx
lim =
x—0 X

L. ©)

El limite en (9) es un resultado muy importante que se usard en la seccién 4.4. Otro limite
trigonométrico que se le pedird comprobar como ejercicio estd dado por

.1 —cosx
lim——
x—0 X

= 0. (10)
Vea el problema 43 en la seccién “Desarrolle su competencia 3.1”. Debido a su importancia,
tanto (9) como (10) se demostrardan en la seccién 3.4.

I Una forma indeterminada Se dice que el limite de un cociente f(x)/g(x), donde tanto el
numerador como el denominador tienden a 0 cuando x — a, tiene una forma indeterminada
0/0. El limite (7) en el andlisis inicial tenia esta forma indeterminada. Muchos limites impor-
tantes, como (9) y (10), y el limite

i S+ h) = fx)
m—
h—0 h

que constituye la columna vertebral del cdlculo diferencial, también tienen la forma indeter-
minada 0/0.

-4

fx)

91

FIGURA 3.1.9 Griéfica de la fun-

cién en el ejemplo 6

—1Tr

FIGURA 3.1.10 Gréfica de la fun-

cién en el ejemplo 7
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A\ ] Una forma indeterminada

El limite h'rra |x|/x tiene la forma indeterminada 0/0, pero, a diferencia de (7), (9) y (10), este

limite no existe. Para ver por qué, analizaremos la grafica de la funcién f(x) = |x|/x. Para

X, x>0 h ., .
YA y= X x#0, x| = {—x © < Y ast reconocemos a Jf como la funcién definida por partes

|x| 1, x>0

* f(x)zxz{—l, x < 0. an
-1

FIGURA 3111 Grafica de la fun A partir de (11) y de la grafica de f de la FIGURA 3.1.11 debe resultar evidente que los dos limi-
cion en el ejemplo 8 tes de f, izquierdo y derecho, existen y

Debido a que estos limites laterales son diferentes, se concluye que 1im |x|/x no existe.
x—0

lim NOTAS DESDE EL AULA
-y sttt oeien oA ———————
Aunque las gréficas y tablas de valores funcionales pueden ser convincentes para determinar

si un limite existe o no, usted ciertamente estd enterado de que todas las calculadoras y
computadoras funcionan sélo con aproximaciones, y que las graficas pueden trazarse de
manera inexacta. Un uso ciego de las calculadoras también puede conducir a una conclusién
falsa. Por ejemplo, se sabe que }g% sen(7r/x) no existe, pero a partir de los valores tabulares

x—0 *=0.1 *=0.01 *+0.001
S 0 0 0

podria concluirse en forma natural que lim sen(w/x) = 0. Por otra parte, puede demos-
trarse que el limite =0

2 _
i Y t4-2 (12)

x—0 )C2

existe y es igual a 3. Vea el ejemplo 11 en la seccién 3.2. Con calculadora se obtiene

x—0 +0.00001 £0.000001 | *=0.0000001
S 0.200000 0.000000 0.000000

El problema al calcular (12) para toda x proxima a 0 es que en forma correspondiente,

\/x* + 4 estd muy préximo a 2. Cuando se restan dos niimeros casi iguales en una calcu-
ladora, es posible que ocurra una pérdida de cifras significativas debido al error por redondeo.

“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-8.

—_ 3 4
= Fundamentos 0. ]m(])L 10. tim x2 1
En los problemas 1-14, trace la grafica de la funcién para e it
encontrar el 1imite dado, o concluya que no existe. 11. 1fm f(x) donde f(x) = {x + 3, x <0
1. h’rr%(Sx +2) 2. ll’rr%()c2 -1 x—0 —x+3 x=0
w x_> X x <2
12. lim f(x) donde f(x) = { ’
3. lfng)(l + l) 4. ll’ng\/x 1 =2 x+1, x=2
- 2 ) v 5 x? — 2x, x <2
5. 1fm* 1 6. 1im* % 13. lim f(x) donde f(x) = { 1, x =2
—1x =1 =0 X X—6x+8 x>2
7. tim =3 8. lim X X

=3 x— 3 x—0 X



X2, x <0
14. 1im f(x) donde f(x) = § 2, x=0
=0 x—1, x>0

En los problemas 15-18, use la grifica dada para encontrar
el valor de cada cantidad, o concluya que no existe.

a) f(1) b) lgp S ) Xlinll fx) d) hg} fx)
15. y 16. »

FIGURA 3.1.13  Grifica
para el problema 16

FIGURA 3.1.12  Grifica
para el problema 15

17. y
* y=f(

FIGURA 3.1.14  Grifica
para el problema 17

FIGURA 3.1.15  Grafica para
el problema 18

En los problemas 19-28, cada limite tiene el valor 0, pero
alguna notacién es incorrecta. Si la notacién es incorrecta,
escriba la declaracion correcta.

19. 1213)\3/;2:0 20. m\%’c:o

2L imVI —x=0 22. lim Vx+2=0
23. lim[x] = 0 24. lim[x| = 0

25. lim senx = 0 26. lim cos 'x =0
27. lim, Vo —x2=0 28. lim Inx = 0

En los problemas 29 y 30, use la grifica dada para encon-
trar cada limite, o concluya que no existe.

29. a) 11’1:1}w fx) b) ’111112 fx)
c) ll'rl(lJ fx) d) lin} fx)
e) 11_1)1} fx) ) Xllgl fx)

I

FIGURA 3.1.16  Gréfica para el problema 29
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30. a) _11’1115 fx) b) hm )
c) 11’r}13+ fx) d) hm fx)

e) lim f(x) f) }1_{1} f(x)

y

| ] e
X

V—l

FIGURA 3.1.17  Gréfica para el problema 30

En los problemas 31-34, trace una grafica de la funcién f con
las propiedades dadas.

31. f(=D =3,f0) = =1, f(1) =0, h’rré f(x) no existe

32. f(—=2) = 3, h’mf(x) =2, lim fx) =—1,f1) = =2

33. f(0) =1, hm f(x) = 3, hm fx) = 3, f(1) esta inde-
finido, f(3) =

34. f(—2) = 2f(x) =1, -1=sx=1, 11m f) =
hm f(x) no existe, f(2) =3 o

En los problemas 35-40, use una calculadora o un SAC para
obtener la grifica de la funcién dada f sobre el intervalo
[—0.5, 0.5]. Use la grafica para conjeturar el valor de 11m fx),
o concluya que el limite no existe.

35. f(x) = cosi 36. f(x) = x cosi

4 + x
X

3. f() = 2

38. f(x) = %[\/9 —x— V9 + x|

e ¥ —1 In \x|

40. f(x) =

39. f(x) =

En los problemas 41-50, proceda como en los ejemplos 3, 6
y 7 y use una calculadora para construir tablas de valores
funcionales. Conjeture el valor de cada limite o concluya que
no existe.

A1, 1 SVE = 6V = 42. 1im PX
x—1 X — l x—1 X — 1
43, lfm LSO X 44, lfm1— 05X
x—0 X x—0 )Cz
45. lim 46. lfm 20X
x—0 sen 3x x—0 X
47, 1im YE =2 48. lim| -0 —6Vx—2
=4 x — 4 x—3 )C2_9 X2_9
4 _ 3
49, lim =~ t* =2 50. lim ~ 8

P N e |
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3.2 Teoremas sobre limites

I Introduccion La intencién del andlisis informal en la seccion 3.1 fue proporcionarle una
comprension intuitiva de cudndo un limite existe o no. Sin embargo, no es aconsejable ni préac-
tico, en ninguna instancia, llegar a una conclusién respecto a la existencia de un limite con
base en una grafica o tabla de valores numéricos. Debe ser posible evaluar un limite, o con-
cluir su no existencia, de alguna forma analitica. Los teoremas que se considerardn en esta
seccion establecen tales mecanismos.

El primer teorema proporciona dos resultados basicos que se usaran en todo el andlisis de
esta seccion.

Teorema 3.21 Dos limites fundamentales

i) limc = ¢, donde ¢ es una constante.
X—a

i) limx =a
X—a

Aunque ambas partes del teorema 3.2.1 requieren una demostracién formal, el teorema 3.2.1ii)
es casi tautolégico cuando se plantea verbalmente:

e El limite de x cuando x tiende a a es a.

A\ [LJEeMNN Uso del teorema 3.2.1

a) A partir del teorema 3.2.1i),

1111%10210 y 1111%77277.

b) A partir del teorema 3.2.1ii),

limx = 2 y limx = 0.
x—2 x—0

El limite de una constante por una funcién f es la constante por el limite de f cuando x
tiende a un nimero a.

Teorema 3.2.2 Limite de una funcién multiplicada por una constante

Si ¢ es una constante, entonces

limcf(x) = clim f(x).

Ahora es posible empezar a usar los teoremas combinados.

Uso de los teoremas 3.2.1y 3.2.2
A partir de los teoremas 3.2.1ii) y 3.2.2,

a) 11'_r)151;5x=5h’_r)1§x=5~8=40

b) xll;r[lZ(_%x) - _%xE)@Zx - (_%) ) (—2) =3

El siguiente teorema es particularmente importante porque constituye un medio para calcu-
lar limites de manera algebraica.



Teorema 3.23 Limites de una suma, un producto y un cociente

Suponga que a es un nimero real y que 1im f(x) y lim g(x) existen. Si lim f(x) = L; y
lim g(x) = LZ’ entonces x—a X—a —

i) lm[f(x) £ g()] = limflx) = limg(x) = Ly = L,
i) 1m[f(x)g(x)] = (lim f(x))(1im g(x)) = LiLy. y
fo _mf» g,

, _ xoa _ =
i e " lmeew Ly 270
X—a

El teorema 3.2.3 puede plantearse coloquialmente como

¢ Si ambos limites existen, entonces

i) el limite de una suma es la suma de los limites,
ii) el limite de un producto es el producto de los limites y
iii) el limite de un cociente es el cociente de los limites, en el supuesto que el
limite del denominador no es cero.

Si todos los limites existen, entonces el teorema 3.2.3 también es vdlido para limites
laterales; es decir, la notacién x —a en el teorema 3.2.3 puede sustituirse por x —a~ 0 por
x—>a". Ademds, el teorema 3.2.3 puede extenderse a diferencias, sumas, productos y cocien-
tes que implican mds de dos funciones.

A\ Je Y Uso del teorema 3.2.3

Evalte 11H51 (10x + 7).

Por los teoremas 3.2.1 y 3.2.2, sabemos que lfnsl 7y h’rrsl 10x existen. Por tanto, a
partir del teorema 3.2.3i), i i

h'rrg(IOx +7) Hrrgle + 11’rr§7

10limx + lim7
x—5 x—5

10-5+7=57.

I Limite de una potencia El teorema 3.2.3ii) puede usarse para calcular el limite de una
potencia entera positiva de una funcién. Por ejemplo, si lim f(x) = L, entonces por el teo-
rema 3.2.3ii) con g(x) = f(x), .

lim[f()]* = im[f(x) - f(0)] = (lim f(0)(lim f(x)) = L

Por el mismo razonamiento es posible aplicar el teorema 3.2.3ii) al caso general en que f(x)
es un factor n veces. Este resultado se plantea en el siguiente teorema.

Teorema 3.24 Limites de una potencia

Sean lim f(x) = Ly n un entero positivo. Entonces
X—a

lim [f(9)]" = [lim f]" = L.

Para el caso especial f(x) = x", el resultado proporcionado en el teorema 3.2.4 produce

limx" = a". (1)

X—a

3.2 Teoremas sobre limites

95
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Uso de (1) y el teorema 3.2.3

Evalde
. 3 .5
a) limx b) lim =.
x—10 x—4 X
a) Por (1),

lim x* = 10° = 1000.
b) Por el teorema 3.2.1 y (1) sabemos que l1m 5=35y hm x> = 16 # 0. En conse-
cuencia, por el teorema 3.2.3iii),

5 lim 5 5 5

x—4

A\ [JHeY Uso del teorema 3.2.3

Evaltie 1im (x> — 5x + 6).

Debido a los teoremas 3.2.1, 3.2.2 y (1), todos los limites existen. En consecuen-
cia, por el teorema 3.2.3i),

hm(x — 5x + 6) = lim x? —l1m5x+11m6—32—5 3+6=0.

x—3

Uso de los teoremas 3.2.3 y 3.2.4

Evaltie lim (3x — D'

Primero, por el teorema 3.2.3i) se observa que

Iim Bx — 1) = 11m 3x — liml = 2.

x—1 x—1
Luego, por el teorema 3.2.4 se concluye que
lin}(3x - DY = [h’n} (3x — l)]m =2'"=1024.

I Limite de funciones polinomiales Algunos limites pueden evaluarse por sustitucion directa.
Para calcular el limite de una funcién polinomial general pueden usarse (1) y el teorema 3.2.3i).
Si

f) =cx"+ e x" P+ o+ ox + o

es una funcién polinomial, entonces

lim f(x) = ll’m(cnx” S L co)
X—a X—a
= limc,x" + hmc,, XU+ o+ limex + 11mc0
X—a X—a
_ c,,a" + cn—lan_l + o+ ca+ ¢ (_festa definidaenx = ay

este limite es fla)
En otras palabras, para evaluar el limite de una funcién polinomial f cuando x tiende a un
nimero real a, sélo es necesario evaluar la funcion en x = a:

lim f(x) = fa). 2

Al revisar el ejemplo 5 observamos que hm f(x), donde f(x) = x* — 5x + 6 estd dada por
fB3) =

Debldo a que una funcién racional f es el cociente de dos polinomios p(x) y g(x), por (2)
y por el teorema 3.2.3iii) se concluye que el limite de una funcién racional f(x) = p(x)/q(x)
también puede encontrarse al evaluar fen x = a:

lim f(x) = p(X) _rla

L ™ q@ )



Por supuesto, es necesario agregar a (3) el siempre importante requisito de que el limite del
denominador no sea cero; es decir, g(a) # 0.

Uso de (2) y (3)

Evalte Iim ﬂ
=1 8x? + 2x — 2
3x — 4
¥ = —2x "
f) 8x2 4+ 2x — 2
polinomios p(x) = 3x — 4 y g(x) = 8x* + 2x — 2, entonces por (2)

es una funcién racional, de modo que si se identifican los

lim p) =p(=D)=-7 "y  lim () =qg(=D) =4

Puesto que g(—1) # 0, por (3) se concluye que
. 3x—4  _pCD =7

7
lim = = = —,
=187 +2x — 2 q(=1) 4 4

Usted no debe quedarse con la impresién de que siempre es posible encontrar el limite de
una funcién al sustituir el nimero a directamente en la funcion.

NS\ Je:Y Uso del teorema 3.2.3

L — 1
Evalie llmxi.
=iy 4 x =2

En este limite la funcién es racional, pero si en la funcién sustituimos x = 1, se
observa que el limite tiene la forma indeterminada 0/0. No obstante, si primero se simplifica,
después puede aplicarse el teorema 3.2.3iii):

. x—1 . x— 1 cancelar es valido en el
Iim = lim - -1
=l 4y —2 a=l(x— Dx +2) supuesto que x

= lim
x—lx + 2
lim1
x—1 1

T limx+2) 3
x—1

Algunas veces es posible afirmar a primera vista cudndo no existe un limite.

Teorema 3.25 Un limite que no existe

Sean lim f(x) = L; # 0y lim g(x) = 0. Entonces

no existe.

Se proporcionard una demostracion indirecta de este resultado, basada en
el teorema 3.2.3. Suponga que lim f(x) = L; # 0y lim g(x) = 0, y también que lim ( f(x)/g(x))
existe y que es igual a L,. Entonces

L = lim £ = 1im( g %) o) £ 0,
, W
= (timeco) (im 5) = 012 = 0.

El teorema se ha demostrado por contradiccién de la hipdtesis L; # 0.

3.2 Teoremas sobre limites 97

« Si un limite de una funcién

racional tiene la forma indeter-
minada 0/0 cuando x — a,
entonces por el teorema del fac-
tor del algebra x — a debe ser un
factor tanto del numerador como
del denominador. Estas cantida-
des se factorizan y se cancela el
factor x — a.
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Uso de los teoremas 3.2.3 y 3.2.5

Evalde

2
@ lm b == O =0 + 25

Cada funcién en los tres incisos del ejemplo es racional.

a) Puesto que el limite del denominador x es 5, pero el limite del denominador x — 5
es 0, concluimos del teorema 3.2.5 que el limite no existe.

b) Al sustituir x = 5, tanto el denominador como el numerador se hacen iguales a 0, de
modo que el limite tiene la forma indeterminada 0/0. Por el teorema del factor del
dlgebra, x — 5 es un factor tanto del numerador como del denominador. Asf,

X2—10x—25 . (x—5)

<« se cancela el factor x — 5

e a5 I 56+
= lim >
—5x + 1
= % = (. <« el limite existe

¢) De nuevo, el limite tiene la forma indeterminada 0/0. Después de factorizar el deno-
minador y cancelar los factores, por la manipulacién algebraica

P S B P e
=552 — 10x + 25 =>5(x — 5)?
N lx]E%x -5

se ve que el limite no existe puesto que el limite del numerador en la dltima expre-
si6n ahora es 1, pero el limite del denominador es 0.

I Limite de una raiz El limite de la raiz n-ésima de una funcién es la raiz n-ésima del limite
siempre que el limite exista y tenga una raiz n-ésima real. El siguiente teorema resume este
hecho.

Teorema 3.2.6 Limite de una raiz

Sean lim f(x) = L y n un entero positivo. Entonces
lim V/f(x) = Vlim f(x) = VL,

en el supuesto que L = 0 cuando 7 es par.

Un caso especial inmediato del teorema 3.2.6 es

lim Vx = Va, (4)

X—a

en el supuesto que @ = 0 cuando n es par. Por ejemplo, lfn;\f = [ll’ngx]l/2 =912 =3,

Uso de (4) y del teorema 3.2.3

. ox— Vi
Evalde lim 2 — X
vae 20 1 10
Solucién Puesto que ll’m8 (2x + 10) = —6 # 0, por el teorema 3.2.3iii) y (4) observamos
que X—>—
. e 13
L B e Gt LA S
x—-82x + 10 11’11_18(2)5 + 10) -6 -6 '

Cuando el limite de una funcién algebraica que implica radicales tiene la forma indeter-
minada 0/0, algo que puede intentarse es racionalizar el numerador o el denominador.



A\ |JHe M ER Racionalizacion de un numerador
Vii+4-2

x2

Evalde lim

X—>

Solucién  Puesto que hm Va2 +4= \/hm(x + 4) = 2 por inspeccién vemos que el limite
dado tiene la forma 1ndeterm1nada 0/0. Sln embargo, al racionalizar el numerador obtenemos

lim \/ x? +4—2:h, \ x? +4—2 V2+4+2

x—0 x2 x—0 x2 \/x +4+2
@*+4) —4

Iim

)‘_’Oxz(\/x2+4+2)

= l{im «—se cancelan las x

=0 2(\/xT 4+2)

el limite ya

= “«—
’lcl_)mo\/xT-l—Z no es 0/0

Ahora ya es posible que apliquemos los teoremas 3.2.3 y 3.2.6:

Vx*+4 -2

i e = limy \/f D)
oy
Viim(? + 4) + lim 2
- 1
2+2 4

En caso de que alguien se pregunte si puede haber mds de un limite de una funcién f(x)
cuando x — a, para que quede registro se plantea el dltimo teorema.

Teorema 3.2.7 Existencia implica unicidad

Si lim f(x) existe, entonces es Unico.

xX—a

lim NOTAS DESDE EL AULA
s ——

En matemadticas es tan importante saber lo que un teorema o una definicion no dice, asi como
saber lo que dice.

i) La propiedad i) del teorema 3.2.3 no dice que el limite de una suma siempre es la suma
de los limites. Por ejemplo, 1im (1/x) no existe, de modo que
x—0

ii) En forma semejante, el limite de un producto puede existir y no obstante no ser igual al
producto de los limites. Por ejemplo, x/x = 1, para x # 0, y asi

h’m(x-l): 11’_1%1 =1

x—0 X

(1N, 1
per (e ) # (1) (i )

puesto que lin& (1/x) no existe.
X—>

3.2 Teoremas sobre limites 99

o En la seccién “Notas desde el

aula”, al final de la seccién 3.1,
vimos este Iimite en la ecuacion
(12).
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iii) El teorema 3.2.5 no afirma que el limite de un cociente no existe cuando el limite del
denominador es cero. El ejemplo 8 es un contraejemplo de esa interpretacion. No obs-
tante, el teorema 3.2.5 establece que el limite de un cociente no existe cuando el limite
del denominador es cero y el limite del numerador no es cero.

m DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-8.

En los problemas 1-52, encuentre el limite dado, o concluya

que no existe.
1. 1_1>n_1 15 2. l_f_r)récosw
3. 11_r)1§(—4)x 4. 1fm(3x -9
5, lin}zx2 6. lim(—x 3
7. 1_1’>n_11()c3 —4x + 1) 8. 11_[)1%(—5)62 + 6x + 8)
9, 1fm X4 10. lim ¥
=2 x— 7 x—0  3x
11. 1{1_1)1}(3t - DG+ 2) 12. t1_1’>1112(t + 4)?
_ 2 _
13. lim s — 21 14. lim R
s>71 5+ 2 =6 x2 — Ix + 6
3x — 4%
15 lim(c+ 22+ )% 16, h'm(fi)
=2 (xr — 2)36
17. limV2x =5 18. lim(1 + V)
19. hmi 20. limx*V/a? + 5x + 2
t—>1t + ¢t — 2 x—2
2
Ly =25 .t — 5u—24
21. yl—l>—5 y+5 2. ll—rg u—39
3 _
23, 1im> 24, lim !
=1 x — 1 —-12 —
- Dx+5
25, lim &2 ) 2. lim =X 1t6
=10 (x — 8) —=34y2 — 36
3 2 _ 2 _
27, lim > + 3x 10x 28, lim 2x°+3x—9
x—2 x—2 x—1.5 x—1.5
3 _
29, lim 21 30. Tim 't + 26!
=142 + = — 2 x—0
+ 2)(x° — 1)°
3 SR D i eV T VA6
x—0 (\/); + 4)2 x—=2
2 _
33. lfm[x S Sl 1}
x—0 X X
1 6
34. 1
ng[x_z x2+2x—8]
(x + 3)
35, lim———= 36. lim(x — 4Pk — 7)!°
x—37 A /x _ 3 x—3
. 10x Ve +3r -2y
37. All»m 2x+ 5 38. 11_r)r11

[ h (r-16}
39. Jimy h+5(h—4)

3 _
4. lim s[x 64x
=00 N x? 4+ 2x

=

0. lim( + 222t + 4)'3

5
. lim (Sx + 2)
x—1* X

43. }irrll(at — br)? 44. h’rzll Vs + 2xu + 1
45 lfw 46 1’114—/’13—1
) h : hl—I}(l)h[( ) 1

im L 1
47. }lll—rf(l)h(x+h x)

48, fim YEFR=VE
h—0 h
49, 1im Y1 =1 50. lfm Y4 T4 =3
—1 t—1 u—>5 u—>5
L, V25 +v—5 4 —=—Vx+15
51. lim 52. lim
v—0 1+v—1 x—1 2 =1

En los problemas 53-60, suponga que lim f(x) = 4 y lim g(x)
= 2. Encuentre el limite dado, o coﬁcluya que no existe.

53. lim[5f(x) + 6g(x)] 54. 1im [f()]°

55. )lgltllﬁ 56. l%\/g

2 _ 2
e I o o
59. 1im xf(x)g(x) 60. l’%% *—3
; los problemas 61 y 62, use el primer resultado para

encontrar los limites en los incisos a)-c). Justifique cada paso
de su trabajo citando la propiedad idénea de los limites.

100 _
61. lim ™~ L'~ 100
x—>1 X — 1
100 1 5() _ ( 100 __ 1)2
a) lim 5 b) hm c) lmi2
x—1 X —1 x—1 x—1 ()C_ 1)
62. lim ** = |
x—0 X
_ 2 2 _
a) lim 2x b) lim COs” X ) lim 8x sen x
x—0 sen x x—0 52 x—0 X
63. Use 11’r%sexﬂ = 1 para mostrar que lfr% sen x = 0.
64. Silim 2V "3 _ I
- Silim 13 4 encuentre xl_rgf(x).



3.3 Continuidad

3.3 Continuidad

I Introduccion En el andlisis de la seccion 2.1 sobre funciones y grificas se usé la frase
“estos puntos se unen con una curva suave”. Esta frase invoca la imagen que es una curva con-
tinua agradable; en otras palabras, una curva sin rupturas, saltos o huecos. En efecto, una fun-
cion continua a menudo se describe como una cuya grafica puede trazarse sin levantar el 1apiz
del papel.

En la seccién 3.2 vimos que el valor funcional f(a) no desempefiaba ningtin papel en la
determinacion de la existencia de l1m J(x). Pero en la seccion 3.2 observamos que los limites
cuando x — a de funciones pohnomlales y ciertas funciones racionales pueden encontrarse sim-
plemente al evaluar la funcién en x = a. La razén por la que puede hacerse lo anterior en algu-
nas instancias es el hecho de que la funcién es continua en un nimero a. En esta seccion vere-
mos que tanto el valor de f(a) como el limite de f cuando x tiende a un nimero a desempefian
papeles primordiales al definir el concepto de continuidad. Antes de proporcionar la defini-
cién, en la FIGURA 3.3.1 se ilustran algunos ejemplos intuitivos de funciones que no son conti-
nuas en da.

Y i y y y
I
I
: /O
|
i P y .
1
1

> X ———x —t—>x —_1—t+——>x
¢ a a a
I

a) lim f(x) no existe
X—a

y f(a) no esta
definida

b) lim f(x) no existe
xX—a

pero f(a) esta
definida

¢) lim f(x) existe
xX—a

pero f(a) no estd
definida

d) lim f(x) existe,
xX—a
f(a) esta definida,

pero lim f(x) # f(a)

FIGURA 3.3.1 Cuatro ejemplos de f no continua en a

I Continuidad en un nimero La figura 3.3.1 sugiere la siguiente condicidn tripartita de con-
tinuidad de una funcién f en un ndmero a.

Definicion 3.3.1 Continuidad en a

Se dice que una funcién f es continua en un nimero a si

i) f(a) esta definido, i) lim f(x) existe y iii) Hm fx) = fla).

Si alguna de las condiciones en la definicién 3.3.1 no se cumple, entonces se dice que f
es discontinua en el nimero a.

)5\ [N Tres funciones

Determine si cada una de las siguientes funciones es continua en 1.

31 X =1
Pl o x# 1 L x# 1
a) f(x)=);_1 b) gx)={ x— 1 ¢) h(x)={ x— 1 ,
2, x=1 3, x =1

a) fes discontinua en 1 puesto que al sustituir x = 1 en la funcién se obtiene 0/0. Se
afirma que f(1) no estd definida, de modo que se viola la primera condicién de con-
tinuidad en la definicién 3.3.1.

b) Debido a que g estd definida en 1, es decir, g(1) = 2, a continuacion se determina si
Iim g(x) existe. Por
x—1

=1 x—DE*+x+1)

Iim = lim
x—>1 X — 1 x—1 X — ]

de dlgebra que

(1) 613*173:(0*17)

— 17 2 _
—)1(1Lr}(x+x+1)—3 @ + ab + b

101

o Recuerde de sus conocimientos
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concluimos que lim g(x) existe y es igual a 3. Puesto que este valor no es el mismo
que g(1) =2, se viola la segunda condicién de la definicién 3.3.1. La funcién g es
discontinua en 1.
¢) Primero, h(1) estd definida; en este caso, h(1) = 3. Segundo, h’m h(x) = 3 por (1)
del inciso b). Tercero, se tiene hm h(x) = h(1) = 3. Por tanto, se cumplen las tres
condiciones en la definicién 3.3. T y asf la funcioén h es continua en 1.
Las graficas de las tres funciones se comparan en la FIGURA 3.3.2.

a) b) )
FIGURA 3.3.2 Grificas de las funciones en el ejemplo 1

)3\ XY Funcion definida por partes

Determine si la funcién definida por partes es continua en 2.

X2, x<?2
fx) =15, x =2

y —x+6, x>2.
Primero, observe que f(2) estd definida y es igual a 5. Luego, por
. _ 11 2 _
lip f@) = lig x* = 4

ll’)l‘g;f(x) = 1£>1121+(—x +6)=14 implica }E}%f(x) =4

observamos que el limite de f existe cuando x — 2. Por tltimo, debido a que 111121 fx) #

FIGURA 333 Grdfica de la fun-  f(2) = 5, por iii) de la definicién 3.3.1 se concluye que f es discontinua en 2. La gréfica de f
cién en el ejemplo 2 se muestra en la FIGURA 3.3.3.

I Continuidad sobre un intervalo A continuacién veremos que el concepto de continuidad en
un numero a se extiende a continuidad sobre un intervalo.

Definicion 3.3.2 Continuidad sobre un intervalo

Una funcién f es continua

i) sobre un intervalo abierto (a, b) si es continua en todo nimero en el intervalo; y
ii) sobre un intervalo cerrado [a, b] si es continua en (a, b) y, ademads,

Im ) =f@ y  lim f@) = fO).

Si se cumple la condicién limite por la derecha l1m f(x) = f(a) dada por ii) de la defi-
nicién 3.3.1, se dice que f es continua por la derecha en a; si hm fx) = f(b), entonces f
es continua por la izquierda en b.

Extensiones de estos conceptos a intervalos como [a, b), (a, b], (a, ©0), (—090, D),

(=00, ), [a, 00) y (—00, b] se hacen como se espera. Por ejemplo, f es continua en [1, 5) si
es continua en el intervalo abierto (1, 5) y es continua por la derecha en 1.
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a) Como observamos en la FIGURA 334a), f(x) = 1/ 1 — x* es continua sobre el inter-
valo abierto (—1, 1) pero no es continua sobre el intervalo cerrado [—1, 1], ya que ni
f(=1) ni f(1) estan definidos.

b) fx)=VI1-—- x? es continua sobre [—1, 1]. Observe por la figura 3.3.4b) que
dim f() = (=) =0y lim f(x) = f(1) = 0.

¢) f(x) = Vx — 1 es continua sobre el intervalo no acotado [1, 0), ya que

lim f(x) = Viim(x — 1) = Va — 1 = f(a),

para cualquier nimero real a que cumpla a > 1, y f es continua por la derecha en 1
puesto que

xlir%\/x —1=f1)=0.
Vea la figura 3.3.4c¢).

Una revision de las graficas en las figuras 2.4.1 y 2.4.2 muestra que y = sen x y y = c0s
X son continuas en (—00, 0). Las figuras 2.4.3 y 2.4.5 muestran que y = tan x y y = sec x
son discontinuas en x = 2n + 1)7/2,n =0, *1, *=2,..., mientras las figuras 2.4.4 y
2.4.6 muestran que y = cot x y y = csc x son discontinuas en x = nw,n = 0, *1, *2, ...
Las funciones trigonométricas inversas y =sen ' xy y=cos ' x son continuas sobre el inter-
valo cerrado [—1, 1]. Vea las figuras 2.5.9 y 2.5.12. La funcién exponencial natural y = ¢*
es continua sobre el intervalo (—0c0, 00), mientras que la funcién logaritmo natural y = In x es
continua sobre (0, 00). Vea las figuras 2.6.5 y 2.6.6.

I Continuidad de una suma, producto y cociente Cuando dos funciones f'y g son continuas
en un nimero a, entonces la combinacién de las funciones formadas por suma, multiplicacién
y divisién también es continua en a. En el caso de la divisién f/g es necesario, por supuesto,
requerir que g(a) # 0.

Teorema 3.3.1 Continuidad de una suma, un producto y un cociente

Si las funciones f'y g son continuas en un nimero a, entonces la suma f + g, el producto
fg vy el cociente f/g (g(a) # 0) son continuos en x = a.

DEMOSTRACION DE LA CONTINUIDAD DEL PRODUCTO fg Como una consecuencia de la hipé-
tesis de que las funciones 'y g son continuas en un nimero a, podemos decir que ambas fun-
ciones estan definidas en x = q, los limites de las dos funciones existen cuando x tiende a a y

limf() = fl@) y  limg() = gla).
Debido a que el limite existe, sabemos que el limite de un producto es el producto de los limites:

lim(f(0g(x)) = (1im f(x))(limg(x)) = f@)g(@).

Las demostraciones de las partes restantes del teorema 3.3.1 se obtienen de manera semejante.

Puesto que la definicién 3.3.1 implica que f(x) = x es continua en cualquier nimero real
x, a partir de aplicaciones sucesivas del teorema 3.3.1 se observa que las funciones
x, x2, x3, ..., x" también son continuas para cualquier x en el intervalo (—00, o0). Debido a
que una funcién polinomial es justo una suma de potencias de x, otra aplicacién del teorema
3.3.1 muestra lo siguiente:

e Una funcién polinomial f es continua en (—oo, 00).

Se dice que las funciones, como las polinomiales, el seno y el coseno, que son continuas para
todos los numeros reales, es decir, sobre el intervalo (—o0, 00), son continuas en todas par-
tes. De una funcién que es continua en todas partes también se dice que es continua. Luego,
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©)
FIGURA 3.3.4 Grificas de las
funciones en el ejemplo 3
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FIGURA 3.3.5 Discontinuidad tipo
saltoen x = 0

., x#l1

b) Continua en 1
FIGURA 3.3.6 Discontinuidad
removible en x = 1

si p(x) y g(x) son funciones polinomiales, por el teorema 3.3.1 también se concluye directa-
mente que

¢ Una funcién racional f(x) = p(x)/q(x) es continua excepto en niimeros en los que el
denominador ¢(x) es cero.

I Terminologia Una discontinuidad de una funcién f a menudo se denomina de manera especial.

° Si x = a es una asintota vertical para la grifica de y = f(x), entonces se dice que f
tiene una discontinuidad infinita en a.

La figura 3.3.1a) ilustra una funcién con una discontinuidad infinita en a.
e Silim f(x) = Ly lim f(x) = L, y L, # L,, entonces se dice que f tiene una dis-
x—a x—a*
continuidad finita o una discontinuidad de tipo salto en a.

La funcién y = f(x) dada en la FIGURA 3.35 tiene una discontinuidad de tipo salto en O, puesto
que 11’1})1 fx)=—-1y 11’1})1 f(x) = 1. La funcién entero mayor f(x) = | x| tiene una disconti-
x—0" x—0"
nuidad de tipo salto en todo valor entero de x.
* Si lim f(x) existe pero f no estd definida en x = a o f(a) # lim f(x), entonces se dice
x—a xr=a
que f tiene una discontinuidad removible en a.

Por ejemplo, la funcién f(x) = ?* - 1)/(x — 1) no estd definida en x = 1 pero 11’rr11 flx) = 2.
Al definir f(1) = 2, la nueva funcién '

=1
fm={x-1' x#1
2, x=1

es continua en todas partes. Vea la FIGURA 3.36.

I Continuidad de =" La validez del siguiente teorema se concluye del hecho de que la gri-
fica de la funcién inversa f ' es una reflexién de la grifica de fen la recta y = x.

Teorema 3.3.2 Continuidad de una funcién inversa

Si f es una funcién continua uno a uno sobre un intervalo [a, b], entonces f ~! es continua

ya sea sobre [ f(a), f(b)] o sobre [f(b), f(a)].

La funcién seno, f(x) = sen x, es continua sobre [—/2, 7/2], y como ya se observo, la
inversa de f, y = sen” ' x, es continua sobre el intervalo cerrado [ f(=7/2), f(m/2)]=[—1,1].

I Limite de una funcion compuesta El siguiente teorema establece que si una funcién es con-
tinua, entonces el limite de esa funcion es la funcién del limite.

Teorema 3.3.3 Limite de una funcién compuesta

Si lim g(x) = Ly fes continua en L, entonces
X—a

lim f(g() = f(1im g () = fL).

El teorema 3.3.3 es ttil en la demostracién de otros teoremas. Si la funcién g es continua
en a y f es continua en g(a), entonces vemos que



lim f(g(0) = f(lim g(x)) = f(g(a)).

Acabamos de demostrar que la composicién de dos funciones continuas es continua.

Teorema 3.34 Continuidad de una funcién compuesta

Si g es continua en un nimero a y f es continua en g(a), entonces la funcién compuesta
(fog)x) = f(g(x)) es continua en a.

=H]\Y[/Xe B} Continuidad de una funcién compuesta

fx) = Vx es continua sobre el intervalo [0, 0o) y glx) = x> + 2 es continua sobre (—00, 00).
Pero, puesto que g(x) = 0 para toda x, la funcién compuesta

(fo)x) = fg) = Va2 + 2

es continua en todas partes.

Si una funcidén f es continua sobre un intervalo cerrado [a, b], entonces, como se ilustra

en la FIGURA 337, f asume todos los valores entre f(a) y f(b). Dicho de otra manera, una fun-
cién continua f no omite ningdn valor.

Teorema 3.3.5 Teorema del valor intermedio

Si f denota una funcién continua sobre un intervalo cerrado [a, b] para el cual f(a) # f(b),

y si N es cualquier nimero entre f(a) y f(b), entonces existe por lo menos un nimero ¢ entre
ay b tal que f(c) = N.

A5\ Consecuencia de la continuidad

La funcién polinomial f(x) = x> — x — 5 es continua sobre el intervalo [—1,4] y f(—1) = -3,
f(4) =17. Para cualquier niimero N para el cual —3 = N = 7, el teorema 3.3.5 garantiza que
hay una solucién para la ecuacién f(c) = N, es decir, —c—5=Nen[—1,4]. Especifi-
camente, si se escoge N = 1, entonces F—c—5=1es equivalente a

c—c—6=0 obien, (¢ — 3)c +2)=0.

Aunque la tltima ecuacién tiene dos soluciones, s6lo el valor ¢ = 3 estd entre —1 y 4.

El ejemplo anterior sugiere un corolario al teorema del valor intermedio.

e Si f satisface las hipétesis del teorema 3.3.5 y f(a) y f(b) tienen signos algebraicos
opuestos, entonces existe un ndmero x entre a y b para el que f(x) = 0.

Este hecho se usa a menudo para localizar ceros reales de una funcién continua f. Si los valores
f(a) y f(b) tienen signos opuestos, entonces al identificar N = 0 podemos afirmar que hay por lo
menos un nimero ¢ en (a, b) para el cual f(c) = 0. En otras palabras, si f(a) > 0, f(b) <0

o f(a) <0, f(b) > 0, entonces f(x) tiene por lo menos un cero c en el intervalo (a, b). La vali-
dez de esta conclusion se ilustra en la FIGURA 3.3.8.

y=r)

b “ /\
a AN * f@<0 /“1 CZ\/C 3
1 f(b)<0 |

a) Un cero ¢ en (a, b) b) Tres ceros €}s €y 5 €N (a, b)
FIGURA 3.3.8 Localizacion de ceros de funciones usando el teorema del valor intermedio

f@)>0 =0

(S S,

3.3 Continuidad 105

y
J(( ) e 7(
N :
I
flayp----- d i :
cll cb

FIGURA 3.3.7 Una funcién conti-
nua f asume todos los valores

entre £(a) y f(b)
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el punto medio es
una aproximacion

cero de f al cero
{ {
—e : > x
a ¢ my b

FIGURA 3.3.9 El nimero m,; es
una aproximacién al nimero ¢

FIGURA 3.3.10 Grifica de la
funcién en el ejemplo 6

Si se desea que la aproximacién
sea precisa hasta tres cifras
decimales, continuamos hasta
que el error se vuelva menor
que 0.0005, y asi sucesivamente.

I Método de biseccion Como una consecuencia directa del teorema del valor intermedio, es
posible concebir un medio para aproximar los ceros de una funcion continua hasta cualquier
grado de precision. Suponga que y = f(x) es continua sobre el intervalo cerrado [a, b] tal que
f(a) y f(b) tienen signos algebraicos opuestos. Luego, como acabamos de ver, f tiene un cero
en [a, b]. Suponga que el intervalo [a, b] se biseca encontrando el punto medio
m, = (a + b)/2. Si f(m;) = 0, entonces m; es un cero de fy ya no se continta, pero si
f(m;) # 0, entonces puede afirmarse lo siguiente:

e Sif(a) y f(m,) tienen signos algebraicos opuestos, entonces f tiene un cero c en [a, m].
e Si f(m,) y f(b) tienen signos algebraicos opuestos, entonces f tiene un cero c en [m, b].

Es decir, si f(m;) # 0, entonces f tiene un cero en un intervalo que mide la mitad del inter-
valo original. Vea la FIGURA 3.39. A continuacion se repite el proceso al bisecar este nuevo in-
tervalo al encontrar su punto medio m,. Si m, es un cero de f, entonces detenemos el proceso,
pero si f(m,) # 0, hemos localizado un cero en un intervalo que mide la cuarta parte del inter-
valo [a, b]. Continuamos este proceso de localizar un cero en f de manera indefinida en in-
tervalos cada vez mds cortos. Este método de aproximar un cero de una funcién continua por
medio de una sucesién de puntos medios se denomina método de biseccion. Al volver a ins-
peccionar la figura 3.3.9 se observa que el error en una aproximacién a un cero en un inter-
valo es menos de la mitad de la longitud del intervalo.

=) 3\Y[JXe M} Ceros de una funcién polinomial

a) Demuestre que los ceros de la funcién polinomial f(x) = x® — 3x — 1 tiene un cero
real en [—1,0] y en [1, 2].
b) Aproxime el cero en [1, 2] hasta dos cifras decimales.

a) Observe que f(—1) =3 > 0y f(0) = —1 < 0. Este cambio de signo indica que la
grafica de f debe cruzar el eje x por lo menos una vez en el intervalo [—1,0]. En
otras palabras, hay por lo menos un cero en [—1,0].

De manera semejante, f(1) = —3 < 0y f(2) = 57 > 0 implican que hay por lo
menos un cero de f en el intervalo [1, 2].

b) Una primera aproximacién al cero en [1, 2] es el punto medio del intervalo:

_1+2
2

Luego, puesto que f(m;) = f(%) > 0y f(1) < 0, se sabe que el cero estd en el inter-

valo 1,% .

La segunda aproximacién al cero es el punto medio de [1, %]
_1+3 s 1(3

m = =Z=1.25, error<§§—l>=0-25-

Puesto que f(m,) = f (%) < 0, el cero estd en el intervalo |3, %]
La tercera aproximacién al cero es el punto medio de |3, %]

_3_ 1o _ 1=
=5= 1.5, error < 2(2 1) = 0.5.

my

543
my =2 5 2 =§1: 1375,  error < ;(g—i)z 0.125.

Después de ocho calculos, encontramos que mg = 1.300781 con error menor que
0.005. Por tanto, 1.30 es una aproximacion al cero de fen [1, 2] que es precisa hasta
dos cifras decimales. La grafica de f se proporciona en la FIGURA 3.3.10.

m DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-8.

2

= Fundamentos ) 4 x =1
3. f(x) = (x” — 9x + 18) 4. f(x) = ,
En los problemas 1-12, encuentre los niimeros, en caso de xt =1
haberlos, en que la funcion f dada es discontinua. -1 tan
gue la funcion f X 5. f) =2 6. f) = 0%
1. fx) = x> —4x~ + 7 2. flx) = sen 2x X+

x>+ 4



x, x<0
7. f) ={x% 0=x<2
x, x>2
x> =25
2 #5
9. foo={ x—5" *
10, x=15
i #1
, X
10. f(x) = 1\/;_1
5, x=1
. o) = 5
A 2+ Inx

2

12. f) ==

e — e

En los problemas 13-24, determine si la funcién f es conti-

nua en el intervalo indicado.

13. fx) = x>+ 1

a) [—1,4]
14. f(x) = —
a) (—00, )
15. f(x) = %
a) (0, 4]
16. f(x) = Vx* —
a) [—3,3]
17. f(x) = tan x
a) [0, 7]
18. f(x) = csc x
a) (0, )
X
19. f(x) = — g
a) [—4, —3]
20. 00 = g
a) (—oo, —1]
21 fx) = 2 +xsecx

a) (—00, )
22. f(x) = seni
a) [1/m, 00)

23.

FIGURA 3.3.11
a) [—1,3]

b) [5,0)

b) (0, c0)

b) [1, 9]
b) [3,0)
by [—m/2, w/2]

b) (2m,3m)

b) (—0o0, o0)

b) [1, 6]

b) [m/2,3m/2]

by [—2/m, 2/m]

Grifica para el problema 23

b) (2, 4]

3.3 Continuidad 107

24, YA
|
|
|
|
|
] t t t —> X
FIGURA 3.3.12  Gréfica para el problema 24
a) [2,4] b) [1, 5]

En los problemas 25-28, encuentre los valores de m y n de
tal manera que la funcién f sea continua.

mx, x <4
25, f(x) = {’ =4
x> —4
, # 2
2. fog={x—-2" *
m, x=2
mx, x<3
27. f(x) = n, x=3
-2x+9, x>3
mx — n, x <1
28. f(x) =15, x=1
2mx +n, x>1

En los problemas 29 y 30, | x| denota el mayor entero que
no excede a x. Trace una grafica para determinar los puntos
en que la funcién dada es discontinua.

29. f(x) = |2x — 1] 30. f(x) = [x] —x

En los problemas 31 y 32, determine si la funcién dada tiene
una discontinuidad removible en el nimero dado a. Si la dis-
continuidad es removible, defina una nueva funcién que sea
continua en a.

M fm =2 =9 3 f(x)=x4_1

Vx =3 ) x—=1

, a=1

En los problemas 33-42, use el teorema 3.3.3 para encontrar
el limite dado.

33. 11rr} sen(2x + 7/3) 34. limcosVx

35. hrr> sen(cos x) 36. h’n} (1 + cos(cos x))
x—/2 x—>m/2

2 _ 2

37. lim cos(t m > 38. h’mtan< i )
P t— =0 > + 3¢

39. imVt — 7 + cos’*t 40. 1im(4t + sen 2t)’
t— =1

4. lim sen_l<2x+3> 42. lime
x——3 x° + 4,X + 3 X—>

En los problemas 43 y 44, determine el (los) intervalo(s)
donde f ° g es continua.

cos 3x

43. f(x) = \/xl—il’ gx)y=x+4
4. o) = 2 g = - 27



108 UNIDAD 3 Limite de una funcion

En los problemas 45-48, compruebe el teorema del valor
intermedio para f en el intervalo dado. Encuentre un nimero
c en el intervalo para el valor indicado de N.

45. f(x) = x* — 2x, [1,5]; N=38
46. fx) =x*+x+1,[-2,3]; N=6
47. fo)=x*—2x+ 1,[-2,2]; N=1
10
48. flx) = [ERE
49. Dado que f(x) = x° + 2x — 7, demuestre que hay un
nimero ¢ tal que f(c) = 50.

[0,1]; N=28

50. Dado que fy g son continuas sobre [a, b] de modo que
fla) > g(a) y f(b) < g(b), demuestre que hay un
nimero ¢ en (a, b) tal que f(c) = g(c). [Sugerencia:
Considere la funcién f — g.]

En los problemas 51-54, muestre que la ecuacién dada tiene
una solucién en el intervalo indicado.
51. 2x"=1—1x (0,1)
2+, xt+ 1
x+3 x—4
53. ¢ “=Inx, (1,2)

1
54, Senx _ 1
X 2’

52.

=0, (3,4

()2, )

En los problemas 55 y 56, use una calculadora o un SAC para
obtener la grafica de la funcién dada. Use el método de bisec-
cién para aproximar, con precisiéon de dos cifras decimales,
los ceros reales de f que descubra a partir de la grafica.

55. f(x) = 3x° — 5x° — 1 56. f(x) =x+x—1
57. Use el método de biseccién para aproximar el valor de

¢ en el problema 49 hasta una precision de dos cifras
decimales.

58. Use el método de biseccion para aproximar la solucién
en el problema 51 hasta una precision de dos cifras deci-
males.

59. Use el método de biseccion para aproximar la solucién
en el problema 52 hasta una precision de dos cifras deci-
males.

60. Suponga que un cilindro circular recto cerrado tiene un
volumen V' y un drea superficial S (lado lateral, tapa y
base).

a) Demuestre que el radio r del cilindro debe satisfacer
la ecuacién 27 — Sr + 2V = 0.

b) Suponga que V =3 000 pies’ y S = 1 800 pies”. Use
una calculadora o un SAC para obtener la gréfica de

f(r) = 2ar® — 1800r + 6 000.

¢) Use la gréfica en el inciso ) y el método de biseccion
para encontrar las dimensiones del cilindro corres-
pondientes al volumen y area superficial dadas en el
inciso b). Use una precisiéon de dos cifras decimales.

2 1

. Dado que f'y g son continuas en un nimero a, demues-
tre que f + g es continua en a.

62. Dado que f y g son continuas en un nimero a y
g(a) # 0, demuestre que f/g es continua en a.

63. Sean f(x) = [x] la funcién entero mayor y g(x) = cos x.
Determine los puntos en que f° g es discontinua.

64. Considere las funciones

x+ 1,
x—1,

x <0
x=0.

o=k y g(x)z{

Trace las gréficas de fo gy geof Determine si fogy
g © f son continuas en 0.

65. Un clasico matematico La funcion de Dirichlet

fo = {(1)

recibe su nombre en honor del matematico aleman
Johann Peter Gustav Lejeune Dirichlet (1805-1859). A
Dirichlet se debe la definicién de una funcién como se
conoce actualmente.

x racional
x irracional

a) Demuestre que f es discontinua en todo niimero real
a. En otras palabras, f no es una funcion continua en
ninguna parte.

b) (Coémo se ve la grafica de f?

¢) Si r es un nimero racional positivo, demuestre que
fes r-periddica; es decir, f(x + r) = f(x).

3.4 Limites trigonométricos

I Introduccion En esta seccién se analizan limites que implican funciones trigonométricas.
Como se ilustrard con los ejemplos de esta seccidn, el cdlculo de limites trigonométricos supone
manipulaciones algebraicas y conocimiento de algunas identidades trigonométricas basicas. Empe-
zaremos con algunos resultados simples sobre limites que son consecuencia de la continuidad.

I Uso de la continuidad En la seccién precedente vimos que las funciones seno y coseno son
continuas en todas partes. Por la definicién 3.3.1 se concluye que para cualquier nimero real a,

lim sen x = sen a, (D
xX—a
lim cos x = cos a. 2)

x—a



En forma semejante, para un nimero a en el dominio de la funcién trigonométrica dada

lim tanx = tana, lim cotx = cota, 3)
X—a X—a
lim sec x = seca, lim csc x = csca. (@)
X—a X—a

Uso de (1) y (2)

A partir de (1) y (2) se tiene

ll’r%senxzsenOZO y h’rr(l)cosx:cosO:l. %)

Los resultados en (5) se obtendrdn en el siguiente andlisis sobre el cdlculo de otros limi-
tes trigonométricos. Pero primero se considera un teorema que reviste una utilidad particular
cuando se trabaja con limites trigonométricos.

I Teorema de compresion El siguiente teorema posee muchos nombres, algunos de éstos son:
teorema de compresion, teorema del pellizco, teorema del emparedado y teorema del juego
de compresion, entre otros. Como se muestra en la FIGURA 3.4.1, si la gréfica de f(x) se “comprime”
entre las gréficas de otras dos funciones g(x) y A(x) para toda x proéxima a a, y si las funciones g
y h tienen un limite comun L cuando x — a, tiene sentido afirmar que f también tiende a L cuando
X—a.

Teorema 3.4.1 Teorema de compresion

Suponga que f, g y & son funciones para las cuales g(x) = f(x) = h(x) para toda x en un inter-
valo abierto que contiene a un nimero a, excepto posiblemente al mismo a. Si

lim g(x) = L y Iim h(x) = L,

entonces lim f(x) = L.
X—a

Antes de aplicar el teorema 3.4.1 se considerard un limite trigonométrico que no existe.

=]\ [JXe B3 Un limite que no existe

El limite ling sen(1/x) no existe. La funcién f(x) = sen(1/x) es impar pero no es periédica.
x—>

La gréfica oscila entre —1 y 1 cuando x — O:

senl = *1 para 1 I +nm, n=0,=*x1,*£2,...
by x 2
Por ejemplo, sen(1/x) = 1 para n = 500 o x = 0.00064, y sen(1/x) = —1 para n = 501 o
x = 0.00063. Esto significa que cerca del origen la gréfica de f se vuelve tan comprimida que
parece ser una mancha continua de color. Vea la FIGURA 3.4.2.

=N]S\Y[Ne ] Uso del teorema de compresion

L 1
Encuentre el limite limx? sen— .
x—0 X

Primero observe que

. 1 . , 1
lim x*> sen— # | 1im x? ){ lim sen—
x—0 X x—0 x—0 X

porque en el ejemplo 2 acabamos de ver que lim sen(1/x) no existe. Pero para x # 0 tenemos
—1 = sen(1/x) = 1. En consecuencia, =0

1
—x? =< x? sen— = X2
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Y y=h(x)

y=fx

y=g)

X

[} PRSP

I
FIGURA 3.4.1 Gréfica de f opri-
mida entre las graficas de gy &

o Un colega ruso dijo que este
resultado se denominaba teore-
ma de los dos soldados cuando
estaba en la escuela. Piense en
ello.

FIGURA 3.4.2 Grifica de la
funcién en el ejemplo 2
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FIGURA 3.4.4 Grifica de f(x) =
(sen x)/x

Luego, si hacemos las identificaciones g(x) = —x* y h(x) = x?, por (1) de la seccién 3.2 se
sigue que h’r% gx)=0y lin(} h(x) = 0. Asi, por el teorema de compresién concluimos que

p 1
lim x? sen— = 0.
x—0 X

En la FIGURA 34.3 observe la pequefia escala en los ejes x y y.

FIGURA 3.4.3 Gréfica de la funcién en el ejemplo 3

I Un limite trigonométrico importante  Aunque la funcién f(x) = (sen x)/x no estd definida
en x = 0, la tabla numérica en el ejemplo 7 de la seccién 3.1 y la grafica en la FIGURA 3.4.4
sugieren que lim (sen x)/x existe. Ahora ya es posible demostrar esta conjetura usando el teo-
rema de compresion.

Considere un circulo con centro en el origen O y radio 1. Como se muestra en la FIGURA
3.4.5a), sea la regiéon sombreada OPR un sector del circulo con dngulo central ¢ tal que
0 <t < /2. A partir de los incisos D), ¢) y d) de la figura 3.4.5 se observa que

drea de AOPR = drea del sector OPR = drea de AOQR. (6)

Por la figura 3.4.5b), la altura de AOPR es OPsent = 1-sent = sen t, y asi

drea de AOPR = %ﬁ - (altura) = % I-sent = %sen t. @)

Por la figura 3.4.5d), @/ﬁ =tant o @ = tant, de modo que

) 11— — 1 1
area de AOQR = EOR'QR =5 1-tant = 5 tant. (8)
y
0
PA
|
1/ \
AR\J Q
1 \
0|——IR X P P
1 X\
\
A \ A
O 1 R 0 1 R o 1 R
a) Circunferencia unitaria b) Triangulo OPR ¢) Sector OPR d) Triangulo rectangulo OOR

FIGURA 3.4.5 Circunferencia unitaria junto con dos tridngulos y un sector circular
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Por tltimo, el 4rea de un sector del circulo es 3%, donde r es el radio y @ es el dngulo cen-
tral medido en radianes. Asi,

1 1

area del sector OPR = 5" 12-t= Et' 9
Al usar (7), (8) y (9) en la desigualdad (6) se obtiene
lsent<lt<ltamt o bien, 1 < ! < ! .
2 2 2 sen t cos t

Por las propiedades de las desigualdades, la dltima desigualdad puede escribirse como

sen t
cost < T< 1.

Ahora se hace t— 07 en el tltimo resultado. Puesto que (sen )/t estd “comprimida” entre 1

y cos ¢t (del cual se sabe por (5) que tiende a (1), a partir del teorema 3.4.1 se concluye que

(sen 1)/t — 1. Aunque se ha supuesto 0 < ¢ < 77/2, el mismo resultado se cumple para t — 0~

cuando —7/2 < t < 0. Al usar el simbolo x en lugar de t, el resultado se resume como sigue:
sen x

lim = 1. (10

x—=0 X

Como se ilustra con los siguientes ejemplos, los resultados en (1), (2), (3) y (10) se usan a
menudo para calcular otros limites. Observe que el limite (10) es de la forma indeterminada 0/0.

RS\ [N Uso de (10)

10x — 3 sen x
-

Encuentre el limite lim
x—0

La expresion fraccionaria vuelve a escribirse como dos fracciones con el mismo
denominador x:

., 10x — 3 sen x . | 10x 3 senx
im ———=1lim|— — ——
x—0 X x—0| X X
10x sen x puesto que ambos limites existen,
= lim—— — 3 lim < las x también se cancelan en la
x—0 X x—0 X . . s 2
primera expresion
. . sen x
=1im10 — 3 lim <« ahora se usa (10)
x—0 x—0
=10—-3-1
=1.

=]\ [Xe M4 Uso de la formula del dngulo doble

sen 2x

Encuentre el limite 1im
x—0 X

Para evaluar el limite dado se usan la férmula del dngulo doble sen 2x = 2 sen x
cos x de la seccién 2.4, y el hecho de que el limite existe:
sen 2x _ .. 2 COS x senx

lim lim
x—0 X x—0 X

. sen x
= 2 lim| cos x -
x—0 X

=2 (h'm cos x) <ll'm sen x)

x—0 x—=0 X

Por (5) y (10) se sabe que cos x — 1y (sen x)/x — 1 cuando x — 0, de modo que la linea
precedente se vuelve

111
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Uso de (5) y (10)

an x

ot
Encuentre el limite lim
x—0

Al usar tan x = (sen x)/cos x y el hecho de que el limite existe, puede escribirse

 tanx  (senx)/cosx
lim—— = lim————
x—0 X x—0 X

. 1 sen x
im .
=0 COSX X

. 1 . senx
Iim Iim
x—0 COS X x—0 X

‘1 =1. <por(5y 10

—_ | —

I Uso de una sustitucion A menudo se tiene interés en limites semejantes a los considera-
n5x

. . . . se -
dos en el ejemplo 5. Pero si queremos encontrar, por ejemplo, 111‘1(1) , el procedimiento
X—>

empleado en el ejemplo 5 deja de funcionar a nivel prictico puesto que no se cuenta con una
identidad trigonométrica a la mano para sen 5x. Hay un procedimiento alterno que permite

. . senkx . .
encontrar rdpidamente lm(l) — donde k # 0 es cualquier constante real, al simplemente
X

cambiar la variable por medio de una sustitucién. Si se hace 7 = kx, entonces x = /k. Observe
que cuando x — 0 entonces necesariamente t — 0. Asi, es posible escribir
por (10)

lim SE0 kx _ i SE0E 11,m<sent . @) — klim SE0
x—0 X =0 t/k —o\ 1 —0 t
Por tanto, se ha demostrado el resultado general
Jim SEOAX _ (11)
x—0 X
. . . sen2x .
Por (11), con k = 2, se obtiene el mismo resultado 11m0 = 2 que se obtuvo en el ejem-
plo 5. =
0]\ 1Kol A Una sustitucion

., sen(x — 1)
Encuentre el limite lim —
=l x*+2x—3

Antes de empezar, observe que el limite tiene la forma indeterminada 0/0 cuando
x — 1. Al factorizar x> + 2x — 3 = (x + 3)(x — 1) el limite dado puede expresarse como un
limite de un producto:
sen(x — 1) ) sen(x — 1) 1 sen(x — 1)

S . N I T Sl L] B R—

12)

Luego, si se hace t = x — 1, veremos que x — 1 implica # — 0. En consecuencia,

_sen(x — 1)  sent
Iim——————=Ilim—— =

1. <« por (10)
x—1 x—1 —0

Al volver a (12) es posible escribir

I sen(x — 1) _ 1 sen(x — 1)
et —3 Hx+3 -1

_(1, 1 ><1 Sen(x—1)>
B xl—l;Illx+3 xl—I}} x—1

_ (1, 1 )(1 sent)
xl—IH x+3 tgr(} t




3.4 Limites trigonométricos

puesto que ambos limites existen. Asf,

xa1x2+2x_3 x—lx+3/\i»0 ¢t 4 4

=H]\Y[Xel¥:] Uso de una identidad pitagérica

1 — cosx
X

Encuentre el limite 1im
x—0

Para calcular este limite empezamos con un poco de ingenio algebraico al multi-
plicar el numerador y el denominador por el factor conjugado del numerador. Luego usamos
la identidad pitagérica fundamental sen” x + cos® x = 1 en la forma 1 — cos® x = sen” x:

. 1 —cosx ., 1 —cosx 1+ cosx
lim — = lim .
x—0 X x—0 X 1 + cosx
1 —cos’x
= lim

x—0 x(1 + cosx)
- lim sen’ x
=0 x(1 + cosx)’

Para el siguiente paso de nuevo se acude al dlgebra para volver a escribir la expresion frac-
cionaria como un producto, y luego se usan los resultados en (5):

., 1 —cosx h sen’x
lim = lim
x—0 X x—0 x(1 + cos x)
. [senx sen x
= lim L L
=0\ X 1+ cosx

., senx j sen x
= | lim ) . <hm 7)

=01 + cosx
Debido a que lin(} (sen x)/(1 + cos x) = 0/2 = 0 se tiene

—_— 1+
lim 105X _ ¢ (13)

x—0 X
Puesto que el limite en (13) es igual a 0, puede escribirse

. 1—cosx ,, —(cosx—1) . cosx — 1 o,
Jim SO _ gy YTy SOSX T L, w
x—0 X x—0 X x—0 X -

Luego, al dividir entre —1 se obtiene otro importante limite trigonométrico:

im S X =L _ . (14)

x—0 X 14

En la FIGURA 346 se muestra la grafica de f(x) = (cos x —1)/x. Los resultados en (10) y (14) FIGURA 346 Grifica de
se usardn en la seccién “Desarrolle su competencia 3.7” y también en la seccién 3.4. J&x) = (cos x — D)/x

“ DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-9.

_cosx—1
X

113

= ., 1 .
Fundamentos 7. lim P 8. lim 5t cot 2t
— —
En los problemas 1-36, encuentre el limite dado, o concluya ) sen’ 1/2)
que no existe. 9, h’manzt 10. Iim——
sen 31 sen (—47) =0 f cos® ¢t =0 sent
1. lim >3 2. lim———— sen? 61 ’
—> —> , s
11. 121(1) 5 12. }% 25
3. lim ——>0Y 4, lim Lt senx ' .
* 2504 + cosx x50 1 4+ cos x sen(x — 1) x — 2w
13. lim———— 14. lim
5. Ifm cos2x 6. lim tanx =1 2x — 2 x—2r  Senx

x—0 cOoS3x —0 3x
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15. lim 25X 16. 1im LT senf
x—0 X 0—m/2  CcOS O
~cos(3x — m/2) . sen(5x + 10)
v 18 Mm v s
19. 1lim sen 3¢ 20. 1im sen?2t csc3t
—0 sen 7t 1—0
. sent .1 — cosVr
21 Jip 2t
2 _
23. lim L lsent 24. lim S5
1—0 2 t—0 cOS 81
~(x + 2Vsenx) (1 — cosx)®
25, lim——— 26. lim———
x—0 X x—0 X
27. Iim cosx — 1 28. Iim senx + tanx
=0 cos?x — 1 =0 x
2 2
29, 1m S0 30. lim-————
=0y =0 1 — cost
sen(x — 2 2 _
31, lim N =2 32 lim—~ 2
=22 +92¢ — 8 -3 sen(x — 3)
_ 2 _
33. lim 2sendx + 1 — cosx 34, 1im 4x 2 senx
x—0 X x—0 X
35, It 1 — tanx 36. I cos2x

37.

im m ———————
x—>m/4 COSX — Senx x—>m/4 COSX — Senx

Suponga que f(x) = sen x. Use (10) y (14) de esta sec-
cién junto con (17) de la seccién 2.4 para encontrar el

En los problemas 39 y 40, use el teorema de compresion para
establecer el limite dado.

39.
41.

42,

lim x senl =0
X

x—0

) T
40. lim x> cos— = 0
x—0 X

Use las propiedades de los limites dadas en el teorema

3.2.3 para demostrar que

a) 11’m)c3senl =0 b) ll’mxzsen21 = 0.
x—0 X x—0 X

Si |f(x)| = B para toda x en un intervalo que contiene
a 0, demuestre que Iim X’fx) = 0.
x—0

En los problemas 43 y 44, use el teorema de compresion para
establecer el limite dado.

43.
44.

ll’n%f(x) donde 2x — 1 = f(x) = XX=2x+3,x#2
lin(l) f(x) donde |f(x) — 1| =x},x# 0

En los problemas 45-48, use una sustituciéon idénea para
encontrar el limite dado.

45.

47.

49.

50.

L Senx — COSX L X T T
x1~1>r711:1/4 X — 77/4 46. )}LI)I}T tan2x
sen (7/x) cos(/x)
h'mi/ 48. h’mi/
=1 x—1 =2 x — 2
Analice: ;La funcién
sen x’ c£0
f)=4{ *
1, x=20

es continua en 0?

. . . senx L . .
La existencia de hrr(l) no implica la existencia de
X—>

. sen|x] . . . )
hn(l) T Explique por qué el segundo limite no existe.
X—>

3.5 Limites que involucran el infinito

I Introduccion En las secciones 2.2 y 2.3 se consideraron algunas funciones cuyas grificas
poseian asintotas. En esta seccion se verd que las asintotas vertical y horizontal de una gra-
fica estdn definidas en términos de limites que implican el concepto de infinito. Recuerde, los

Iimite:
a ar
. f<4 * h>_f<4)
k) h )

38. Suponga que f(x) = cos x. Use (10) y (14) de esta sec-
cién junto con (18) de la seccién 2.4 para encontrar el
limite:

ar aa
- + — -
ez ) A)
h—0 h ’
En algunos textos se usa el »

simbolo +oco y las palabras
mds infinito en lugar de co e
infinito.

simbolos de infinito, —0c0 (“menos infinito”) y 0o (“mads infinito”) son herramientas de nota-
cion usadas para indicar, a su vez, que una cantidad decrece o crece sin limite en la direccién
negativa (en el plano cartesiano esto significa a la izquierda para x y hacia abajo para y) y en
la direccidn positiva (a la derecha para x y hacia arriba para y).

Aunque la terminologia y notacion usadas cuando se trabaja con 00 son estdndar, lamen-
tablemente son ligeramente desafortunadas y pueden ser confusas. Asi, desde el principio se
advierte que se considerardn dos tipos de limites. Primero se analizardn

e limites infinitos.

La expresion limites infinitos siempre se refiere a un limite que no existe porque la funcién f
exhibe un comportamiento no acotado: f(x) — —00 o f(x) — 00. Luego se considerardn

e limites en el infinito.
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La expresion en el infinito significa que se estd intentando determinar si una funcién f posee o A lo largo de todo el andlisis, no

un limite cuando se deja que el valor de la variable x disminuya o aumente sin limite: x — —00
0 x — 00. Estos limites pueden o no existir.

I Limites infinitos El limite de una funcién f no existe cuando x tiende a un nimero a siem-
pre que los valores de la funcién crecen o decrecen sin limite. El hecho de que los valores de
la funcién f(x) crecen sin limite cuando x tiende a a se expresa simbdlicamente por

f(x) = o0 cuando x —>a o bien, lim f(x) = oo. )
xX—a
Si los valores de la funcién decrecen sin limite cuando x tiende a a, se escribe
f(x) > —o0 cuando x > a obien, limf(x) = —o0. 2)
X—a

Recuerde que el uso del simbolo x —a significa que f muestra el mismo comportamiento
—en este caso, sin limite— a ambos lados del nimero a sobre el eje x. Por ejemplo, la nota-
cién en (1) indica que

f(x) > oo cuando x > a~ y f(x) = oo cuandox —>a”.

Vea la FIGURA 35.1.

y 1 y
) :Tf(X) | =a |
E \X E / X
x=a i
a) lim f(x) = o b) lim f(x) = —o0

FIGURA 3.5.1 Dos tipos de limites infinitos

En forma semejante, la FIGURA 3.5.2 muestra el comportamiento sin limite de una funcién f
cuando x tiende a a por un lado. Observe en la figura 3.5.2¢) que no es posible describir el
comportamiento de f cerca de a usando un solo simbolo de limite.

y | y . y
| ix=a ix=a
| | |
Ix=a vy y=f&)/)
| o 1
T X T X T X
I I I
_ : i i
y=fx) ! | |
\ 1 1
a) h’m?f(x) =0 b) lim f(x) = — c) ll’mif(x) =y 11’m+f(x) =—o

FIGURA 3.5.2 Tres tipos mas de limites infinitos

En general, cualquier limite de los seis tipos

lim f(x) = —00,  lim f(x) = oo,
lim f(x) = =00, lim f(x) = oo, 3)
lim f(x) = —00,  lim f(x) = oo,

se denomina limite infinito. De nuevo, en cada caso de (3) simplemente se estd describiendo
de manera simbdlica el comportamiento de una funcién f cerca del nlimero a. Ninguno de los
limites en (3) existe.

En la seccion 2.3 se repasé como identificar una asintota vertical para la grafica de una
funcién racional f(x) = p(x)/q(x). Ahora ya podemos definir una asintota vertical de cual-
quier funcién en términos del concepto de limite.

olvide que —oo y co no repre-
sentan nimeros reales y nunca
deben manipularse aritmética-
mente como se hace con los
nimeros.
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Vea la figura 2.2.1. p

FIGURA 3.5.3 Grifica de las
funciones en (4)

I
I
I
|
|
1
|
|
|
|
1
1
I
[
[
I

x=—4 x=0
FIGURA 354 Grifica de la
funcion en el ejemplo 1

Definicion 3.5.1 Asintota vertical

Se dice que una recta x = a es una asintota vertical para la grifica de una funcién f si por
lo menos una de las seis afirmaciones en (3) es verdadera.

En el repaso de las funciones en la unidad 2 se vio que las graficas de funciones racio-
nales a menudo poseen asintotas. Se vio que las gréficas de las funciones racionales y = 1/x
y y = 1/x* eran semejantes a las gréficas en la figura 3.5.2¢) y 3.5.1a), respectivamente. El
eje y, es decir, x = 0, es una asintota vertical para cada una de estas funciones. Las graficas de

1 1

= 4
Y=1_a “4)
se obtienen al desplazar las grificas y = 1/xyy = 1/x* horizontalmente |a| unidades. Como se
observa en la FIGURA 353, x = a es una asintota vertical para las funciones racionales en (4).

Se tiene

. | . |
xligl_x —da B o0 y xli>ran+x —a - (5)
p 1
y lim——— = oo. (6)

>a(x — q)?
Los limites infinitos en (5) y (6) son justo casos especiales del siguiente resultado general:

. 1 h 1
= —00 — = X
.xhl?‘ x —a) y ,\'1ng11+ x —a) ’ )

para n un entero positivo impar y

. 1

ma—ar > ®)
para n un entero positivo par. Como consecuencia de (7) y (8), la grafica de una funcidn racio-
nal y = 1/(x — a)" se asemeja a la gréfica en la figura 3.5.3a) para n impar o la de la figura
3.5.3b) para n par.

Para una funcién racional general f(x) = p(x)/q(x), donde p y ¢ no tienen factores comu-
nes, por este andlisis debe resultar evidente que cuando ¢ contiene un factor (x — a)", n un
entero positivo, entonces la forma de la grafica cerca de la recta vertical x = a debe ser alguna
de las que se muestran en la figura 3.5.3 o su reflexién en el eje x.

A\ [N Asintotas verticales de una funcion racional

Al inspeccionar la funcién racional

@ xXx + 4)

se observa que x =—4 y x = 0 son asintotas verticales para la gréifica de f. Puesto que el deno-
minador contiene los factores (x — (—4))' y (x — 0)% es de esperar que la grifica de f cerca
de la recta x = —4 se asemeje a la figura 3.5.3a) o a su reflexién en el eje x, y la grafica de
fcerca de x = 0 se asemeje a la figura 3.5.30) o a su reflexion en el eje x.

Para x préxima a O por cualquier lado, resulta facil ver que f(x) > 0. Pero para x cerca
de —4, por ejemplo x = —4.1 y x = —3.9, se tiene f(x) > 0y f(x) < 0, respectivamente. Al
usar la informacién adicional de que s6lo hay una interseccién x simple (—2, 0), se obtiene la
gréfica de f en la FIGURA 35.4.

)3\ [Nl A Limite por un lado

En la figura 2.6.6 se vio que el eje y, o la recta x = 0, es una asintota vertical para la funcién
logaritmica natural f(x) = In x puesto que

li%glnx = —00.
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La grifica de la funcién logaritmica y = In(x + 3) es la grafica de f(x) = Inx desplazada 3
unidades a la izquierda. Por tanto, x = —3 es una asintota vertical para la grifica de
y = In(x + 3) puesto que lim In(x + 3) = —o0.

x—>—3"

N1\ [ Xe Y Limite por un lado

. X
Grafique la funcién = —
“ ARV

Al inspeccionar f se observa que su dominio es el intervalo (—2, 00) y la intersec- Y i x

cion con el eje y es (0, 0). A partir de la tabla siguiente se concluye que f decrece

x>-2" | —19 ~1.99 ~1.999 | —1.9999 : /

() —6.01 —19.90 | —6321 |—199.90 i !

sin limite cuando x tiende a —2 por la derecha:

XEI}12+ f(x) - T x=-2
Por tanto, la recta x = —2 es una asintota vertical. La grafica de f se proporciona en la FIGURA ~ FIGURA 355  Grifica de la fun-

355 cion en el ejemplo 3

I Limites en el infinito Si una funcién f tiende a un valor constante L cuando la variable
independiente x crece sin limite (x — ©0) o cuando x decrece (x — —o0) sin limite, entonces
se escribe

lim f(x) =L ) lim f(x) = L )

X—>—00
y se dice que f posee un limite en el infinito. A continuacién se presentan todas las posibili-
dades para limites en el infinito Iim f(x) y lim f(x):
X— —00 X—>00
e Un limite existe pero el otro no.
e Tanto lim f(x) como lim f(x) existen y son iguales al mismo nimero.
X—> —00 X—>00
e Tanto lim f(x) como lim f(x) existen pero son nimeros diferentes.
X——00 X—>00
e Ni lim f(x) ni lim f(x) existen.
X—>—00 X—>00
Si por lo menos uno de los limites existe, por ejemplo, lim f(x) = L, entonces la grafica de f
X—>00

puede hacerse arbitrariamente préxima a la recta y = L cuando x crece en la direccién positiva.

Definicion 3.5.2 Asintota horizontal

Se dice que la recta y = L es una asintota horizontal para la grifica de una funcioén f si
por lo menos una de las dos declaraciones en (9) es verdadera.

En la FIGURA 35.6 se han ilustrado algunas asintotas horizontales tipicas. Se observa, junto
con la figura 3.5.6d) que, en general, la grafica de una funcién puede tener como méaximo dos
asintotas horizontales, aunque la grafica de una funcion racional f(x) = p(x)/q(x) puede tener
cuando mucho una. Si la grafica de una funcién racional f posee una asintota horizontal y = L,
entonces su comportamiento final es como se muestra en la figura 3.5.6¢); es decir:

f(x) = L cuando x — — 00 y f(x) = L cuando x — 0.

y y y y

a) f(x) = Lcuandox — %  b) f(x) — Lcuandox — —x ¢) f(x) = L cuando x — —oo, d) f(x) — L, cuando x— —0,
f(x) = L cuando x — « f(x) = L, cuando x — =

FIGURA 356 y = L es una asintota horizontal en a), b) y ¢); y = L; y y = L, son asintotas horizontales en d)
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Por ejemplo, si x se vuelve sin limite en la direccién positiva o en la negativa, las funcio-
nes en (4) tienden a 0 y se escribe

lim ! =0, lim ! =0 y h’m¥=0,lim%=o. (10)

x—>—coX — a x—ooX — a a—>—00(x — a)2 =00 (x — q)
En general, si r es un nimero racional positivo, y si (x — a)” estd definido, entonces

1 1

Estos resultados también son [ 3 im ——=0 y im—=0 (11)
verdaderos cuando x — a se sus- x—>—oo (x — a) =0 (x — a)
tituye por a — x, en el supuesto
que (a — x)" esté definido. N1\ [N l¥:Y Asintotas horizontal y vertical
.. . 4 . . .
El dominio de la funcién f(x) = ———=c¢es el intervalo (—0c90, 2). En virtud de (11) puede escri-
o)== (—00,2) (1D p
birse
lim ————=0.
X——00 \/2 — X

Observe que no es posible considerar el limite de f cuando x — 00 porque la funcién no esta
definida para x = 2. No obstante, y = 0 es una asintota horizontal. Luego, por el limite en
infinito

Iim——— = o
x—27 2 — X

FIGURA 3.5.7 Gréfica de la fun-
cién en el ejemplo 4 se concluye que x = 2 es una asintota vertical para la gréafica de f. Vea la FIGURA 3.5.7.

En general, si F(x) = f(x)/g(x), entonces en la siguiente tabla se resumen los resultados
para limites de las formas hm F(x), hm Fx)y hm F(x). El simbolo L denota un nimero

real.
- it +
xtin;a Jmite: = =2 L#0 %, L#0
9 9 —_ (12)
el limite es: 0 infinito infinito

Se dice que limites de la forma hm F(x)=* o0 hm F(x) = *oo son limites infinitos en

el infinito. Ademas, las propledades de los limites dadas en el teorema 3.2.3 se cumplen al
sustituir el simbolo a por co 0 —o0 en el supuesto de que los limites existen. Por ejemplo,

i f0 = (Jimf)(Jimee0) Mo s= s A9

siempre que lim f(x) y lim g(x) existan. En el caso del limite de un cociente, también debe
X—>00 X—>00

tenerse Iim g(x) # 0.

X—>00

I Comportamiento final En la seccién 2.3 vimos que la forma en que una funcién f se com-
porta cuando |x| es muy grande se denomina comportamiento final. Como ya se analizd, si
lim f(x) = L, entonces la grafica de f puede hacerse arbitrariamente préxima a la recta y = L

X—>00

para grandes valores positivos de x. La grafica de una funcién polinomial,
f) =ax"+ a,_ x""+ -+ ax® + ax + ag,
se asemeja a la grifica de y = a,x" para |x| muy grande. En otras palabras, para
fx) = ax" X" N g + ao‘ (14)

Los términos encerrados en el rectdngulo en (14) son irrelevantes cuando la grifica de una
funcién polinomial se observa globalmente; es decir, para |x| muy grande. Asi, se tiene

Iim a,x" h’moc(a,,x” +a, x" '+ o+ ax+ ao), (15)
x>+

x—+00

cuando (15) es co 0 —oo dependiendo de a, y n. En otras palabras, el limite en (15) consti-
tuye un ejemplo de limite infinito en el infinito.
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]3| Mo MY Limite en el infinito
o =t + 2+ 1
Evalie lim 6x—x
X—>00 2.X — X
No es posible aplicar la ley del limite de un cociente en (13) a la funcién dada,
puesto que hm( 6t + 2+ 1) = — y lim (2x* — x) = oo. No obstante, al dividir el
—o0 X—>00
numerador y el denominador entre x* podemos escribir
1 1
o))
L=t + 1 . x2 X
Iim = lim
X—00 2)(4 — X X—00 5 (L)
B
. 1 1 El limite del numerador
XILIEIO|:—6 + <7) + (4>:| existe, asi como el limite
X X
= <— del denominador, y el
h 1 limite del denominador
lim|2 —(—
X—>00 ¥ no es cero
_—6+0+0_ 3
2-0 '
Esto significa que la recta y = —3 es una asintota horizontal para la grafica de la funcién.
En virtud de (14) es posible descartar todas las potencias de x, menos la
mds alta:
descartar términos de los recuadros
\
et ] 6t —6
Iim = lim = lim—— = —3.
X—00 2)64 x—00 Dyt x—00 2
EJEMPLO 6 Limite infinito en el infinito
1 _
Evalde lim 7——— Nt
Por (14),
lim 1 -« 1’m_7x3 —llim 2= —00
x—003x + 2 x—00 3X 3x—>oox
En otras palabras, el limite no existe.
(HZVIJMA Grafica de una funcion racional |
) x2 i i
Grafique la funcién f(x) = - P i
I T !
Al inspeccionar la funcién f se observa que su gréifica es simétrica con respecto al ; — x
. . ., . , . 1 |
eje y, la interseccion con el eje y es (0, 0) y las asintotas verticales son x =—1 y x = 1. Luego, ! roy=-1
a partir del limite -E -i
2 2 i i
lim f(x) = lim—— = lim—— = —1lim1 = —1 | :
x—>00 x>00] — y2 x>0 —y X—>00 | |
1 1
. . x=-—1 =1
se concluye que la recta y = —1 es una asintota horizontal. La grafica de f se muestra en la  F|GURA 3558 Grééfca de la
FIGURA 3.5.8. funcién en el ejemplo 7

Otra ley de los limites que se cumple para limites en el infinito es que el limite de una
raiz n-€sima de una funcién es la raiz n-ésima del limite, siempre que el limite exista y la raiz
n-ésima esté definida. En simbolos, si lim g(x) = L, entonces

X—>00

lim Ve(x) = \”/11@0 g(x) = VL, (16)

en el supuesto de que L = 0 cuando n es par. El resultado también se cumple para x — —o0.
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FIGURA 35.9 Grifica de la
funcién en el ejemplo 9

A\ [Je ] Limite de una raiz cuadrada

Evalde lim\/ 20 = 5x% + dx = 6
X—00 6x° + 2x

Debido a que el limite de la funcién racional en el radical existe y es positivo,
puede escribirse

h 20 — 52 +4x — 6 2 =5+ 4x—6 1 _
lim 3 =,/ lim 3 =
=00 6x> + 2x ¥=00 6x> + 2x n 6x 3 \f
]S\ [N} Grafica con dos asintotas horizontales
Determine si la grafica de f(x) = X tiene asintotas horizontales.

Vx> + 4

Puesto que la funcién no es racional, es necesario investigar el limite de f cuando
x — 00 y cuando x — —0o0. Primero, recuerde del dlgebra que V3% es no negativa, o mas al
punto,

\/;?:|x|={x’ x=0

—x, x<O0.
Luego, volvemos a escribir f como

S)C 5x 57)(
Vi x| x|
Vi+d Veta 4

1+ —

Vil Va? x?

Los limites de f cuando x — 00 y x — —00O son, respectivamente,

fx) =

5x Sx 3
hrgo 5 5
Iim f(x) = lim = lim = =1=5
. W N
xX—00 X
5
y Iim f(x) = lim ——— = Ilim = == 5.
o o 1+ 4 1+ 4 lim |1 + 4 :
xz )C2 ’c—1>r—noo Xz
Por tanto, la grafica de f tiene dos asintotas horizontales y = 5y y = —5. La gréfica de f, que

es semejante a la figura 3.5.6d), se proporciona en la FIGURA 3.5.9.

En el siguiente ejemplo se ve que la forma del limite dado es o0 — 00, pero el limite
existe y no es 0.

A5\ |JHe B} Uso de racionalizacion
Evalie lim (x2 -Vt + 7+ 1).

X—>00

Solucién Debido a que f(x) = x> — Vx* + 7x*> + 1 es una funcién par (compruebe que
f(—x) = f(x)) con dominio (—00, ©0), si lim f(x) existe, debe ser el mismo que hm fXx).
Primero racionalizamos el numerador:
(xz—\/x4+7x2+l) 2 L/ 2
lim (x2 = Vx* + 7% + 1) = Iim -<x S e +1>

X—00 x—00 1 X+ VTR +1

A=t + T+ D
Iim
oV + T2+

—T7y2 —
= lim ol

=042 LA/ A LT b 1




3.5 Limites que involucran el infinito

Luego, el numerador y el denominador se dividen entre Vit = %

—7x? 1
. -7x* — 1 L Vit Vit
Iim = lim
OOV TR+ T VA T2+
Vit
It
2
= lim 2
X—00 7 1
1+L+ =
1+ St

121

lim | +\/11’m(1 +72+14)
xX—>00 Xx—>00 X X

—7 7

1+1 2

Con ayuda de un SAC, la gréfica de la funcién f se proporciona en la FIGURA 3.5.10. La recta
y = —3% es una asintota horizontal. Observe la simetrfa de la grifica con respecto al eje y. W

Cuando se trabaja con funciones que contienen la funcién exponencial natural, los cuatro
siguientes limites ameritan una atencion especial:

lim e * = oo.

X——00

lime™ ™ = 0,

X—00

lim e* = 0,

X——00

lime* = 00,

X—>00

A7)

Como se analizé en la seccién 2.6 y se comprobd por los limites segundo y tercero en (17),
y = 0 es una asintota horizontal para la grafica de y = e¢*y y = e *. Vea la FIGURA 35.11.

A\ JHeMNER Grafica con dos asintotas horizontales

T3 tiene alguna asintota horizontal.

Solucion Debido a que f no es una funcién racional, es necesario analizar lim f(x) y

. . . X—>00 . .,
lim f(x). Primero, en virtud del tercer resultado proporcionado en (17) podemos escribir
X—> —00

. Jlim 6 6
Iim

Hoo1+e—*:1§1010(1+e—*):1+o:

Determine si la grafica de f(x) =

6.

Asi, y = 6 es una asintota horizontal. Luego, debido a que lim e ™ = oo por la tabla en (12)
se concluye que e

. 6
XEIPDOI + e =0
En consecuencia, y = 0 es una asintota horizontal. La grafica de f se muestra en la FIGURA
3.5.12. |

I Funciones compuestas El teorema 3.3.3, el limite de una funcién compuesta, se cumple
cuando a se sustituye por —00 o o0 y el limite existe. Por ejemplo, si lim g(x) = Ly fes
continua en L, entonces e

lim f(g) = f(lim g() = f(L). (18)
El resultado del limite en (16) es justo un caso especial de (18) cuando f(x) = \/x. El resul-
tado en (18) también se cumple para x — —0o0. El dltimo ejemplo ilustra a (18) cuando implica
un limite en 0o0.

y=*5

FIGURA 3.5.10 Grifica de la
funcién en el ejemplo 10

y=0 | y=0
asintota asintota
horizontal horizontal
FIGURA 3.5.11 Grificas de

funciones exponenciales

y=0 ' i
FIGURA 3.5.12  Grifica de la
funcién en el ejemplo 11
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FIGURA 3.5.13  Grifica de la fun-
cién en el ejemplo 12

=8]5\7|Je ] Otro repaso a una funcion trigonométrica

En el ejemplo 2 de la seccién 3.4 vimos que lim sen(1/x) no existe. No obstante, el limite en
el infinito, }1_}1& sen(1/x), existe. Por la ecuacion (18), podemos escribir

lim sen% = sen(h’m 1) =sen(0 = 0.

X—>00

x—00 X

Como se observa en la FIGURA 35.13, y = 0 es una asintota horizontal para la grifica de f(x) =
sen(1/x). Compare esta gréfica con la mostrada en la figura 3.4.2.

m DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-9.

= Fundamentos

En los problemas 1-24, exprese el limite dado como un
nimero, como —o9, 0 como 0.

L. xllgl‘x -5 2. )lcl—{%(x - 6)?
3. Ilim 2 4. lim 10
=4t (x + 4)3 =22 — 4
5. lim—— 6. lim -
T ERVA
. 2 4+ senx ,
7 xli>nOl'* X 8. x1_1>r7171+cscx
2 2
9. lim * 10. lim——
x>0 4x" + 5 o] 4+ x
11. lim (5 - 3) 12. lim (6 + 1)
x—00 xt ==\ Vi
— 3
LA TR R A £
AV =00 oYy

. 3x x— 1 h X 4 + 1)}
15. H&(x +2 2+ 6) 16. }590(396 + 1><2x2 + x)
c X+ 2 3 2x— 1
17. limy 6 — 8 7 - l16x

19. h’m(x— Vx?+ 1) 20. h’m( x2+5x—x)

, TX
xﬂmoose“<3 - 6x)
23. lim senl< 2

> 24. lim ln< X )
x—>—00 A /4x2 + 1 xX—00 x + 8

18. lim

X—>—00

21. lim cos(%) 22.

X—00

En los problemas 25-32, encuentre lim f(x)y lim f(x) para
la funcién dada f. B e

25 _ A+ 1 2 Vo +6
'f(x)_ \/sz] . f(x)_ 5x—1
2x + 1 —5x>+ 6x + 3

27. f(x) =

— 28. f(x) = —F———
37+ 1 Vit +x2+ 1

x =X e~ *
29. f0) = G 30. f) =1+ 7=
31 f(x) = L; - 2' 3. fay = B+ b1 +x|x — 1

En los problemas 33-42, encuentre todas las asintotas verti-
cales y horizontales para la grifica de la funcién dada f.
Trace la gréfica.

_ 1 __ X
3. 00 = 5~ M. fw =
2 2 _
3. f() = 36. f(x) = ;“2 - )16
_ 1 _ 4x?
37. f(x) = 7x2(x ~ 38. f(x) 244
39, f0) = [ 40. f(x) = 1_7\/;/;

x—2 x+3
41. f(x) = —F/——— 2. fx) = —F/——
Vit + 1 xr—1
En los problemas 43-46, use la grafica dada para encontrar:
a) lim f() b) lim f(9)
¢) lim f() d) lim f(x)
43. Y

—]

FIGURA 3.5.14  Grifica para el problema 43
44.

[ TP

FIGURA 3.5.15 Grifica para el problema 44



45. y :f(.)() y

FIGURA 3.5.17 Grifica para el problema 46

En los problemas 47-50, trace una grifica de una funcién f
que satisface las condiciones dadas.

47. lim f() = —00, lim f(x) = ~00,£(2) =0, lim f(x) =0

48. f(0) = 1, lim_f() = 3, lim f() = —2

49. lim f(x) = oo, lim_f(x) = oo, lim f(x) = 1

50. lim f(x) = 2, lim f(x) = =00, f(3) = 0. f3) = 0,
Jim_ () = 0, lim f() = 0

51. Use una sustitucién idénea para evaluar

. 3

Iim x sen—.

X—00 X

52. Segtn la teoria de la relatividad de Einstein, la ma-
sa m de un cuerpo que se mueve con velocidad v es
m = my/\V'1 — v?/c?, donde my es la masa inicial y ¢
es la velocidad de la luz. ;Qué ocurre a m cuando
v—c ?

= Problemas con calculadora/SAC
En los problemas 53 y 54, use una calculadora o SAC para

investigar el limite dado. Conjeture su valor.

53. lim x? senl 54. lim <cosi)

2
xX—00 X xX—00

55. Use una calculadora o un SAC para obtener la grifica
de f(x) = (1 + x)'/*. Use la grifica para conjeturar los
valores de f(x) cuando
a) x—>—1%",b) x>0yc) x—o00.

56. a) Un n-gono regular es un poligono regular de n lados

inscrito en un circulo; el poligono estd formado por
n puntos equidistantes sobre el circulo. Suponga que
el poligono que se muestra en la FIGURA 35.18 repre-

3.6 Limites: un enfoque formal

1 Introduccion

3.6 Limites: un enfoque formal 123

senta un n-gono regular inscrito en un circulo de
radio r. Use trigonometria para demostrar que el drea
A(n) del n-gono esta dada por

2
An) = grz sen(f).

b) Tiene sentido afirmar que el drea A(n) tiende al drea
del circulo a medida que aumenta el nimero de lados
del n-gono. Use una calculadora para obtener A(100)
y A(1 000).

¢) Sea x = 2m/n en A(n) y observe que cuando n — 00
entonces x — 0. Use (10) de la seccién 3.4 para
demostrar que lim A(n) = .

FIGURA 3.5.18 n-gono inscrito para
el problema 56

= Piense en ello

57. a) Suponga que f(x) = x*/(x + 1)y g(x) = x — 1.
Demuestre que

im[f() — g()] = 0.

b) (Qué indica el resultado del inciso a) respecto a las
gréficas de f'y g, donde |x| es grande?
¢) De ser posible, asigne un nombre a la funcién g.

58. Muy a menudo los estudiantes e incluso los profesores
trazan incorrectamente graficas desplazadas vertical-
mente. Por ejemplo, las grficasde y = x>y y = x> + 1
estdn dibujadas incorrectamente en la FIGURA 3.5.19a) pero
lo estdn correctamente en la figura 3.5.19b). Demuestre
que la figura 3.5.19b) es correcta al mostrar que la dis-
tancia horizontal entre los dos puntos Py Q en la figura
tiende a 0 cuando x — o0.

YA y

Recta
horizontal

X

a) Incorrecto
FIGURA 3.5.19 Gréficas para el problema 58

b) Correcto

En el andlisis que se presenta a continuacion se considerard un enfoque alterno

a la idea de limite, que se basa en conceptos analiticos mds que en conceptos intuitivos. Una
demostracion de la existencia de un limite jamas debe estar basada en la habilidad para ela-
borar gréficas o en tablas de valores numéricos. Aunque una buena comprension intuitiva de
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FIGURA 3.6.1 f(x) estd en
(10 — &, 10 + &) siempre que x
est€ en (2 — 6,2 + 6),x #2

lim f(x) es suficiente para continuar con el estudio del célculo en este texto, en general una
Comprension intuitiva es algo muy vago como para usarlo en la demostracién de teoremas. Para
presentar una demostracién rigurosa de la existencia de un limite, o para demostrar los impor-
tantes teoremas de la seccidn 3.2, es necesario empezar con una definicién precisa de limite.

I Limite de una funcion Se intentard demostrar que lim (2x + 6) = 10 al trabajar la siguiente
idea: “Si f(x) = 2x + 6 puede hacerse arbitrariamentexﬁrzéximo a 10 al tomar x suficientemente
préximo a 2, por ambos lados pero diferente de 2, entonces lim f(x) = 10.” Es necesario pre-
cisar los conceptos arbitrariamente proximo y suﬁcientemeﬁ?e2 proximo. Para establecer una
norma de proximidad arbitraria, se pedird que la distancia entre los niimeros f(x) y 10 sea
menor que 0.1; es decir,

lf) =10/ < 0.1 o 9.9 < f(x) < 10.1. (1

Asi, jcudn proximo a 2 debe estar x para satisfacer (1)? Para averiguarlo, es posible usar dlge-
bra normal para volver a escribir la desigualdad

9.9 < 2x + 6 < 10.1

cuando 1.95 < x < 2.05. Al sumar —2 a ambos miembros de esta desigualdad simultdnea se
obtiene
—0.05 < x —2 <0.05.

Al usar valores absolutos y recordar que x # 2, la dltima desigualdad puede escribirse como
0 < |x — 2| < 0.05. Asi, para una cercania arbitrariamente préxima a 10 de 0.1, suficiente-
mente proximo a 2 significa a menos de 0.05. En otras palabras, si x es un nimero diferente
de 2 tal que su distancia a 2 satisface |x — 2| < 0.05, entonces se garantiza que la distancia de
Jf(x) a 10 satisface |f(x) — 10| < 0.1. Al expresarlo de otra manera, cuando x es un nimero
diferente de 2, pero que estd en el intervalo abierto (1.95, 2.05) sobre el eje x, entonces f(x)
estd en el intervalo (9.9, 10.1) sobre el eje y.

Se intentard generalizar usando el mismo ejemplo. Suponga que ¢ (la letra griega épsilon)
denota un nimero positivo arbitrario que constituye la medida de la proximidad arbitraria al
nimero 10. Si se pide que

[f(x) —10] < e o 10 —e < f(x) <10 + &, 2)
entonces por 10 — & < 2x + 6 < 10 + e y por algebra, se encuentra que

& & & &
_£ £ _& _ & 3
2 2<x<2+2 0 2<x 2<2. 3)

De nuevo, al usar valores absolutos y al recordar que x # 2, la dltima desigualdad en (3) puede
escribirse como
o<|x—2|<§. )
Si £/2 se denota por el nuevo simbolo & (la letra griega delta), (2) y (4) pueden escribirse como
Ifr) — 10| < e siempre que 0<|x—2]<8é.

Asi, para un nuevo valor para g, por ejemplo € = 0.001, 6 = ¢/2 = 0.0005 establece la pro-
ximidad correspondiente a 2. Para cualquier nimero x diferente de 2 en (1.9995, 2.0005),*
puede tenerse la certeza de que f(x) estd en (9.999, 10.001). Vea la FIGURA 356.1.

I Una definicion EI andlisis anterior conduce a la definicién £-6 de limite.

Definicion 3.6.1 Definicién de limite

Suponga que una funcién f estd definida en todas partes sobre un intervalo abierto, excepto
quizds en un nimero a en el intervalo. Entonces

lim f(x) = L

X—a

significa que para todo € > 0, existe un nimero 6 > 0 tal que

lfx) — Ll < e siempre que 0<|x—al <é.

* Por esta razén se usa 0 < |x — 2| < & en lugar de |x — 2| < 8. Al considerar lim f(x), no olvide que f en 2 carece
de importancia. .
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Sea lim f(x) = L y suponga que 6 > 0 es el nimero que “funciona” en el sentido de la

definiciéon 3.6.1 para un & > 0 dado. Como se muestra en la FIGURA 36.2a), toda x en
(a — 6,a + &), con la posible excepcién de a mismo, tendrd entonces una imagen f(x)
en (L — &, L + €). Ademas, en la figura 3.6.2b), una elecciéon 6, < & para la misma & tam-
bién “funciona” en el sentido de que toda x diferente a a en (@ — §;, a + 8,) proporciona f(x)
en (L — &, L + €). No obstante, la figura 3.6.2c) muestra que al escoger un g, 0 < g, < ¢,
mads pequeilo, demanda encontrar un nuevo valor de 8. Observe en la figura 3.6.2¢) que x esta
en (a — 6,a + 6) pero no en (a — 8,,a + 8;), de modo que f(x) no necesariamente estd en
(L—¢g,L+ g).

y y
L+e L+e
L+¢g

. L+ L A

fo) = =L,
L-& L—¢

a) Un 6 que funciona para un & dado b) Un 6, mds pequefio también funciona ¢) Un &, mds pequefio requiere un §,;<<4.
para el mismo & Para xen (a — 8, a +d), f(x) no
necesariamente estd en (L — & L+ ¢&))

FIGURA 3.6.2 f(x) estd en (L — &, L + &) siempre que x esté en (a — §,a + 8),x # a

Uso de la definicién 3.6.1

Demuestre que 11_1)131 Gx +2) =17.

Solucién Para cualquier € > 0, arbitrario sin importar cudan pequefio sea, se quiere encon-
trar un 6 de modo que

5x +2) = 17| < e siempre que 0<|x—3|<8é.
Para hacer lo anterior, considere
(5x + 2) — 17| = |5x — 15| = 5[x — 3|.
Asi, para hacer |[(5x + 2) — 17| = 5|x — 3| < g, s6lo es necesario hacer 0 < |x — 3| < g/5;
es decir, se escoge & = ¢/5.
Verificacion Si 0 < |x — 3] < g/5, entonces 5|x — 3| < & implica

[5x — 15| < & obien, |5x+2)— 17| <e obien, |f(x) — 17| <e.

Uso de la definicion 3.6.1

b i A6 =X _ g
emuestre que x_1>H_14 4+ O o Este limite se analizé en (1) y

(2) de la seccion 3.1.

Solucion Para x # —4,

16 — x2 . _ _ — Iy — (—
‘4+x—8’—|4 x—8|=|-x—4|=|x+4] = |x — (-9

Asi,

16 — x?
4 + x

—8‘ =x—(—-4)| <e
siempre que se tiene 0 < |x — (—=4)| < &; es decir, se escoge & = e.

A3\ e lE] Un limite que no existe

Considere la funcién

0, x=1
f(x):{i x> 1
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y En la FIGURA 363 se reconoce que f tiene una discontinuidad de tipo salto en 1, de modo que
o— lim f(x) no existe. No obstante, para demostrar este Gltimo hecho, se procederd indirectamente.
x—1

Suponga que el limite existe; a saber, lim f(x) = L. Luego, por la definicién 3.6.1 sabemos
x—1

que para la eleccién & = 3 debe existir un & > 0 tal que

+ X
1
1 .
FIGURA 3.63 El limite de f no lf(x) — L| < 5 siempre que 0<|x—1] <34
existe cuando x tiende a 1 en el
ejemplo 3 Luego, a la derecha de 1 se escoge x = 1 + §/2. Puesto que
9] 9]
< -1 =5 <
0 1+ > l‘ > 0
debe tenerse
(18- e| pn <1 5
A la izquierda de 1, se escoge x = 1 — §/2. Pero
0 0
<l1=-Z-1]=]-3| <
o< [i-2-1)-|-¢| <5
. o 1
implica f 1—5 - L =|O—L\=\L|<§. (6)

Al resolver las desigualdades en valor absoluto (5) y (6) se obtiene, respectivamente,

3 5 1 1
> <L< > y > <L< >
Puesto que ningin nimero L puede satisfacer estas dos desigualdades, concluimos que

lim f(x) no debe existir.
x—1

En el siguiente ejemplo se considera el limite de una funcién cuadratica. Veremos que en
este caso encontrar la 6 requiere un poco mds de ingenio que en los ejemplos 1y 2.

Uso de la definicién 3.6.1

Este limite se analizé en el . Demuestre que lim (—xz + 2x + 2) = —6.
ejemplo 1 de la seccién 3.1. x4

Solucién Para un & > 0 arbitrario es necesario encontrar un § > 0 tal que

=X +2v+2-(=6)| <& siempreque 0 < |x—4| <4

Luego,
|—x* + 2x + 2 — (=6)| = [(=D)(x* — 2x — 8)]
= | + 2)(x — )]
= |x + 2|x — 4| (7)

En otras palabras, se quiere hacer |x + 2|jx — 4| < &. Pero puesto que hemos acordado exa-
minar valores de x cerca de 4, s6lo se consideran aquellos valores para los cuales |x — 4] < 1.
Esta ultima desigualdad da 3 < x < 5 o, de manera equivalente, 5 < x + 2 < 7. En conse-
cuencia, podemos escribir |x + 2| < 7. Entonces, por (7),

0< |x—4] <1 implica |=x*+2x +2 — (—6)| < 7|x — 4.
Si ahora & se escoge como el minimo de los dos nimeros 1y &/7, escrito 8 = min{1, &/7}
se tiene
0<|x—4/ <8 implica |-x>+2x+2—(—6)|<Tx—4<7-L=¢

7

El razonamiento en el ejemplo 4 es sutil. En consecuencia, merece la pena dedicar unos
minutos para volver a leer el andlisis que estd inmediatamente después de la definicién 3.6.1,



volver a examinar la figura 3.3.2b) y luego volver a pensar en por qué 8 = min{1, &/7} es el
0 que “funciona” en el ejemplo. Recuerde que el valor de & puede escogerse arbitrariamente;
considere & para, por ejemplo, e =8, e =6y ¢ = 0.01.

I Limites laterales A continuacién se presentan las definiciones de los limites laterales,
lim f(x) y lim f(x).
X—a X—a

Definicién 3.6.2 Limite por la izquierda

Suponga que una funcién f estd definida sobre un intervalo abierto (c, a). Entonces
lim f(x) = L
X—a

significa que para todo £ > 0 existe una 6 > 0 tal que

lfx) — L| < e siempre que a—o6<x<a.

Definicién 3.6.3 Limite por la derecha

Suponga que una funcién f estd definida sobre un intervalo abierto (a, ¢). Entonces
lim f(x) = L
X—a

significa que para todo € > 0 existe una 6 > 0 tal que

If) — Ll < e siempre que a<x<a-+ad

N5\ [ Uso de la definicion 3.6.3

Demuestre que lim Vx = 0.
X

Primero, podemos escribir
[Vx — 0] = [Vx| = V.
Luego, |Vx — 0| < & siempre que 0 < x < 0 + & En otras palabras, se escoge § = &°.
Verificacién Si 0 < x < &% entonces 0 < Vx < & implica

Vx| <& o bien, ['Vx — 0| < e.

I Limites que implican el infinito Los dos conceptos de limite infinito
f(x) > o0 (o bien, —c0) cuando x —a

y limite en el infinito
f(x) >L cuando x— o0 (0 bien, —00)

se formalizan en las dos secciones siguientes.
Recuerde que un limite infinito es un limite que no existe cuando x — a.

Definicion 3.6.4 Limites infinitos

i) li_r)n f(x) = oo significa que para todo M > 0 existe un 6 > 0 tal que f(x) > M siempre
aué0< |x —a] < 6.

ii) lim f(x) = —oo significa que para todo M < 0 existe un 6 > 0 tal que f(x) < M siem-
f)?gque0< |lx —a| < 6.

3.6 Limites: un enfoque formal
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Los incisos i) y ii) de la definicién 3.6.4 se ilustran en la FIGURA 3.6.44) y en la figura 3.6.4b),
respectivamente. Recuerde, si f(x) — 0o (0 —oco) cuando x — a, entonces x = a es una asin-
tota vertical para la grafica de f. En el caso en que f(x) — c0 cuando x — a, entonces f(x)
puede hacerse mds grande que cualquier nimero positivo arbitrario (es decir, f(x) > M) al
tomar x suficientemente préximo a a (es decir, 0 < |x — a| < d).

<
Q
|
>
Q
- =
Q
JF
2
=

S b —p——————

a) Para un M dado, siempre que b) Para un M dado, siempre que
a—d6<x<atéd,x#a, a—8<x<a+d, x+#a,
se tiene que f(x) > M se tiene que f(x) <M

FIGURA 3.6.4 Limites infinitos cuando x —a

Los cuatro limites infinitos por un lado

f(x) > o0 cuando x —>a f(x) > —ococuando x —>a~

f(x) >oocuando x —>a”,  f(x)— —oocuandox —>a’

se definen de forma andloga a la proporcionada en las definiciones 3.6.2 y 3.6.3.

Definicion 3.6.5 Limites en el infinito

i) lim f(x) = L si para todo ¢ > 0, existe un N> 0 tal que [f(x) — L| < ¢

siempre que x > N.
ii) lim f(x) = L si para todo € > 0, existe un N <0 tal que |[f(x) — L| < &

X—> —00

siempre que x < N.

Los incisos i) y ii) de la definicién 3.6.5 se ilustran en la FIGURA 3.6.54) y en la figura 3.6.5b),
respectivamente. Recuerde, si f(x) — L cuando x — oo (0 —00), entonces y = L es una asin-
tota horizontal para la grafica de f. En el caso en que f(x) — L cuando x — 00, entonces la
gréfica de f puede hacerse arbitrariamente préxima a la recta y = L (es decir, |f(x) — L| < &)
al tomar x suficientemente lejos sobre el eje x positivo (es decir, x > N).

a) Paraun & dado, x > N implica b) Para un & dado, x < N implica
L-—e<f(x)<L+e L-—e<f(x)<L+e
FIGURA 3.6.5 Limites en el infinito
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Uso de la definicion 3.6.5/)

3.

Ii =
Demuestre que Im——

Por la definicién 3.6.5i), para cualquier € > 0 es necesario encontrar un nimero
N >0 tal que

3x
x+1

- 3‘ < e siempre que x> N.

Luego, al considerar x > 0, tenemos
3x _
x+1

-3 3 3
x+1‘ _)c-|—1<)c<8
siempre que x > 3/e. Entonces, se escoge N = 3/e. Por ejemplo, si ¢ = 0.01, entonces

N = 3/(0.01) = 300 garantiza que |f(x) — 3| < 0.01 siempre que x > 300.

I Posdata: Un poco de historia Después de esta seccion tal vez esté de acuerdo con el fil6-
sofo, predicador, historiador y cientifico inglés William Whewell (1794-1866), quien escribi6
en 1858 que “Un limite es una concepcion. . . peculiar”. Durante muchos afios después de la
invencién del cdlculo en el siglo xvIi, los matematicos discutian y debatian acerca de la natu-
raleza de un limite. Habia la percepcion de que la intuicién, las graficas y ejemplos numéri-
cos de razones de cantidades que desaparecen proporcionan cuando mucho un cimiento ines-
table para tal concepto fundamental. Como se vera al principio de la siguiente unidad, el
concepto de limite juega un papel central en cdlculo. El estudio del célculo pasé por varios
periodos de creciente rigor matematico empezando con el matematico francés Augustin-Louis
Cauchy y luego con el matemadtico aleman Karl Wilhelm Weierstrass.

Augustin-Louis Cauchy (1789-1857) naci6 durante una época de convulsion
en la historia de Francia. Cauchy estaba destinado a iniciar una revolucién por
si mismo en matematicas. Por muchas contribuciones, pero especialmente
debido a sus esfuerzos por clarificar cuestiones matemdticas oscuras, su
demanda incesante por contar con definiciones satisfactorias y demostraciones
rigurosas de teoremas, Cauchy a menudo es denominado “padre del andlisis
moderno”. Escritor prolifico cuyo trabajo sélo ha sido superado por unos cuan-
tos, Cauchy produjo casi 800 articulos sobre astronomia, fisica y matematicas. Sin embargo,
la misma mentalidad que siempre estaba abierta y preguntaba sobre ciencia y matemadticas tam-
bién era estrecha y no cuestionaba muchas otras dreas. Franca y arrogante, la postura apasio-
nada de Cauchy respecto a asuntos politicos y religiosos a menudo lo alejaron de sus colegas.

Cauchy

Karl Wilhelm Weierstrass (1815-1897) {Uno de los analistas matematicos
mds destacados del siglo Xix sin haber tenido ningiin grado académico!
Después de especializarse en leyes en la Universidad de Bonn, aunque con-
centrado en esgrima y en beber cerveza durante cuatro afios, Weierstrass se
“gradud” en la vida real sin ningtn titulo. Al necesitar trabajo, Weierstrass
aprobd un examen estatal y recibié un certificado para ensefar en 1841.
Durante 15 afios como profesor de enseianza secundaria, su genio matematico
dormido florecié. Aunque la cantidad de sus investigaciones publicadas era modesta, especial-
mente en comparacién con la de Cauchy, la calidad de estos trabajos impresiond tanto a
la comunidad matemadtica alemana que se le otorgd un doctorado, honoris causa, de la
Universidad de Konigsberg, y finalmente fue contratado como profesor en la Universidad de
Berlin. Una vez ahi, Weierstrass obtuvo reconocimiento internacional como matematico y como
maestro de matemadticas. Una de sus estudiantes fue Sonja Kowalewski, la mds grande mate-
matica del siglo x1x. Fue Karl Weierstrass quien doté de sélidos fundamentos al concepto de
limite con la definicién &-6.

Weierstrass
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m DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-9.

= Fundamentos

En los problemas 1-24, use las definiciones 3.6.1, 3.6.2 o
3.6.3 para demostrar el resultado sobre limites dado.

L. 1im10 = 10 2. limm=m
3. lfn%x =3 4. h’n}Zx =8
5. lim (x + 6) =5 6. lim(x — 4) = —4
7. lmGx +7) =7 8. lm(9 — 6x) =3
o 2x—-3 1 ) _
9. lim = — = 10. xgq}zs(zx +5) =48
L xP—25 CoxP=Tx+12 1
o im=s =710 R dmT e T
5 4
13. 1im 127 _ )
x—0 x4
3 2 _
14. h,m2x + 5x 2x 5:7
x—1 x2 — 1
15. h;r%xz =0 16. lim 8x* =0
17. 1im V5x = 0 18. 1§{}12)+\/2x —1=0
. _ foax—1, x<0
19. lim f0) = =1, fx) = {Zx Y1 ox>0

. _ )0, x=1
21. lfg%xz =9 22, lfil% Qx*+4) =12

23. lim x*—2x+4)=3 24. lim @* + 2x) =35

25. Para a > 0, use la identidad

Vx + Va \x — a|
Vx = Va| = |[Vx = Val| - =
IV al = | “l Vx+Va Vx+ Va
y el hecho de que Vx=0 para demostrar que

limVx = Va.

X—a

26. Demuestre que ll’n%(l/x) = % [Sugerencia: Considere
s6lo los nimeros x tales que 1 < x < 3.]

En los problemas 27-30, demuestre que lim f(x) no existe.

27.f(x)={3: i;i a=1
28.f(x)={EL iig a=3
29.f(x)={;’_x, iig; a=0
30.f(x)=l; a=0

X

En los problemas 31-34, use la definicién 3.6.5 para demos-
trar el resultado de limites dado.

. 5x—1_5 . 2x 2
3L lim S 173 3. lim 8= 3
2
33, 1im % — g 34, lim —~

x—)*OOx—3_ x—1>rE100x2+3:
= Piense en ello
35. Demuestre que lim f(x) = 0,

x—0

donde f(x) = {

X, xracional
0, xirracional.

Competencia final de la unidad 3

Las respuestas de los problemas impares comienzan en la pagina RES-10.

A. Falso/verdadero

En los problemas 1-22, indique si la afirmacién dada es falsa (F) o verdadera (V).

3
., x— 8

1. lim =
x—2 X —

12

3. 11’mM =1
x—=0 X

. 1 .
lim tan 1(* no existe.
x—0% X

A N

Si lim f(x) = c0 y Hin g(x) = oo, entonces 11111 fx)/gx) = 1.

2. lmVx—5=0

. _ 2
4, lime* ¥ = oo
X—00

+8z2-2
6. lim—~———>%

> . .- no existe.
=172 4+ 97 — 10

Si h’in fx) =3y hln g(x) = 0, entonces 11111 f(x)/g(x) no existe.

Si 1im f(x) existe y lim g(x) no existe, entonces lim f(x)g(x) no existe.
X—a X—a X—a

10. Si li_r>n fx) =0y 1f_r)n g(x) = oo, entonces lf_r)n [f&x) — gx)] = 0.

11. Si f es una funcién polinomial, entonces lim f(x) = oo.
X—>00



12.
13.
14.
15.
16.

17.
18.

19.

20.

21.
22,

Toda funcién polinomial es continua sobre (—00, 00).
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Para f(x) = x* + 3x — 1 existe un niimero c en [—1, 1] tal que f(c) = 0.

Si fy g son continuas en el nimero 2, entonces f/g es continua en 2.

La funcién entero mayor f(x) = | x| no es continua sobre el intervalo [0, 1].

Si lim f(x) y lim f(x) existen, entonces
xX—a X—a

Iim f(x) existe.

x—a

Si una funcién f es discontinua en el nimero 3, entonces f(3) no estd definido.

Si una funcién f es discontinua en el nimero a, entonces Iim (x — a)f(x) = 0.
X—a

Si f es continua y f(a)f(b) < 0, existe una raiz de f(x) = 0 en el intervalo [a, b].
2 _
X Exs-i- 5’ c 45
La funcién f(x) = X es discontinua en 5.
4, x=5
La funcién f(x) = Hﬁl tiene una asintota vertical en x = —1.

Siy = x — 2 es una recta tangente a la grafica de la funcién y = f(x) en (3, f(3)), enton-

ces f(3) = 1.

En los problemas 1-22, llene los espacios en blanco.

1. 11’n%(3x2 — 4x) = 2. 11'r1}(5x2)0 =
3 ll’mg - 4. lim 7sz+l —
Cisx3 — 108 T C oo 2x + 1 -
1 — cos’(t — 1
5.l = D 6. 1im S3X —
i—1 r—1 =0 Sx
7. lime' = 8. lime' =
x—0 x—0
1+ 2"
mel/s = ; -
9. lime 0.l e~ —
11. lim = —00 12. Him(Sx + 2) = 22
x—=>__X — 3 X—>__
13. limx’ = —o0 14. 11’mi = 00
X—> X—>— X
15. Sif(x) =2(x — 4)/|x — 4|, x # 4, y f(4) =9, entonces ll’I}‘l fx) =
16. Suponga que x> — x*/3 = f(x) = x? para toda x. Entonces lim f(x)/x* =
x—0
17. Si f es continua en un nimero a y lim f(x) = 10, entonces f(a) =
18. Sifes continua en x =5, f(5) =2, y lim g(x) = 10, entonces lfrrg [ex) — f)] = .
x—5 x—>
2x — 1 :
> 5 X F 2
19. f(x) = 4t — 1 es (continua/discontinua) en el nimero %
0.5, x=3
20. La ecuacién e * = x% — 1 tiene precisamente raices en el intervalo (—00, 00).
2 _
21. La funcién f(x) = 170 + ); — 24 tiene una discontinuidad removible en x = 2. Para quitar
la discontinuidad, es necesario definir que f(2) sea
22. Si lim_g(x) = =9y f(x) = x2, entonces lim_f(g(x)) =

En los problemas 1-4, trace una grafica de la funcién f que satisface las condiciones dadas.



132 UNIDAD 3 Limite de una funcion

f) dim f) = L

L fO) = 1) = 0,£(6) = 0, lim f(x) = 2, lim f() = 00, lim_f(x) = 0, lim f(x) = 2
- Mm_f() = 0.£(0) = 1, lim f(x) = 0o, lim f(x) = 00, f(5) = 0, lim f(x) = ~1

C lim £ = 2,/(=1) = 3,0) = 0.f(-) = ~f@)

- lim () = 0,£(0) = =3, /(1) = 0,f(—%) = ()

A W N =

En los problemas 5-10, establezca cudles de las condiciones a)-j) son aplicables a la gréfica
de y = f(x).

a) f(a) no estd definida b) f(a) = L ¢) fescontinuaen x = a d) fes continua sobre [0, @] e) lim f(x) =L
xX—a
Q) lim [f&) = 0o k) lim f(x) = L i) lim f(x) = —o0 j) lim f(x) = 0
X—a X—>00 X—>00 X—>00
5. y y= j(’C) 6. y : 7.
L———o—— LT |
i i
! |
i y=1 /1
i |
! |
I
: / | x
N R —— a FIGURA 3R.3 Grifica
a FIGURA 3.R.2  Grifica para el problema 7
FIGURA 3.R.1  Grifica para el problema 6
para el problema 5
8 5 y =) % 10,
L | L L !
I I
I I
I 1
1 1
I I
I y A I
1 : ’ 1
| — B
! |
| X
I ; \:
I
FIGURA 3.R4 Grifica !
para el problema 8 FIGURA 3.R.5 Grifica FIGURA 3.R.6 Grifica
para el problema 9 para el problema 10

En los problemas 11 y 12, trace la grafica de la funciéon dada. Determine los valores numéri-
cos en caso de haber alguno, en que f es continua.

x+ 1, x<?2
11. f(x) = |x| + x 12. f(x) =3, 2 <x<4

—x+7, x>4

En los problemas 13-16, determine intervalos sobre los que la funcién dada es continua.

13. f) = <16 14 foy = Y4—x

X —x x> —4x + 3
15. f(x) =ﬁ 16. f(x) =%
X — X

17. Encuentre un nimero k de modo que
_Jkx+1, x=3
f(x)_{Z—kx, x> 3
sea continua en el nimero 3.

18. Encuentre ntimeros a y b tales que

x + 4, x=1
fx)=Sax+b, 1<x=3
3x—8 x>3

sea continua en todas partes.



Unidad 4

La derivada

) e (s
T

y = coshx

En esta unidad La palabra calculus es una forma diminutiva de la palabra calx, que significa
“piedra”. En civilizaciones antiguas, piedras pequefas o guijarros se usaban a menudo como
medio de reconocimiento. En consecuencia, la palabra calculus se refiere a cualquier método
sistematico de computacion. No obstante, durante los dltimos siglos la connotacion de la
palabra calculo ha evolucionado para significar esa rama de las matematicas relacionada con
el calculo y la aplicacion de entidades conocidas como derivadas e integrales. Asi, el tema
conocido como calculo se ha dividido en dos areas amplias pero relacionadas: el calculo
diferencial y el calculo integral.

En esta unidad se inicia el estudio del calculo diferencial.

Comprender el concepto de derivada para aplicarlo como la herramienta que estudia
y analiza la variacion de una variable con respecto a otra.

133
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Recta
tangente
en P,

FIGURA 4.1.1 La recta tangente L

toca un circulo en el punto P

Recta
tangente en

P(a, f(a))

FIGURA 4.1.2 Recta tangente L a
una gréfica en el punto P

Recta
tangente

P(a, f(a))

/

FIGURA 4.1.3 Pendientes de rec-
tas secantes aproximan la
pendiente m,, de L

Recta
secante

L
QO(a+h, f(a+ h))
Recta
tangente

P(a, f(a))

| fla+h) —fla)

/ a a+h

FIGURA 4.1.4 Rectas secantes
giran en la recta tangente L
cuando 7 —0

| a g

Rectas
secantes

X

4.1 El problema de la recta tangente

I Introduccion En un curso de cdlculo se estudian muchas cosas diferentes, pero como se
menciond en la introduccién de la seccion 3.1, el tema “cédlculo” por lo regular se divide en
dos amplias dreas —relacionadas entre si— denominadas calculo diferencial y calculo inte-
gral. El andlisis de cada uno de estos temas suele comenzar con un problema de motivacién
que implica la grafica de una funcién. El estudio del célculo diferencial se motiva con el

siguiente problema.

* Encontrar la recta tangente a la grafica de una funcién f,
mientras el estudio del cdlculo integral se motiva con el siguiente problema:
* Encontrar el drea bajo la gréifica de una funcion f.

El primer problema se abordard en esta seccién y el segundo se analizard en el libro Matemd-
ticas 2 de esta serie.

I Recta tangente a una grafica La palabra tangente surge del verbo latino fangere, que sig-
nifica “tocar”. Quizd recuerde del estudio de geometria plana que una tangente a un circulo
es una recta L que corta, o toca, al circulo exactamente en un punto P. Vea la FIGURA 4.1.1. No
resulta tan ficil definir una recta tangente a la grafica de una funcién f. La idea de tocar tras-
lada del concepto de recta tangente a la grifica de una funcién, pero la idea de cortar la grd-
fica en un punto no lo hace.

Suponga que y = f(x) es una funcién continua. Si, como se muestra en la FIGURA 4.1.2, f posee
una recta tangente L a su grifica en un punto P, entonces ;cudl es la ecuacion de esta recta? Para
contestar esta pregunta requerimos las coordenadas de P y la pendiente m,, de L. Las coordena-
das de P no presentan ninguna dificultad, puesto que un punto sobre la gréfica de una funcién f se
obtiene al especificar un valor de x en el dominio de f. Asi, las coordenadas del punto de tangen-
cia en x = a son (a, f(a)). En consecuencia, el problema de encontrar una recta tangente se vuelve
en el problema de encontrar la pendiente m,,, de la recta. Como medio para aproximar my,,, €s
facil encontrar las pendientes mg.. de rectas secantes (del verbo latino secare, que significa “cor-
tar”) que pasan por el punto P y cualquier otro punto Q sobre la grafica. Vea la FIGURA 4.13.

I Pendiente de rectas secantes Si las coordenadas de P son (a, f(a)) y las coordenadas de
Q son (a + h,f(a + h)), entonces como se muestra en la FIGURA 4.1.4, la pendiente de la recta
secante que pasa por Py Q es

cambioeny f(a + h) — f(a)

cambioenx  (a+ h) —a

Mgee =

_fla+h — fla

o bien, Myee = T (1)

La expresion en el miembro derecho de la igualdad en (1) se denomina cociente diferencial.
Cuando se hace que h asuma valores que cada vez son mds préximos a cero, es decir, cuando
h — 0, entonces los puntos Q(a + h, f(a + h)) se mueven en la curva cada vez mas cerca del
punto P(a, f (a)). Intuitivamente, es de esperar que las rectas secantes tiendan a la recta tan-
gente L, y que mg.. —> my,, cuando 7 — 0. Es decir,

Mgy = 1M e

en el supuesto de que el limite existe. Esta conclusion se resume en una forma equivalente del
Iimite usando el cociente diferencial (1).

Definicion 4.1.1 Recta tangente con pendiente

Sea y = f(x) continua en el nimero a. Si el limite

m flath—f@ 2)

o = Jim

existe, entonces la recta tangente a la grafica de f en (a, f(a)) es la recta que pasa por el
punto (a, f(a)) con pendiente mi,,.




4.1 El problema de la recta tangente

Justo como muchos de los problemas analizados antes en esta unidad, observe que el limite
en (2) tiene la forma indeterminada 0/0 cuando & — 0.

Si el limite en (2) existe, el nimero m,, también se denomina pendiente de la curva
y = f(x) en (a, f(a)).

El célculo de (2) es esencialmente un proceso de cuatro pasos, tres de los cuales implican
s6lo precdlculo matemadtico: dlgebra y trigonometria. Si los tres primeros pasos se llevan a cabo
con precision, el cuarto, o paso de cdlculo, puede ser la parte mas sencilla del problema.

Directrices para calcular (2)

i) Evaluar f(a) y f(a + h).
ii) Evaluar la diferencia f(a + h) — f(a). Simplificar.
iii) Simplificar el cociente diferencial

fla+h — fla)
, .

iv) Calcular el limite del cociente diferencial

’ fla+h — fla)
m-—— .

h—0 h

En muchas instancias, el célculo de la diferencia f(a + h) — f(a) en el paso ii) es el mds
importante. Resulta imperativo que usted simplifique este paso cuanto sea posible. Un consejo
de como hacerlo: en muchos problemas que implican el célculo de (2) es posible factorizar 7 de o Nota
la diferencia f(a + h) — f(a).

0] 5\ Mo N El proceso de cuatro pasos

Encuentre la pendiente de la recta tangente a la graficade y = x> + 2 en x = 1.

El procedimiento de cuatro pasos presentado antes se usa con el nimero 1 en lugar
del simbolo a.
i) El paso inicial es el cilculo de f(1) y f(1 + h). Se tiene f(1)=1>+2=3,y
fA+h=0+h>+2
=0 +2h+h)+2
=3+ 2h+ K.
ii) Luego, por el resultado en el paso precedente, la diferencia es:
fA+h —f1)=3+2n+h -3
=2h + K
— h(2 + h) « observe el factor de h

Ja + ) — (1)

iii) Abhora, el calculo del cociente diferencial ——————— es directo.
De nuevo, se usan los resultados del paso precedente:
f(U+h) —f(1) h@2+h
h B h

= 2 4+ h. « las h se cancelan

iv) Abhora el dltimo paso es facil. Se observa que el limite en (2) es
por el paso precedente

 fA+ ) =)

m _— =

Myn = h

h—0 h /111—13(1) Q+h=2

La pendiente de la recta tangente a la grafica de y = x> + 2 en (1, 3) es 2.

)3\ Kol Ecuacion de la recta tangente

Encuentre una ecuacién de la recta tangente cuya pendiente se hallé en el ejemplo 1.
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N =2x+1
y=x"+2 Y Y

mtan:2

t 7 ——+—>x
FIGURA 4.1.5 Recta tangente en
el ejemplo 2

Punto de tangencia
2D

f f f ; X
. 1
La pendiente es m,, = —

FIGURA 4.1.6 Recta tangente en
el ejemplo 3

2

Se conocen el punto de tangencia (1, 3) y la pendiente m,,, = 2, de modo que por
la ecuacién punto-pendiente de una recta se encuentra

y—3=2x—1) o bien, y=2x+ 1.

Observe que la dltima ecuacidn es consistente con las intersecciones x y y de la recta mos-
trada en la FIGURA 4.1.5.

A]S[JNe ) Ecuacion de la recta tangente

Encuentre una ecuacién de la recta tangente a la gréfica de f(x) = 2/x en x = 2.

Se empieza por usar (2) para encontrar m,, con a identificada como 2. En el
segundo de los cuatro pasos es necesario combinar dos fracciones simbdlicas por medio de un
comun denominador.

i) Setiene f(2) =2/2 =1y fQ2 + h) =2/Q2 + h).

i) Q4 — Q) = 5o~ ]

__2 _12+h
2+h 1 2+h

<— un comun denominador es 2 + h

_2-2-h
2+ h
—h o
= 2+ h <« aqui estd el factor de h

iii) El ultimo resultado debe dividirse entre & o, mds precisamente, entre T Se invierte

- 1
y multiplica por —

h
_—h
f(2+h)_f(2):2+h: —h ,l: —1 < las h se cancelan
h h 2+h h 2+ W
1
iv) Por (2), my,, es
_h,mf(2+h)—f(2)_h,m -1 _ 1
han = h 02+ h 2

Como f(2) = 1, el punto de tangencia es (2, 1) y la pendiente de la recta tangente en (2, 1)
es My, = —3. Con base en la ecuacién punto-pendiente de una recta, la recta tangente es

1 1
y 1—2(x 2) o y = 2x+2.

Las graficas de y = 2/x y la recta tangente en (2, 1) se muestran en la FIGURA 4.1.6.

N1\ [LNel¥: Pendiente de una recta tangente
Encuentre la pendiente de la recta tangente a la grafica de f(x) = Vx — l enx = 5.

Al sustituir a@ por 5 en (2) se tiene:
i fG)=V5-1=V4=2y
f6+hn=V5+h—1=V4+h

i) La diferencia es
fG5+h) —f5) =V4+h-2.

Debido a que se espera encontrar un factor de 4 en esta diferencia, procedemos a
racionalizar el numerador:
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e NVEFR-2 VAT h+2
65+ ) = f5) =~ T 1 2
Gt —4

CNVa+h+2

<« éste es el factor de h

_ h
Va+n+2

fG+h -5
-, ¢si

iii) Asi, el cociente diferencial n

_h
fO+h—=f5 Via+h+2
h B h

h

MVE+ &+ 2)

T NAth+2
iv) El limite en (2) es
& +hn—f05 1
m————— = lim

I
= li = =,
=0 h SON4+h+2 Va+2 4

La pendiente de la recta tangente a la gréfica de f(x) = Vx — 1l en (5, 2) es i.

1

Myan

El resultado obtenido en el siguiente ejemplo no es sorprendente.

][ JEe}MA Recta tangente a una recta

Para cualquier funcién lineal y = mx + b, la recta tangente a su grafica coincide con la recta
misma. Asi, no de manera inesperada, la pendiente de la recta tangente para cualquier nimero
X =aes

fla + h) — f(a) m(a + h) + b — (ma + b) mh
My, = lImM—————— = lim =lim—=Ilimm=m. N
h—0 h h—0 h h—=0 h h—0

I Tangentes verticales El limite en (2) puede no existir para una funcién fen x = a y aun asi
ser una tangente en el punto (a, f(a)). La recta tangente a una gréafica puede ser vertical, en cuyo
caso su pendiente estd indefinida. El concepto de tangente vertical se abordard en la seccion 4.2.

A3\ JHelN:] Recta tangente vertical

Aunque por esta ocasién no se abundard en los detalles, puede demostrarse que la grafica de
f(x) = x'? posee una tangente vertical en el origen. En la FIGURA 4.17 se observa que el eje y,
es decir, la recta x = 0, es tangente a la grafica en el punto (0, 0). |

I Una tangente que puede no existir La grifica de una funcién f que es continua en un
nimero a no tiene por qué poseer una recta tangente en el punto (a, f(a)). Una recta tangente
no existird cuando la grafica de f tenga un pico pronunciado en (a, f(a)). En la FIGURA 4.1.8 se
indica qué puede ser erréneo cuando la grafica de la funcién tiene un “pico”. En este caso f
es continua en a, pero las rectas secantes que pasan por Py Q tienden a L, cuando Q — P,
y las rectas secantes que pasan por Py Q' tienden a una recta diferente L, cuando Q' — P.
En otras palabras, el limite en (2) no existe porque los limites laterales del cociente diferen-
cial son diferentes (cuando 7 —0" y cuando A —0").

A\ [JXeMVA Grafica con un pico

Demuestre que la grafica de f(x) = |x| no tiene tangente en (0, 0).

FIGURA 4.1.7 Tangente vertical
en el ejemplo 6

a
FIGURA 4.1.8 La tangente no
existe en (a, f(a))
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y=|x|

I X
FIGURA 4.1.9 Funcién en el
ejemplo 7

La gréfica de la funcién valor absoluto en la FIGURA 4.1.9 tiene un pico en el origen.
Para demostrar que la grifica de f no posee una recta tangente en el origen es necesario exa-
minar

i f(0+h)—f(0)_l, 0 + Al — |o] — lim 1|
) h D h o R
Por la definicion de valor absoluto
_Jh, h>0
Il = {—h, h<0
observamos que
_nl h . ]
hll)%l+ b hll)rg,r A =1 mientras hm 7 hll> N = = —1

Puesto que los limites por la derecha y por la izquierda no son iguales, se concluye que el
limite (2) no existe. Aunque la funcién f(x) = |x| es continua en x = 0, la grifica de f no
posee ninguna tangente en (0, 0).

I Razon de cambio media En contextos diferentes el cociente diferencial en (1) y (2), o pen-
diente de la recta secante, se escribe en términos de simbolos alternos. El simbolo 4 en (1) y
(2) a menudo se escribe como Ax y la diferencia f(a + Ax) — f(a) se denota por Ay, es decir,
el cociente diferencial es

cambioeny f(a + Ax) — f(a) fla + Ax) — f(a) Ay

cambioen x (a+ Ax) —a - Ax T Ax &)
Ademds, si x; = a + Ax, x, = a, entonces Ax = x; — xp y (3) es lo mismo que
J) = fl) _ Ay
X —x  Ax “)

La pendiente Ay/Ax de la recta secante que pasa por los puntos (xy, f(x)) y (x1, f(x;)) se deno-
mina razon de cambio media de la funcién f sobre el intervalo [x, x;]. Asi, el limite 11m Ay/Ax
se denomina razén de cambio media instantinea de la funcién con respecto a x on Xo-

Casi todo mundo tiene una nocién intuitiva de la velocidad como la razén a la cual se
cubre una distancia en cierto lapso. Cuando, por ejemplo, un autobus recorre 60 mi en 1 h, la
velocidad media del autobus debe haber sido 60 mi/h. Por supuesto, resulta dificil mantener
la razén de 60 mi/h durante todo el recorrido porque el autobus disminuye su velocidad al
pasar por poblaciones y la aumenta al rebasar a otros vehiculos. En otras palabras, la veloci-
dad cambia con el tiempo. Si el programa de la compafifa de transportes demanda que el auto-
bus recorra las 60 millas de una poblacién a otra en 1 h, el conductor sabe instintivamente que
debe compensar velocidades inferiores a 60 mi/h al conducir a velocidades superiores en otros
puntos del recorrido. Saber que la velocidad media es 60 mi/h no permite, sin embargo, con-
testar la pregunta: ;jcudl es la velocidad del autobts en un instante particular?

I Velocidad media En general, la velocidad media o rapidez media de un objeto en movi-
miento estd definida por

cambio en distancia

Upo = ; - . 5
P cambio en tiempo )

Considere un corredor que termina una carrera de 10 km en un tiempo de 1 h 15 min
(1.25 h). La velocidad media del corredor, o rapidez media de la carrera, fue
10—-0

Upro = m = 8 km/h.

Pero suponga ahora que deseamos determinar la velocidad exacta v en el instante en que el
corredor ya lleva media hora corriendo. Si se mide que la distancia recorrida en el intervalo
de O h a 0.5 h es igual a 5 km, entonces

Vpro = O% = 10 km/h.

De nuevo, este nimero no es una medida, o necesariamente incluso un indicador aceptable,
de la velocidad instantdnea v a que el corredor se ha movido 0.5 h en la carrera. Si determi-
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namos que a 0.6 h el corredor estd a 5.7 km de la linea de salida, entonces la velocidad media
de 0 h a0.6 hes vy, =5.7/0.6 = 9.5 km/h. No obstante, durante el lapso de 0.5 h a 0.6 h, Salida % " % Meta

= 2T =5 = 7k, st

U =
Pre0.6 — 0.5
El dltimo ndmero es una medida mas realista de la razon v. Vea la FIGURA 4.1.10. Al “estirar” el

lapso entre 0.5 h y el tiempo que corresponde a la posicién medida cerca de 5 km, se espera
obtener incluso una mejor aproximacion a la velocidad del corredor en el instante 0.5 h.

| 10 km |
en1.25h

FIGURA 4.1.10 Corredor en una
carrera de 10 km

I Movimiento rectilineo Para generalizar el andlisis precedente, suponga que un objeto, o
particula, en el punto P se mueve a lo largo de una recta de coordenadas vertical u horizon-
tal como se muestra en la FIGURA 4.1.11. Ademds, considere que la particula se mueve de modo p
que su posicion, o coordenada, sobre la recta estd dada por una funcién s = s(¢), donde ¢ repre-
senta el tiempo. Los valores de s son distancias dirigidas medidas a partir de O en unidades
como centimetros, metros, pies o millas. Cuando P estd a la derecha o arriba de O, se consi-
dera s > 0, mientras s < 0 cuando P estd a la izquierda o abajo de O. El movimiento en linea
recta se denomina movimiento rectilineo. o p

Si un objeto, como un automoévil de juguete, se mueve sobre una recta de coordenadas FIGURA 4111 Rectas
horizontal, se trata de un punto P en el instante #, y un punto P’ en el instante #;, y entonces  .oordenadas
las coordenadas de los puntos, que se muestran en la FIGURA 4.1.12, son s(ty) y s(t;). Por (4), la

velocidad media del objeto en el intervalo de tiempo [fo, #,] es . ﬁ% /
.

. L 0 P
cambio en posicion  s(t) — s(t) o
Vpo = i = : (6) ;
cambio en tiempo L — 1t

FIGURA 4.1.12  Posicién de un
[N\ (Mo} V\elocidad media automévil de juguete sobre una

recta coordenada en dos instantes

La altura s por arriba del suelo a que se suelta una pelota desde la parte superior del Arco de
San Luis Missouri estd dada por s(f) = —16¢> + 630, donde s se mide en pies y ¢ en segun- g
dos. Vea la FIGURA 4.1.13. Encuentre la velocidad media de la pelota que cae entre el instante en s~ ———— | - 630 pies
que se suelta la pelota y el instante en que golpea el suelo.

El instante en que se suelta la pelota estd determinado por la ecuacion s(f) = 630 o
—161> + 630 = 630. Asi se obtiene + = 0 s. Cuando la pelota golpea el suelo, entonces
s(f) = 00 —16¢% + 630 = 0. Con la tltima ecuacién se obtiene t = V315/8 = 6.27 s. Asi, por
(6) la velocidad media en el intervalo de tiempo [0, V315/ 8] es

s(V351/8) = s0) ¢ — 630 Suclo 0
Upro = = ~ —100.40 pies/s. FIGURA 4.1.13 Pelota que cae en
351/8 — 0 351/8 — 0 1 qu

el ejemplo 8

Si se hace 1, =ty + At, 0 At =t, — 1y, y As = s(t, + Ar) — s(t,), entonces (6) es equiva-
lente a

_As

Vpro = Tl‘

Esto sugiere que el limite de (7) cuando A7 — 0 proporciona la razéon de cambio instanta-
nea de s(¢) en r = t,, o velocidad instantanea.

)

Definicion 4.1.2 Velocidad instantdnea

Sea s = s(f) una funcién que proporciona la posiciéon de un objeto que se mueve en linea
recta. Entonces la velocidad instantianea en el instante 1 = ¢, es
s(ty + Af) — s(o) As ®)

v = lim = lim —
(IO) At—0 At A—0 At’

siempre que el limite exista.

Nota: Excepto por notacion e interpretacion, no hay ninguna diferencia matematica entre (2)
y (8). También, a menudo se omite la palabra instantdnea, de modo que entonces se habla de
la razon de cambio de una funcién o la velocidad de una particula en movimiento.
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)3\ [N} Otro repaso al ejemplo 8

Encuentre la velocidad instantdnea de la pelota que cae en el ejemplo 8 en t = 3 s.

Se usa el mismo procedimiento de cuatro pasos que en los ejemplos anteriores con
s = s(#) dada en el ejemplo 8.

i) s(3) = —16(9) + 630 = 486. Para cualquier Ar # 0,
s(3 + A = —16(3 + Ap? + 630 = —16(A1)*> — 96Ar + 486.
i) s3 + Af) — s(3) = [—16(Ar)?* — 96Ar + 486] — 486
= —16(Af)* — 96At = A{(—16At — 96)
As  AH(—16Ar —96)

i) A Al = —16At — 96
iv) Por (8),
. As . .
v(3) = AI}LHOE = Al}glo(—l6At — 96) = —96 pies/s. )

En el ejemplo 9, el nimero s(3) = 486 pies es la altura de la pelota por arriba del nivel
del suelo a 3 s de haber sido soltada. El signo menos en (9) es importante porque la pelota se
estd moviendo en direccidén opuesta a la direccién positiva (hacia arriba), es decir, se mueve
hacia abajo.

“ DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-10.

= Fundamentos dado de x. Encuentre una ecuacién de la recta tangente en el
punto correspondiente. Antes de empezar, revise los limites
en (10) y (14) de la seccién 3.4, asi como las férmulas de
suma (17) y (18) en la seccién 2.4.

En los problemas 1-6, trace la gréfica de la funcién y la recta
tangente en el punto dado. Encuentre la pendiente de la
recta secante que pasa por los puntos que corresponden a los
valores indicados de x. 19. f(x) = senx,x = w/6  20. f(x) = cos x, x = 7/4

En los problemas 21 y 22, determine si la recta que pasa por

1. =—x*+9,(2,5;x=2,x=25 A
) * 2. 5); % * los puntos sobre la pardbola es tangente a la grafica de f(x)

2. f(x) = x> + 4x,(0,0); x = —i,x =0 = x* en el punto dado.
21. y 22.
3. f(0) =2, (=2, -8)x = —2,x = —1
4. fx) = 1/x,(1,1);x =09, x = 1
5. f(x) = senx, (7w/2, 1);x = 7w/2,x = 27/3

6. f(x) = cos x, (—7/3, 1) x = —7/2,x = —7/3

En los problemas 7-18, use (2) para encontrar la pendiente
de la recta tangente a la grafica de la funcién en el valor
dado de x. Encuentre una ecuacién de la recta tangente en el
punto correspondiente.

FIGURA 4.1.14  Grifica

7. fx)=x>—6,x=3 para el problema 21 FIGURA 4.1.15 Grifica

8 fx) = 324+ 10.x = —1 para el problema 22

9. fx) =x* = 3x,x=1 23. En la FIGURA 4.1.16, la recta mostrada es tangente a la gra-
10. f(x) = —x>+5x — 3, x = =2 fica de y = f(x) en el punto indicado. Encuentre una

ecuacion de la recta tangente. ;Cudl es la interseccion y

1
_ _n.3 _ Q3 -2
11. f(x) = -2 + x,x = 2 12. f(x) = 8x 4, x = 3 de 1a recta tangente?

1 4 _ y
13. f) = 5 x = —1 W f)=——"jx=2 N
15. f(x) = % x=0 16. f(x) =4 — §, x=—1 L y=f®
(x - 1) 1 X |/é 7 é X
17. =Vx,x=4 18. =— x=1
f(X) o f(X) \/;C * FIGURA 4.1.16  Gréfica para el problema 23

En los problemas 19 y 20, use (2) para encontrar la pendiente 24. En la FIGURA 4.1.17, la recta mostrada es tangente a la gra-
de la recta tangente a la grafica de la funcién en el valor fica de y = f(x) en el punto indicado. Encuentre f(—5).



x > x
-5 7

FIGURA 4.1.17  Grifica para el problema 24

En los problemas 25-28, use (2) para encontrar una férmula
para my,, en un punto general (x, f(x)) sobre la grafica de f.
Use la férmula my,, para determinar los puntos en que la
recta tangente a la grafica es horizontal.

25. fx) = —x*+ 6x + 1 26. f(x) = 2x> + 24x — 22
27. f(x) = x° — 3x 28. f(x) = —x° + x?

29. Un automévil recorre 290 mi entre Los Angeles y Las
Vegas en 5 h. ;Cudl es la velocidad media?

30. Dos sefializaciones sobre una carretera recta estdn a una
distancia de 1 mi entre si. Una patrulla observa que un
automovil cubre la distancia entre las marcas en 40 s.
Suponiendo que la velocidad limite es 60 mi/h, el auto-
movil serd detenido por exceso de velocidad?

31. Un avién se desplaza a 920 mi/h para recorrer los 3 500
km que hay entre Hawaii y San Francisco. ;En cudntas
horas realiza este vuelo?

32. Una carrera de maraton se lleva a cabo en una pista recta
de 26 mi. La carrera empieza a mediodia. A la 1:30 p.m.,
un corredor cruza la marca de 10 mi y a las 3:10 p.m. el
corredor pasa por la marca de 20 mi. ;Cual es la veloci-
dad media del corredor entre la 1:30 p.m. y las 3:10 p.m.?

En los problemas 33 y 34, la posicién de una particula que
se mueve sobre una recta horizontal de coordenadas estd
dada por la funcién. Use (8) para encontrar la velocidad ins-
tantdnea de la particula en el instante indicado.

33, 5(t) =—4t>+ 10t +6,t=3 34. s() =1*> +

5t+1’t:0

35. La altura por arriba del suelo a que se suelta una pelota a
una altura inicial de 122.5 m estd dada por s(f) = —4.9¢2
+ 122.5, donde s se mide en metros y ¢ en segundos.

a) (Cuidl es la velocidad instantdnea en r = ?
b) (En qué instante la pelota golpea el suelo?
¢) (Cudl es la velocidad de impacto?

36. Al ignorar la resistencia del aire, si un objeto se deja
caer desde una altura inicial s, entonces su altura por
arriba del nivel del suelo en el instante ¢ > 0 estd dada
por s(f) = —3gt*> + h, donde g es la aceleracién de la
gravedad.

a) (En qué instante el objeto choca contra el suelo?

b) Si h = 100 pies, compare los instantes de impacto
para la Tierra (g = 32 pies/sz), Marte (g = 12
pies/s?) y la Luna (g = 5.5 pies/s?).

¢) Use (8) para encontrar una férmula para la veloci-
dad instantdnea v en el instante general .

d) Use los instantes encontrados en el inciso b) y la
férmula encontrada en el inciso ¢) para calcular las
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velocidades de impacto correspondientes para la
Tierra, Marte y la Luna.

37. La altura de un proyectil disparado desde el nivel del
suelo estd dada por s = — 1672 + 256t, donde s se mide
en pies y f en segundos.

a) Determine la altura del proyectil en t = 2, t = 6,

t=9yt=10.
b) (Cudl es la velocidad media del proyectil entre t = 2
yt=15?

¢) Demuestre que la velocidad media entre t =7y t =9
es cero. Interprete fisicamente.

d) (En qué instante el proyectil choca contra el suelo?

e) Use (8) para encontrar una férmula para la velocidad
instantdnea v en el instante general 7.

f) Use el resultado del inciso d) y la formula encontrada
en el inciso e) para aproximar la velocidad de impac-
to final.

g2) (Cudl es la altura mdxima que alcanza el proyectil?

38. Suponga que la grifica mostrada en la FIGURA 4.1.18 es la
de la funcién de posicién s = s(f) de una particula que
se mueve en una linea recta, donde s se mide en metros
y t en segundos.

s

s ={5(f)

|

t
5

FIGURA 4.1.18  Grifica para el problema 38

a) Calcule la posicién de la particulaen r =4y t = 6.

b) Calcule la velocidad media de la particula entre t = 4
yt=6.

¢) Calcule la velocidad inicial de la particula; es decir,
su velocidad en ¢ = 0.

d) Calcule el instante en que la velocidad de la particula
es cero.

e) Determine un intervalo en que la velocidad de la par-
ticula es decreciente.

f) Determine un intervalo en que la velocidad de la par-
ticula es creciente.

39. Seay = f(x) una funcidn par cuya grafica tiene una recta
tangente m con pendiente (a, f(a)). Demuestre que la
pendiente de la recta tangente en (—a, f(a)) es —m. [Suge-
rencia: Explique por qué f(—a + h) = f(a — h).]

40. Sea y = f(x) una funcién impar cuya grafica tiene una
recta tangente m con pendiente (a, f(a)). Demuestre que
la pendiente de la recta tangente en (—a, —f(a)) es m.

41. Proceda como en el ejemplo 7 y demuestre que no hay
recta tangente a la grifica de f(x) = x> + |x| en (0, 0).
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Recuerde que m,,, también se
denomina pendiente de la curva

en (a, f(a)).

4.2 La derivada

I Introduccion En la seccién anterior vimos que la recta tangente a una grafica de una fun-
cién y = f(x) es la recta que pasa por el punto (a, f(a)) con pendiente dada por

fla+h — fla)
h
siempre que el limite exista. Para muchas funciones suele ser posible obtener una férmula

general que proporcione el valor de la pendiente de la recta tangente. Esto se lleva a cabo al
calcular

o = Ji

. S+ h) — f)
fiy = »
para cualquier x (para la que existe el limite). Luego sustituimos un valor de x después que

se ha encontrado el limite.

I Una definicion EI Iimite del cociente de la diferencia en (1) define una funcién: una fun-
cién que se deriva de la funcién original y = f(x). Esta nueva funcién se denomina funcién
derivada, o simplemente la derivada, de fy se denota por f'.

Definicion 4.2.1 Derivada

La derivada de una funcién y = f(x) en x esta dada por

+h) —
PR ERORS [ o

siempre que el limite exista.

A continuacién reconsideraremos los ejemplos 1 y 2 de la seccién anterior.

(A5 |JHe BN Una derivada

Encuentre la derivada de f(x) = x* + 2.

Asi como en el cdlculo de my,, en la seccioén 4.1, el proceso de encontrar la deri-
vada f'(x) consta de cuatro pasos:

) fe+h)=@+h*+2=x>+2xh+h*+2

i) fx+h) —fx) =[x+ 2xh + B> + 2] — x? — 2= h(2x + h)
) fx+h) — fx)  hQx + h)
; -

= 2x + h <« las h se cancelan

12 h ]’l
x+ h) — flx
iv) }%w — lim [2¢ + h] = 2x.

Por el paso iv) vemos que la derivada de f(x) = X2+ 2es f(x) = 2x.

Observe que el resultado my,, = 2 en el ejemplo 1 de la seccién 4.1 se obtiene al evaluar
la derivada f'(x) = 2x en x = 1, es decir, f'(1) = 2.

A\ |JKe WA Valor de la derivada

Para f(x) = x> + 2, encuentre f'(—2), f(0), f ’(%) y f'(1). Interprete.

Por el ejemplo 1 sabemos que la derivada es f'(x) = 2x. Por tanto,

enx = —2 {f(—Z) =6 <« el punto de tangencia es (—2, 6)

f'(—Z) =—4 n pendiente de la recta tangente en (—2, 6) es m = —4
enx =0 {f(()) =2 <« el punto de tangencia es (0, 2)
’ f ’(0) =0 <« la pendiente de la recta tangente en (0, 2) es m = 0



enx=1 {f(é) = % < el punto de tangencia es (%, %)
o f'(%) =1 < la pendiente de la recta tangente en (%, %) esm =1

enx =1 f(l)y=3 <« el punto de tangencia es (1, 3)
’ f’(l) =2. < la pendiente de la recta tangente en (1, 3) es m = 2

Recuerde que la pendiente de una recta horizontal es 0. Asi, el hecho de que f'(0) = 0 signi-
fica que la recta tangente es horizontal en (0, 2).

Por cierto, si regresa al proceso de cuatro pasos en el ejemplo 1, encontrard que la deri-
vada de g(x) = x? también es g'(x) = 2x = f'(x). Esto tiene sentido intuitivo: puesto que la
grifica de f(x) = x* + 2 es una traslacién vertical rigida o desplazamiento de la grafica de
g(x) = x* para un valor dado de x, los puntos de tangencia cambian, pero no asi la pendiente
de la recta tangente en los puntos. Por ejemplo, en x = 3, g'(3) = 6 = f'(3) pero los puntos de
tangencia son (3, g(3)) = 3,9) y (3,f(3)) = (3, 11).

A\ |Je Y Una derivada

Encuentre la derivada de f(x) = x°.

Para calcular f(x + &), usamos el teorema del binomio.
i) fx+ h) = (x + h)’ =x*+ 3% + 3xh* + I®
i) fx + h) — f(x) = [x* + 3x°h + 3xh* + h*] — x* = h(3x* + 3xh + h?)
o fe+ ) = f(x) h[3x* + 3xh + K]
iii) =
h h
S+ b~ f@ _
h

=3x> + 3xh + K*

iv) lim lim[3x* + 3xh + h?] = 3x%
h—0 h—0

La derivada de f(x) = x> es f'(x) = 3x°.

)3\ [JKel¥:} Recta tangente

Encuentre una ecuacién de la recta tangente a la grifica de f(x) = x*en x = %

Por el ejemplo 3 tenemos dos funciones f(x) = x* y f'(x) = 3x% Como vimos en el
. . L . ) 1 . .
ejemplo 2, cuando estas funciones se evaldan en el mismo nimero x = ; se obtiene diferente
informacion:

f(3)=(3) =5« clpmode angenciaes (1.4
—)=(=) =— <« el punto de tangencia es (3, g
2 2 8
1 2 3 . 11y a3
f/ —)=13|l=] == < lapendiente de la recta tangente en (2, 8) esy
2 2 4
Asi, por la ecuacion punto-pendiente de una recta,* una ecuacidén de la recta tangente estd dada
or
P —l—§< —l> o bien —gx—l
8 4 2 YT Ty
La gréfica de la funcién y la recta tangente se muestran en la FIGURA 4.2.1.

A3\ |JEeMY Una derivada

Encuentre la derivada de f(x) = 1/x.

En este caso usted debe poder demostrar que la diferencia es
1 1 —h las fracciones se suman usando
fx+h) = flx) = T

= « . .
x+h x (x4 h)x uncomin denominador

En consecuencia,
Hmw = lim _7]1
h—0 h =0 h(x + h)x
—1 —1

L

La derivada de f(x) = 1/xes f'(x) = —1/x°.

*N. del RT. También se le conoce como forma punto-pendiente.
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o Recuerde de sus estudios
de dlgebra que
(a + by =a*+ 3a%
+ 3ab® + b°.
Luego, a se sustituye por x y b
por h.

FIGURA 4.2.1 Recta tangente en
el ejemplo 4
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I Notacion A continuacién se presenta una lista de la notacién comin usada en la literatura
matemdtica para denotar la derivada de una funcién:

! L Dy, D
[0, o Y Dy Doy

Para una funcién como f(x) = x2, escribimos f'(x) = 2x; si la misma funcién se escribe y = x?,
entonces utilizamos dy/dx = 2x, y' = 2x o D,y = 2x. En este texto usaremos las tres prime-
ras formas. Por supuesto, en varias aplicaciones se usan otros simbolos. Por tanto, si z = 2,
entonces
dz _
dr
La notacién dy/dx tiene su origen en la forma derivada de (3) de la seccién 4.1. Al sustituir /2 por
Ax y denotar la diferencia f(x + h) — f(x) por Ay en (2), a menudo la derivada se define como
dy  f+ Ax) — f(x) Ay
—=lim—F =

= = lim —.
dx A0 Ax Av—0 Ax

2t obien, 7' =2t

3)

=8]5\7|JMeMN:] Una derivada donde se usa (3)
Use (3) para encontrar la derivada de y = V/x.

En el procedimiento de cuatro pasos, la manipulacion algebraica importante tiene
lugar en el tercer paso:

i) fx+ Ax) = Vx + Ax
i) Ay =f(x+ Ax) — f(x) = Vx + Ax — Vx
Ay f&+ Ax) —f) _ Vx+ Ax— Vx

iif)

Ax Ax Ax
_ Vx + Ax — Vax o vx + Ax + Vx _ racionalizacién del
Ax m + \/); numerador
_ x+ Ax —x
- Ax(Vx + Ax + Vi)
Ax

Ax(Vx + Ax + Vi)
_ 1
VX o+ Ax + Vi

y 1 1 1
j lim — = lim = = .
MO A T A VT A+ VA Vit Ve 2Va

La derivada de y = Vx es dy/dx = 1/(2Vx).

I Valor de una derivada El valor de la derivada en un niimero a se denota por los simbolos

1 ﬂ ’ D
f@. gl . Y@, Dy

xX=a

A\ e MWA Una derivada

Por el ejemplo 6, el valor de la derivada de y = V/x en, por ejemplo, x = 9 se escribe

@
dx

! 1

x=9 - 2\/); x=9 N 6

En forma alterna, para evitar la torpe barra vertical, simplemente escribimos y'(9) = &.

I Operadores diferenciacion El proceso de encontrar o calcular una derivada se denomina
diferenciacion. Asi, la diferenciacion es una operacion que se lleva a cabo sobre una funcién
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y = f(x). La operacién de diferenciacion de una funcién con respecto a la variable x se repre-
senta con los simbolos d/dx y D,. Estos simbolos se denominan operadores diferenciacion.
Por ejemplo, los resultados en los ejemplos 1, 3 y 6 pueden expresarse, a su vez, como

1

2Vx'

d, , _ d s _,0 d. - _
dx(x + 2) = 2x, dxx 3x7, dx\[

El simbolo

s d
e entonces significa Y

I Diferenciabilidad Si el limite en (2) existe para un nimero x dado en el dominio de f, se
dice que la funcién es diferenciable en x. Si una funcién f es diferenciable en todo nimero x
en los intervalos abiertos (a, b), (—oo, b) y (a, 00), entonces f es diferenciable sobre el inter-
valo abierto. Si f es diferenciable sobre (—00, 00), entonces se dice que f es diferenciable en
todas partes. Se dice que una funcion f es diferenciable sobre un intervalo cerrado [a, b]
cuando f es diferenciable sobre el intervalo abierto (a, b), y

fla+h) — fla)

i@ = Jig = .
N (R O R (D)
70 = Jip

ambos existen. Los limites en (4) se denominan derivadas por la derecha y por la izquierda,
respectivamente. Una funcion es diferenciable sobre [a, ©0) cuando es diferenciable sobre
(a, 00) y tiene derivada por la derecha en a. Una definicién semejante en términos de una deri-
vada por la izquierda se cumple para diferenciabilidad sobre (—00, b]. Ademads, puede demos-
trarse que:

e Una funcién es diferenciable en un nimero ¢ en un intervalo (a, b) si y sélo si (5)

file) = fl (o).

I Tangentes horizontales Siy = f(x) es continua en un nimero a y f'(a) = 0, entonces la recta
tangente en (a, f(a)) es horizontal. En los ejemplos 1 y 2 vimos que el valor de la derivada f”(x)
= 2x de la funcién f(x) = x> + 2 en x = 0 es f/(0) = 0. Por tanto, la recta tangente a la gréfica
es horizontal en (0, f(0)) o (0, 0). Se deja como ejercicio (vea el problema 7 en la seccién
“Desarrolle su competencia 4.2””) comprobar por la definicién 4.2.1 que la derivada de la funcién
continua f(x) = —x* + 4x + 1 es f'(x) = —2x + 4. Observe en este tltimo caso que f'(x) = 0
cuando —2x + 4 = 0 o x = 2. Hay una tangente horizontal en el punto (2, f(2)) = (2, 5).

I Donde fno es diferenciable Una funcién no tiene derivada en x = a si

i) la funcion es discontinua en x = a, o
ii) la gréfica de f tiene un pico en (a, f(a)).

Ademads, puesto que la derivada proporciona la pendiente, f no es diferenciable
iii) en un punto (a, f(a)) en el cual la recta tangente es vertical.

El dominio de la derivada f’, definido por (2), es el conjunto de nimeros x para los cuales el
limite existe. Por tanto, el dominio de f' necesariamente es un subconjunto del dominio de f.

)5\ [} Diferenciabilidad

a) La funcién f(x) = x> + 2 es diferenciable para todos los nimeros reales x; es decir,
el dominio de f'(x) = 2x es (—00, 00).

b) Debido a que f(x) = 1/x es discontinua en x = 0, f no es diferenciable en x = 0 y
en consecuencia no es diferenciable sobre cualquier intervalo que contenga 0.
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y
J(x) = x|

a) Funcioén valor absoluto de f

y

ff=1,x>0

v
Fo)=—1,x<0

b) Grifica de la derivada f’

FIGURA 42.2 Grificas de fy f’

en el ejemplo 9

FIGURA 4.2.3 Rectas tangentes a
la gréfica de la funcién en el

ejemplo 10

y

Elejeyes
tangente a
la gréfica
en (0, 0)

FIGURA 424 Tangente vertical

en el ejemplo 11

Importante P

A5\ NN Otro repaso al ejemplo 7 de la seccion 4.1

En el ejemplo 7 de la seccion 4.1 vimos que la gréfica de f(x) = |x| no tiene tangente en el
origen (0, 0). Asi, f(x) = |x| no es diferenciable en x = 0. Pero f(x) = |x| es diferenciable
sobre los intervalos abiertos (0, 0) y (—0c0, 0). En el ejemplo 5 de la seccién 4.1 demostra-
mos que la derivada de una funcién lineal f(x) = mx + b es f'(x) = m. Por tanto, para x > 0

tenemos f(x) = |x| = x y asi f'(x) = 1. También, para x < 0, f(x) = |x| = —x y asi f'(x) =
—1. Puesto que la derivada de f es una funcién definida por partes,
I B B x>0
fo) = {—1, x <0,

que podemos graficar como cualquier funcién. En la FIGURA 4.2.2b) observamos que f' es dis-
continua en x = 0.

Con simbolos diferentes, lo que demostramos en el ejemplo 9 es que f2(0) = —1y f1(0)
= 1. Puesto que f”(0) # f1(0) por (5) se concluye que f no es diferenciable en 0.

I Tangentes verticales Sea y = f(x) continua en un nimero a. Si lim |f'(x)| = oo, entonces
X—a

se dice que la gréfica de f tiene una tangente vertical en (a, f(a)). Las graficas de muchas
funciones con exponentes radicales tienen tangentes verticales.

En el ejemplo 6 de la seccién 4.1 se mencioné que la grifica de y = x'/* tiene una linea
tangente vertical en (0, 0). Verificamos esta afirmacion en el siguiente ejemplo.

)3\ [N BRI} Tangente vertical

Se deja como ejercicio demostrar que la derivada de f(x) = x'/° est4 dada por

!, j—
1) TN
(Vea el problema 55 de esta seccion.) Aunque f es continua en 0, resulta evidente que f’ no esta
definida en ese nimero. En otras palabras, f no es diferenciable en x = 0. Ademads, debido a
que

g / = 00 s ! = 00
im f'(x) y  lim f'eo)
tenemos |f'(x)| — oo cuando x — 0. Esto es suficiente para afirmar que en (0, f(0)) o (0, 0)
hay una recta tangente y que es vertical. En la FIGURA 4.2.3 se muestra que las rectas tangentes a
la grafica a cualquier lado del origen se vuelven cada vez mas pronunciadas cuando x — 0.

La gréfica de una funcién f también puede tener una tangente vertical en un punto (a, f(a))
si f es diferenciable s6lo por un lado de a, es continua por la izquierda (derecha) en a, y se
cumple |f'(x)| — oo cuando x — a~ o |f'(x)] — oo cuando x — a”.

S\ [JXe BN N Tangente vertical por un lado

La funcién f(x) = Vx no es diferenciable sobre el intervalo [0, o0) porque por la derivada
flx) = 1/(2\/);) observamos que f(0) no existe. La funcién f(x) = Vx es continua sobre
[0, o©) pero diferenciable sobre (0, ©0). Ademads, debido a que f es continua en 0 y Xlirg f'(x)
= 00, en el origen (0, 0) hay una tangente vertical. En la FIGURA 424 vemos que la tangente
vertical es el eje y.

Las funciones f(x) = |x| y f(x) = x'/? son continuas en todas partes. En particular, ambas
son continuas en 0 pero ninguna es diferenciable en ese nimero. En otras palabras, la conti-
nuidad en un ndmero a no es suficiente para garantizar que una funcién sea diferenciable en
a. No obstante, si f es diferenciable en a, entonces f debe ser continua en ese nimero. Este
hecho se resume en el siguiente teorema.

Teorema 4.2.1 Diferenciabilidad implica continuidad

Si f es diferenciable en un nimero a, entonces f es continua en a.
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DEMOSTRACION Para demostrar la continuidad de fen un ndmero a, es suficiente demos-
trar que 11_1)13 f(x) = f(a) o bien, de manera equivalente, que }1_1)1} [f(x) — f(a)] = 0. La hipéte-
sis es que

Fra = 17 h;), - fla)

existe. Si se hace x = a + h, entonces cuando 2 — 0 tenemos x — a. Por tanto, el limite ante-
rior equivale a

Fi@ = tim f(x) f(a)
Luego, puede escribirse
11'_1)11 [f(x) f(a)] Iim f( ) — f(a) x — a) < multiplicacién por i : Z =1
= lim f(x; — f( %) -lim (x — @) < ambos limites existen
= fa)-0 = 0.

I Posdata: Un poco de historia Se sabe que Isaac Newton (1642-1727), matemético y fisico
inglés, fue el primero en establecer muchos de los principios basicos del calculo en manuscri-
tos no publicados sobre el método de fluxiones, fechado en 1665. La palabra
Sfluxion se origind por el concepto de cantidades que “fluyen”; es decir, canti-
dades que cambian a cierta razén. Newton usé la notacién de punto y para
representar una fluxién, o como se conoce ahora: la derivada de una funcién.
El simbolo y nunca fue popular entre los matematicos, de modo que en la actua-
lidad lo usan esencialmente los fisicos. Debido a razones tipograficas, la asi
Newton denominada “notacién flyspeck” ha sido sustituida por la notacién prima.
Newton alcanz6 fama imperecedera con la publicacion de su ley de la gravitacion universal en
su tratado monumental Philosophiae Naturalis Principia Mathematica en 1687. Newton tam-
bién fue el primero en demostrar, usando el calculo y su ley de gravitacion, las tres leyes empi-
ricas de Johannes Kepler del movimiento planetario, y el primero en demostrar que la luz blanca
estd compuesta de todos los colores. Newton fue electo al Parlamento, nombrado guardidn de
la Real Casa de Moneda y nombrado caballero en 1705. Sir Isaac Newton dijo acerca de estos
logros: “Si he visto mds lejos que otros, es porque me apoyé en los hombros de gigantes.”

El matemadtico, abogado y filésofo aleméan Gottfried Wilhelm Leibniz (1646-
1716) public6 una versién corta de su cdlculo en un articulo en un periddico
alemén en 1684. La notacién dy/dx para la derivada de una funcién se debe
a Leibniz. De hecho, fue Leibniz quien introdujo la palabra funcion en la lite-
ratura matemadtica. Pero, puesto que es bien sabido que los manuscritos de
Newton sobre el método de fluxiones datan de 1665, Leibniz fue acusado
Leibniz de apropiarse de las ideas de Newton a partir de esta obra no publicada.
Alimentado por orgullos nacionalistas, durante muchos afios hubo una controversia sobre quién
de los dos “invent6” el calculo. Hoy los historiadores coinciden en que ambos llegaron a
muchas de las premisas mas importantes del cdlculo de manera independiente. Leibniz y
Newton se consideran “coinventores” del tema.

—— NOTAS DESDE EL AULA

dx .......................................................................................................................................................................

i) En el andlisis precedente vimos que la derivada de una funcién es en si misma una fun-
cién que proporciona la pendiente de una recta tangente. La derivada no es, sin embar-
g0, una ecuacion de una recta tangente. También, afirmar que y — yo = f'(x) - (x — xp)
es una ecuacion de la tangente en (x,, yo) es incorrecto. Recuerde que f'(x) debe evaluar-
se en x, antes de usarla en la forma punto-pendiente. Si f es diferenciable en x,, enton-
ces una ecuacion de la recta tangente en (xo, yo) €Sy — yo = f'(xo) - (x — Xx)-
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ii) Aunque en esta seccion se han recalcado las pendientes, no olvide el andlisis sobre razo-
nes de cambio promedio y razones de cambio instantdneas en la seccién 4.1. La deriva-
da f'(x) también es la razén de cambio instantanea de la funcién y = f(x) con respec-
to a la variable x. En las secciones que siguen se dird mds sobre estas razones.

iii) Los matemadticos de los siglos XVviI al XIX crefan que una funcién continua solfa tener una
derivada. (En esta secciéon hemos observado excepciones.) En 1872, el matematico ale-
man Karl Weierstrass destruy6 de manera contundente este principio al publicar un ejem-
plo de funcién que es continua en todas partes pero no es diferenciable en ninguna.

“ DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-10.

En los problemas 1-20, use (2) de la definicién 4.2.1 para
encontrar la derivada de la funcién dada.

1. f(x) = 10 2. fx) =x—1
3. fx) = —3x+5 4. f(x) = mx
5. f(x) = 3x? 6. fx) = —x>+ 1
7. fx) = —x> + 4x + 1 8. f(x)=%x2+6x—7
9. y=(x+ 17 10. f(x) = 2x — 5)?
11. f(x) = x> +x 12. f(x) = 2x° + x?
13. y= —x* + 15x — x 14. y = 3x*
2 X
15.y—x_+_1 16.y—x_1
_2x+3 _1 .1
17.y—x_'_4 18.f(x)—x—i-x2
19. f(x) = 1 20. f(x) = V2x + 1
Vix

En los problemas 21-24, use (2) de la definicién 4.2.1 para
encontrar la derivada de la funcién dada. Encuentre una
ecuacion de la recta tangente a la grafica de la funcién en el
valor indicado de x.

21, f(x) = 4x*+ Tx; x=—1
22.f(x)=%x3+2x—4; x=0

24. y=2x+1+g; x=2

_ .1
23. y=x PR 1
En los problemas 25-28, use (2) de la definicion 4.2.1 para
encontrar la derivada de la funciéon dada. Encuentre uno o
varios puntos sobre la grifica de la funcién dada donde la

recta tangente es horizontal.

25. f(x) = x> + 8x + 10
27. f(x) = x> — 3x

26. f(x) = x(x —5)
28. fx) =x>—x>+1

En los problemas 29-32, use (2) de la definicién 4.2.1 para
encontrar la derivada de la funcién dada. Encuentre uno o

varios puntos sobre la grifica de la funcién dada donde la
recta tangente es paralela a la recta dada.

29. f(x) = l)c2 - 1;

> 3x—y=1
3. f) =x*—x; —2x+y=0
3. fx) = —x*+4; 12x+y=4
2. fx)=6Vx+2, —x+y=2

En los problemas 33 y 34, demuestre que la funcién dada no
es diferenciable en el valor indicado de x.

—x + 2, =2

33. f(x) = {Zx"_4 §>2; x=2
3x, <0

34, f(x) = {_’“4x izo; x=0

En la demostracién del teorema 4.2.1 vimos que un plantea-
miento alterno de la derivada de una funcién fen a esta dado
por

Pla) = 11,mf(X) :f(a)’ ©)

x—a X a
siempre que el limite exista. En los problemas 35-40, use (6)
para calcular f'(a).
35. f(x) = 10x* — 3
37. flx) = x* — 4x?

4
39. f(x) = I
41. Encuentre una ecuacion de la recta tangente mostrada en
la FIGURA 4.25. ;Cudles son los valores f(—3) y f'(—3)?

36. f(x) =x>—3x—1
38. f(x) =x*

40. f(x) = Vx

FIGURA 425 Gréfica
del problema 41



42. Encuentre una ecuacion de la recta tangente mostrada en
la FIGURA 4.2.6. ;Cuadl es el valor de f'(3)? ;Cual es la
interseccion de la recta tangente con el eje y?

74 B

FIGURA 4.2.6 Grifica
del problema 42

En los problemas 43-48, trace la grafica de f' a partir de la
grafica de f.

43. N 44. YA y=f®)

y=f@) ‘% 3 > x

FIGURA 4.2.7 Grifica
del problema 43

45. y 46.

y=fx)
45°?\ /%45"
} I > X
I
FIGURA 4.2.9 Grifica
del problema 45

FIGURA 4.2.8 Grifica
del problema 44

FIGURA 4210  Grifica
del problema 46

47.

y=f@)

—
a

FIGURA 4.2.11
del problema 47

VAN AN
VARV/IRV

(3. -2

Grafica

y=f)

FIGURA 4.2.12  Grifica
del problema 48

En los problemas 49-54, relacione la grifica de f con una
grifica de ' de a)-f).
a) y b) y

__

y=f'x)

y=f'(x

SR

X
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c) y d) y

y=f) i
E— X

e) y , f)
T I Y= /

y=f'(

49. y 50. y

y=fx)

FIGURA 4.2.13  Grifica

del problema 49 FIGURA 4.2.14  Grifica

del problema 50

51. Y y=f()

y=f() 52.

FIGURA 4.2.16  Grifica
del problema 52

FIGURA 4.2.15 Grifica
del problema 51

53. Y 54.

y=fx)

FIGURA 4.2.17 Grifica
del problema 53

FIGURA 4.2.18 Grifica
del problema 54

= Piense en ello

55. Use la definicién alterna de la derivada (6) para encon-
trar la derivada de f(x) = x'/°.
[Sugerencia: Observe que x — a = ()61/3)3 — (a l/3)3.]

56. En los ejemplos 10 y 11 vimos, respectivamente, que las
funciones f(x) = x'* y f(x) = Vx tenfan tangentes ver-
ticales en el origen (0, 0). Conjeture donde las graficas
dey=(x—4)"yy=Vx+ 2 pueden tener tangen-
tes verticales.

57. Suponga que f es diferenciable en todas partes y que
tiene tres propiedades:
i) [l +x) = fx) fxo),
iii) f'(0) = 1.
Use (2) de la definicién 4.2.1 para demostrar que f'(x)
= f(x) para toda x.

i) f(0)=1,
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58. a) Suponga que fes una funcién par diferenciable sobre 60. Trace graficas de varias funciones f que tengan la pro-

(—00, 00). Use razonamiento geométrico para expli- piedad f'(x) > O para toda x en [a, b]. ;{Qué tienen en
car por qué f'(—x) = —f'(x); es decir, que f’ es una comun éstas?
funcién impar.
b) Suponga que f es una funcién impar diferenciable ~ = Problemas con calculadora/SAC
sobre (—00, 00). Use razonamiento geométrico para 1. Considere la funcién f(x) = x" + |x|, donde n es un
explicar por qué f'(—x) = f'(x); es decir, que f” es entero positivo. Use una calculadora o un SAC para
una funcion par. obtener la grafica de fparan = 1, 2, 3, 4 y 5. Luego
59. Suponga que f es una funcién diferenciable sobre [a, b] use (2) para demostrar que f'no es diferenciable en x = 0
tal que f(a) = 0 y f(b) = 0. Experimente con graficas paran = 1,2, 3,4y 5. ;Puede demostrar esto para cual-
para decidir si la siguiente afirmacién es falsa o verda- quier entero positivo n? ;Cudles son f(0) y f1(0) para
dera: hay un ndmero c en (a, b) tal que f'(c) = 0. n>1?

Vea los ejemplos 3, 5y 6enla P
seccion 4.2.

4.3 Derivada de potencias y sumas
I Introduccion La definicién de derivada

oy = i T =S

h—0 h

(D

tiene la desventaja evidente de ser mds bien molesta y cansada de aplicar. Para encontrar la
derivada de la funcién polinomial f(x) = 6x'® + 4x* usando la definicién anterior sélo es
necesario hacer malabares con 137 términos en los desarrollos del binomio de (x + /)'% y
(x + h)*. Hay formas mds eficaces para calcular derivadas de una funcién que usar la defini-
cién cada vez. En esta seccidn, y en las secciones que siguen, veremos que hay algunos ata-
jos o reglas generales a partir de las cuales es posible obtener las derivadas de funciones como
fx) = 6x'% + 4% literalmente, con un truco de pluma.
En la dltima seccién vimos que las derivadas de las funciones potencia
fo) = f@) =2 ) =t =x fw) = Va=

X

eran, a su vez,

’ _ ! _ U __l__* / —L—lf/
fO =20 f =3 f)=-5=-x7% fo=5~=5x"

Si los miembros derechos de estas cuatro derivadas se escriben
2.x0 3.3 (=D)L S ax

observamos que cada coeficiente corresponde al exponente original de x en f y que el nuevo
exponente de x en f' puede obtenerse a partir del exponente anterior al restarle 1. En otras
palabras, el patrén para la derivada de la funcién potencia general f(x) = x" es

el exponente se escribe como miltiplo

M1, @)

el exponente disminuye por uno

I Derivada de la funcion potencia En efecto, el patrdn ilustrado en (2) se cumple para cual-
quier exponente que sea un nimero real n, y este hecho se planteard como un teorema formal,
pero en este momento del curso no se cuenta con las herramientas matemdticas necesarias para
demostrar su validez completa. Sin embargo, es posible demostrar un caso especial de esta
regla de potencias; las partes restantes de la demostraciéon se proporcionardn en las secciones
idéneas mds adelante.
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Teorema 4.3.1 Regla de potencias

Para cualquier nimero real n,

7)(” — nxn*l. (3)

La demostracién sélo se presenta para el caso donde n es un entero posi-
tivo. A fin de calcular (1) para f(x) = x" usamos el método de cuatro pasos:

Teorema general del binomio

-1
D fx+h=x+h"=x"+ nx"'h + %x”*zh2 + -+ nxh + R o Vea las Pdginas de recursos
: para un repaso del teorema del
-1 binomio.
i) fx+h) —fx) =x"+ nx""'h + %x”_?‘h2 + o+ k" R — X"
nn — 1
=nx""'"h + 7( o )x”_zh2 + o+ uxh" + Bt
-1
= h{nx”_l + n(nzv )x”_lh + oo+ axh"? + h"‘l]
nn — 1
Fa+ ) — f) h{nx”_1 + nn = 1) o )x”_lh + e+ nxh" T + h”_l}
X — f(x !
iii) h = A
nn—1
="' + nn = 1) T )x"flh + oo+ xh"r + B!
o o ST ) ()
W) [0 = lim=
nn — 1
= ]111’1% "t + e — 1) T )x”_lh + oo Faxh" A+ R =

estos términos — 0O cuando & — 0

)3\ KB} Regla de potencias

Diferencie

a) y=x b) y=x ¢)y=x"" d)y=x"2

Por la regla de potencias (3),
@

_ . _ 7,71 _ 7.6 y
a) conn=7: e 7x 7x°, A L
_ i o
b) conn=1: dx—lx =x"=1, .
_ 2 dy ( 2) 21 - _2 —sp_ __2 =
¢) conn= 3 g 3% =3 =T > X
d
d)y conn=V2: diz = V2xV2 !,

L. . . FIGURA 43.1 La pendiente de la
Observe en el inciso b) del ejemplo 1 que el resultado es consistente con el hecho de que  recta m = 1 es consistente con

la pendiente de la recta y = x es m = 1. Vea la FIGURA 4.3.1. dy/dx = 1

Teorema 4.3.2 Regla de la funcién constante

Si f(x) = ¢ es una funcién constante, entonces f'(x) = 0. @
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Si f(x) = ¢, donde c¢ es cualquier nimero real, entonces se concluye que

fwze |0 &HhO 1, diferencia es fx + h) — f(x) = ¢ — ¢ = 0. Asi, por (1),

: ! = 1 70_6‘:, =
; £ = Ji 5 = Jino = 0,

X

X x+h
FIGURA 43.2 La pendiente de
una recta horizontal es 0

El teorema 4.3.2 tiene una interpretacion geométrica evidente. Como se muestra en la
FIGURA 4.3.2, la pendiente de la recta horizontal y = c¢ es, por supuesto, cero. Ademds, el teo-
rema 4.3.2 coincide con (3) en el caso donde x # Oy n = 0.

Teorema 4.3.3 Regla de la multiplicaciéon por constante

Si ¢ es cualquier constante y f es diferenciable en x, entonces cf es diferenciable en x, y

L efw) = ef . )

Sea G(x) = cf(x). Entonces
Gix + h) — Gx) o ocftx + h) — cf(x)
———— = lim

G'x) = }lll,—l;I}] h h—0 h
o [f(x + h) —f(X)}
= lim¢|———7-—F7"—
h—0 h
+ h) —
= }l%f—(x 2 0 _ o)

(A3 [JHe B A Un multiplo constante

Diferencie y = 5x*.

Por 3) y (5),

d
& d

4 _ 3\ 3
e dxx 5(4x7) = 20x°.

Teorema 4.3.4 Reglas de suma y diferencia

Si f'y g son diferenciables en x, entonces f + g y f — g son diferenciables en x, y

L) + 5@ = F @) + g, ©)

L1~ 8@ = @)~ g0, ™

Sea G(x) = f(x) + g(x). Entonces

oo o Gx+h) -G [fx+h)+gx+ )] - [fKx)+g)]
G'(x) = lim = lim
h—0 h h—0 h
o Jet h) = fx) + glx + h) — g(x) o
= ]]113(1) A <« reordenando términos

puesto que los limites

N s
una suma es la suma = lim
h—0

existen, el limite de f(x + h) _f(x) g(x + h) — g(x)
A + lim

imi h
de los limites —0 h

=f) + gk).
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El teorema 4.3.4 se cumple para cualquier suma finita de diferenciables. Por ejemplo, si
f, & y h son diferenciables en x, entonces

LLf00 + g0 + M) = £0) + £0) + K.

Ya que f — g puede escribirse como una suma, f + (—g), no es necesario demostrar (7) puesto
que el resultado se concluye de (6) y (5). Por tanto, el teorema 4.3.4 puede plantearse colo-
quialmente como:

e La derivada de una suma es la suma de las derivadas.

I Derivada de un polinomio Dado que sabemos cémo diferenciar potencias de x y muiltiplos
constantes de esas potencias, resulta facil diferenciar sumas de estos multiplos constantes. La
derivada de una funcién polinomial es particularmente ficil de obtener. Por ejemplo, ahora
vemos ficilmente que la derivada de la funcién polinomial f(x) = 6x'® + 4x*, mencionada
en la introduccién de esta seccion, es f'(x) = 600x” + 140x.

A\ |Je &Y Polinomio con seis términos

Diferencie y = 4x° — %x“ + 9x® + 10x* — 13x + 6.

Al usar (3), (5) y (6) obtenemos

dy ds 1d, d
ot T aa” T 0a”

3 2
+ 10 lxx 13 / X + / 6.

Puesto que a%6 = 0 por (4), obtenemos

% = 4(5x% — %(4)(3) +9(3xd) + 10(2x) — 13(1) + 0

= 20x* — 2x% + 27x% + 20x — 13.

A\ [JNelW:d Recta tangente

Encuentre una ecuacién de una recta tangente a la grafica f(x) = 3x* + 2x* — 7x en el punto
correspondiente a x = —1.

Por la regla de la suma,

Fix) = 343 + 23x) — (1) = 12x° + 6x2 — 7.

Cuando las f'y f’ se evaldan en el mismo nimero x = —1, obtenemos
f(=1) =38 <« el punto de tangencia es (—1, 8)
f,(_l) = —13. <« la pendiente de la tangente en (—1, 8) es —13

Con la ecuacién punto-pendiente obtenemos una ecuacién de la recta tangente

y—8=—13(x — (1)) obien, y= —13x —5.

I Volver a escribir una funcion En algunas circunstancias, para aplicar una regla de diferen- « Vale la pena recordar este
ciacién de manera eficiente puede ser necesario volver a escribir una expresién en una forma  anlisis.

alterna. Esta forma alterna a menudo es resultado de algo de manipulacién algebraica o una

aplicacion de las leyes de los exponentes. Por ejemplo, es posible usar (3) para diferenciar las

siguientes expresiones, que primero reescribimos usando las leyes de los exponentes

4 10 \/73 las raices cuadradas se vuelven 4 10 3y1/2
2 N X —> ibir ¢ . i 9 1/2° (x ) s
X Vx a escribir como potencias 2 x
luego se vuelve a escrlblr' N dx~ 2’ 10x~ 1/2’ x3/2’
usando exponentes negativos
. P B _2p 3
la derivada de cada término N — 8y 3’ — 5y 3/_’ 22 )
usando (3)

153
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-1 :
FIGURA 43.3 Grifica de la
funcién en el ejemplo 6

y

normal

(1, 1)

FIGURA 4.3.4 Recta normal en el

ejemplo 7

tangente

X

FIGURA 435 Grifica de la
funcién en el ejemplo 8

Una funcién como f(x) = (5x + 2)/x* puede escribirse de nuevo como dos fracciones

_Sxt2_Sv 2 5.2 _ 4, o
fx) = 2 _x2+x2 x+x2 Sx 4+ 2x .

Por la dltima forma de f, ahora resulta evidente que la derivada f” es

f@=50-x) + 2 = -2 -4
X X"

A\ [JEOMY Volver a escribir los términos de una funcion

Diferencie y = 4Vx + 8_6 .
X Vi
Antes de diferenciar, los tres primeros términos se vuelven a escribir como poten-
cias de x:
y = 452 + 8x 7' — 6x 713 + 10.
dy . d d d d
. Doyl gd g4 iy 4
Asf, e 4dxx 8dxx 6dxx P 10.

Por la regla de potencias (3) y (4) obtenemos

d
@y L

_ _ 1) _
1/2 (= 2 e (L) 43
i 7x + 8- (—1Dx 6 ( 3 X +0

2 8 2
Vx o o2 M

][N} Tangentes horizontales

Encuentre los puntos sobre la grafica de f(x) = —x* + 3x* + 2 donde la recta tangente es hori-
zontal.

En un punto (x, f(x)) sobre la grifica de f donde la tangente es horizontal, debe-
mos tener f'(x) = 0. La derivada de f es f'(x) = —3x> + 6x y las soluciones de f'(x) = —3x>
+ 6x =00 —3x(x—2)=0son x =0y x = 2. Asi, los puntos correspondientes son
(0,£(0)) = (0,2) y (2,f(2)) = (2, 6). Vea la FIGURA 4.33.

I Recta normal Una recta normal en un punto P sobre una grifica es una recta perpen-
dicular a la recta tangente en P.

A\ [ MWA Ecuacion de una recta normal

Encuentre una ecuacién de la recta normal a la grfica de y = x> en x = 1.

Puesto que dy/dx = 2x, sabemos que m,, = 2 en (1, 1). Por tanto, la pendiente
de la recta normal que se muestra en la FIGURA 43.4 es el negativo reciproco de la pendiente de
la recta tangente; es decir, m = —1. Por la forma punto-pendiente de la ecuacién de la recta,
entonces una ecuacion de la recta normal es

B P : 1.3
y—1= 2()c 1) obien, y = X + >
NI\ Xe ] Tangente vertical
Para la funcién potencia f(x) = x*° la derivada es
’ _ g -1/3 _ 2
f'x) = RN
Observe que Xlgg f(x) = oo mientras xli%l f(x) = —oo. Puesto que fes continuaen x = 0y

|f'(x)] = o0 cuando x — 0, concluimos que el eje y es una tangente vertical en (0, 0). Este
hecho resulta evidente a partir de la grafica en la FIGURA 4.35.
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I Caspide Se dice que la grifica de f(x) = x** en el ejemplo 8 tiene una ciispide en el ori-
gen. En general, la grafica de una funcién y = f(x) tiene una cuispide en un punto (a, f(a)) si
fes continua en a, f'(x) tiene signos opuestos a cualquier lado de a, y |f'(x)] = co cuando
X —a.

I Derivadas de orden superior Hemos visto que la derivada f'(x) es una funcion derivada de
y = f(x). Al diferenciar la primera derivada obtenemos otra funcién denominada segunda deri-
vada, que se denota por f”(x). En términos del simbolo de operacién d/dx, la segunda de-
rivada con respecto a x la definimos como la funcién que se obtiene al diferenciar dos veces

consecutivas a y = f(x):
Pt
dx\dx/

La segunda derivada suele denotarse por los simbolos

d?y

b
dx”

VA(CINER S

N1\ [JXe ] Segunda derivada

Encuentre la segunda derivada de y = %
X

d2
Ef(x)’ D*, D;.

Primero se simplifica la ecuacién al escribirla como y = x°. Luego, por la regla
de potencias (3), tenemos
dy
— = —3x"
dx N
La segunda derivada se obtiene al diferenciar la primera derivada

dy d » s )
3T = B = =

Si se supone que todas las derivadas existen, es posible diferenciar una funcién y = f(x)
tantas veces como se quiera. La tercera derivada es la derivada de la segunda derivada; la
cuarta derivada es la derivada de la tercera derivada, y asi sucesivamente. Las derivadas ter-
cera y cuarta se denotan por d>y/dx’ y d*y/dx*, y se definen como

d3y B i(d2y> d4’ B i<d3y>
dd dx\gy? det dx\g3/

En general, si n es un entero positivo, entonces la n-ésima derivada se define como

dny B i d’17|_)7
dx™  dx\ gy /)

Otras notaciones para las primeras derivadas n son

f@, f'@, "0, fO, o fO0),

LA S S T

d d? d? d* d"
prACOR E.f(x), E.f(x), Ef(x), ST NACO
D, D? D3 D* ..., D"

D, D3 D: D! .., D

Observe que la notacién “prima” se usa para denotar sé6lo las tres primeras derivadas; después
de eso se usa el supraindice y, y®, y asf sucesivamente. El valor de la n-ésima derivada de
una funcién y = f(x) en un nimero a se denota por

d"y

dx" x=a

%, y"a) y

155
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A5\ |JEe MR8 Quinta derivada

Encuentre las cinco primeras derivadas de f(x) = 2x* — 6x* + 7x> + 5x.

Tenemos
fi(x) =8x> — 18x* + 14x + 5
F(x) = 24x* — 36x + 14
f"(x) = 48x — 36
FP) =48
%) = 0.

Después de reflexionar un momento, usted debe convencerse que al derivar la (n + 1)
veces una funcién polinomial de grado n el resultado es cero.

—_ NOTAS DESDE EL AULA
D e
i) En los diversos contextos de ciencias, ingenieria y negocios, las funciones a menudo
se expresan en otras variables distintas a x y y. De manera correspondiente, la nota-
cién de la derivada debe adaptarse a los nuevos simbolos. Por ejemplo,

Funcion Derivada

_ o — dv _
u(t) = 32t V() = - 32

= ) =9 -
A(r) = mr A'(r) dr 2rr
() = 46% — 36 r'(0) = L7 _ 80 — 3

do
2 ! dD

D(p) = 800 — 129p + p D'(p) = E = —129 + 2p.

it) Quiza se pregunte qué interpretacion puede darse a las derivadas de orden superior. Si
piensa en términos de graficas, entonces f” proporciona la pendiente de las rectas tan-
gentes a la gréfica de la funcién f'; f” proporciona la pendiente de las rectas tangen-
tes a la grafica de la funcion f”, y asi sucesivamente. Ademads, si f es diferenciable,
entonces la primera derivada f’ proporciona la razén de cambio instantdnea de f. En
forma semejante, si f’ es diferenciable, entonces f” proporciona la razén de cambio
instantdnea de f’.

“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-10.

En los problemas 1-8, encuentre dy/dx.

1
3
5

<

.y=—18

Ly =x’

.y=7x2—4x

.y =4Vx - 6
3/ 2
X

En los problemas 9-16, encuentre f'(x). Simplifique.
9. f(x) = %XS —3x*+9x*+ 1

2. y=mab

4. y= 4x12 10. f(x) = —%x6 +4x° — 13x> + 8x + 2

— 3 2
6. y—6x + 3x° — 10 11. f(x)=x3(4x2—5x—6)

2
_ X=X 2x° + 3xt =P+ 2
8. y="/ 12. f(x) = >




13. f(x) = x*(x* + 5)?
15. f(x) = (4Vx + 1)

14. f(x) = (> + x*?)°
16. f0) = (9 + 0O — x)

En los problemas 17-20, encuentre la derivada de la funcién

dada.

17. h(w) = (4u)’ 18. p(h) = 20~ — @)
5 2

Ll Q(t)z%

19.g(r)=%+%+r r

En los problemas 21-24, encuentre una ecuacion de la recta tan-

gente a la grafica de la funcién dada en el valor indicado de x.

2l y=2x" —1; x = —1

23 )=+ 2V x=4 24, f()= -2+ 6% x=1
Vx

En los problemas 25-28, encuentre el punto o los puntos
sobre la grafica de la funcion dada donde la recta tangente es
horizontal.

25. y=x*—8x+5
27. f(x) = x* =32 — 9x + 2 28. f(x) = x* — 4x°

En los problemas 29-32, encuentre una ecuacién de la recta nor-
mal a la grifica de la funcién dada en el valor indicado de x.
29. y=—x*+1;x=2 30. y=x% x=1

8
. _ =
22, y = x+x,x 2

26. y = %x3 - %xz

31. f(x) = %x3 — 2% x=4 32. fx) =x*—x; x=—1

En los problemas 33-38, encuentre la segunda derivada de la
funcién dada.

33.y=—x*+3x—-7
35. y = (—4x + 9y’
37. f(x) = 10x7?

34. y = 15x* — 24Vx
36. y =2x° + 4x° — 6x7

38. fx) =x+ <%>z

En los problemas 39 y 40, encuentre la derivada de orden

superior indicada.

39. f(x)= 450 + 3 — X% f(4)(x)

40. y = x* — 170; d’y/dx’

En los problemas 41 y 42, determine intervalos para los cua-

les f'(x) > 0 e intervalos para los cuales f”(x) < 0.

41. f(x) = x>+ 8x—4 42. f(x) = X = 3x% — 9x

En los problemas 43 y 44, encuentre el punto o los puntos

sobre la grafica de f donde f"(x) = 0.

43. f(x) = X+ 12X+ 20x 44, fx) = x* — 2x3

En los problemas 45 y 46, determine intervalos para los cua-

les f"(x) > 0 e intervalos para los cuales f"(x) < 0.

45. fx) = (x —1)° 46. f(x) = x> + 12

Una ecuacién que contiene una o mds derivadas de una fun-

ci6én desconocida y(x) se denomina ecuacion diferencial. En

los problemas 47 y 48, demuestre que la funcidén satisface la

ecuacion diferencial dada.

47. y=x"+x% xH —2xy' —4y=0

48. y=x+ x> +4; x*y —3xy' +3y=12

49. Encuentre el punto sobre la grifica de f(x) = 2x* — 3x + 6
donde la pendiente de la recta tangente es 5.
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50. Encuentre el punto sobre la grifica de f(x) = x* — x
donde la recta tangente es 3x — 9y — 4 = 0.

51. Encuentre el punto sobre la grifica de f(x) = x> — x
donde la pendiente de la recta normal es 2.

52. Encuentre el punto sobre la grifica de f(x) = x> — 2x
donde la recta tangente es paralela a la recta 3x — 2y +
1=0.

53. Encuentre una ecuacién de la recta tangente a la grafica
dey = x> + 3x> — 4x + 1 en el punto donde el valor de
la segunda derivada es cero.

54. Encuentre una ecuacién de la recta tangente a la grafica
de y = x* en el punto donde el valor de la tercera deri-
vada es 12.

55. El volumen V de una esfera de radio r es V = jmr’.

Encuentre el drea superficial S de la esfera si S es la razén
de cambio instantdnea del volumen con respecto al radio.

56. Segun el fisico francés Jean Louis Poiseuille (1799-
1869), la velocidad v del flujo sanguineo en una arteria
cuya seccion transversal circular es constante de radio R
es v(r) = (P/4vl)(R* — r?), donde P, v y [ son constan-
tes. (Cudl es la velocidad del flujo sanguineo en el valor
de r para el cual v'(r) = 0?

57. La energia potencial de un sistema masa-resorte cuando
el resorte se estira una distancia de x unidades es
Ux) = %kxz, donde k es la constante del resorte. La
fuerza ejercida sobre la masa es F = —dU/dx. Encuentre
la fuerza si la constante del resorte es 30 N/m y la can-
tidad de estiramiento es 5 m.

58. La altura s por arriba del nivel del suelo de un proyectil
en el instante ¢ estd dada por

s(t) = %gt2 + vot + 5o,

donde g, vy y so son constantes. Encuentre la razén de
cambio instantdnea de s con respecto a 7 en t = 4.

En los problemas 59 y 60, el simbolo n representa un entero
positivo. Encuentre una férmula para la derivada dada.
d" d" 1
59. dx" dx" x
61. A partir de las graficas de f'y g en la FIGURA 4.36, deter-
mine qué funcidn es la derivada de la otra. Explique ver-
balmente su decision.
y

x" 60.

¥ =1 y=el)

FIGURA 4.3.6 Gréficas para el problema 61
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62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

A partir de la grafica de la funcién y = f(x) dada en la
FIGURA 4.37, trace la gréfica de f'.

y
| y=f®

FIGURA 4.3.7 Gréfica para el problema 62

Encuentre una funcién cuadrética f(x) = ax* + bx + ¢
tal que f(—1) = —11, f'(-1) =7y f"(—1) = —4.

Se dice que las graficas de y = f(x) y y = g(x) son orto-
gonales si las rectas tangentes a cada grafica son perpen-
diculares en cada punto de interseccién. Demuestre que
las grificas de y = x>y y = —+x? + 3 son ortogonales.
Encuentre los valores de b y ¢ de modo que la gréfica
de f(x) = x> + bx tenga la recta tangente y = 2x + ¢
enx = —3.

Encuentre una ecuacién de la(s) recta(s) que pasa(n) por
(%, 1) y es (son) tangente(s) a la grafica de f(x) = 2+
2x + 2.

Encuentre los puntos de la grafica de f(x) = x> — 5 tal
que la linea tangente a los puntos interseque al eje en x
(—3,0).

Encuentre el o los puntos sobre la grafica de f(x) = x
tal que la recta tangente interseque al eje y en (0, —2).
Explique por qué la grifica de f(x) = 1x° + 1x’ no tiene
recta tangente con pendiente —1.

Encuentre coeficientes A y B de modo que la funcién
y = Ax* + Bx satisfaga la ecuacién diferencial 2y” +
3y =x— 1.

Encuentre valores de a y b tales que la pendiente de la
tangente a la grifica de f(x) = ax®> + bxen (1, 4) sea —5.
Encuentre las pendientes de todas las rectas normales a
la grifica de f(x) = x* que pasan por el punto (2, 4).
[Sugerencia: Elabore una figura y observe que en (2, 4)
s6lo hay una recta normal.]

Encuentre un punto sobre la grifica de f(x) = x> + x y
un punto sobre la grifica de g(x) = 2x> + 4x + 1
donde las rectas tangentes son paralelas.

Encuentre un punto sobre la grifica de f(x) = 3x° + 5x°
+ 2x donde la recta tangente tiene la menor pendiente
posible.

2

76.

71.

78.

2

80.

. Encuentre las condiciones sobre los coeficientes a, b y

¢ de modo que la gréfica de la funcién polinomial
fx) =ax*+ bx*+cx+d

tenga exactamente una tangente horizontal. Exactamente
dos tangentes horizontales. Ninguna tangente horizontal.

Sea f una funcién diferenciable. Si f'(x) > 0 para toda
x en el intervalo (a, b), trace graficas posibles de f sobre
el intervalo. Describa verbalmente el comportamiento de
la grafica de f sobre el intervalo. Repita si f'(x) < 0 para
toda x en el intervalo (a, b).

Suponga que f es una funcién diferenciable tal que
f'(x) — f(x) = 0. Encuentre f"%(x).

Las grificas de y = x> y y = —x* + 2x — 3 dada por la
FIGURA 4.3.8 muestran que hay dos rectas L; y L, que son
simultdneamente tangentes a ambas graficas. Encuentre
los puntos de tangencia de ambas gréficas. Encuentre una
ecuacion para cada recta tangente.

y=—x>+2x—3

FIGURA 4.3.8 Grificas para el problema 78

. a) Use una calculadora o un SAC para obtener la gra-

fica de f(x) = x* — 4x® — 24 + 12x — 2.

b) Evalie f"(x) en x= -2, x=—1, x=0, x =1,
x=2,x=3yx=4.

¢) A partir de los datos del inciso b), ;observa alguna
relacién entre la forma de la grafica de fy los sig-
nos algebraicos de f”?

Use una calculadora o un sistema algebraico compu-
tacional para obtener la grifica de las funciones dadas.
Por inspeccién de las gréficas, indique donde cada fun-
cién puede no ser diferenciable. Encuentre f'(x) para
todos los puntos donde f es diferenciable.

a) f(x) = |x* — 2x]| b) fx)=|x—1|

4.4 Derivada de productos y cocientes

I Introduccion Hasta el momento sabemos que la derivada de una funcién constante y una

potencia de x son, a su vez:

ix” = nx" . (1)
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También sabemos que para funciones diferenciables f'y g:

d%é’f x) =cf'(x) vy %[f(X) T g)] =) £ gW. (2)

Aunque los resultados en (1) y (2) nos permiten diferenciar rdpidamente funciones algebrai-
cas (como polinomios), ni (1) ni (2) constituyen una ayuda inmediata para encontrar la deri-

vada de funciones como y = x*Vx? + 4 0 y = x/(2x + 1). Se requieren reglas adicionales
para diferenciar productos fg y cocientes f/ g.

I Regla del producto Las reglas de diferenciacion y las derivadas de funciones surgen en
ultima instancia de la definicién de la derivada. La regla de la suma en (2), que se obtuvo en la
seccién precedente, se concluye de la definicién y del hecho de que el limite de una suma es
la suma de los limites siempre que los limites existan. También sabemos que cuando los limi-
tes existen, el limite de un producto es el producto de los limites. Al razonar por analogia, pare-
ceria plausible que la derivada de un producto de dos funciones es el producto de las deriva-
das. Lamentablemente, la regla del producto que se presenta a continuacién no es tan simple.

Teorema 4.4.1 Regla del producto

Si f'y g son funciones diferenciables en x, entonces fg es diferenciable en x, y

d% [f()g)] = f(x)g'(x) + g)f (). 3)

DEMOSTRACION Sea G(x) = f(x)g(x). Entonces por la definicién de la derivada junto con
algo de manipulacién algebraica:
Gx + h) = G _ ’ SO + hglx + h) — fx)gx)

h Pty h

X) = lfm
G ( ) ; 0
cero

_ h’mf ( + g + h) — flx + h)gl) + flx + hglx) — f(x)gx)

h—0 h
+ h) — +h) —
= ,111/_13(1) fix + h)w + g(x)w
s+ h) ~ g(x) fet h) = )

= im0+ - iy et iy

Debido a que fes diferenciable en x, es continua ahi y entonces }lm}) fx + h) = f(x). Ademas,
},ﬁ% g(x) = g(x). Por tanto, la dltima ecuacién se vuelve

G'(x) = f0)g'(x) + g)f'(x).
La regla del producto se memoriza mejor en palabras:

e La primera funcién por la derivada de la segunda mds la segunda funcioén por la deri-
vada de la primera.

)3\ Ko BN Regla del producto

Diferencie y = (x* — 2x? + 3)(7x* — 4x).

De la regla del producto (3),

derivada de derivada de
primera la segunda segunda la primera
N
B w13 Lae an -y Lw -2 13
dx dx dx

= (% — 202 + 3)(14x — 4) + (Tx* — 40)(3x* — 4x)
= 35x* — 72x% + 24x% + 42x — 12.
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Los dos términos en la funcién dada pueden multiplicarse para obtener un
polinomio de quinto grado. Luego, la derivada puede obtenerse usando la regla de la suma.

1]\ (Xl Recta tangente

Encuentre una ecuacién de la recta tangente a la grafica de y = (1 + \/);)(x —2)enx = 4.

Antes de tomar la derivada, Vx volvemos a escribirla como x'/2

regla del producto (3),

. Luego, por la

dy 1o d d
e A N _ & 1/2
e (1 +x )dx(x 2) + (x 2)dx(1 + x79)

=1 +x" 1+ - 2)-%{1/2

3x +2Vx — 2
2Vx

Al evaluar la funcién dada y su derivada en x = 4 obtenemos:
y(4) = (l + \/Z)(4 — 2) = 6 <« el punto de tangencia es (4, 6)
dy _ 12+ 2V4 — 2 _7

~. < lapendiente de la tangente en (4, 6) es %

dx x=4 2\/2" 2
Por la forma punto-pendiente, la recta tangente es

7 . 7
y—6= 2(x 4) obien, y= X 8.
Aunque (3) se ha planteado s6lo para el producto de dos funciones, puede aplicarse a fun-
ciones con un mayor nimero de factores. La idea consiste en agrupar dos (o mas) funciones

y tratar este agrupamiento como una funcién. El siguiente ejemplo ilustra la técnica.

A\ |JHe ] Producto de tres funciones

Diferencie y = (4x + D(2x* — x)(x* — 8x).

Los dos primeros factores se identifican como la “primera funcién”:

derivada de derivada de
primera la segunda segunda la primera
N
Y _ (x + DR = 0903 = 80 + (¢ — 8)-L(dx + DX — x)
dx dx dx '

Observe que para encontrar la derivada de la primera funcién es necesario aplicar la regla del
producto por segunda ocasion:

De nuevo la regla del producto

dy 2 2 3 2
o= @+ D2 — 0 (G = 8) + (0 — 8- [@x + Déx — ) + (27 — ) 4]

= (4x + D2x* — 0)3x% — 8) + (x* — 8x)(16x* — 1) + 4> — 8x)(2x* — x).

I Regla del cociente A continuacién se presenta la derivada del cociente de dos funciones
fye

Teorema 442 Regla del cociente

Si f'y g son funciones diferenciables en x y g(x) # 0, entonces f/g es diferenciable en x, y

d {f(x) } _ 80f'@) — f()g')
dx | g(x) [g0)]° '

“4)




4.4 Derivada de productos y cocientes

Sea G(x) = f(x)/g(x). Entonces
fx+h)  fx)

G+ -Cw _ . sx+h g

G't) = lim I \m A
SO (x + h) — fCgx + )
= hg(x + h)g(x)
) —
L WA )~ g0f0) + g0f) — fgle + By
e hg(x + h)g(x)
+h) - + by —
PRLL BTN LR C
- $G + g
+ ) - + ) —
S el - T s

p AR
limg(x + h) - limg(x)
Puesto que se supone que todos los limites existen, la dltima linea es lo mismo que

gOf'(x) — f(x)g'(x)
[g()]? '

G'(x) =

En palabras, la regla del cociente empieza con el denominador:

* El denominador por la derivada del numerador menos el numerador por la derivada del
denominador, todo dividido entre el denominador al cuadrado.

NI\ [JNe WY Regla del cociente
3x2 — 1
23 + 58+ 7

Diferencie y =

Por la regla del cociente (4),

derivada del derivada del
denominador numerador numerador denominador
/_/;—\ /—J\—_\

d d
3 2 . 2 _ 2 . 3 2
dy 2x" + 5x=+7) dx 3x 1) — (3x 1) e 2x” + 5x°+7)

dx 2% + 5x¢% + 7)?
~

cuadrado del denominador

_ (2¢* + 5% +7) - 6x — (3x* — 1) - (6x* + 10x) « se multiplica por el numerador
2x3 + 5x2 4+ 7)2
_ —6x* + 6x% 4+ 52x
Q2x* + 532+ 72

=H]\Y (Mol Reglas del producto y el cociente
o+ D2+ 1)
3xr+ 1

Encuentre los puntos sobre la grifica de y = donde la recta tangente es

horizontal.

Se empieza con la regla del cociente y luego se usa la regla del producto al dife-
renciar el numerador:

161
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Regla del
producto aqui

(3x* + 1)-%{[@2 + DX+ D] = @+ DX+ 1)-61%(3x2 +1)

dy _
dx Gx® + 1)
Gx? + D[ + Ddx + 2x* + 1)2x] — (x> + 1D@2x> + 1)6x < se multiplica
- (3x2 + 1)2 por el numerador
_ 1267 + 8
B2+ 1)

En un punto donde la recta tangente es horizontal, debe tenerse dy/dx = 0. La derivada que
acaba de encontrarse solo puede ser 0 cuando el numerador satisface

Por supuesto, los valores de x P 125 + 83 =0 o bien, x3(12x2 +8)=0. (5)
que hacen cero al numerador no

deben hacer simultdneamente En (5), debido a que 12x* + 8 # 0 para todos los niimeros reales x, debe tenerse x = 0. Al
cero al denominador. sustituir este nimero en la funcién obtenemos y(0) = 1. La recta tangente es horizontal en la

interseccién con el eje y, el punto (0, 1).

I Posdata: Otro repaso a la regla de potencias Recuerde que en la seccién 4.3 establecimos
que la regla de potencias, (d/dx)x" = nx""!, es vélida para todos los nimeros reales exponen-
tes n. Ahora ya nos es posible demostrar la regla cuando el exponente es un entero negativo
—m. Puesto que, por definicién x™” = 1/x™, donde m es un entero positivo, la derivada de x™ "
puede obtenerse por medio de la regla del cociente y las leyes de los exponentes:

se restan los exponentes
d d o {
dw o (1) e

m)2 - x2/n

i) Las reglas del producto y del cociente suelen conducir a expresiones que demandan
simplificacion. Si su respuesta a un problema no se parece a la que se proporciona en
la seccion de respuestas del texto, quizd no ha realizado suficientes simplificaciones.
No quede contento con sélo llevar a cabo las partes mecdnicas de las diversas reglas
de diferenciacion; siempre resulta una buena idea poner en préctica sus habilidades
algebraicas.

ii) Algunas veces, la regla del cociente se usa cuando no es necesario. Aunque es posible
usar esta regla para diferenciar funciones como

y = xi y y = 10
6 >’
es mds simple (y rdpido) volver a escribir las funciones como y = x> y y = 10x 3, y
luego usar las reglas del miltiplo constante y de potencias:
dy _1d s_54 dy d 3

C A e — —4
o eal o0 Y om W S

“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-11.

= Fundamentos 1 6
3.y = 4Vx + — || 2x — Ry
En los problemas 1-10, encuentre dy/dx. X Vx
Ly=@02—7DE+4x+2) 4 y= <x2 _ 1><x3 n 1)
x? x?

2. y=(Tx+ Dx*—x*—9%)



10 5
S.y—xz+1 6.y—4x_3

_3x+1 02— 3x
7'y_2x—5 8'y_7—x

9. y=(6x — 1) 10. y = (x* + 5x)°

En los problemas 11-20, encuentre f'(x).

1 4
11. f(x) = <x - x3>(x3 —5x — 1)
12. f(x) = (x* — 1)(x2 — 10x + 22)
X
_ x2 _ x2—10x + 2
B ey 9T e

15. () = (x + D2x + DGx + 1)
16. f(x) = (2 + D — 0Gx* + 2x — 1)

_@rt e =) -
17. f(x) = 3x + 2 18- f(x) - (x2 + 1)()(:3 + 4)

19. f(x) = (x> — 2x — 1)@ i ;)

20.f(x)=(x+1)<x+l—x_}_2>

En los problemas 21-24, encuentre una ecuacién de la recta
tangente a la grafica de la funcién dada en el valor indicado
de x.

X _1 _ 5x
PR x—2 22.y—x2+1,
23 y=Q2Vx+x0)(—2x* +5x—1); x=1
24, y=@27 - Hx* +5x +3); x=0
En los problemas 25-28, encuentre el o los puntos sobre la
grifica de la funcién dada donde la recta tangente es hori-
zontal.

25. y = (x> — H(x* - 6) 26. y = x(x — 1)°

x? 28 _ 1
xt+1 Y x* — 6x
En los problemas 29 y 30, encuentre el punto o los puntos
sobre la grafica de la funcién dada donde la recta tangente
tiene la pendiente indicada.

_x+3 _ 1
29'y_x+1’ m=TR
30. y=(x+ DH(2x + 5);
En los problemas 31 y 32, encuentre el punto o los puntos
sobre la grafica de la funcién dada donde la recta tangente

tiene la propiedad indicada.

21. y =

27. y =

m= —3

_x+4 . _
31. y= P perpendicular a y X
32 y=—— ralel . -1
-y =y paralelaay =7

33. Encuentre el valor de k tal que la recta tangente a la gra-
fica de f(x) = (k + x)/x” tiene pendiente 5 en x = 2.
34. Demuestre que la tangente a la grifica de f(x) = (x* +

14)/(x* + 9) en x = 1 es perpendicular a la tangente de
la grifica de g(x) = (1 + x3)(1 + 2x) en x = 1.
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En los problemas 35-40, f'y g son funciones diferenciables.
Encuentre F'(1) si f(1) =2, f'(1) = =3y g(1) =6, g'(1)
=2.

35. F(x) = 2f(x)g(x) 36. F(x) = x’f(0)gx)

2 142

37. F(x) = 3;{((3 38 Py = —2 > ;;(xx))
(4 W

39. F(x) = (x +f(x)> g(x) 40. F(x) = )

41. Suponga que F(x) = Vxf(x), donde f es una funcién
diferenciable. Encuentre F"(4) si f(4) = —16, f'(4) =2
yf'4) =3.

42. Suponga que F(x) = xf(x) + xg(x), donde f'y g son fun-
ciones diferenciables. Encuentre F”(0) si f'(0) = —1y
g'(0) = 6.

43. Suponga que F(x) = f(x)/x, donde f es una funcién dife-
renciable. Encuentre F"(x).

44. Suponga que F(x) = x*f(x), donde fes una funcién dife-
renciable. Encuentre F"(x).

En los problemas 45-48, determine intervalos para los cua-

les f'(x) > 0 e intervalos para los cuales f'(x) < 0.

5 x> +3
45. f(x) =
Sx) 2 — o

46. f) =
47. f(x) = (—2x + 6)(4x + 7)
48. f(x) = (x — 2)(4x* + 8x + 4)

49. La ley de gravitacion universal establece que la fuerza
F entre dos cuerpos de masas m; y m, separados por
una distancia r es F = km;m,/r?, donde k es constante.
(Cudl es la razén de cambio instantdnea de F con res-
pecto a r cuando r = 3 km?

50. La energia potencial U entre dos dtomos en una molécula
diatémica estd dada por U(x) = q,/x'* — ¢,/x°, donde ¢,
y ¢» son constantes positivas y x es la distancia entre los
atomos. La fuerza entre los dtomos se define como
F(x) = —U'(x). Demuestre que F(\G/qu/qz) = 0.

51. La ecuacion de estado de Van der Waals para un gas
ideal es

(P + “/‘2>(V — b) = RT,

donde P es la presion, V es el volumen por mol, R es la
constante universal de los gases, T es la temperatura y
a y b son constantes que dependen del gas. Encuentre
dP/dV en el caso donde T es constante.

52. Para una lente convexa, la distancia focal f esta relacio-
nada con la distancia al objeto p y la distancia a la ima-
gen ¢ por la ecuaciéon de la lente

o1,
fr q

Encuentre la razéon de cambio instantanea de ¢ con res-

pecto a p en el caso donde f es constante. Explique el

significado del signo negativo en su respuesta. ;Qué

ocurre a g cuando p crece?
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= Piense en ello

c)

Conjeture una regla para encontrar la derivada de
y = [f(x)]", donde n es un entero positivo.

53. a) Grafique la funcién racional f(x) = — 1 d) Use su conjetura en el inciso ¢) para encontrar la deri-
* vada de y = (x> + 2x — 6)°.
b) Encuentre todos los puntos sobre la gréfica de f tales 55. Suponga que y,(x) satisface la ecuacién diferencial

que las rectas normales pasen por el origen.

54. Suponga que y = f(x) es una funcidén diferenciable.
a) Encuentre dy/dx para 'y = [f(x)]*
b) Encuentre dy/dx para 'y = [f(x)]’.

y" + P(x)y = 0, donde P es una funcién conocida.
Demuestre que y = u(x)y,(x) satisface la ecuacién dife-
rencial

y' + P(x)y = f(x)
siempre que u(x) satisface du/dx = f(x)/y;(x).

4.5 Derivada de funciones trigonométricas

I Introduccion En esta seccion desarrollaremos las derivadas de las seis funciones trigono-
métricas. Una vez que se han encontrado las derivadas de sen x y cos x es posible determinar
las derivadas de tan x, cot x, sec x y csc x usando la regla del cociente encontrada en la sec-
cioén precedente. De inmediato veremos que la derivada de sen x usa los dos siguientes resul-
tados de limites

sen x cosx — 1 _ 0 (1)

lim =1 y lim
=0 X x—0 X

que se encontraron en la seccién 3.4.

I Derivadas del seno y coseno Para encontrar la derivada de f(x) = sen x se usa la defini-
cion bdsica de la derivada

dy . fx+th —f)

i L @
y el proceso de cuatro pasos introducido en las secciones 4.1 y 4.2. En el primer paso usamos
la férmula de la suma para la funcién seno,

sen(x; + x,) = sen x; COS X, + COS X; S€N X», 3)
pero donde x y /& desempefian las partes de los simbolos x; y x,.

i) fx + h) =sen(x + h) = senxcosh + cosxsenh <« por(3)

se factoriza sen x
de los términos
= senx(cosh — 1) + cosxsenh primero y tercero

ii) f(x+ h) —f(x) =senxcosh + cosxsenh — senx <«

Como observamos en la linea siguiente, no es posible cancelar las / en el cociente diferencial,
aunque es posible volver a escribir la expresion para usar los resultados sobre limites en (1).

_ f&x+ h) — f(x) senx(cosh — 1) + cosxsenh
iii) =

h h
cosh — 1 sen h

h + cosx - n

= senx

iv) En esta linea, el simbolo /# desempefia la parte del simbolo x en (1):

yoo o Je+ ) = f) . cosh — 1 . _senh
f(x)—%1_r>r(1) A —senx'/lll_r}(l) A +cosx~/111_r)r(1) L

A partir de los resultados sobre limites en (1), la dltima linea es lo mismo que

+ h) —
flx) = %mw =senx-0 + cosx-1 = cosx.

Por tanto, d% Sen x = cos X. 4)



4.5 Derivada de funciones trigonométricas

De manera semejante es posible demostrar que

d COS X = —sen Xx. (@)
dx

Vea el problema 50 en los ejercicios al final de esta seccion.

)3\ [JEe BN Ecuacion de una recta tangente

Encuentre una ecuacién de la recta tangente a la gréfica de f(x) = sen x en x = 47/3.

A partir de (4) la derivada de f(x) = sen x es f'(x) = cos x. Cuando éstas se eva-
ldan en el mismo nimero x = 47/3 obtenemos:

4ar 4ar V3 ) . 3
fl——) = sen—— = ——-— <« el punto de tangencia es (T", 7%)
3 3 2
4 4 i
f’(%) = COoS Tﬂ- = —%. < la pendiente de la tangente en (%", —%) es —%
A partir de la forma punto-pendiente de una recta, una ecuacién de la recta tangente es
+ﬁ:_1<x_41> obien,  v— Lo 2m_V3
YT 2 3 A AR T T

La tangente se muestra en la FIGURA 4.5.1.

I Otras funciones trigonomeétricas Los resultados en (4) y (5) pueden usarse junto con las
reglas de diferenciacion para encontrar las derivadas de la tangente, cotangente, secante y cose-
cante.

Para diferenciar tan x = sen x/cos x se usa la regla del cociente:

d d
COSX - SenXx — Sen X —— COSX

d senx _ dx dx

dx cosx

(cos x)?

esto es igual a 1
/__/__\
cosx(cosx) —senx(—senx) cos’x + sen’x

(cos x)? cos? x

Al usar la identidad pitagérica fundamental sen® x + cos” x = 1y el hecho de que 1 / cos® x =

(1/cos x)2 = sec” x, la dltima ecuacién se simplifica a

d en?
e tan x = sec” x. (6)

La férmula de la derivada para la cotangente

%cotx = —cscx (7)
se obtiene en forma andloga y se deja como ejercicio. Vea el problema 51 en la seccién
“Desarrolle su competencia 4.5”.

Asi, sec x = 1/cos x. En consecuencia, es posible usar otra vez la regla del cociente para
encontrar la derivada de la funcién secante:

cosxil - 1~icosx

d 1 _ dx dx
dx cos x (cos x)z
0 —(—=senx) senx )
(cos x)? cos® x
_ sen x 1 sen x
Al escribir = . = secxtanx
cos’x COSX COSXx

165

y=senx

‘I, punlo’dc wpendi;ne es
tangencia (47 3 ECAY!

(T”T) ! (T)**E
FIGURA 45.1 Recta tangente en
el ejemplo 1
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podemos expresar (8) como

a secx = sec x tan x. ©))
dx
El resultado final también se concluye de inmediato a partir de la regla del cociente:
icscx = —cscx cot x. (10)
dx

Vea el problema 52 en la seccién “Desarrolle su competencia 4.5”.

)3\ Xe B A Regla del producto

Diferencie y = x” sen x.

La regla del producto junto con (4) da
dy 2 d d 2

— =x"——senx +senx——x

dx dx dx

= x?cosx + 2xsen x.

Regla del producto

Diferencie y = cos> x.

Una forma de diferenciar esta funcién es reconocerla como un producto: y =
(cos x)(cos x). Luego, por la regla del producto y (5),
Q = cosxicosx + cosxicosx
dx dx dx
= cosx(—sen x) + (cosx)(—sen x)
= —2sen x cos x.
En la siguiente seccidén veremos que hay un procedimiento alterno para diferenciar una poten-
cia de una funcién.

]\ [Xel¥:§ Regla del cociente

sen x
2 4+ secx’

Diferencie y =
Por la regla del cociente, (4) y (9),

d d
ﬂ_ (2 + secx) e sen x senxdx (2 + secx)

dx (2 + secx)?
_ (2 + secx) cosx — senx (sec x tan x) secxcosx =1y )
- 2 + sec x)2 sen x(sec xtan x) = sen” x/cos’ x

_ 1 + 2cosx — tan’x
(2 + secx)’

=8]3)7 | JHe MY Segunda derivada

Encuentre la segunda derivada de f(x) = sec x.

Por (9), la primera derivada es
f'(x) = sec x tan x.
Para obtener la segunda derivada, ahora es necesario usar la regla del producto junto con (6)
y O

d d
f'x) = secxatanx + tanxa secx

= sec x(sec®x) + tan x (sec x tan x)

= sec’x + secx tan’ x.



4.5 Derivada de funciones trigonométricas

Para referencia futura, a continuacién se resumen las féormulas de derivadas presentadas

en esta seccion.

Teorema 4.5.1 Derivadas de funciones trigonométricas

Las derivadas de las seis funciones trigonométricas son
d d
——Senx = CoSJX, — COSX = —senx, (11)
dx dx
d d
~—tanx = sec’x, ——cotx = —csc’x, (12)
dx dx
d d
—— Secx = sec x tanx, —— CSCX = —CSC X cot x. (13)
dx dx

—_ NOTAS DESDE EL AULA

5 e i)

Cuando trabaje los problemas en la seccién “Desarrolle su competencia 4.5, puede que no
obtenga la misma respuesta que la proporcionada en la seccién de respuestas al final del
libro. Esto se debe a que hay muchas identidades trigonométricas cuyas respuestas pueden
expresarse en una forma mas breve. Por ejemplo, la respuesta en el ejemplo 3:

dy _ : y _

— = —2senxcosx eslamismaque —- = —sen2x

dx dx
por la férmula del dngulo doble para la funcién seno. Intente resolver las diferencias entre
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su respuesta y la respuesta proporcionada.

“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-11.

En los problemas 1-12, encuentre dy/dx.

2. y=4x+x+ 5senx
3. y=1+7senx —tanx 4. y=3cosx — Scotx

5.y =xsenx 6. y = (4Vx — 3Vx)cosx
7.y =(*—2)tanx
9. y = (x* + sen x) sec x 10. y = cscxtanx

1. y = x> — cosx

8. y = cosxcotx

11. y = cos’x + sen’x 12. y = x*cosx — x’sen x

En los problemas 13-22, encuentre f'(x). Simplifique.

13. f(x) = (cscx) ! 4. f(x) = ﬁ
15, f00) = 23 16. fx) = %
17, 00 = T 18, f(r) = 20
19. f(0) = 0 0. 10 = e
21. f(x) = x* sen x tan x 22. f(x) = %

En los problemas 23-26, encuentre una ecuacion de la recta
tangente a la grafica de la funcién dada en el valor indicado
de x.

23. f(x) = cosx; x = /3 24. f(x) =tanx; x =1
25. f(x) =secx; x=m/6  26. f(x) =cscx; x=/2

En los problemas 27-30, considere la grafica de la funcién
dada sobre el intervalo [0, 27r]. Encuentre las coordenadas
x del o de los puntos sobre la gréfica de la funcién donde la
recta tangente es horizontal.

27. f(x) = x + 2cosx 28. f0) =5 Sen X

— COS X

1
X + cosx

29. f(x) = 30. f(x) =senx + cosx
En los problemas 31-34, encuentre una ecuacion de la recta
normal a la grifica de la funcién dada en el valor indicado

de x.
31. f(x) =senx; x=4m/3 32. f(x) = tan’x; x = w/4

33. f(x) = xcosx; x=
34, f(x) =

X

1+ senx; x=m/2

En los problemas 35 y 36, use una identidad trigonométrica
idénea para encontrar la derivada de la funcién dada.
X

35. f(x) = sen 2x >

36. f(x) = cos’
En los problemas 37-42, encuentre la segunda derivada de la
funcién dada.

37. f(x) = xsenx 38. f(x) = 3x — x*cosx

_senx _ 1
39. f(x) = e 40. f(x) = 1T cosx
41. y = cscx 42. y =tanx
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En los problemas 43 y 44, C; y C, son constantes reales arbi-
trarias. Demuestre que la funcién satisface la ecuacién dife-
rencial dada.

43.

44

45.

46.

y = C,cosx + Cysenx — lzxcosx; y' +y=senx
cos X sen x
=C + C o+ (2 =-Hy=0
y Vi Vi y Y ( 4))’

Cuando el angulo de elevaciéon del Sol es 6, un poste
telefénico de 40 pies de altura proyecta una sombra de
longitud s como se muestra en la FIGURA 4.5.2. Encuentre
la razén de cambio de s con respecto a 6 cuando
0 = m/3 radianes. Explique el significado del signo
menos en la respuesta.

//
Vi /\0
N
FIGURA 452 Sombra en el problema 45

Los dos extremos de una tabla de 10 pies de longitud se
sujetan a rieles perpendiculares como se muestra en la
FIGURA 4.5.3, de modo que el punto P puede desplazarse
con libertad sobre la vertical y el punto R puede moverse
libremente en direccion horizontal.

a) Exprese el drea A del tridngulo POR como una fun-
cioén del dngulo 0 indicado.

b) Encuentre la razén de cambio de A con respecto a 6.

¢) Al inicio la tabla estd en posicién plana sobre el riel
horizontal. Suponga que luego el punto R se mueve
en direccién del punto Q, obligando asi al punto P a
moverse hacia arriba sobre el riel vertical. Al princi-
pio el area del tridngulo es 0 (@ = 0), pero luego
aumenta durante un instante a medida que 6 crece
y después disminuye cuando R tiende a Q. Cuando
la tabla estd vertical, el drea del tridngulo es
0 (6 = 7/2) de nuevo. Grafique la derivada dA/d6.
Interprete la gréafica para encontrar valores de 6 para
los cuales A es creciente y los valores de 6 para los
cuales A es decreciente. Luego compruebe su inter-
pretacion de la grafica de la derivada al graficar A(6).

d) Use las gréficas en el inciso ¢) para encontrar el valor

de 6 para el cual el area del tridngulo es maxima.
riel

0 RN riel
FIGURA 453 Tabla en el problema 46

5

48.

49.

50.

51.

52.

. a) Encuentre todos los enteros positivos n tales que

n n

dx" s€n x = seén x; 7008)( = COS X,
n n

dx" COSX = Ssenx; 7senx = COS X.

b) Use los resultados en el inciso a) como ayuda para
encontrar

d21 d30 d40 d67
dx2] sen x, ﬁ sen x, M Cosx 'y dx67 COS X.

Encuentre dos puntos distintos P; y P, sobre la gréfica
de y = cos x de modo que la recta tangente en P, sea
perpendicular a la recta tangente en P,.

Encuentre dos puntos distintos P; y P, sobre la gréfica
de y = sen x de modo que la recta tangente en P, sea
paralela a la recta tangente en P,.

Use (1), (2) y la féormula de la suma para el coseno para
demostrar que

4 COoSXx = —senx
dx '
Use (4) y (5) y la regla del cociente para demostrar que
A v = —ese?
dx cotx cscrx.
Use (4) y la regla del cociente para demostrar que
4 CSCX = —CSCX COtX.
dx

En los problemas 53 y 54, use una calculadora o un SAC para
obtener la grafica de la funcién dada. Por inspeccién de la
grafica, indique donde la funcién puede no ser diferenciable.

53. f(x) = 0.5(sen x + |sen x]|)
55.

54. f(x) = |x + senx]
Como se muestra en la FIGURA 454, un joven jala un trineo
donde va sentada su hermana. Si el peso total del trineo y
la chica es de 70 Ib, y si el coeficiente de friccién de suelo
cubierto por nieve es 0.2, entonces la magnitud F de la
fuerza (medida en libras) necesaria para mover el trineo es
B 70(0.2)
"~ 0.2senf + cos @’
donde 6 es el angulo que la cuerda forma con la hori-
zontal.

a) Use una calculadora o un SAC para obtener la gra-
fica de F sobre el intervalo [—1, 1].

b) Encuentre la derivada dF/d6.

¢) Encuentre el dngulo (en radianes) para el que
dF/do = 0.

d) Encuentre el valor de F correspondiente al dngulo
encontrado en el inciso ¢).

e) Use la gréfica en el inciso a) como ayuda para inter-
pretar los resultados encontrados en los incisos ¢) y d).

Al
R

FIGURA 454 Trineo en el problema 55



4.6 La regla de la cadena

I Introduccion Como se analiz6 en la seccion 4.3, la regla de potencias

d -
—x" = px"!

dx

es valida para todos los nimeros reales exponentes n. En esta secciéon veremos que una regla

semejante se cumple para la derivada de una potencia de una funcién y = [g(x)]". Antes de

plantear el resultado formal, se considerard un ejemplo cuando n es un entero positivo.
Suponga que queremos diferenciar

y =+ 1) (1)
Al escribir (1) como y = (x> + 1) - (x> + 1), podemos encontrar la derivada al usar la regla
del producto:
d s 2_ (.5 4 s 5 d s
dx(x + 1) = +1) dx(x + D+ +1) dx(x + 1)
=@+ 1)-5xt+ 7+ 1) 5x*
=2(x° + 1) 5x* 2)
En forma semejante, para diferenciar la funcién y = (x* + 1), es posible escribirla como

y = (x> + 1) (x* + 1) y usar la regla del producto y el resultado que se proporciona en (2):

d 3_d s 2. (8
dx(x + 1) dx(x + D7+ 1D sabemos esto por (2)
T

d d
_ (.5 2.4 s 5 .45 2
x> +1 dx(x + 1)+ +1) dx(x + 1)
=+ 1?5+ 0+ D208 + 1) -5t
=3 + 1) 5x*%. (3
Asimismo, al escribir y = (x> + 1)* como y = (x* + 1)* - (x’ + 1) es posible demostrar con

facilidad mediante la regla del producto y (3) que

%(xS + D' =405 + 1) s “

I Regla de potencias para funciones La inspeccién de (2), (3) y (4) revela un patrén para
diferenciar una potencia de una funcién g. Por ejemplo, en (4) vemos

el exponente se escribe como multiplo
\ J derivada de la funcién entre paréntesis

43 + 1) - 5x*
T
disminuir el exponente por 1

Para recalcar lo anterior, si la funcién diferenciable se denota por [ ], resulta evidente que
i n _ n—1 i
S =ar e

El andlisis anterior sugiere el resultado que se plantea en el siguiente teorema.

Teorema 4.6.1  Regla de potencias para funciones

Si n es cualquier ndmero real y u = g(x) es diferenciable en x, entonces

51" = nlg@1" - g, )

o, en forma equivalente, iu" = nu""! -@. (6)
dx dx

4.6 Laregla de la cadena
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El teorema 4.6.1 constituye en si un caso especial de un teorema mas general, denomi-
nado regla de la cadena, que se presentard después de considerar algunos ejemplos de esta
nueva regla de potencias.

NI\ [LNe BN Regla de potencias para funciones
Diferencie y = (4x° + 3x + 1)

Solucién Con la identificacién de que u = g(x) = 4x” + 3x + 1, por (6) vemos que

» w'! du/dx
dy 3 6 d .3 3 6717+2
i 7(4x” + 3x + 1) '5(4)6 +3x + 1) =7@4x° + 3x + 1)°(12x" + 3).

1]\ [{Xe ¥ Regla de potencias para funciones

Para diferenciar y = 1/(x* + 1), podriamos, por supuesto, usar la regla del cociente. No obs-
tante, al volver a escribir la funcién como y = (x* + 1) !, también es posible usar la regla de
potencias para funciones con n = —1:

dy _ 2 2. d _ 2 2
i =(—Dx"+1) .dx(x + )=+ 1)y "2x= 1t
1]\ [Xe ] Regla de potencias para funciones

-

(7 = x* + )"

Diferencie y =

Escribimos la funcién dada como y = (7x° — x* + 2)7'°. Se identifica u = 7x° —
x*+2,n=—10y se usa la regla de potencias (6):

—10(35)64 - 4x3)
(75 — x* + )1

d
D 107x — a2

d .5 _ 4 _
e (7x x"+2)=

dx

)5\ [JNelW:8 Regla de potencias para funciones

Diferencie y = tan’ x.

Para recalcar, primero volvemos a escribir la funcién como y = (tanx)’ y luego se
usa (6) conu =tan x y n = 3:

dy , d
e 3(tan x)” - dxtanx.

Recuerde por (6) de la seccién 4.4 que (d/dx) tan x = sec? x. Por tanto,

y
— = 3tan’x sec’x.

dx

A3\ [N M:Y Regla del cociente y luego regla de potencias
ox* = 1)

Gx + DY

Diferencie y =

Empezamos con la regla del cociente seguida por dos aplicaciones de la regla de
potencias para:

Fegla de potencias para funciones
& Oxt DL -1y - @@ -1 Lsx+ 1y
Y _ dx dx
dx (5x + 1)'6
CGx+ D302 - D22 — (2 — 1) 8(5x 4+ 1)+ S
a (5x + 1)




_6x(5x + DY — 1) — 40(5x + 1) — 1)
a (5x + 16

(7 = DA(—10x* + 6x + 40)

a Gx + 1)° '

)3\ Kol Regla de potencias y luego regla del cociente

Diferencie y = 4/ éi ; :1;

Al volver a escribir la funcion como

2x — 3
8x + 1

_2\12
y = @i T ?) podemos identificarla u =

y n = %. Por tanto, para calcular du/dx en (6) es necesario usar la regla del cociente:

dy 1<2x - 3)‘1/2 d <2x - 3)

dx  2\8x + 1 dx\8x + 1
_ l<2x — 3)*'/2 Bx+1):-2—@2x—3)-8
C2\8x + 1 (8x + 1)
_ l<2x — 3)"/2' 26
2\8x + 1 8x + ¥
Por ultimo, se simplifica usando las leyes de los exponentes:
dy 13

dx  (2x — 3)28x + 1)

I Regla de la cadena Una potencia de una funcién puede escribirse como una funcién com-
puesta. Si identificamos f(x) = x" y u = g(x), entonces f(u) = f(g(x)) = [g(x)]". La regla de
la cadena constituye un mecanismo para diferenciar cualquier composicién fo g de dos fun-
ciones diferenciables 'y g.

Teorema 4.6.2 Regla de la cadena

Si la funcién f es diferenciable en u = g(x) y la funcién g es diferenciable en x, entonces
la composicién y = (fo g)(x) = f(g(x)) es diferenciable en x y

d ! /
S f ) = f'(g(x) - gx) @)
. dy dy du
o, en forma equivalente, I dn e (8)

En esta demostracién parcial resulta conveniente usar la
forma de la definicion de la derivada proporcionada en (3) de la seccion 4.2. Para Ax # 0,

Au = glx + Ax) — g(x) )
o bien, g(x + Ax) = g(x) + Au = u + Au. Ademas,
Ay =flu + Auw) — fu) = f(gx + Ax)) — f(g(x)).
Cuando x y x + Ax estdn en algin intervalo abierto para el que Au # 0, es posible escribir

Ay Ay Au

Ax  Au Ax

4.6 Laregla de la cadena
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Puesto que se supone que g es diferenciable, es continua. En consecuencia, cuando Ax — 0,
glx + Ax) > g(x), y asi por (9) vemos que Au — 0. Por tanto,
A A
lim > = (h’rn—y)-(li A”)

m =4
Av—0Ax Ar—0Au Ax—0Ax

. Ay (o Au N
=| lim—-—)-| lim——). < observe que Au — 0 en el primer término
Au—0A Ax—0Ax

Por la definicién de derivada, (3) de la seccidn 4.2, se concluye que

d)’_dy.du

dx  du dx

Se supone que Au # 0 sobre algunos intervalos no se cumple para toda funcién diferen-
ciable g. Aunque el resultado proporcionado en (7) sigue siendo vélido cuando Au = 0, la
demostracién precedente no.

Para comprender la derivada de una composicién y = f(g(x)) podria ser de utilidad con-
siderar a f como la funcion externa 'y a u = g(x) como la funcion interna. Asi, la derivada de
y = f(g(x)) = f(u) es el producto de la derivada de la funcion externa (evaluada en la funcion
interna) y la derivada de la funcion interna (evaluada en x):

derivada de la funcién externa

{
%f(u) = f'(u) - ? (10)

derivada de la funcién interna

El resultado en (10) lo escribimos de varias formas. Puesto que y = f(u), tenemos
f'(w) = dy/du, y, por supuesto, u’ = du/dx. El producto de las derivadas en (10) es el mismo
que en (8). Por otra parte, si los simbolos u y u' en (10) los sustituimos por g(x) y g'(x), obte-
nemos (7).

I Demostracion de la regla de potencias para funciones Como ya se observd, una potencia

de una funcién puede escribirse como una composicién (f° g)(x) donde la funcién externa es

y = f(x) = x" y la funcién interna es u = g(x). La derivada de la funcién interna y = f(u) = u"
dy _

es = nu""! y la derivada de la funcién externa es

dy —ﬂ @_ n*l@_ n—1_1
D du e M g Tl g ).

du

dr Asi, el producto de estas derivadas es

Esta es la regla de potencias para funciones proporcionada en (5) y (6).

I Funciones trigonométricas Las derivadas de las funciones trigonométricas compuestas con
una funcién diferenciable g se obtienen como una consecuencia directa de la regla de la cadena.
Por ejemplo, si y = sen u, donde u = g(x), entonces la derivada de y con respecto a la varia-
ble u es

dy
qu = cosu
Por tanto, (8) da
dy _dy du__ du

dx  du dx Cosudx

o bien, de manera equivalente,
d _ d
dxsen[ ] = cos| ]7dx[ ].

En forma semejante, si y = tan u donde u = g(x), entonces dy/du = sec* u 'y asi

dy dy du  , du
= - =secu— .

dx  du dx dx

A continuacién se resumen los resultados de la regla de la cadena para las seis funciones tri-
gonométricas.



Teorema 4.6.3  Derivadas de funciones trigonométricas

Si u = g(x) es una funcién diferenciable, entonces

dsenu = cosu@ icosu = —sen u@ (11)
dx’ T dx? dx dx’

d 5, du d _ o du

dxtanu = sectu 5 dxcotu = —esctu (12)
isec = sec utan du icsc = —cscucot du (13)
gy Secu = secutanu -, s scucotu .

R\ KoMV Regla de la cadena

Diferencie y = cos 4x.

La funcién es cos u con u = 4x. Por la segunda férmula en (11) del teorema 4.6.3,
la derivada es

&
du dx
dy S
— = —sendx - —4x = —4sendx.
dx dx

)3\ Ko l¥:] Regla de la cadena

Diferencie y = tan(6x> + 1).

La funcién es tan u con u = 6x* + 1. Por la segunda férmula en (12) del teorema
4.6.3, la derivada es

du
sec’ u dx
dy " 5 d _ 2062
e - seC 6x+ 1) e (6x” + 1) = 12x sec*(6x~ + 1).

A3\ e M) Reglas del producto, de potencias y de la cadena
Diferencie y = (9x°> + 1)* sen 5x.

Primero se usa la regla del producto:

d d
= 3 2,2 i 3 2
Ox° + 1) 5 en S5x + sen 5x dx(9x + 1)

@
dx

seguida de la regla de potencias (6) y la primera férmula (11) del teorema 4.6.3,

por (11) por (6)
d ' d ' d
Y 043 2. . . 3 L0943
dx 9x° + 1)° - cos 5x dx5x + senSx - 2(9x” + 1) dx(9x + 1)

= (9x> + 1)+ 5cos Sx + sen 5x - 2(9x* + 1) - 2712

= (9x° + 1)(45x3cos 5x + 5 cos 5x + 54x” sen 5x).
En las secciones 4.3 y 4.4 vimos que aun cuando las reglas de la suma y el producto se
plantearon en términos de dos funciones fy g, son vdlidas para cualquier nimero finito de
funciones diferenciables. De este modo, también se plante6 la regla de la cadena para la com-

posicion de dos funciones fy g, aunque es posible aplicarla a la composicién de tres (0 mas)
funciones diferenciables. En el caso de las tres, f, g y h, (7) se vuelve

P = F(h0) g
= Fg(h(x)) - g (h(x) - ).

4.6 Laregla de la cadena
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174 UNIDAD 4 La derivada

N1\ XM (18 Uso repetido de la regla de la cadena

Diferencie y = cos*(7x* + 6x — 1).

Para recalcar, primero escribimos la funcién dada como y = [cos(7x3 + 6x — 1]4.

Observe que esta funcién es la composicion (fo g o h)(x) = f(g(h(x))) donde f(x) = x4, glx) =

cos x y h(x) = 7x* + 6x — 1. Primero aplicamos la regla de la cadena en la forma de regla

de potencias (6) seguida por la segunda férmula en (11):
dy

& _ 3 . 4 3 _
I 4[cos(7x’ + 6x — 1)] dxcos(7x +6x — 1)

primera regla de la
cadena: diferenciar
la potencia
=4cos’(7x> + 6x — 1)+ | —sen(7x* + 6x — 1)~ i(7x3 + 6x — 1)| « segundaregladela

dx cadena: diferenciar
el coseno

—421x2 + 6)cos®(7x* + 6x — )sen(7x* + 6x — 1).

En el ejemplo final, la funcién dada es una composicién de cuatro funciones.

=1\ [Ne MR N Uso repetido de la regla de la cadena
Diferencie y = sen (tan\V/3x? + 4).

La funcién es f(g(h(k(x)))), donde f(x) = sen x, g(x) = tan x, h(x) = VX, y k(x) =
3x* + 4. En este caso se aplica la regla de la cadena tres veces consecutivas como sigue:

d d ; ; .
l — cos(tan‘ /3x2 + 4) L tany /3x2 + 4 _ primera regla de la cadena:

dx dx diferenciar el seno

d
= cos(tanV/3x> + 4) - sec V3P + 4 V32 + 4 _ segunda regla de la cadena:

diferenciar la tangente

/A2 . d
cos(tan \V/3x% + 4) sec®V3x? + 4 - 3(3352 + 4)]/2 < se vuelve a escribir la potencia

tercera regla de la

= cos(tan \/3x% + 4)' sec>\V3x2+4- %(3)62 + 4) -1z %(3)«?2 + 4) < cadena: diferenciar

la potencia
cos(tanV3x? + 4) - sec?V3x? + 4 - %(3x2 + 4)712 . gx « simplificar

3xcos (tan\/ﬁ) -sec?\V/3x2 + 4
V322 + 4 '

Por supuesto, usted debe volverse tan apto en aplicar la regla de la cadena que al final ya
no piense en el nimero de funciones presentes en la composicién que se trate.

—3_ NOTAS DESDE EL AULA

7

i) Quizas el error mas frecuente es olvidar efectuar la segunda parte de la regla de la cade-
na; a saber: la derivada de la funcién interna. Esta es la parte du/dx en

dy _dydu
dx  du dx’

Por ejemplo, la derivada de y = (1 — x)°” no es dy/dx = 57(1 — x)°® puesto que
57(1 — x)°® es s6lo la parte dy/ du. Podria ser ttil usar de manera consistente el simbo-
lo de operacién d/dx:

%(1 - 0% =571 - x)56-d%(1 - x) = 57(1 — )% (~1).
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i) Un error menos comun, pero tal vez mds grave que el primero, consiste en diferenciar
dentro la funcién dada. En su examen, un estudiante escribié que la derivada de
y = cos(x* + 1) era dy/dx = —sen(2x); es decir que la derivada del coseno es el nega-
tivo del seno y que la derivada de x* + 1 es 2x. Ambas observaciones son correctas, pero
la forma donde se escribieron juntas es incorrecta. Tenga en cuenta que la derivada de la
funcién interna es un multiplo de la derivada de la funcién externa. De nuevo, podria ser
de ayuda usar el simbolo de operacién d/dx. La derivada correcta de y = cos(x? + 1) es

el producto de dos derivadas.

dy

dx

= —sen(x? + 1) -a%(x2 + 1) = —2x sen(x? + 1).

DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-11.

En los problemas 1-20, encuentre dy/dx.
y=(G3/0"

L y=(—5x% 2.
3.y = (2x* + x)* 4.
1

5. y=—F—"""—"—
YT w2y
7.y =0Gx — DY—2x + 9° 8.
9. y =senV2x 10.
2
-1
1Ly =/~ 12.
y X+ 1
13. y =[x+ & — 4*1° 14,
15. y=x@x '+ x 2+ x37* 16.
17. y = sen(wx + 1) 18.
19. y = sen? 5x 20.

o

1 )5
x2

10

6. yE T
Vx —4dx + 1

y=x'2+1)°

y = sec x>
3x — 4

YT e v
5x +2)

1 4
’ [(x3 —x+ 1)2}
y=02x +1°V3x*—2x

y = —2cos(—3x + 7)

En los problemas 21-38, encuentre f'(x).

21.

23.

25.
27.
29.

31.

33.
35.
37.

38.

fx) = x*cosx® 22.
fx) =@ + xsen3x)'? 24,
Sf(x) = tan(1/x) 26.
f(x) = sen 2x cos 3x 28.

f(x) = (sec4x + tan2x)° 30.
f(x) = sen(sen 2x) 32.

fx) = cos(sen V2x + 5) 34.
fx) = sen*(4x* — 1) 36.
f =0+ d+ 1+ x)))°

1—42
el

y = 4 cos’Vx
_sen5x
fo = cos 6x
(1 — cos4x)’
J) = (1 + sen Sx)°
f@) = xcot(5/x?)
f(x) = sen? 2x cos® 3x
f(x) = csc? 2x — csc2x?
fx) = tan(cosg)
f(x) = tan(tanx)
f(x) = sec(tan®x*)

En los problemas 39-42, encuentre la pendiente de la recta tan-
gente a la gréifica de la funcién dada en el valor indicado de x.
1

—; x=0
(Bx + 1)? *

39. y=@x*+2)7% x=-1 40. y=

41. y = sen 3x + 4x cos 5x;
42. y = 50x — tan’2x; x = 7w/6

X =1

En los problemas 43-46, encuentre una ecuacion de la recta
tangente a la grafica de la funcién dada en el valor indicado
de x.

2
43'y:(x-)f-l>; x=—% 4. y=xx— 1% x=2

45. y = tan3x; x = w/4
46. y = (—1 + cos4x)’; x = m/8

En los problemas 47 y 48, encuentre una ecuacion de la recta
normal a la grafica de la funcién dada en el valor indicado
de x.

_ ™ 2y. _ 1
47. y = sen<6x)cos(7rx ), X >
48.y=sen3)C X =1

g;
En los problemas 49-52, encuentre la derivada indicada.

49. f(x) = senmx; f"(x)
50. y = cos(2x + 1); d°y/dx’

51.
53.

52. f(x) =cos x* f"(x)

Encuentre el o los puntos sobre la gréifica de f(x) =
x/(x* + 1)* donde la recta tangente es horizontal. La gra-
fica de f, ;tiene alguna tangente vertical?

y = xsen 5x; d3y/dx’

54. Determine los valores de ¢ en los que la razén de cam-

bio instantdnea de g(f) = sen t + %cos 2t es cero.

55. Si f(x) = cos(x/3), (cudl es la pendiente de la recta tan-

gente a la gréafica de f' en x = 27?

56. Sif(x) = (1 — x4 (cudl es la pendiente de la recta tan-

gente a la grafica de f” en x = 2?
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57.

58.

59.

60.

La funcién R = (v3/g)sen 26 proporciona el rango de
un proyectil disparado a un dngulo 6 con respecto a la
horizontal con una velocidad inicial vy. Si vy y g son
constantes, encuentre los valores de 6 con los cuales
dR/df = 0.

El volumen de un globo esférico de radio res V = 37>,
El radio es una funcién del tiempo ¢ y aumenta a razén
constante de 5 pulg/min. ;Cudl es la razén de cambio
instantdnea de V con respecto a r?

Suponga que un globo esférico se infla a razén cons-
tante dV/dt = 10 pulg®’/min. ;A qué ritmo aumenta su
radio cuando r = 2 pulg?

Considere una masa sobre un resorte como se muestra
en la FIGURA 46.1. En ausencia de fuerzas de amortigua-
cion, el desplazamiento (o distancia dirigida) de la masa,
medido desde una posicion denominada posiciéon de
equilibrio, estd dado por la funcién

61.

62.

63.
64.

a) Compruebe que x(7) satisface la ecuacién diferencial

d’x
dr?

+ w’x = 0.

b) Compruebe que x(f) satisface las condiciones inicia-
les x(0) = xy y x'(0) = v,.

Sea F una funcioén diferenciable. ;Qué es %F@x)?

Sea G una funcioén diferenciable. ;Qué es %[G(—xz)]z?
Supon aif()zl 'Quéesif(—lO +7)?
pong du’ u dx o ’

d 1 ( d . ;3
il - . il 9
Suponga dxf(x) Y (Qué es dxf(x )7

En los problemas 65 y 66, el simbolo n representa un entero
positivo. Encuentre una férmula para la derivada dada.

Vo
n= r+— t, " _ n
M) = xgcoswf + - sen w 65. L (1 + 20" 66. L \/T ¥ ox
L dx dx
donde @ = Vk/m, k es la constante del resorte (un indi-
67. Suponga que g(r) = h(f(¢)), donde f(1) = 3, f'(1) = 6,

cador de la rigidez del resorte), m es la masa (medida
en slugs o kilogramos), y, es el desplazamiento inicial
de la masa (medido por arriba o por debajo de la posi-
cién de equilibrio), v, es la velocidad inicial de la masa
y t es el tiempo medido en segundos.

Equilibrio - = - 1 - £<0
x>0
FIGURA 4.6.1 Masa en un resorte en el problema 60

68.

69.

70.

y W'(3) = —2. ;Qué es g'(1)?
Suponga que g(1) = 2,g'(1) = 3,¢"(1) — 1,f'(2) = 4,
2
y ') = 3. (Qué es = f(g(xp| 2
dx x=1

Dado que f es una funcién impar diferenciable, use la
regla de la cadena para demostrar que f" es una funcién
par.

Dado que f'es una funcién par diferenciable, use la regla
de la cadena para demostrar que ' es una funcién impar.

4.7 La derivada implicita

I Introduccion Las grificas de las diversas ecuaciones que se estudian en matemadticas no
son las graficas de funciones. Por ejemplo, la ecuacién

X2+y2=4 (D
describe un circulo de radio 2 con centro en el origen. La ecuacién (1) no es una funcién,
puesto que para cualquier eleccién de x que satisfaga —2 < x < 2 corresponden dos valores
de y. Vea la FIGURA 47.1a). A pesar de ello, las graficas de ecuaciones como (1) pueden tener
rectas tangentes en varios puntos (x, y). La ecuacién (1) define por lo menos dos funciones f
y g sobre el intervalo [—2, 2]. Graficamente, las funciones evidentes son la mitad superior y
la mitad inferior del circulo. A fin de obtener férmulas para éstas, se despeja y de la ecuacién
x* + y? = 4 en términos de x:

y=f0) = Va4 -2
y y =gk = —m, <« semicirculo inferior 3)

«— semicirculo superior 2)



Vea las figuras 4.7.1D) y c¢). Ahora ya es posible encontrar pendientes de las rectas tangentes
para —2 < x < 2 al diferenciar (2) y (3) con la regla de potencias para funciones.

En esta seccion veremos cémo obtener la derivada dy/dx para (1), asi como para ecua-
ciones mas complicadas F(x, y) = 0, sin necesidad de resolver la ecuacién para la variable y.

I Funciones implicitas y explicitas Se dice que una funcién donde la variable dependiente
se expresa s6lo en términos de la variable independiente x, a saber, y = f(x), es una funcién
explicita. Por ejemplo, y = x> — 1 es una funcién explicita. Por otra parte, se dice que una
ecuacion equivalente 2y — x* + 2 = 0 define implicitamente la funcién, o que y es una fun-
cién implicita de x. Acabamos de ver que la ecuacién x* + y* = 4 define implicitamente las
dos funciones f(x) = V4 — x*y gx) = —\V4 — x*.

En general, si una ecuacién F(x, y) = 0 define implicitamente una funcién en algtn inter-
valo, entonces F(x, f(x)) = 0 es una identidad sobre el intervalo. La grafica de f es una por-
cién o un arco (o toda) de la grafica de la ecuacién F(x, y) = 0. En el caso de las funciones
en (2) y (3), observe que ambas ecuaciones

A O =4y 2+ [g0) =4

son identidades sobre el intervalo [ —2, 2].

La grifica de la ecuacién x* + y* = 3xy que se muestra en la FIGURA 47.2a) es una curva
famosa denominada hoja de Descartes. Con ayuda de un SAC como Mathematica o Maple,
encontramos que una de las funciones implicitas definidas por x* + y*> = 3xy es

y= 2 + %\3/—4x3 + 4V — 4x, @)
\3/—4x3 + 4V — 4x®

La gréfica de esta funcidn es el arco que se observa en la figura 4.7.2b). En la figura 4.7.2¢)
se proporciona la grifica de otra funcién implicita definida por x* + y* = 3uxy.
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-2
¢) Funcién
FIGURA 4.7.1 La ecuacién
x? 4+ y* = 4 determina por lo
menos dos funciones

y y Y
3+ 3+ 3t
2+ 2+ 2+
v A 1/
——t ——— X " ——t—>x —t—t ———x
-3 -2 -1 1 2 3 -3 -2 -1 1 2 3 -3 -2 -1 1 2 3
-1+ -1+ -1+
-2+ -2+ -2+
-3+ -3t -3t
a) Hoja b) Funcién ¢) Funcién

FIGURA 4.7.2

I Diferenciacion implicita A partir del andlisis anterior, no salte a la conclusion de que siem-
pre es posible resolver una ecuacién F(x, y) = 0 para una funcién implicita de x como se hizo
en (2), (3) y (4). Por ejemplo, resolver una ecuacién como
-y =2x+y
para y en términos de x es mds que un ejercicio en algin desafio algebraico o una leccién
sobre el uso de la sintaxis correcta en un SAC. |Es imposible! Sin embargo, (5) puede deter-
minar varias funciones implicitas sobre un intervalo restringido del eje x. A pesar de ello, pode-
mos determinar la derivada dy/dx por medio de un proceso denominado diferenciacién impli-
cita. Este proceso consiste en diferenciar ambos miembros de una ecuacién con respecto a x,
usando las reglas de diferenciacién y luego resolviendo para dy/dx. Puesto que se considera
que y estd determinada por la ecuacién dada como una funcién diferenciable de x, la regla de
la cadena, en forma de la regla de potencias para funciones, proporciona el resultado titil
d 5
£y 2 ®)

n o n—1

= ny

Las porciones de la grifica en a) que se muestran en b) y ¢) son gréficas de dos funciones implicitas de x

(5) « Aungue no es posible resolver

ciertas ecuaciones para una fun-
cién explicita, sigue siendo posi-
ble graficar la ecuacién con
ayuda de un SAC. Asi, es posi-
ble ver las funciones como se
hizo en la figura 4.7.2.
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donde n es cualquier nimero real. Por ejemplo,

d
diixz =2x  mientras a%yz =2y d%c]
En forma semejante, si y es una funcién de x, entonces por la regla del producto

i in + ix:xﬂ-i-
™ ax” Y dx dx

y por la regla de la cadena

4 _ ds _ &
Zx Sen S5y = cos 5y dey = 5cos Sy i

Directrices para diferenciacion implicita

i) Al diferenciar con respecto a x ambos miembros de la ecuacion, use las reglas
de diferenciacion y considere a y como una funcién diferenciable de x. Para
potencias del simbolo y, use (6).

ii) Agrupe todos los términos donde aparece dy/dx en el miembro izquierdo de la
ecuacion diferenciada. Mueva todos los otros términos al miembro derecho de
la ecuacion.

iif) Factorice dy/dx en todos los términos donde aparezca este término. Luego, des-
peje dy/dx.

En los siguientes ejemplos se supondrd que la ecuacién dada determina por lo menos una
funcién diferenciable implicitamente.

13\ [ JXe BN Uso de la diferenciacién implicita
Encuentre dy/dx si x* + y> = 4.

Se diferencian ambos miembros de la ecuacién y luego se usa (6):

use la regla de potencias (6) aqui

dy
2x+2ya—0.

Al despejar la derivada obtenemos

dy X
iy (N
Como se ilustra en (7) del ejemplo 1, la diferenciacién implicita suele producir una deri-

vada que depende de ambas variables x y y. En el andlisis introductorio vimos que la ecua-
cién x* + y* = 4 define dos funciones que pueden diferenciarse implicitamente sobre el inter-
valo abierto —2 < x < 2. El simbolismo dy/dx = —x/y representa la derivada de cualquiera
de las funciones sobre el intervalo. Observe que esta derivada indica con claridad que las fun-
ciones (2) y (3) no son diferenciables en x = —2 y x = 2 puesto que y = 0 para estos valo-
res de x. En general, la diferenciacién implicita produce la derivada de cualquier funcién que
puede derivarse implicitamente definida por una ecuacién F(x, y) = 0.

1]\ [JXel¥] La pendiente de una recta tangente

Encuentre las pendientes de las rectas tangentes a la grifica de x*> + y> = 4 en los puntos
correspondientes a x = 1.

Al sustituir x = 1 en la ecuacién dada obtenemos y> = 3 o y = =V/3. Por tanto,
hay rectas tangentes en (1, V/3)y (1, —V/3). Aunque (1, V3) y (1, —V/3) son puntos sobre la



grafica de dos funciones que pueden diferenciarse implicitamente, indicadas en la FIGURA 4.7.3,
(7) en el ejemplo 1 proporciona la pendiente correcta en cada nimero en el intervalo (—2, 2).
Tenemos

dy 1 dy 1

1 _ _ 1
dlovey V3T dliovs VBB

)3\ Ko ] Uso de diferenciacion implicita
Encuentre dy/dx si x* + xy* — y° = 2x + 1.

En este caso, usamos (6) y la regla del producto:

regla del producto aqui regla de potencias (6) aqui
d , . d s dY% d d
— X+ —xy -y =—2x+—1
Tt T T dx dx

dy dy ctoric < (Erminos
3 2 2.2 3 _ g 4 factorice dy/dx de los términos
4x® 4 x% - 3y dx + 2xy Sy dx 2 &segundoycuarto

d
(ey = 5 2 =2 — 4 — 2y

ﬂ_2—4x3—2)cy3
dx - 3x2y2 _ 5y4 .

I Derivadas de orden superior Por medio de diferenciacién implicita determinamos dy/dx.
Al diferenciar dy/dx con respecto a x obtenemos la segunda derivada d?y/dx*. Si la primera
derivada contiene a y, entonces d’y/dx* de nuevo contiene el simbolo dy/dx; esa cantidad
puede eliminarse al sustituir su valor conocido. El siguiente ejemplo ilustra el método.

Segunda derivada

Encuentre d?y/dx* si x* + y* = 4.

Por el ejemplo 1, ya sabemos que la primera derivada es dy/dx = —x/y. La segunda
derivada es la derivada de dy/ dx, de modo que por la regla del cociente:

al sustituir por dy/dx
| \

¥ ¥ y

Al observar que x> + y* = 4, es posible volver a escribir la segunda derivada como

dy _ <_£>
dy d(x)__y'l_x'dx_ YY) R

dy_ _4

de y3'

)3\ KoY Reglas de la cadena y del producto
Encuentre dy/dx si sen y = y cos 2x.

Por la regla de la cadena y la regla del producto obtenemos

d seny = d cos 2x
dx Y dx Y

dy dy
cosy- o= y(=sen2x-2) + cos2x- -

2 A 2 2
(cosy — cos 2x) o 2ysen2x

dy 2y sen 2x

dx cosy — cos2x’

4.7 La derivada implicita
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FIGURA 4.7.3 Las rectas
tangentes en el ejemplo 2
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I Posdata: Otro repaso a la regla de potencias Hasta el momento se ha demostrado la regla
de potencias (d/dx)x" = nx"~" para todos los enteros exponentes n. La diferenciacién impli-
cita constituye un mecanismo para demostrar esta regla cuando el exponente es un ndmero

racional p/q, donde p y ¢ son enteros y ¢ # 0. En el caso donde n = p/q, la funcién

y = x4 proporciona yi = xP.
Luego, para y # 0, la diferenciacién implicita
d d L dy _
=~ vwqd = = P q—1 2 _— p—1
el it produce ' =P

Al despejar dy/dx en la tltima ecuacién y simplificar con las leyes de los exponentes obtene-

mos

dy pxt™' _p x!

_Pr x»' p

dx ¢ ya!

=L ypla-1

- E (xp/q)q*I - q xP—rla q

Al examinar el ultimo resultado observamos que se trata de (3) de la seccién 4.3 con n = p/q.

“ DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-11.

En los problemas 1-4, suponga que y es una funcién diferen-
ciable de x. Encuentre la derivada indicada.

d 54 dx?
1 ™ T odxy?
3. d%lccosyz 4. diiy sen 3y

En los problemas 5-24, suponga que la ecuacién dada define
por lo menos una funcién diferenciable implicita. Use dife-
renciacién implicita para encontrar dy/dx.
5.y"—2y=x 6.
7. 07— x> +4=0 8.
9. 3y + cos y = x° 10.
11 x%y? = 2x% +y? 12.
13. (> +y)0=x*—? 14.

4> +y? =38

- 1D*=4x+2)
y3—2y+3x3=4x+1
2= 6xyt +y =1
y=@=-y@

15 y 30 +y% 3 =2x+ 1 16. y* —y?> = 10x — 3
17. (x — 1) + (y + 47 = 25 18. ;Cii:x

2
19.y2=i;; 20.§+y;=5
21. xy = sen(x + y) 22. x + y = cos(xy)
23. x = secy 24, xseny — ycosx = 1

En los problemas 25 y 26, use diferenciacién implicita para
encontrar la derivada indicada.

25. r* = sen20; dr/do 26. 7r*h = 100; dh/dr

En los problemas 27 y 28, encuentre dy/dx en el punto indi-
cado.
27. x* + 4y + 3x = 0;

(m/2,1)

(1, =D
28. y = sen xy;

En los problemas 29 y 30, encuentre dy/dx en los puntos que
corresponden al nimero indicado.

29. 2y* 4+ 2xy—1=0; xzé 30. Y+ 2xr=11y; y=1
En los problemas 31-34, encuentre una ecuacion de la recta
tangente en el punto o nimero indicado.

1

31.x4+y3=24; (—2,2) 32.%-%;:1; x=3

34. 3y + cosy = x*% (1,0)

En los problemas 35 y 36, encuentre el o los puntos sobre la

grafica de la ecuaciéon dada donde la recta tangente es hori-

zontal.

35. x> —xy+y?=3 36. y2=x*—4x+7

37. Encuentre el o los puntos sobre la grifica de x> + y* = 25
donde la pendiente de la tangente es 3.

3B.tany =x; y=w/4

38. Encuentre el punto donde se cortan las rectas tangentes
a la grifica de x*> + y> = 25 en (=3, 4) y (=3, —4).

39. Encuentre el o los puntos sobre la grifica de y* = x* donde
la recta tangente es perpendicular a la recta y + 3x —5=0.

40. Encuentre el o los puntos sobre la grifica de x* — xy + y*
= 27 donde la recta tangente es paralela a la recta y = 5.

En los problemas 41-48, encuentre d’y/dx>.

41. 4y = 6x* + 1 2. =5

43. x> —y* =125 4. x> + 4y* =16
45. x + y =seny 46. y* — x> = tan 2x
47. x* + 2xy — y* =1 48. > +y* =27

En los problemas 49-52, primero use diferenciacién implicita
para encontrar dy/dx. Luego despeje y explicitamente en tér-
minos de x y diferencie. Demuestre que las dos respuestas
son equivalentes.
49, x> —y* =x
5L Xy =x+1

50. 4x*+y* =1
52, ysenx = x — 2y



En los problemas 53-56, determine una funcién implicita a
partir de la ecuacién dada tal que su grafica sea la curva en
la figura.
53. (y — 1)*=x-2 54, *+xy+y*=4

y - y

FIGURA 474 Grifica
para el problema 53

FIGURA 475 Grifica
para el problema 54

55. ¥ +y’ =4 56. y* = x*(2 — x)
Y y
~
\ +
\
\ A
— X " ¢ > x
\ RARN [
\ Sl U
\\\ / ~7
- |

FIGURA 4.7.7  Gréfica
para el problema 56

FIGURA 476 Gréfica
para el problema 55

En los problemas 57 y 58, suponga que tanto x como y son
diferenciables de una variable . Encuentre dy/dt en térmi-
nos de x, y y dx/dt.

57. x> +y* =25 5. > +xy+y?—y=9
59. La grifica de la ecuacién x* + y* = 3xy es la hoja de
Descartes proporcionada en la figura 4.7.2a).

a) Encuentre una ecuacién para la recta tangente en el
punto en el primer cuadrante donde la hoja corta la
grafica de y = x.

b) Encuentre el punto en el primer cuadrante donde la
recta tangente es horizontal.

60. La gréfica de la ecuacion (x* + y*)? = 4(x* — y?) mos-
trada en la FIGURA 47.8 se denomina lemniscata.

a) Encuentre los puntos sobre la grafica que correspon-
denax = 1.

b) Encuentre una ecuacién de la recta tangente a la gra-
fica en cada punto encontrado en el inciso a).

¢) Encuentre los puntos sobre la grafica en los que la
tangente es horizontal.

FIGURA 4.7.8 Lemniscata en el problema 60

En los problemas 61 y 62, demuestre que las graficas de las
ecuaciones dadas son ortogonales en el punto de interseccién
indicado. Vea el problema 64 en la seccién “Desarrolle su
competencia 4.3”.

61. y =x3, 2x*+3y’=5;
62. y* + 3x%y = 13,

(1, D

2% — 2y2 =3x; (2,1
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Si todas las curvas de una familia de curvas G(x, y) = ¢y, ¢; una
constante, cortan ortogonalmente a todas las curvas de otra fa-
milia H(x, y) = ¢,, ¢, una constante, entonces se dice que las
familias tienen trayectorias ortogonales entre si. En los proble-
mas 63 y 64, demuestre que las familias de curvas tienen trayec-
torias ortogonales entre si. Trace las dos familias de curvas.

63. x> =y =c, xy=c, 64 X*+y ' =c, y=cx

= Aplicaciones

65. Una mujer conduce hacia una sefial en la carretera como
se muestra en la FIGURA 4.7.9. Sea 6 su angulo de visién
de la sefial y sea x su distancia (medida en pies) a esa
sefial.

a) Si el nivel de sus ojos estd a 4 pies de la superficie
de la carretera, demuestre que

_ A

x? 4252

b) Encuentre la razén a la que cambia 6 con respecto a x.

¢) (A qué distancia se cumple que la razén del inciso
b) es igual a cero?

tan 0 =

FIGURA 4.7.9 Automdvil en el problema 65

66. Un avion caza describe un circulo de 1 km de radio
como se muestra en la FIGURA 4.7.10. Suponga que se
escoge un sistema de coordenadas rectangulares de
modo que el origen esta en el centro del circulo. La nave
dispara un misil que describe una trayectoria rectilinea
tangente al circulo e impacta en un blanco sobre el suelo
cuyas coordenadas son (2, —2).

a) Determine el punto sobre el circulo donde fue dispa-
rado el misil.

b) Si un misil se dispara en el punto (—%, —%) sobre el
circulo, jen qué punto choca contra el suelo?

Suelo Objetivo

FIGURA 4.7.10  Avi6n caza en el problema 66
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Piense en ello

El angulo 6 (0 < 0 < ) entre dos curvas se define como
el dngulo entre sus rectas tangentes en el punto P de
interseccion. Si m; y m, son las pendientes de las rectas
tangentes en P, es posible demostrar que tan 0 = (m; —
m,)/(1 + mym,). Determine el dngulo entre las gréficas

69.

70.

Considere la ecuacién x* + y* = 4. Establezca otra fun-
cién implicita h(x) definida por esta ecuacidén para
—2 = x = 2 diferente de la proporcionada en (2), (3) y
el problema 55.

Para —1<x<1ly —7w/2 <y </2, la ecuacién x =

dex” +y  +4y=6yx" +2x +y =4den(l, ).

sen y define una funcién implicita diferenciable.

a) Encuentre dy/dx en términos de y.

68. Df:muesztre que gnazecuaci(’)n de la recta tangente a la b) Encuentre dy/dx en términos de x.
elipse x“/a~ + y°/b~ = 1 en el punto (x,, y) estd dada
por
o Vo _
2 2
a b
4.8 Derivada de funciones inversas
I Introduccion En la seccién 2.5 vimos que las graficas de una funcién f uno a uno y su
inversa f ' son reflexiones entre si en la recta y = x. Como una consecuencia, si (a, b) es un
punto sobre la gréfica de f, entonces (b, a) es un punto sobre la grafica de f~'. En esta sec-
cién también veremos que las pendientes de las rectas tangentes a la grafica de una funcién
diferenciable f estdn relacionadas con las pendientes de tangentes a la grafica de f~ .
Empezamos con dos teoremas sobre la continuidad de fy f~".
I Continuidad de ! Aunque los dos teoremas siguientes se plantean sin demostracién, su
validez se concluye a partir del hecho de que f ™' es una reflexién de la grifica de fen la recta
y =X
Teorema 4.8.1 Continuidad de la funcién inversa
Sea f una funcién continua uno a uno sobre su dominio X. Entonces /' es continua sobre
su dominio.
I Funciones crecientes-decrecientes Suponga que y = f(x) es una funcién definida sobre
un intervalo I, y que x; y x, son dos nimeros cualesquiera en el intervalo tales que x; < x,.
Entonces por la seccion 2.3 y la figura 2.3.4, recuerde que se dice que f es
* creciente sobre el intervalo si f(x;) < f(x,),y @)
* decreciente sobre el intervalo si f(x;) > f(x,). 2
y (). b) Los dos teoremas siguientes establecen una relacién entre el concepto de creciente/decre-
1,: P I ciente y la existencia de una funcién inversa.
(b, f(b))
Teorema 4.8.2 Existencia de una funcién inversa
(@, a) Sea f una funcién continua y creciente sobre un intervalo [a, b]. Entonces f~ ' existe y es

lfw o 5o b
FIGURA 481 fy !

son continuas y crecientes

[fcreciente y diferenciable 3
significa que las rectas tangen-
tes tienen pendiente positiva.

continua y creciente sobre [f(a), f(b)].

El teorema 4.8.2 también se cumple cuando sustituimos la palabra creciente por la pala-
bra decreciente y el intervalo en la conclusién se reemplaza por [ f(D), f(a)]. Vea la FIGURA 4.8.1.
Ademads, por el teorema 4.8.2 concluimos que si f es continua y creciente sobre un intervalo
(—00, 00), entonces f ' existe y es continua y creciente sobre su dominio de inspeccién. Al
analizar las figuras 2.3.4 y 4.8.1 también observamos que si f en el teorema 4.8.2 es una fun-
cion diferenciable sobre (a, b), entonces

e fes creciente sobre el intervalo [a, b] si f'(x) > 0 sobre (a, b), y
e fes decreciente sobre el intervalo [a, b] si f'(x) < 0 sobre (a, b).

Estas afirmaciones se demostrardn en la siguiente unidad.
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Teorema 4.8.3 Diferenciabilidad de una funcién inversa

Suponga que f es una funcién diferenciable sobre un intervalo abierto (a, b). Si f'(x) > 0

sobre el intervalo o f'(x) < 0 sobre el intervalo, entonces f es uno a uno. Ademds, ' es
diferenciable para toda x en el rango de f.

A\ JeME Existencia de una inversa

Demuestre que f(x) = 5x°> + 8x — 9 tiene una inversa.

Puesto que f es una funcién polinomial, es diferenciable en todas partes; es decir,
f es diferenciable sobre el intervalo (—00, 00). También, f'(x) = 15x*> + 8 > 0 para toda x

implica que f es creciente sobre (—00, 00). Por el teorema 4.8.3 se concluye que f es uno a
uno y entonces f ' existe.

I Derivada de f~' Si fes diferenciable sobre un intervalo / y es uno a uno sobre ese inter-
valo, entonces para a en / el punto (a, b) sobre la grifica de fy el punto (b, a) sobre la gra-
fica de f~' son imagenes especulares entre si en la recta y = x. Como veremos a continua-
cion, las pendientes de las rectas tangentes en (a, b) y (b, a) también estan relacionadas.

(A]d\|JKe ¥ X Derivada de una inversa

En el ejemplo 5 de la seccién 2.5 se demostré que la inversa de una funcién uno a uno

fo)=x>*+1,x=0esf'®)=Vx— 1.Enx = 2,
f@)=5 y 5 =2

Luego, por

l/ — =1y — 1
fo=2 v (W= =

observamos que f'(2) = 4y (f')'(5) = }. Esto muestra que la pendiente de la tangente a la
gréfica de fen (2, 5) y la pendiente de la tangente a la grifica de ' en (5, 2) son reciprocas:

N _ 1 =1y — 1
IO =55 ©° GO G

Vea la FIGURA 4.8.2.

El siguiente teorema muestra que el resultado en el ejemplo 2 no es una coincidencia.

Teorema 4.8.4 Derivada de una funcién inversa

Suponga que f es diferenciable sobre un intervalo / y que f'(x) nunca es cero sobre I. Si f
tiene una inversa f~ ' sobre I, entonces f ' es diferenciable en un nimero x y

1

doy 1
T T

3

DEMOSTRACION Como vimos en (5) de la seccién 2.5, f(f~'(x)) = x para toda x en el domi-
nio de f~'. Por diferenciacién implicita y la regla de la cadena,

d, o _d wpotoydoy
ST =x o ST f W= L
Al despejar dix £ '(x) en la dltima ecuacién obtenemos (3).

Resulta evidente que la ecuacion (3) muestra que para encontrar la funcién derivada para
£~ es necesario conocer de manera explicita f~'(x). Para una funcién uno a uno y = f(x),
resolver la ecuaciéon x = f(y) para y algunas veces es dificil y a menudo imposible. En este

,\':.\‘2+ I,x=0

183

It 2 3 4 5 6
FIGURA 4.8.2 Rectas tangentes
en el ejemplo 2
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caso resulta conveniente volver a escribir (3) usando otra notacién. De nuevo, por diferencia-
cién implicita,
d d . dy
—Xx = roporciona 1=f'y) —.
ot~ /) prop F'o-4

Al despejar dy/dx en la dltima ecuacién y escribir dx/dy = f'(y) obtenemos

dy 1

dx dx/dy’
Si (a, b) es un punto conocido sobre la gréfica de f, el resultado en (4) permite evaluar la
derivada de f~' en (b, a) sin contar con una ecuacién que defina f~'(x).

(A |JHe MY Derivada de una inversa

En el ejemplo 1 se indicé que la funcién polinomial f(x) = 5x* + 8x — 9 es diferenciable
sobre (—00, 00) y por tanto es continua sobre el intervalo. Puesto que el comportamiento final
de fes el de la funcién polinomial con un solo término y = 5x°, podemos concluir que el
rango de f también es (—00, 00). Ademds, puesto que f'(x) = 15x> + 8 > 0 para toda x, f es
creciente sobre su dominio (—o0, 00). Entonces, por el teorema 4.8.3, f tiene una inversa dife-
renciable ' con dominio (—00, 00). Al intercambiar x y y, la inversa se define por la ecua-
cién x = 5y° + 8y — 9, pero resolver esta ecuacién para y en términos de x es dificil (se
requiere la férmula ciibica). No obstante, al usar dx/dy = 15y* + 8, se encuentra que la deri-
vada de la funcién inversa estd dada por (4):

1
dx 15y + 8

“4)

®)

Por ejemplo, puesto que f(1) = 4, sabemos que f'(4) = 1. Entonces, la pendiente de la recta
tangente a la grafica de f~' en (4, 1) estd dada por (5):

a1 | _1
dxlc=y 159> + 8ly=1 23’
Lea otra vez este parrafo. > En el ejemplo 3, la derivada de la funcién inversa también puede obtenerse directamente
a partir de x = 5y° + 8y — 9 usando diferenciacién implicita:
d d ;s . , dy dy
x =5+ 8y — = 15—+ 8§—.
T 5y 8y —9) proporciona 1 =15y e 8 e

Al resolver la ecuacién para dy/dx obtenemos (5). Como una consecuencia de esta observa-
cidn, es posible usar diferenciacion implicita para encontrar la derivada de una funcién inversa
con el minimo esfuerzo. En el siguiente andlisis se encontrardn las derivadas de las funciones
trigonométricas inversas.

I Derivadas de funciones trigonométricas inversas Un repaso de las figuras 2.5.15 y
2.5.17a) revela que la tangente inversa y la cotangente inversa son diferenciables para toda x.
No obstante, las cuatro funciones trigonométricas restantes no son diferenciables en x = —1
o x = 1. Centraremos la atencion en obtener las férmulas de las derivadas del seno inverso,
la tangente inversa y la secante inversa, y la obtencién de las otras se dejan como ejercicios.

Seno inverso: y = sen ' xsiysélosix =seny donde —1=x=1y —m/2 =y=mx/2. En
consecuencia, la diferenciacién implicita

ix = isen roporciona 1 = cos ﬂ
dx dx Y prop Y dx
; dy 1
y asl dx  cosy’ ©

Para la restriccion dada sobre la variable y, cos y = 0y asi cos y = V1 - sen’y = V1 -2

Al sustituir esta cantidad en (6), hemos demostrado que
1
|

isenf X = —— @)
dx 1 — 2
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Como habiamos pronosticado, observe que (7) no estd definida en x = —1 o x = 1. La fun-
cién seno inverso o arcsen es diferenciable sobre el intervalo abierto (—1, 1).

Tangente inversa: y = tan” ' x siy s6lo si x = tan y, donde —0co < x < 00y
—1/2 <y < /2. Por tanto,

ix = itan roporciona 1 = sec? Q
dx dx Y prop Y
dy 1
o bien, —-— = . 8
dx  sec’y ®
Debido a la identidad sec? y = 1 + tan® y = 1 + x%, (8) se vuelve
—tan 'x = ! 9
dx 1+ x* ©)
Secante inversa: Para |x| > 1y0=y<w/2o7w/2<y=m,
y=sec 'x  siys6losi X = sec .
Al diferenciar implicitamente la dltima ecuacién obtenemos
d
__1 (10)
dx secytany
Debido a las restricciones sobre y, tenemos tany = *Vsec’y — 1 = +Vx* — 1, x| > L.
Por tanto, (10) se vuelve
_ 1
— lx=+—r— 11
sec x = * .
dx xVxZ -1

Es posible deshacernos del signo * en (11) al observar en la figura 2.5.17b) que la pendiente
de la recta tangente a la grifica de y = sec”' x es positiva para x < 1 y positiva para x > 1.
Asi, (11) es equivalente a

SN S x < —1
d Va1
sec ' x = 1 (12)
dx = x> 1.
xVaxt—1

El resultado en (12) puede volver a escribirse en forma mas breve usando el simbolo de valor
absoluto:
sec lx = S — (13)
x| Vax?r—1

La derivada de la composicién de una funcién trigonométrica inversa con una funcién dife-
renciable u = g(x) se obtiene a partir de la regla de la cadena.

dx

Teorema 4.85  Funciones trigonométricas inversas

Si u = g(x) es una funcién diferenciable, entonces

1 1 @ d -1 -1 du

d _ da _ au

e sen” u = m i e cos u = m e (14)
_ 1 du d _ —1 du

a - au a 1, au

gt u [ 4 2 dv P |12 dx (15)

isec”u:%@ icscflu:_il@ (16)

- ju Ve — 1 ¢ e W Vi — 1 dx

En las férmulas en (14) debe tenerse || < 1, mientras que en las férmulas en (16) debe
tenerse |u| > 1.

185
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A3\ [N Derivada del seno inverso

Diferencie y = sen” ' 5x.
Soluciéon Con u = 5Sx, por la primera férmula en (14) tenemos

dy 1 d 5

e T S
dx /1 — (5x7 & 1 — 252

(H1\Y[JXe M) Derivada de la tangente inversa
Diferencie y = tan~'V2x + 1.

Solucion Con u = V2x + 1, por la primera férmula en (15) tenemos

dy | d
= (2 + 1)
dx 1+ (V2ax + 1) x> D
-1 S
T AR
1

TtV T

A\ |JXe ] Derivada de la secante inversa

Diferencie y = sec ' x%.

y
_______z_f __________ Soluciéon Para x> > 1 > 0, por la primera férmula en (16) tenemos
2
L d_ 1 d,
X - R
dx |x2‘\ /(x2)2 -1 dx
2x 2
= = . 17)
et > xz\/x4 -1 x\/x4 -1
-3 -2 -1 1 2 3
FIGURA 483 Grifica de la fun- Con ayuda de un dispositivo para graficar obtenemos la grifica de y = sec ' x* que se mues-
cién en el ejemplo 6 tra en la FIGURA 4.8.3. Observe que (17) proporciona una pendiente positiva para x > 1 y una

negativa para x < —1.

A5\ [JNe BV A Recta tangente

Encuentre una ecuacién de la recta tangente a la grafica de f(x) = x* cos ' x en x = —3.

Solucién Por la regla del producto y la segunda férmula en (14):

fix) = x2<_1> + 2x cos ' x.
V11— x?
Puesto que cos’l(—%) = 27/3, al evaluar las dos funciones fy f'en x = —1 obtenemos:
f(-%) = % < el punto de tangencia es (—% %)

f’(-*) = S 21 < la pendiente de la tangente en (*1 E) es—ym — 5
2 2v§ 3 . 206/ %% 23 3

Por la forma punto-pendiente de la ecuacién de una recta, la ecuacion sin simplificar de la

recta tangente es
_m_ (b 2wy
6 \2v3 3 N\*T2)

#>=X  Puesto que el dominio de cos ! x es el intervalo [—1, 1], el dominio de fes [—1, 1]. El

-1 | 1
FIGURA 484 Recta tangente enel  1ango correspondiente es [0, 7]. La FIGURA 484 se obtuvo con ayuda de un dispositivo para
ejemplo 7 graﬁcar.
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DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-12.

= Fundamentos

En los problemas 1-4, sin graficar determine si la funcién f
dada tiene una inversa.

1. f(x) = 10x> + 8x + 12

2. fx) = —7x° — 6x* — 2x + 17
3. f) =x* + 2% —

4. f(x) = x* — 2x*

En los problemas 5 y 6, use (3) para encontrar la derivada
de ! en el punto indicado.

5 f) =2+ 8 (f(3).3)
6. fr) = —x* = 3x+ 7, (f(—1,—-1

En los problemas 7 y 8, encuentre f~'. Use (3) para encon-
trar (')’ y luego compruebe este resultado por diferencia-
cién directa de 1.

7. fx) = 2x; 1

8. f(x) = (5x + 7)°

En los problemas 9-12, sin encontrar la inversa, encuentre,
en el valor indicado de x, el punto correspondiente sobre la
grifica de f~'. Luego use (4) para encontrar una ecuacién
de la recta tangente en este punto.

2x + 1
4x — 17

9.y=lx3+x—7; x=0

3
1. y=+17>% x=1
12. y=8—6Vx +2; x=-3

x=3 10. y =

En los problemas 13-32, encuentre la derivada de la funcién
dada.

13. y =sen '(5x — 1) 14. y = cos(T)
15. y = 4 cot*% 16. y = 2x — 10 sec™! 5x
17. y = 2Vxtan 'Vx 18. y = (tan"'x)(cot ' x)
19. y = 7222:11 22;‘ 20. y = S‘;“ZI;;X

2.y = tanil 5 2.y = Se"; x

23. y=2sen 'x+ xcos 'x

24. y =cot 'x — tan”!
1 —x?

3
25. y = <x2 -9 tan_lx) 26. y = Vx—cos '(x + 1)

3

27. F(t) = arctan(i ; i) 28. g(t) = arccos V3t + 1

2
32. f(x) = cos(xsen ' x)

29. f(x) = arcsen(cos 4x)  30. f(x) = arctan(senx>
31. f(x) = tan(sen ' x?)

En los problemas 33 y 34, use diferenciacion implicita para
encontrar dy/dx.

1

33.tan 'y =% +y? 34.sen 'y —cos 'x =1

En los problemas 35 y 36, demuestre que f'(x) = O.
Interprete el resultado.

35. f(x) =sen 'x + cos ' x

36. f(x) = tan" ' x + tan” '(1/x).

En los problemas 37 y 38, encuentre la pendiente de la recta
tangente a la grafica de la funcién dada en el valor indicado
de x.

- 14X,
37. y = sen >

38. y=(cos'0)% x=1/V2

x=1

En los problemas 39 y 40, encuentre una ecuacion de la recta
tangente a la grafica de la funcién dada en el valor indicado
de x.

39. fx) =xtan'x; x=1

40. f(x) =sen '(x — 1); x= %

41. Encuentre los puntos sobre la grifica de f(x) = 5 —
2 sen x, 0 = x = 2, donde la recta tangente es para-
lela a la recta y = V3x + 1.

42. Encuentre todas las rectas tangentes a la grafica de f(x)
= arctan x cuya pendiente es }.

= Piense en ello

43. Sify (f7!)’ son diferenciables, use (3) para encontrar
una férmula para (f 1" (x).

4.9 Derivada de funciones exponenciales

I Introduccion En la seccion 2.6 vimos que la funcion exponencial f(x) = b*, b > 0,b # 1,
estd definida para todos los nimeros reales; es decir, el dominio de f es (—00, 00). Al revisar
la figura 2.6.2 observamos que f es continua en todas partes. Resulta que una funcién expo-
nencial también es diferenciable en todas partes. En esta seccién desarrollaremos la derivada

de f(x) = b*.
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AN La pendiente
en (0, 1) es m(b)
0.1

_/ :

FIGURA 4.9.1 Encuentre una
base b de modo que la pendiente
m(b) de la recta tangente en (0, 1)
sea 1

I Derivada de una funcion exponencial Para encontrar la derivada de una funcién exponen-
cial f(x) = b" usamos la definicién de la derivada proporcionada en (2) de la definicién 4.2.1.
Primero calculamos el cociente diferencial

f(x+h2 ASY 0

en tres pasos. Para la funcién exponencial f(x) = b", tenemos
i) fx+h) = bt = pp" < leyes de los exponentes
ii) f(x + h) —f(x) _ bx+h — = bxbh — = bx(bh _ 1) (_leyes de los exponentes

y factorizacion
foth —f b =1 p-1
h h h

iif)

En el cuarto paso, el paso de cdlculo, hacemos 7 — 0 pero en forma semejante a las deriva-
das de sen x y cos x en la seccién 4.5, no hay forma evidente de cancelar la & en el cociente
diferencial iii). No obstante, la derivada de f(x) = b es

, L . bh -1
[ = limb* - ——— 2
Debido a que b* no depende de la variable %, (2) puede escribirse como
N e |
fx) = b lim = 3)

A continuacién se presentan algunos resultados sorprendentes. Puede demostrarse que el limite
en (3),

lim b — 1
h—0 ]’l

s “)

existe para toda base positiva b. No obstante, como seria de esperar, para cada base b obtene-
mos una respuesta diferente. Asi, por conveniencia, la expresion en (4) se denotard por el sim-
bolo m(b). Entonces, la derivada de f(x) = b* es

J'(x) = b*m(b). ®)

Se solicita al lector aproximar el valor de m(b) en los cuatro casos b = 1.5, 2,3 y 5 en los
problemas 57-60 de la seccién “Desarrolle su competencia 4.9”. Por ejemplo, puede demos-
trar que m(10) = 2.302585... y como una consecuencia, si f(x) = 10%, entonces

F(x) = (2.302585...)10". 6)

Es posible que comprenda mejor lo que evalda m(b) al evaluar (5) en x = 0. Puesto que
b° = 1, tenemos f'(0) = m(b). En otras palabras, m(b) es la pendiente de la recta tangente a
la grifica de f(x) = b* en x = 0; es decir, en la interseccién y (0, 1). Vea la FIGURA 4.9.1. Dado
que es necesario calcular una m(b) diferente para cada base b, y que es probable que m(b)
sea un ndimero “‘espantoso” como en (6), con el tiempo la siguiente pregunta surge de manera
natural:

* Hay alguna base b para la cual m(b) = 1? (7)

I Derivada de la funcion exponencial natural Para contestar la pregunta planteada en (7), es
necesario volver a las definiciones de e proporcionadas en la seccién 2.6. En especifico, (4)
de la seccion 2.6,

e = }lf_r)r(l) (1 + k)" (8)

constituye el mecanismo para responder la pregunta planteada en (7). Sabemos que, a nivel
intuitivo, la igualdad en (8) significa que cuando & se aproxima cada vez mds a O entonces
(1 + k)" puede hacerse arbitrariamente préximo al nimero e. Asi, para valores de & cercanos
a 0, tenemos la aproximacién (1 + h)'/" = ¢ y asi se concluye que 1 + h = ¢". La dltima
expresion escrita en la forma

e —1

A ~ 1 9
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sugiere que

) e/l _ 1 B
lim <= 1. (10)

Puesto que el miembro izquierdo de (10) es m(e), tenemos la respuesta a la pregunta planteada
en (7):

e La base b para la cual m(b) = l es b = e. (11)

Ademas, por (3) hemos descubierto un resultado maravillosamente simple. La derivada de
f(x) = ¢" es ¢". En resumen,

d . !

—e' =¢" 12
e = (12)
El resultado en (12) es el mismo que f'(x) = f(x). Ademds, si ¢ # 0 es una constante, enton-

ces la otra funcién diferente de cero f en célculo cuya derivada es igual a si misma es y = ce”
puesto que por la regla del miltiplo constante de la seccién 4.3

dy d

I QOtro repaso a la derivada de f(x) = b* En el andlisis precedente vimos que m(e) = 1, pero
se dejo sin contestar la pregunta de si m(b) tiene un valor exacto para todo b > 0. Y lo tiene.
A partir de la identidad ¢™® = b, b > 0, podemos escribir cualquier funcién exponencial
f(x) = b" en términos de la base e:

f(x) = p¥ = (elnb)x — ex(lnb)'

Por la regla de la cadena, la derivada de b" es
1 _ d x(Inb) — _x(Inb) d — x(Inb)
f(x)—ae =e -ax(lnb)—e (In b).

Volviendo a b* = ¢*™""), 1a linea precedente muestra que

d X — X
bt =Dbnb). (13)

Al relacionar el resultado en (5) con el de (13) concluimos que m(b) = In b. Por ejem-
plo, la derivada de f(x) = 10* es f'(x) = 10*(In10). Debido a que In10 = 2.302585 observa-
mos que f'(x) =10"(In10) es lo mismo que el resultado en (6).

A continuacién se proporcionan las formas de los resultados de la regla de la cadena en

(12) y (13).

Teorema 4.9.1 Derivadas de funciones exponenciales
Si u = g(x) es una funcién diferenciable, entonces
d u u du
ae = a, (14)
d u u du
y ab :b(lnb)a. (15)
)3\ [N BN Regla de la cadena
Diferencie
a) y=¢e¢" b) y= e c)y=8"
a) Con u = —x, por (14) tenemos

dy _

ﬂci_ S — X
dx_e dx(x)—e(l) e,

189
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(=L3¢7hH y,  (1L3eh

- 0. 0) 1
FIGURA 49.2 Grifica de la
funcion en el ejemplo 2

-2 —1 | \ 1 2
FIGURA 4.9.3 Grifica de la
funcién y rectas en el

ejemplo 3

3

b) Al volver a escribir u = 1/x* como u = x°, por (14) tenemos

dy 1 d _ 3 _ el/)(3
_ I 3 AN — _
¢ it e (=3x%) 3 R
¢) Con u = 5x, por (15) tenemos

dy _ oS5x d _ S5x

dx_S - (In 8)-dx5x—5 8" (In 8).

A3\ [JNe BV A Reglas del producto y de la cadena
Encuentre los puntos sobre la grafica de y = 3x% ™ donde la recta tangente es horizontal.

Se usa la regla del producto junto con (14):
dy — 2 d —x? —x? d 2
dx_3x Tk +e ~dx3x
= 3x2(—2xefx2) + 6xe "
= e_"z(—6x3 + 6x).

2 d
Puesto que ¢ # 0 para todos los nimeros reales x, d%: = 0 cuando —6x> + 6x = 0. Al fac-

torizar la dltima ecuacién obtenemos x(x + 1)(x — 1) =0y asi x =0, x =—1 y x = 1. Asi,
los puntos correspondientes sobre la grafica de la funcién dada son (0, 0), (—1, 3¢™") y
(1,3e"). La gréifica de y = 3x%¢ " junto con las tres rectas tangentes se muestran en la FIGURA
4.9.2.

En el ejemplo siguiente se recuerda el hecho de que una ecuacién exponencial puede escri-
birse en una forma logaritmica equivalente. En particular, se usa (9) de la seccién 2.6 en la
forma

y=¢e" siysélosi  x =1Iny. (16)

1A)5)"|Xel] Recta tangente paralela a una recta

Encuentre el punto sobre la griafica de f(x) = 2¢ " donde la recta tangente es paralela a
y=—4x — 2.

Sea (xg, f(xg)) = (xq, 2¢ ") el punto desconocido sobre la grifica de f(x) = 2¢™"

donde la recta tangente es paralela a y = —4x — 2. Entonces, a partir de la derivada
f'(x) = —2¢ 7, la pendiente de la recta tangente en este punto es f'(xy) = —2¢ ™. Puesto que
y =—4x — 2 y la recta tangente es paralela en ese punto, las pendientes son iguales:

flxg) = —4 o bien, —2e = —4 o bien, e =2,

A partir de (16), la dltima ecuacién proporciona —x, = In 2 0 x, = —In 2. Por tanto, el punto
es (—In 2, 26" 2). Puesto que M2 =2 el punto es (—In 2, 4). En la FIGURA 4.9.3, la linea pro-
porcionada estd a la izquierda y la recta tangente estd a la derecha.

—_ NOTAS DESDE EL AULA

dx ........................................................................................................................................................................
Los nimeros e y 7 son trascendentes, asi como irracionales. Un nimero trascendente es
un ndmero que no es raiz de una ecuacién polinomial con coeficientes enteros. Por ejem-
plo, V2 es irracional pero no trascendente, puesto que es una raiz de la ecuacién polino-
mial x> — 2 = 0. El hecho de que el niimero e sea trascendente fue demostrado por el mate-
matico francés Charles Hermite (1822-1901) en 1873, mientras que el matemdtico alemén
Ferdinand Lindemann (1852-1939) demostré nueve afios después que 7 es trascendente.
Esta dltima demostracién evidencié de manera concluyente que resolver la “cuadratura del
circulo” con regla y compds era imposible.
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DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-12.

En los problemas 1-26, encuentre la derivada de la funcién
dada.

L.y=¢" 2. y =¥
3 — e\/;c 4. y = esenl()x
5.y=5%" 6. y =107
7. y = x’e¥ 8. y=-¢ "senmx
_ 672)( _ xex
9. flx) = T 10. f(x) = i
11. y= V1 + e > 12, y = (¥ — )0
_ 2 ettt e
13. y = 7&/2 " 14. y = Pra—
e7x
15. y = = 16. y = e¥ee™
1 100
17. y = (&)! 18. y = (ex)

19. f(x) = ex/3 + (e)()l/3 20. f(x) =x+ 1)387(17”4

21. f(x) = ¢ “tan " 22. f(x) = sec e**
- x+2

23. f(x) = V¥ 24. y=e?

25. y = e 26. y=¢ "+ et

27. Encuentre una ecuacion de la recta tangente a la grafica
dey=(e*+ 1)?enx = 0.

28. Encuentre la pendiente de la recta normal a la gréifica de
y=(x—1e enx=0.

29. Encuentre el punto sobre la grifica de y = ¢* donde la
recta tangente es paralela a 3x — y = 7.

X

30. Encuentre el punto sobre la grifica de y = 5x + ¢
donde la recta tangente es paralela a y = 6x.

En los problemas 31 y 32, encuentre el o los puntos sobre
la gréfica de la funcién dada donde la recta tangente es hori-
zontal. Use un dispositivo para graficar y obtenga la gréfica
de cada funcién.

31. f(x) = e “senx 32. fx) =3 — xDe™*

En los problemas 33-36, encuentre la derivada de orden
superior indicada.

e dYy 1 d*y

33. y=e€; E 34. y = 1 +e ™ E
dzy d4y
35. y = sen ¢, —— 36. y = x% —
Y dx? Y dx*

En los problemas 37 y 38, C; y C, son constantes reales arbi-
trarias. Demuestre que la funcién satisface la ecuacion dife-
rencial dada.

37. y = Cie ¥ + Cye™;
38. y = Cie *cos2x + Cre *sen 2x;

Yty —6y=0
Y 42y 4+ 5y =0

39. Si Cy k son constantes reales, demuestre que la funcién
y = Ce* satisface la ecuacion diferencial y' = ky.
0. Use el problema 39 para encontrar una funcién que
satisfaga las condiciones dadas.
¥(0) = 100

P(0) = Py

a)y =—-00ly vy
dpP B
b) - —015P=0 y

En los problemas 41-46, use diferenciacion implicita para
encontrar dy/dx.
41. y = "
43. y = cos e 44, y = M
45. x + y* = " 46. "+ e =y
47. a) Trace la gréfica de f(x) = e M.

b) Encuentre f'(x).

¢) Trace la grafica de f'.

d) ;La funcién es diferenciable en x = 0?

42. xy=¢

COS X

48. a) Demuestre que la funcién f(x) = e
con periodo 27r.
b) Encuentre todos los puntos sobre la grafica de f
donde la tangente es horizontal.
¢) Trace la gréfica de f.

es periddica

&

. La funcidn logistica

. aP,
PO = b+ (@ = bPye
donde a y b son constantes positivas, a menudo sirve
como modelo matematico para una poblacién en creci-

miento pero limitada.

a) Demuestre que P(7) satisface la ecuacién diferencial
dP

E = P(a — bP).

b) La grifica de P(r) se denomina curva logistica,
donde P(0) = P, es la poblacién inicial. Considere el
caso donde @ =2, b =1 y Py = 1. Encuentre asinto-
tas horizontales para la grafica de P(f) al determinar
los limites [Emw Py lll)r?o P().

¢) Grafique P(?).

d) Encuentre el o los valores de ¢ para los cuales
P"(t) = 0.

50. El modelo matematico de Jenss (1937) constituye una
de las férmulas empiricas mds precisas para pronosticar
la estatura £ (en centimetros) en términos de la edad 7 (en
afios) para nifios en edad preescolar (de 3 meses a 6 afios):

h(t) = 79.04 + 6.39¢ — 3267091,

a) ;/Qué estatura pronostica este modelo para un nifio de
2 afios?

b) ;Cuan rapido crece en estatura un nifio de 2 afios?

¢) Use una calculadora o un SAC para obtener la gra-
fica de h sobre el intervalo H, 6].

d) Use la grafica del inciso c¢) para estimar la edad de un
nifio en edad preescolar que mide 100 cm de estatura.
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= Piense en ello 58 0 101 [0.01]0.001]0.0001 ] 0.00001 [0.000001

51. Demuestre que la interseccion con el eje x de la recta p
tangente a la grafica de y = ¢ " en x = x; estd una uni- 2" -1
dad a la derecha de x. h

52. ;Cémo estd relacionada la recta tangente a la gréfica
de y = e en x = 0 con la recta tangente a la grafica de 59.
y=e “enx=0?

h—0 ] 0.1 {0.01{0.001|0.0001|0.00001 |0.000001

53. Explique por qué sobre la grifica de y = e no hay nin- 3 -1
glin punto donde la recta tangente sea paralela a h
2x +y=1.

54. Encuentre todas las rectas tangentes a la gréifica de 60.

F(x) = ¢ que pasan por el origen h—0 | 0.10.01]0.001 [0.0001 |0.00001 [0.000001

En los problemas 55 y 56, el simbolo n representa un entero 5" -1
positivo. Encuentre una férmula para la derivada dada. h
d” X i -X
55 dx”\/; 56 dx" ¢ 61. Use una calculadora o un SAC para obtener la grafica
de
= Problemas con calculadora/SAC e
(x) = eV x#£0
En los problemas 57-60, use una calculadora para estimar el Slx 0, x=0.
. b —1 _ _ _ _
valor m(b) = lim parab=15b=2,b=3yb=5 Demuestre que f es diferenciable para toda x. Use la
al llenar la tabla siguiente. definicion de la derivada para calcular f'(0).
57, h—0 [0.1/0.01[0.001|0.0001 | 0.00001 {0.000001
(1.5 -1
h
4.10 Derivada de funciones logaritmicas
I Introduccion Debido a que la inversa de la funcién exponencial y = b es la funcién loga-
ritmica y = log,x, la derivada de la segunda funcién puede encontrarse de tres maneras: (3)
de la seccion 4.8, diferenciacion implicita o a partir de la definicién fundamental (2) en la sec-
cion 4.2. Demostraremos los dos ultimos métodos.
I Derivada de la funcion logaritmo natural Por (9) de la seccién 2.6 sabemos que y = In x
es lo mismo que x = ¢”. Por diferenciacién implicita, la regla de la cadena y (14) de la sec-
cion 4.9,
ix = iey roporciona 1= e"ﬂ
dx dx prop dx’
. dy 1
En consecuencia, -— =
dx €
Al sustituir ¢” por x, obtenemos el siguiente resultado:
Asi como en las funciones trigo- iln X = l (1)
nométricas inversas, la derivada dx x
de la inversa de la funcién expo- .
nencial natural es una funcién I Derivada de f(x) = log, x Precisamente de la misma manera en que se obtuvo (1), la deri-
algebraica. vada de y = log, x puede obtenerse al diferenciar implicitamente x = »°.
d d . , dy
L= Sy =B =
nX T @ b proporciona 1 =b(Inb) e
dy 1

En consecuencia, dx = by(ln b)
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Al sustituir »” por x, obtenemos

1
= D) 2)

d log, x
d)C gl)

Puesto que In e = 1, (2) se vuelve (1) cuando b = e.

RS\ JHe BN Regla del producto

Diferencie f(x) = x* In x.

Por la regla del producto y (1), tenemos

1 _ 2'i i 2 _ 2.1 .
flx) =x dxlnx+(lnx) dxx X x+(lnx) 2x

o bien, fx)=x+ 2x1Inx

)3\ [JKel¥ ] Pendiente de una recta tangente

Encuentre la pendiente de la tangente a la grafica de y = log g x en x = 2.

Por (2), la derivada de y = log;( x es
dy 1

dx ~ x(In 10)

Con ayuda de una calculadora, la pendiente de la recta tangente en (2, log;y 2) es

&l

x| = 7m0~ 0217

Los resultados en (1) y (2) se resumen en forma de regla de la cadena.

Teorema 4.10.1 Derivadas de funciones logaritmicas

Si u = g(x) es una funcién diferenciable, entonces

d,_ldu
dx = u dx’ 3)
d 1 du
y ax 08 M = T )

A1\ X} Regla de la cadena

Diferencie

a) f(x) = In(cos x) y b) y = In(In x).

a) Por (3), con u = cos x tenemos

oy = L d I S
fx) = cos x dx cosx = COS X (=sen x)
o bien, f'(x) = —tanx.

b) Al usar de nuevo (3), ahora con # = In x, obtenemos

ﬂzl_d _ 1 1_ 1
dx Inx dx Inx x xInx’

193
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=In|x|

y
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\

FIGURA 4.10.1 Gréficas de
las rectas tangentes y funcion
en el ejemplo 5

[A]3\[JNelW:8 Regla de la cadena

Diferencie f(x) = In x°.

Debido a que x> debe ser positiva, se entiende que x > 0. Asi, por (3), con u = 2,
tenemos
vy Lod 51,0 3
') S A mt T (Bx?) = 1.
Por iii) de las leyes de los logaritmos (teorema 2.6.1), In N“=c¢ In Ny
asi es posible volver a escribir y = In x* como y = 3 In x y después diferenciar:

3

_qd 1
fx) = 3dx1nx 3 i
Aunque el dominio del logaritmo natural y = In x es el conjunto (0, c0), el dominio de
y = In|x| se extiende al conjunto (—00, 0) U (0, 00). Para los nimeros en este dltimo domi-

nio,

x| = X, x>0
—x, x<O0.

En consecuencia

dic=1
parax > 0, dxlnx =
&)
ara x < 0 iln(—x) - L (-1 = 1
p > odx —x x
Las derivadas en (5) prueban que para x # 0,
d _1
i In|x| = o (6)

Asi, el resultado en (6) se generaliza por la regla de la cadena. Para una funcién diferencia-
ble u = g(x), u # 0,

d 1 du
a — L au 7
dx Injul u dx’ 7
=] JXe 3R Uso de (6)
Encuentre la pendiente de la recta tangente a la grificade y = In|x| en x = =2y x = 2.
Puesto que (6) proporciona dy/dx = 1/x, tenemos
dy 1 dy 1
=l ==y ] =5 ®)
dx|,.= 2 dx |y=p 2

Debido a que In |[=2| = In 2, (8) proporciona, respectivamente, las pendientes de las rectas tan-
gentes en los puntos (=2, In 2) y (2, In 2). Observe en la FIGURA 4.10.1 que la gréfica de y = In|x]|
es simétrica con respecto al eje y; de igual manera, las rectas tangentes son simétricas.

Uso de (7)

Diferencie

a) y=1In2x — 3) y b)y=In]2x — 3|

a) Para2x —3 > 0,0x > %, por (3) tenemos
dy 1 d 2

&3 TV T ©)
b) Para2x — 3 7&0,0x¢%, por (7) tenemos

d

Qo L dn g 2 (10)

dx  2x — 3 dx 2x — 3
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Aunque (9) y (10) parecen iguales, definitivamente no se trata de la misma funcién. La diferen-
cia consiste simplemente en que el dominio de la derivada en (9) es el intervalo (%, oo), mientras
el dominio de la derivada en (10) es el conjunto de niimeros reales excepto x = 3.

)5\ A Una distincion

Las funciones f(x) = In x* y g(x) = 4 In x no son las mismas. Puesto que x* > 0 para toda
x # 0, el dominio de f es el conjunto de nimeros reales excepto x = 0. El dominio de g es el
intervalo (0, ©0). Asi,

flx) = %, x#0 mientras dx) = %, x> 0.

[H]5\ | JHeM:} Simplificar antes de diferenciar
x22x + 7)*
Gx*+ 1D

Diferencie y = In

Al usar las leyes de los logaritmos proporcionadas en la seccién 2.6 para x > 0,
podemos volver a escribir el miembro derecho de la funcién dada como

y =1Inx"?Q2x + 7)* — In(3x> + 1)? < In(M/N)=InM—1In N
=Inx"?+ InQ2x +7* = InGBx>+ D> < IaMN) =M+ N

1lnx+4ln(2x+7) —2InGBx>+ 1) <« mN=clN

2
dy 11 1
de modo que 2 x+4.2x+7 " 1-6x
dy 1 8 12x

o bien, a=a+2x+7—3x2+1.

I Diferenciacion logaritmica La diferenciacién de una funcién complicada y = f(x) que con-

tiene productos, cocientes y potencias puede simplificarse por medio de una técnica denomi-
nada diferenciacion logaritmica. El procedimiento consta de tres pasos.

Directrices para diferenciacion logaritmica

i) Tome el logaritmo natural de ambos miembros de y = f(x). Use las propiedades
generales de los logaritmos para simplificar tanto como sea posible el miembro
derecho de In y = In f(x).

ii) Diferencie implicitamente la versién simplificada de In y = In f(x):

d. _d
e Iny = e In f(x).

d
iii) Puesto que la derivada del miembro izquierdo es %d%}c’ multiplique ambos miem-

bros por y y sustituya y por f(x).

Ahora ya sabe como diferenciar cualquier funcién del tipo
y = (Constante)variable y y = (Variable)constume.
Por ejemplo,

d T m—1

iﬂ'" = 7*(In ) y o T X

dx
Hay funciones donde tanto la base como el exponente son variables:

y = (variable)*i®le, (11)

195
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W

I-J

I
FIGURA 4.10.2 Grifica de la
funcién en el ejemplo 9

X

Por ejemplo, f(x) = (1 + 1/x)* es una funcién del tipo descrito en (11). Recuerde que en la
seccion 2.6 vimos que f(x) = (1 + 1/x)* desempefiaba un papel importante en la definicién
del nimero e. A pesar de que no se desarrollard una férmula general para la derivada de fun-
ciones del tipo dado en (11), es posible obtener sus derivadas por medio del proceso de dife-
renciacién logaritmica. El siguiente ejemplo ilustra el método para encontrar dy/dx.

(A3 JNe BN Diferenciacion logaritmica

Diferencie y = x> 0.

Al tomar el logaritmo natural de ambos miembros de la ecuacién dada y simplifi-
car obtenemos

— — iedad iii) de las leyes de
Iny=InxV"= In x. . Prope
Y * \/; * los logaritmos. Seccién 1.6

Luego se diferencia implicitamente:

d
14y = Vx ! + %x”ﬂ ‘Inx <« regladel producto

y dx X
@ _ y 1 + In x h tit Vi
- =y —F < ahora se sustituye y por x
dx Vx 2V
1 Vr—1 denominador comtn
== 2 Y
2 X 2+ Inx). leyes de los exponentes

La grifica de y = x¥* en la FIGURA 4.10.2 se obtuvo con ayuda de un dispositivo para graficar.

Observe que la grifica tiene una tangente horizontal en el punto donde dy/dx = 0. Por tanto,

la coordenada x del punto de tangencia horizontal se determina a partir de 2 + Inx = 0 o

Inx =—2. La tltima ecuacién proporciona x = e %

=N\ [N B} Diferenciacion logaritmica
Vx* + 6x*(8x + 3)°

x* + 73

Encuentre la derivada de y =

Observe que la funcién dada no contiene logaritmos. Entonces podemos encontrar
dy/dx usando una aplicacion ordinaria de las reglas del cociente, del producto y de potencias.
Este procedimiento, que es tedioso, puede evitarse al tomar primero el logaritmo de ambos
miembros de la ecuacién dada, simplificar como se hizo en el ejemplo con las leyes de los
logaritmos y luego diferenciar implicitamente. Se toma el logaritmo de ambos miembros de la
ecuacién dada y se simplifica el miembro derecho:

Vit + 6x2(8x + 3)°
@2x2 + 7?3
= InVx* + 6x2 + In(8x + 3)° — In(2x% + 7)*2

= %ln()c4 + 6x%) + 5 In(8x + 3) — %ln(Zx2 + 7).

Iny =1In

Al diferenciar la dltima linea con respecto a x obtenemos

d
1911 uvtim+s g

yadr 3 3+ 6x Sx+3 P T3 0047
ﬂ: 4 + 12x 40 8x
de V1300 + 6xd)  8x+ 3 302x2 1 7)

~ V' + 6x%(8x + 3)°

x> + 7y

:| <— ambos lados se multiplican por y

453 + 12x 40 8x L se sustituye por la
3()64 n 6x2) Sx + 3 3(2)62 7 < expresi6n original

I Posdata: Otro repaso a la derivada de f(x) = log, x Como se afirmé en la introduccién de
esta seccion, podemos obtener la derivada de f(x) = log,, x al usar la definicién de la derivada.
Por (2) de la seccién 4.2,
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log,(x + h) — log,x

" .
x) = lim
£ h—0 h
o1 x+h i i
= }I;ILI(I) —log, <— dlgebra y las leyes de los logaritmos
L1 h
= ]111II(1) EIOgh 1+ * <« divisién de x + h entre x
—

1 x h
e L X + TS o
= }llln(l) x h logb<1 x) <« multiplicacién por x/x = 1

1 x/h
= —limlog,| 1 + — las leyes de los logaritmos
X h—0 gh X <— las eyes de 10s logaritmos

1 . h x/h
= ;logb }ILILI(I) 1+ T . (12)

El dltimo paso, tomar el limite dentro de la funcién logaritmica, se justifica al invocar la con-
tinuidad de la funcién sobre (0, o) y suponer que el limite entre corchetes existe. Si en la
tltima ecuacién se hace ¢+ = h/x, entonces, puesto que x es fija, # — 0 implica r — 0. En con-
secuencia, por (4) de la seccién 2.6 vemos que

h—0

P h /h — 14 1/t —
Iim( 1 + — = lim(1 + '/ = e.
X t—0

Por tanto, el resultado en (12) muestra que

d 1 . .

—log, x = —log, e. (13) o Quienes poseen un ojo agudo y

dx X gran memoria han observado
Una vez que se hace la eleccién “natural” de b = e, (13) se vuelve (1) puesto que log, ¢ = que (13) no es lo mismo que (2).
Ine=1. Los resultados son equivalentes,

puesto que por las féormulas de
cambio de base para logaritmos
tenemos que

logse =Ine/Inb=1/In b.

I Posdata: Otro repaso a la regla de potencias Finalmente, ya es posible demostrar la regla
de potencias (d/dx)x" = nx""!, (3) de la seccién 4.3, para todos los niimeros reales exponen-
tes n. Nuestra demostracion usa el siguiente hecho: para x > 0, x" se define para todos los
nimeros reales n. Luego, debido a la identidad x = en podemos escribir

Y= (eln X)n — enln X

d d d n
AS{, 7xn:78nlnx:enlnx7nlnx :7enlnx.
dx dx dx( ) X
Al sustituir ¢" ™~ = x" en el iltimo resultado se completa la demostracién para x > 0,
d n n o n—1
——x" =" ="
dx

La dltima férmula de derivada también es vdlida para x < 0 cuando n = p/g es un nimero
racional y g es un entero impar.

m DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-12.

= Fundamentos 13. y = —In|cos x| 4. y= %ln|sen3x|
En los problemas 1-24, encuentre la derivada de la funcién
dada. 15. y = li 16. y = In+
1.y=10Inx 2. y=1In10x nx *
3. y=Inx"? 4. y=(nx"? 17. f(x) = In(x In x) 18. f(x) = In(In(In x))
5. y = ln (x4 + 3x2 + 1) 6. y = 1I1(x2 + 1)20 19. g(x) = V ln\/; 20. W(0) = Hsen (ln 50)
7.y =x*Inx’ 8 y=x—1In|5x + 1| 21 H(r) = In (31 + 6)
9 In x 10 In 7 22. G(H) = InV5: + 1@ + 4)°
YT 'y_)lc(zx) 2. 1o BCERCEF N o= [(3x + 2)°
X n 4x ) =In—"FF5—— ) =1 ————
= = + 3 4
11. y lnx_’_1 12. y In 2x X x*+ 7
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25. Encuentre una ecuacion de la recta tangente a la grafica
dey=Inxenx = 1.

26. Encuentre una ecuacion de la recta tangente a la grafica
dey=1In(x>—3)enx = 2.

27. Encuentre la pendiente de la tangente a la grafica de
y =1In(e*+ x) en x = 0.

28. Encuentre la pendiente de la tangente a la grifica de
y= In(xe ™) enx = 1.

29. Encuentre la pendiente de la tangente a la grafica de f’
en el punto en que la pendiente de la tangente a la gra-
fica de f(x) = In x* es 4.

30. Determine el punto sobre la grifica de y = In 2x donde
la recta tangente es perpendicular a x + 4y = 1.

En los problemas 31 y 32, encuentre el o los puntos sobre
la grafica de la funcién dada donde la recta tangente es hori-
zontal.

31 f(x) = 1“7)6 32, f(x) = x> Inx

En los problemas 33-36, encuentre la derivada indicada y

simplifique tanto como pueda.
\/1 _ 2
33. %ln(x + d <1+xl">

y X2 —1) 34. —In

dx

d d
35. xln(sec x + tan x) 36. dxln(csc X — cot x)

d

En los problemas 37-40, encuentre la derivada de orden
superior indicada.

o dy o 4y
37. y=Inux; E 38. y=xInux; E
d2y d4y

40. y =In(5x — 3); —

2 dx4

39. y = (In|x])*>; —
y = (In|x|) 0

En los problemas 41 y 42, C; y C, son constantes reales arbi-
trarias. Demuestre que la funcién satisface la ecuacion dife-
rencial dada para x > 0.

4l y=Cx "+ Cx P Inx; 4" +8xy' +y=0
42. y = Cix 'cos(V2 Inx) + Cox ' sen(V2 In x);

X" +3xy' +3y=0
En los problemas 43-48, use diferenciacién implicita para
encontrar dy/dx.

43. y> = Inxy 4. y=In(x +y)

45. x+y2=1n§ 46. y = In xy?

47. xy = In(x* + y? 48. x>+ y* =1In(x + y)

En los problemas 49-56, use diferenciacién logaritmica para
encontrar dy/dx.

49. y = x*"* 50. y = (In|x])*
o + 1)
51, y = x(x — 1)" 52. y=—,—"
X
53 V(2x + 1)(3x + 2) V245
.y = —

4x + 3

()c3 - 1)5()c4 + 3)63)4

54. y =
55. y = 56.y=x\/x+1\/3x2+2
(7x + 5)°

57. Encuentre una ecuacion de la recta tangente a la grafica
dey=x""enx=1

58. Encuentre una ecuacion de la recta tangente a la grafica
dey =x(Inx)"enx = e.

En los problemas 59 y 60, encuentre el punto sobre la gra-
fica de la funcién dada donde la recta tangente es horizon-
tal. Use un dispositivo para graficar a fin de obtener la gra-
fica de cada funcién sobre el intervalo [0.01, 1].

59. y = x* 60. y = x>
61. Encuentre las derivadas de
a) y=tan x" b) y = x‘e* c)y=x".

62. Encuentre d’y/dx*paray = Vx*.

63. La funcién f(x) = In|x| no es diferenciable sélo en
x = 0. La funcién g(x) = |In x| no es diferenciable
en x = 0 ni en otro valor de x > 0. ;Cuadl es?

d
64. Encuentre una manera para calcular alogx e.

A

. a) Use una calculadora o un SAC para obtener la gra-
ficadey = (senx)™* sobre el intervalo (0, 57).
b) Explique por qué en ciertos intervalos parece que no
hay gréfica. Identifique los intervalos.

66. a) Use una calculadora o un SAC para obtener la gra-
fica de y =|cos x|°*°* sobre el intervalo [0, 57].
b) Determine, por lo menos aproximadamente, los valo-
res de x en el intervalo [0, 57] para los cuales la
tangente a la grafica es horizontal.
67. Use una calculadora o un SAC para obtener la grifica
de f(x) = x> — 12 In x. Luego encuentre al valor exacto
del menor valor de f(x).

4.11 Derivada de funciones hiperbélicas

I Introduccion Si alguna vez ha visitado el Arco de San Luis, Missouri, que mide 630 pies
de altura, quiza se haya preguntado: ;cudl es la forma del arco?, y recibido la respuesta crip-
tica: la forma de una catenaria invertida. La palabra catenaria proviene de la palabra latina
catena y significa literalmente “cadena colgante” (los romanos usaban una cadena para suje-
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tar a los perros). Es posible demostrar que la forma que asumen un alambre flexible, una
cadena, un cable o una cuerda colgantes suspendidos en dos puntos es la grafica de la funcién

) = S+ e (M)

para elecciones idéneas de las constantes ¢ y k. La gréfica de cualquier funcién de la forma
dada en (1) se denomina catenaria.

I Funciones hiperbolicas Combinaciones como (1) que implican las funciones exponencia-
les ¢* y e * ocurren tan a menudo en matematicas que ameritan definiciones especiales.

Definicion 4.11.1 Seno y coseno hiperbdlico

Para cualquier nimero real x, el seno hiperbdlico de x es

X -X

senh x = % )
y el coseno hiperbdlico de x es
cosh x = %. (3)

Puesto que el dominio de cada una de las funciones exponenciales e* y ¢ es el conjunto
de nimeros reales (—00, 00), el dominio de y = senh x y y = cosh x es (—00, 00). Por (2) y
(3) de la definicién 4.11.1, también resulta evidente que

senh 0 = 0 y cosh 0 = 1.

En forma andloga a las funciones trigonométricas tan x, cot x, sec x y csC x que estdn
definidas en términos de sen x y cos x, las cuatro funciones hiperbdlicas adicionales se defi-
nen en términos de senh x y cosh x.

Definicidon 4.11.2 Otras funciones hiperbdlicas
Para un nimero real x, la tangente hiperboélica de x es
_senhx e*—e "
tanh X = Chx e e ® )
la cotangente hiperbdélica de x, x # 0, es
_coshx e*+e"
cothx = nhx e — ¢ ® )
la secante hiperbdlica de x es
1 2
sech X = Chx et e ©)
la cosecante hiperbdélica de x, x # 0, es
1 2
osch X = Chx e — e )

I Graficas de funciones hiperbdlicas Las graficas del seno hiperbdlico y del coseno hiperbé-
lico se proporcionan en la FIGURA 4.11.1. Observe la semejanza de la grifica en la figura 4.11.1b)
y la forma del Arco de San Luis, Missouri, en la foto al principio de esta seccion. Las graficas
de la tangente, cotangente, secante y cosecante hiperbdlicas se muestran en la FIGURA 4.11.2.
Observe que x = 0 es una asintota vertical de las graficas de y = coth x y y = csch x.

El Arco de San Luis, Missouri.

199

La forma del Arco de San Luis,

Missouri, estd basada en el

modelo matematico

y=A — B cosh(Cx/L).
donde A = 693.8597,

B = 68.7672, L = 299.2239,
C =3.0022, y x y y se miden

en pies. Cuando x = 0, se
obtiene la altura aproximada

de 630 pies.

y=senhx

b) y = cosh x

FIGURA 4.11.1  Grdficas del seno

y coseno hiperbélicos
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y = cothx
y = tanhx 1

y =sechx

/l\

X X X

a) y =tanhx b) y =cothx ¢)y=sechx d)y=cschx

FIGURA 4.11.2  Griéficas de la tangente, cotangente, secante y cosecante hiperbdlicas

I |dentidades Aunque las funciones hiperbdlicas no son periddicas, cuentan con muchas
identidades que son semejantes a las de las funciones trigonométricas. Observe que las grafi-
cas en la figura 4.11.1a) y b) son simétricas con respecto al origen y al eje y, respectivamente.
En otras palabras, y = senh x es una funcién impar y y = cosh x es una funcién par:
senh (—x) = —senhux, (8)
cosh(—x) = coshux. ©)
En trigonometria, una identidad fundamental es cos” x + sen” x = 1. Para funciones hiperbé-
licas, el andlogo de esta identidad es
cosh? x —senh® x = 1. (10)

Para demostrar (10) recurrimos a (2) y (3) de la definicién 4.11.1:

x4 —x\2 x _ —x\2
coshzx—senhzxZ(e 2e )—(e Ze )

:ez’c+2+672)‘_ez"—2+672":1
4 4 ’

Las ecuaciones (8) a (10) y otras once identidades se resumen en el siguiente teorema.

Teorema 4.11.1 Identidades hiperbdlicas

senh(—x) = —senh x senh (x + y) = senhxcoshy + coshxsenhy (11)
cosh(—x) = cosh x senh(x — y) = senhxcoshy — coshxsenhy (12)
tanh(—x) = —tanh x cosh(x + y) = coshxcoshy + senhxsenhy (13)
cosh’x — senh?x = 1 cosh(x — y) = coshxcoshy — senhxsenhy (14)
1 — tanh®>x = sech’®x senh2x = 2senh xcoshx (15)
coth>’x — 1 = csch’x cosh2x = cosh®x + senh®x (16)
senh?x = %(—1 + cosh 2x) cosh?x = %(1 + cosh 2x) (17)

I Derivadas de funciones hiperbolicas Las derivadas de las funciones hiperbélicas se con-
cluyen por (14) de la seccién 4.9 y las reglas de diferenciacion; por ejemplo,

d o de—er_1[d, d ] _e+er
dx senh X dx 2 2 dxe dxe 2
. d
Es decir, —senh x = coshx. (18)

dx

En forma semejante, a partir de la definicién del coseno hiperbdlico en (3) debe resultar evi-
dente que

d _
dx coshx = senh x. (19)
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Para diferenciar, por ejemplo, la tangente hiperbdlica, se usan la regla del cociente y la defi-
nicién que se proporcioné en (4):

itanh x = d senhx
dx dx cosh x
d d
_ cosh x - i senh x — senh x - dx cosh x
cosh?x

COSh2 X — Sf:nh2 X <« por (10), esto es igual a 1
cosh® x

1

 cosh?x’

En otras palabras,

d%lc tanh x = sech” x. (20)

Las derivadas de las seis funciones hiperbdlicas en el caso mds general se concluyen por
la regla de la cadena.

Teorema 4.11.2 Derivadas de las funciones hiperbdlicas

Si u = g(x) es una funcién diferenciable, entonces
asenhu = coshu %, %coshu = senhu %, 21
%tanhu = sech’u %, %cothu = —csch’u ZZ’ (22)
asechu = —sechutanhu %, %csohu = —cschucothu % (23)

Usted debe tomar nota cuidadosa de la ligera diferencia en los resultados en las ecuacio-
nes (21) a (23) y las férmulas andlogas para las funciones trigonométricas:

. d
——COSX = —Senx mientras —coshx = senh x
dx dx
. d
Ir Secx = secx tanx mientras I sechx = —sech x tanh x.

H]3\"[/Xe BN Regla de la cadena

Diferencie
a) y =senhV2x + 1 b) y = coth x°.
Solucién
a) Por el primer resultado en (21),
d
D oshVar ¥ 1-Lox + 1)
dx dx

= coshV2x + 1(&(2); + 172 2)

coshv2x + 1
V2x +1

201
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b) Por el segundo resultado en (22),

dy s 3 d
I csch™ x .dxx

= —csch?x® - 3x%.

3

A\ [P Valor de una derivada

o
4 + cosh2x

Solucion Por la regla del cociente,
dy (4 + cosh 2x) - 3 — 3x(senh 2x - 2)

Evalde la derivada de y = x = 0.

dx (4 + cosh 2x)?
Debido a que senh 0 = 0 y cosh 0 = 1, tenemos
| _15_3

dxl.—g 25 5

I Funciones hiperbdlicas inversas Al analizar la figura 4.11.1a) observamos que y = senh x
es una funcién uno a uno. Es decir, para cualquier nimero real y en el rango (—00, 00) del
seno hiperbdlico corresponde s6lo un ndmero real x en su dominio (—00, 00). Por tanto,
y = senh x tiene una funcién inversa que escribimos y = senh™ ' x. Vea la FIGURA 4.113a). Asi
como en el andlisis anterior de las funciones trigonométricas inversas en la seccién 2.5, esta
dltima notacién es equivalente a x = senh y. A partir de la figura 4.11.2a) también observa-
mos que y = tanh x con dominio (—0c0, 00) y rango (—1, 1) también es uno a uno y tiene una
inversa y = tanh ' x con dominio (—1, 1) y rango (—00, 00). Vea la figura 4.11.3¢). Pero por
las figuras 4.11.10) y 4.11.2¢) resulta evidente que y = cosh x y y = sech x no son funciones
uno a uno, de modo que no tienen funciones inversas a menos que sus dominios se restrinjan
en forma conveniente. Al analizar la figura 4.11.15) observamos que cuando el dominio de y =
cosh x se restringe al intervalo [0, 00), el rango correspondiente es [ 1, c0). Entonces, el domi-
nio de la funcién inversa y = cosh™ ' x es [1, 00) y su rango es [0, 00). Vea la figura 4.11.3b).
Las graficas de todas las funciones hiperbdlicas inversas junto con sus dominios y rangos se
resumen en la figura 4.11.3.

y y YA yv= tanh ™' x
I I
y=senh 'x y=cosh™'x | |
| |
1 1
I I
I I
I I X
. I . -1 il
1 1
I I
I I
I I
I I
1 1
1 1
I I
a)y= senh” 'x c)y:coshflx c)y:tanhflx
dominio: (—o, ®) dominio: [1, %) dominio: (-1, 1)
rango: (—ce, ) rango: [0, =) rango: (—o, ©)
y=coth™'x y —1 ) -1
| y g y=sech 'x YA y=csch™ 'x
I I
I I
I I
1 1
1 1
I I
I I
: : x x x
=1 i1 1
1 1
I I
I I
I I
I I
1 1
1 1
I I
d)y=coth 'x e)y=sech 'x f) y=csch™'x
dominio: (—o, —1) U (1, ») dominio: (0, 1] dominio: (—22, 0) U (0, )
rango: (=, 0) U (0, «©) rango: [0, «) rango: (=2, 0) U (0, «©)

FIGURA 4.11.3 Grificas de las inversas de las funciones hiperbélicas seno, coseno, tangente, cotangente, secante
y cosecante
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I Funciones hiperhdlicas inversas como logaritmos Debido a que todas las funciones hiper-
bélicas estdn definidas en términos de combinaciones de e, no debe sorprender el hecho de
encontrar que las funciones hiperbdlicas inversas pueden expresarse en términos del logaritmo
natural. Por ejemplo, y = senh™ 'x es equivalente a x = senh y, de modo que

e —e”’ e” — 1

x=—— obien, 2x = , obien, ¥ —2x¢’ —1=0.
2 e’

Debido a que la dltima ecuacion es cuadrdtica en ¢”, la férmula cuadrdtica proporciona

e

+ V4x? +
ro B E 24x o VT (24)
Luego, es necesario rechazar la solucion correspondiente al signo menos en (24) porque ¢” > 0
pero x — Vx? + 1 < 0. Asi, tenemos
e =x+Vx>+1 obien, y=senh'x=In(x+ Vx’+ 1)

En forma semejante, para y = tanh™'x, |x| < 1,

ey — e_y
X = tanhy = Pt e
proporciona el —x) =1 + x)e™”
eZy — m
1 —x
_ 1 +x
2y = ln<1 — x)
. _ 1 1 +x
= 1 = —
o bien, y = tanh™ 'x 2ln(1 — x)'

Se han demostrado dos resultados del siguiente teorema.

Teorema 4.11.3 Identidades logaritmicas

senh ™ 'x = ln(x + VX2 + 1) cosh ' x = ln(x + V- l),x =1 (25
_ 1 1 +x _ 1 x+1
Iy = = R
tanh™ ' x 21n<l — x)’ x| <1 coth™ x 2ln(x — l)’ x| >1 (26)
— 42 A/ 2
sech 'x = ln<l+xlx), 0<x=1 cschlx= ln(i + 1|x+x>x #0 27)

Las identidades anteriores constituyen un medio conveniente para obtener los valores
numéricos de una funcién hiperbdlica inversa. Por ejemplo, con ayuda de una calculadora, a
partir del primer resultado en (25) en el teorema 4.11.3 vemos que cuando x = 4,

senh™'4 = In(4 + V17) = 2.0947.
I Derivadas de funciones hiperbdlicas inversas Para encontrar la derivada de una funcién
hiperbélica inversa es posible proceder de dos formas. Por ejemplo, si
y =senh”'x  entonces x = senhy.
Al usar diferenciacién implicita es posible escribir

ix = isenh
dx dx Y

d
1= cosh yd%;.

dy _ 1 _ 1
dx  coshy \/Sf:nhzy +1 Vi + 1

Por tanto,
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El resultado anterior puede obtenerse de otra manera. Por el teorema 4.11.3 sabemos que
y=In(x + Va2 + 1).
En consecuencia, por la derivada del logaritmo obtenemos
dy _ 1
B 1 Vil +1+x 1
_x+\/x2+1 Va2 + 1 - Va1

Esencialmente, se ha demostrado la primera entrada en (28) en el siguiente teorema.

(] + %(x2 + 1) 2. 2x> <« por (3) de la seccién 3.9

Teorema 4.11.4 Derivadas de las funciones hiperbdlicas inversas

Si u = g(x) es una funcién diferenciable, entonces

d _ 1 du d _ 1 du

—senh 'y = ————, —cosh'u=———=—7u>1, (28)
dx \/u2+1dx dx \/uz_ldx

d. o _ 1 du d_ o _ 1 du

dxtanh u 2 dv lu] <1, dxcoth u [ _ 7 dv ul > 1, (29)
d -1 —1 du d o _ —1  du

dxsech u um dx’o <u<l, dxCSCh u v - dx’u # 0. (30)

A5\ [N ] Derivada del coseno hiperbélico inverso

Diferencie y = cosh™'(x*> + 5).
Solucién Con u = x> + 5, por la segunda férmula en (28) tenemos

dy 1 d

dx_\/(x2+5)2_1 dx

2x

Vit + 1022 + 24

@*+5) =

1]\ [Xel¥:} Derivada de la tangente hiperbélica inversa

Diferencie y = tanh™' 4x.
Solucion Con u = 4x por la primera formula en (29) tenemos

y_ 1 d, 4
dx 1 — (4x)? dx 1 — 16x"

]\ [JXe A Reglas del producto y de la cadena

Diferencie y = ¢ sech™ .

Solucién Por la regla del producto y la primera férmula en (30) tenemos

por la primera férmula ef (30) por (14) de la seccion 4.8

@ = e"2<1) + 2xe*'sech™ x
dx xV1—x?

.XZ

e 2 —
= ——+——— 4 2xe" sech lx.

V1 -—x?
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—_ NOTAS DESDE EL AULA

dx

)

ii)

Como se menciond en la introduccién de esta seccion, la grafica de cualquier funcién de
la forma f(x) = k cosh cx, k y c constantes, se denomina catenaria. La forma que asume
un alambre flexible o una cuerda pesada que cuelgan entre dos postes basicamente es la
misma que la de la funcién coseno hiperbdlico. Ademads, si dos anillos circulares se man-
tienen juntos en forma vertical y no estdn muy separados entre si, entonces una pelicula
jabonosa estirada entre los anillos asume una superficie con drea minima. La superficie
es una porcién de una catenoide, que es la superficie que obtenemos al hacer girar una
catenaria alrededor del eje x. Vea la FIGURA 4.11.4.

La semejanza entre las funciones trigonométricas e hiperbdlicas va mds alld de las
férmulas de derivadas y las identidades bésicas. Si ¢ es un dngulo medido en radianes
cuyo lado terminal es OP, entonces las coordenadas de P sobre una circunferencia uni-
taria x> + y2 = 1 son (cos t, sen f). Luego, el drea del sector sombreado que se muestra
en la FIGURA 4115a) es A = 3t y asf t = 2A. De esta forma, las funciones circulares cos t 'y
sen ¢t pueden considerarse funciones del drea A.

Tal vez usted ya sepa que la gréfica de la ecuacién x> — y* = 1 se denomina hipér-

bola. Debido a que cosh = 1y cosh® r — senh” t = 1, se concluye que las coordenadas de
un punto P sobre la rama derecha de la hipérbola son (cosh 7, senh 7). Ademads, puede
demostrarse que el drea del sector hiperbdlico en la figura 4.11.5b) esta relacionado con el
nuimero ¢ por ¢ = 2A. Por tanto, vemos el origen del nombre de la funcion hiperbdlica.

1. Si senhx = —%, encuentre los valores de las funciones 25 A = sen t 2 A= tanh ¢
hiperbdlicas restantes. - 80) = 1 + senh 2t - W = (1 + coshr)?
2. Si cosh x = 3, encuentre los valores de las funciones 27. Encuentre una ecuacion de la recta tangente a la gréfica
hiperbdlicas restantes. de y =senh3x en x = 0.
En los problemas 3-26, encuentre la derivada de la funcién 28. Encuentre de la recta tangente a la grifica de y = cosh x
dada. enx = 1.
3. y = cosh10x 4. y = sech 8x En los problemas 29 y 30, encuentre el o los puntos sobre la
Vi 1 grafica de la funcién dada donde la tangente es horizontal.
5. y = tanh'Vx 6. y= CSCh; 29. f(x) = (x* — 2)cosh x — 2x senhx
7. y = sech(3x — 1) 8. y = senh e 30. f(x) = cos x cosh x — senx senhx
— — 3
9. y = coth(cosh3x) 10. y = tanh(senh x7) En los problemas 31 y 32, encuentre d”y/dx” para la funcién
11. y = senh 2x cosh 3x 12. y = sech x coth 4x dada.
13. y = x cosh x2 4. y= SeI)lChx 31. y = tanhx 32. y = sechx
_ ; _ N En los problemas 33 y 34, C;, C,, C5, C4 y k son constan-
15. y = senh’x 16. y = cosh™Vx tes reales arbitrarias. Demuestre que la funcién satisface la
17. f(x) = (x — cosh x)*/* 18. f(x) = V4 + tanh 6x ecuacién diferencial dada.
19. f(x) = In(cosh 4x) 20. f(x) = (In(sech x))* 33. y = C, cosh kx + C, senh kx; y' —ky=0
_ e’ _ Inx 34. y = C, cos kx + C, sen kx + C; cosh kx + C, senh kx;
20 = T o x 2. 1@ x* + senhx YW —ky=0

U U
a) cables colgantes

1

\

b) pelicula de jabon
FIGURA 4.11.4 Catenaria en a);
catenoide en b)

t

-y
N

a) sector circular

S P

T X
;o a0
/,,

b) sector hiperbdlico
FIGURA 4.11.5 Circulo en a);
hipérbola en b)

411 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-13.

23. F(1) = ¢!

24. H(p) = e
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En los problemas 35-48, encuentre la derivada de la funcién

dada.
35. y = senh ! 3x 36. y = cosh”%

37. y = tanh '(1 — x?) 38. y = cothﬂ%

39. y = coth™'(cscx) 40. y = senh”'(sen x)
41. y = x senh ' x* 42. y = x*csch™!x
. sech™ ! x _ coth™!' e
43. y = P 4. y = s
45. y = In(sech™' x) 46. y = x tanh ' x +InV 1 — 2

1

47. y = (cosh™! 6x)/? 48. y = ————
y = ) Y (tanh ™! 2x)*

49. a) Suponga que k, m y g son constantes reales. Demues-
tre que la funcién

v(t) = 4/ % tanh (\/Fj t)

. o . dv
satisface la ecuacion diferencial m-c = mg = kv,

b) La funcion v representa la velocidad de una masa m
que cae cuando la resistencia del aire se considera
proporcional al cuadrado de la velocidad instantd-
nea. Encuentre la velocidad terminal o limitante
Vier = thl?o v(f) de la masa.

¢) Suponga que un paracaidista de 80 kg retrasa la aper-
tura del paracaidas hasta que alcanza la velocidad ter-
minal. Determine la velocidad terminal si se sabe que
k = 0.25 kg/m.

50. Una mujer, M, se mueve en la direccién positiva del eje
x, empezando en el origen, jalando un bote a lo largo de
la curva C, denominada tractriz, indicada en la FIGURA
4.11.6. El bote, que inicialmente se encuentra sobre el eje

y en (0, a), es jalado por una cuerda de longitud cons-
tante a que se mantiene durante todo el movimiento.
Una ecuacion de la tractriz estd dada por

a+ Va -y
X = aln<yy> - Va* -y

a) Vuelva a escribir esta ecuacidon usando una funcién
hiperbdlica.

b) Use diferenciaciéon implicita para demostrar que la
ecuacion de la tractriz satisface la ecuacion diferencial

dy oy
\/a2_y2

dx
¢) Interprete geométricamente la ecuacién diferencial
del inciso b).

y

(0, a)
(x,y)

X
| M

FIGURA 4.11.6 Tractriz en el problema 50
En los problemas 51 y 52, encuentre el valor numérico

exacto de la cantidad dada.

51. cosh(ln 4) 52. senh(In 0.5)

En los problemas 53 y 54, exprese la cantidad dada como
una funcién racional de x.

53. senh(In x) 54. tanh(3 In x)

55. Demuestre que para cualquier entero positivo n,

(cosh x + senh x)" = cosh nx + senh nx

Las respuestas de los problemas impares comienzan en la pagina RES-13.

En los problemas 1-20, indique si la afirmacién dada es falsa (F) o verdadera (V).

1. Siy = f(x) es continua en un nimero a, entonces hay una recta tangente a la grifica de

fen (a, f(a)).

2. Si f es diferenciable en cualquier ndmero real x, entonces f es continua en todas partes.

3. Siy = f(x) tiene una recta tangente en (a, f(a)), entonces f necesariamente es diferencia-

ble en x = a.

4. La raz6n de cambio instantdnea de y = f(x) con respecto a x en x, es la pendiente de la

recta tangente a la grafica en (xo, f(xo)).

5. En x = —1, la recta tangente a la grdfica de f(x) = x> — 3x* — 9x es paralela a la recta

y = 2.

6. La derivada de un producto es el producto de las derivadas.
7. Una funcién polinomial tiene una recta tangente en todo punto de su gréfica.



10.
11.

12.
13.

14.
15.
16.

17.
18.

19.
20.

Competencia final de la unidad 4

Para f(x) = —x* + 5x + 1 una ecuacién de la recta tangente es f'(x) = —2x + 5._____
La funcién f(x) = x/(x* + 9) es diferenciable sobre el intervalo [—3, 3].

Si f'(x) = g'(x), entonces f(x) = g(x).
Si m es la pendiente de una recta tangente a la grafica de f(x) = sen x, entonces
—-1l=m=1.

Para y = tan"'x, dy/dx > 0 para toda x.
4 o5y = —sen'x
dx

La funcién f(x) = x° + x> + x tiene una inversa.
Si f'(x) < 0 sobre el intervalo [2, 8], entonces f(3) > f(5).

Si f es una funcidn creciente diferenciable sobre un intervalo, entonces f'(x) también es
creciente sobre el intervalo.

La dnica funcién para la cual f'(x) = f(x) es f(x) = e”.
a4y, x| = €L

dx |x]

4 osh?x = L senh?x

dx d

Toda funcién hiperbdlica inversa es un logaritmo.

En los problemas 1-20, llene los espacios en blanco.

1

10.

11.

12.
13.

14.
15.

.Sif2)=1,'2) =5, g2) =2y g'(2) = —3, entonces — -

2
. Sig(l)y=2,¢'(1) =3, ¢g"(1) = —1, f'(2) = 4 y f"(2) = 3, entonces %f(g(x))

4
Si y = f(x) es una funcién polinomial de grado 3, entonces % fx) =
by

. 1
. La pendiente de la recta tangente a la grafica de y = Injx| enx = —= es

2

. La pendiente de la recta normal a la gréfica de f(x) = tan x en x = 7/3 es

n+1

. ) = X a# —1, entonces f'(x) =

n+1

. Una ecuacién de la recta tangente a la grifica de y=(x +3)/(x —2) en x = 0 es

. Para f(x) = 1/(1 — 3x) la razén de cambio instantdnea de f’ con respecto a x en x = 0

€S

. Si f'(4) =6y g'(4) = 3, entonces la pendiente de la recta tangente a la grifica de

y=2f(x) — 5g(x) en x =4 es
d X’f(x)

dx g(x)

x=2

x=

Si f'(x) = x%, entonces d fxh =
dx
d2
Si F' es una funcién diferenciable, entonces; F(sendx) =
by
La funcién f(x) = cot x no es diferenciable sobre el intervalo [0, 7] porque
La funcién

es diferenciable en x = 3 cuando a = yb=

Si f'(x) = sec” 2x, entonces f(x) =

1

La recta tangente a la grafica de f(x) =5 —x + ¢' es horizontal en el punto

207
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d He _
16. 2" =

d
17. aloglo X =

18. Si f(x) = In|2x — 4/, el dominio de f'(x) es
19. La gréfica de y = cosh x se denomina
20. cosh™'1 =

En los problemas 1-28, encuentre la derivada de la funcién dada.

4503 |
L= 5x2 2y = X+ 4xr—6x + 11
3. P =+ Vi +1)° 4. hO) = 6'5(6” + 1)’
5.y=Va'+16 Va +8 6. g(u) = 6;‘;71
7-y=M 8. y = 10 cot 8x

4x + 1
9. f(x) = x*sen®5x 10. y = tan’(cos 2x)

11. y = Senﬂ% 12. y = cosx cos ' x
13. y = (cot™'x)"" 14. y = arcsec(2x — 1)

15. y=2cos 'x + 2xV1 — x* 16. y = Ptan'Vx? — 1
17. y=xe "+ e~ 18. y=(e + &)

19. y=x"+ 7"+ 77 + " 20 y=("+1)°

21. y = In(xVax — 1) 22. y = (In cos® x)?

23. y = senh !(sen"'x) 24. y = (tan” ! x)(tanh ™! x)

25. y = xe* o 26. y =senh 'Va* — 1

27. y = senh ¢* 28. y = (tanh 5x)"'

En los problemas 29-34, encuentre la derivada indicada.

d3y 2.
29. y = (3x + 1) — 30. y =sen(x® — 2x); —
y={( ) 0 y ( ) P
_ 2 i‘ﬁs :U_l. d’w
3. s=1 +t2, e 2. W= " .
d2y
33. y = e e 4. fx)=xInx; f"x)
X

35. Use primero las leyes de los logaritmos para simplificar

_1 x + 5% —x)?

= In s
(x + 8)°Vex + 4

y luego encuentre dy/dx.
36. Encuentre dy/dx para y = 5 x*0 2,

37. Dado que y = x* + x es una funcién uno a uno, encuentre la pendiente de la recta tan-
gente a la grafica de la funcién inversa en x = 1.

38. Dado que f(x) = 8/(1 — x%) es una funcién uno a uno, encuentre f_1 y (f_l)’.
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En los problemas 39 y 40, encuentre dy/dx.

39.
41.

42,

43.

44.

45.

46.
47.

48.
49.

50.

P =e —e 40. y = In(xy)

Encuentre una ecuacién de una recta tangente a la grafica de f(x) = x* que sea perpen-
dicular a la recta y = —3ux.

Encuentre el o los puntos sobre la gréfica de f(x) = %xz — 5x + 1 donde

a) f'x) = fo)y b) ['(x) = f'(x).

Encuentre ecuaciones para las rectas que pasan por (0, —9) que son tangentes a la gra-
fica de y = x°.

a) Encuentre la interseccion con el eje x de la recta tangente a la graficade y = x’en x = 1.

b) Encuentre una ecuacion de la recta con la misma interseccion con el eje x que es per-
pendicular a la recta tangente en el inciso a).

¢) Encuentre el o los puntos donde la recta del inciso a) corta la grifica de y = x”.

Encuentre el punto sobre la grafica de f(x) = Vx donde la recta tangente es paralela a la
recta secante que pasa por (1, f(1)) y (9, f(9)).

Sif(x) = (1 + x)/x, jcudl es la pendiente de la recta tangente a la gréfica de f” en x = 2?

Encuentre las coordenadas x de todos los puntos sobre la grafica de f(x) =2 cos x + cos 2x,
0 = x = 27, donde la recta tangente es horizontal.

Encuentre el punto sobre la grifica de y = In 2x tal que la recta tangente pase por el origen.

Suponga que un circuito en serie contiene un capacitor y un resistor variable. Si la resis-
tencia en el instante ¢ estd dada por R = k; + k»t, donde k; y k> son constantes positivas
conocidas, entonces la carga ¢(f) sobre el capacitor estd dada por
k, 1/Chs
1 =EC + —EC\7——/—— ,
CI() 0 (‘IO 0 ) kl + kzt

donde C es una constante denominada capacitancia y E(rf) = E; es la tension aplicada.
Demuestre que ¢(f) satisface la condicién inicial g(0) = g, y

(ky + kot) dq + 1,= E
1 D T e q 0-
Suponga que C; y C, son constantes reales arbitrarias. Demuestre que la funcién

- X (=1 _
y—C1x+C2[21n(x+l> 1}

satisface la ecuacion diferencial

(1 —xP)y" —2xy' + 2y =0.

En los problemas 51 y 52, C;, C,, C3y C,4 son constantes reales arbitrarias. Demuestre que la
funcién satisface la ecuacion diferencial dada.

51.

52.
53.

54.

y = Cie™ + Cye* + Cyxe™ + Cyxe’; y(4) -2 +y=0
y=Cycosx + Cysen x + C3xcos x + Cyxsenx; y¥ +2y" +y=0

a) Encuentre los puntos sobre la grifica de y* — y + x> — 4 = 0 correspondientes a x = 2.
b) Encuentre las pendientes de las rectas tangentes en los puntos que se encontraron en
el inciso a).

Trace la grafica de f' a partir de la grafica de f dada en la FIGURA 4R.1.

FIGURA 4R.1  Grifica para el problema 54
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210 UNIDAD 4 La derivada

55. La gréfica de x*° + y*3 = 1, que se muestra en la FIGURA 4R 2, se denomina hipocicloide.*

Encuentre ecuaciones de las rectas tangentes a la grafica en los puntos correspondientes
1
ax =g

FIGURA 4.R.2  Hipocicloide en el problema 55

56. Encuentre d”y/dx* para la ecuacién del problema 55.
57. Suponga

X2, x=0

fx) = {\/);, x> 0.

Encuentre f’(x) para x # 0. Use la definicién de derivada, (2) de la seccion 4.2, para deter-
minar si f'(0) existe.

En los problemas 58-61, encuentre la pendiente de la recta tangente a la grafica de la funcién
en el valor dado de x. Encuentre una ecuacion de la recta tangente en el punto correspondiente.

58. fx) = =3x*+ 16x + 12, x=2 59. f(x) =x —x% x=—1

60.f(x)=_1 =t 6l. f(x) =x+4Vx, x=4

2 T2
62. Encuentre una ecuacion de la recta que es perpendicular a la recta tangente en el punto
(1, 2) sobre la grafica de f(x) = —4x*> + 6x.

63. Suponga que f(x) =2x+ 5 y & = 0.01. Encuentre un & > 0 que garantice que
|[f(x) = 7| < & cuando 0 < |x — 1| < &. Al encontrar §, ;jqué limite se ha demostrado?

*Ir a la pagina http://mathworld.wolfram.com/Hypocycloid.html para ver varios tipos de hipocicloides y sus propiedades.



Unidad 5

Aplicaciones de la derivada

céncava hacia
arriba

concava hacia abajo

En esta unidad Las derivadas primera y segunda de una funcion f pueden usarse para deter-
minar la forma de su gréafica. Si imagina la grafica de una funcién como una curva que sube y
baja, entonces los puntos alto y bajo de la grafica o, con mas precision, los valores maximo y
minimo de la funcion, podemos encontrarlos usando la derivada. Como ya vimos, la derivada
también proporciona una razén de cambio. En la seccién 4.1 vimos brevemente que la razon
de cambio con respecto al tiempo t de una funcion que proporciona la posicion de un objeto
en movimiento es la velocidad del objeto.

Encontrar los valores maximo y minimo de una funcion junto con el problema de determinar
razones de cambio son dos de los temas centrales de estudio de esta unidad.

Aplicar el concepto de la derivada para la solucion de problemas de optimizacion
y variacion de funciones, y el de diferencial en problemas que requieren aproxi-
maciones.
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212 UNIDAD 5 Aplicaciones de la derivada

5.1 Movimiento rectilineo

I Introduccion En la seccién 4.1 se defini6 que el movimiento de un objeto en una linea
recta, horizontal o vertical, es un movimiento rectilineo. Una funcién s = s(rf) que propor-
ciona la coordenada del objeto sobre una recta horizontal o vertical se denomina funcién posi-
cion. La variable ¢ representa el tiempo y el valor de la funcidn s(z) representa una distancia
dirigida, que se mide en centimetros, metros, pies, millas, etc., a partir de un punto de refe-
rencia s = O sobre la recta. Recuerde que sobre una escala horizontal, consideramos la direc-
cién s positiva a la derecha de s = 0, y sobre una escala vertical, la direccién s positiva la
consideramos hacia arriba.

]\ [{XeBEN Posicién de una particula en movimiento

Una particula se mueve sobre una recta horizontal segiin la funcién posicién s(r) = —1* + 4t
+ 3, donde s se mide en centimetros y ¢ en segundos. ;Cudl es la posicion de la particula a
0, 2 y 6 segundos?

Al sustituir en la funcién posicién obtenemos
s0)=3, s2)=7, s(6)=—9.

Como se muestra en la FIGURA 5.1.1, s(6) = —9 < 0 significa que la posicién de la particula
estd a la izquierda del punto de referencia s = 0.

5(6) s(0) s(2)
—+——+———t—+—+—+—+—+—+—+——+—+—F+——+—1—F> 5
-10 -5 0 5 10

FIGURA 5.1.1 Posici6én de una particula en varios instantes en el ejemplo 1
I Velocidad y aceleracion Si la velocidad media de un cuerpo en movimiento sobre un
intervalo de tiempo de longitud Az es

cambio en posicion _ s(t + A7) — 5(2)
cambio en tiempo At ’

entonces la razén de cambio instantdnea, o velocidad del cuerpo, estd dada por

st + An — s()
vO= T A

Asi, tenemos la siguiente definicion.

Definicion 5.1.1 Funcién velocidad

Si s(f) es una funcién posicion de un objeto en movimiento rectilineo, entonces su funcién
velocidad v(7) en el instante ¢ es

ds
v(r) = E

La rapidez del objeto en el instante ¢ es |v(r)].

La velocidad se mide en centimetros por segundo (cm/s), metros por segundo (m/s), pies
por segundo (pies/s), kilémetros por hora (km/h), millas por hora (mi/h), etcétera.
También es posible calcular la razén de cambio de la velocidad.

Definicion 5.1.2 Funcion aceleracion

Si v(7) es la funcidén velocidad de un objeto en movimiento rectilineo, entonces su funcién
aceleracion a(r) en el instante 7 es
d d*s

v
a(t) :E:E.




Las unidades tipicas para medir la aceleracién son metros por segundo por segundo (m/s>),
pies por segundo por segundo (pies/s?), millas por hora por hora (mi/h?), etcétera. A menudo,
las unidades de la aceleracion se leen literalmente “metros por segundo al cuadrado”.

I Significado de los signos algebraicos En la seccién 4.1 vimos que siempre que la deri-
vada de una funcion f es positiva sobre un intervalo I, entonces f es creciente sobre I.
Geométricamente, la grafica de una funcién creciente sube cuando x crece. En forma semejante,
si la derivada de una funcién f es negativa sobre I, entonces f es decreciente, lo cual significa
que su grifica baja cuando x crece. Sobre un intervalo de tiempo para el cual v(f) = s'(f) > 0,
es posible afirmar que s(f) es creciente. Por tanto, el objeto se mueve hacia la derecha sobre
una recta horizontal, o hacia arriba sobre una recta vertical. Por otra parte, v(¢) = s'(f) < 0
implica que s(f) es decreciente y que el movimiento es hacia la izquierda sobre una recta hori-
zontal o hacia abajo sobre una recta vertical. Vea la FIGURA 5.1.2. Si a(t) = v'(f) > 0 sobre un
intervalo de tiempo, entonces la velocidad v(f) del objeto es creciente, mientras a(f) = v'(f) < 0
indica que la velocidad v(r) del objeto es decreciente. Por ejemplo, una aceleracién de —25 m/s”
significa que la velocidad decrece por 25 m/s cada segundo. No confunda los términos “velo-
cidad decreciente” y “velocidad creciente” con los conceptos “desaceleracion” o “aceleracién”.
Por ejemplo, considere una roca que se deja caer desde la parte superior de un edificio alto. La
aceleracién de la gravedad es una constante negativa, —32 pies/s>. El signo negativo significa
que la velocidad de la roca disminuye a partir de cero. Una vez que la roca choca contra el
suelo, su rapidez |v(r)| es bastante grande, pero v(f) < 0. En especifico, un objeto en movi-
miento rectilineo sobre, por ejemplo, una recta horizontal desacelera cuando v(f) > 0 (mo-
vimiento hacia la derecha) y a(f) < 0 (velocidad decreciente), o cuando v(r) < 0 (movimiento
hacia la izquierda) y a(f) > O (velocidad creciente). En forma semejante, un objeto en movi-
miento rectilineo sobre una recta horizontal acelera cuando v(f) > 0 (movimiento hacia la dere-
cha) y a(f) > 0 (velocidad creciente), o cuando v(f) < 0 (movimiento hacia la izquierda) y
a(t) < 0 (velocidad decreciente). En general,

Un objeto en movimiento rectilineo

e desacelera cuando su velocidad y aceleracién tienen signos algebraicos opuestos, y
e acelera cuando su velocidad y aceleracién tienen el mismo signo algebraico.

De manera alterna, un objeto desacelera cuando su rapidez |v(f)| es decreciente y acelera
cuando su rapidez es creciente.

]3| JXel3 Otro repaso al ejemplo 1

En el ejemplo 1 las funciones velocidad y aceleracién de la particula son, respectivamente,

v(t)=%=—2t+4 y a(z)z%z—z.

En los instantes 0, 2 y 6 s, las velocidades son v(0) = 4 cm/s, v(2) = 0 cm/s y v(6) = —8
cm/s, respectivamente. Puesto que la aceleracion siempre es negativa, la velocidad siempre es
decreciente. Observe que v(f) = 2(—t+2) > 0 para rt < 2 y v(f) = 2(—t + 2) < 0 para
t> 2. Si se deja que el tiempo ¢ sea negativo y también positivo, entonces la particula se mueve
hacia la derecha para el intervalo de tiempo (—o0, 2) y se mueve hacia la izquierda para el
intervalo de tiempo (2, 00). El movimiento puede representarse por la grifica que se muestra
en la FIGURA 5.1.3a). Puesto que el movimiento en realidad se lleva a cabo sobre la recta hori-
zontal, usted debe imaginar el movimiento de un punto P que corresponde a la proyeccién de
un punto en la grafica sobre la recta horizontal. Vea la figura 5.1.3b).

y v=0 X
} t t t s ——+——— t s

-5 0 5 10 P P—>

2
a)s(t)y=—t"+4t+3 b) la particula en el punto P
se mueve sobre el eje s
FIGURA 5.1.3 Representacién del movimiento de la particula en el ejemplo 2

5.1 Movimiento rectilineo

s(1)

13
RN
L s
[

3

a) v(t) >0 movimiento
hacia la derecha

s(1)

1
v N
oL Ky
—
1

b) v(t) <0 movimiento
hacia la izquierda
FIGURA 5.1.2  Significado del
signo de la funcién velocidad

213
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FIGURA 5.1.4  Signos de v(r) y

a(t) en el ejemplo 3

N1\ [Me ] Particula que desacelera/acelera

, . , ., . e, 1
Una particula se mueve sobre una recta horizontal segtin la funcién posicién s(f) = 32 — t.
Determine los intervalos de tiempo sobre los cuales la particula desacelera y los intervalos de
tiempo sobre los cuales acelera.

Los signos algebraicos de las funciones velocidad y aceleracion
v = —-1=0¢+Dir—1) y a(t) =2t

se muestran sobre la escala de tiempo en la FIGURA 5.1.4. Puesto que v(f) y a(f) tienen signos
opuestos sobre (—o0, —1) y (0, 1), la particula desacelera sobre estos intervalos de tiempo;
v(?) y a(f) tienen el mismo signo algebraico sobre (—1, 0) y (1, o), de modo que la particula
acelera sobre estos intervalos de tiempo.

En el ejemplo 2 verifique que la particula desacelera sobre el intervalo de tiempo (—00, 2)
y acelera sobre el intervalo de tiempo (2, 00).

A3\ [JNe B8 Movimiento de una particula

Un objeto se mueve sobre una recta horizontal segiin la funcién posicién s(r) = r* — 18¢* + 25,
donde s se mide en centimetros y r en segundos. Use una gréfica para representar el movi-
miento durante el intervalo de tiempo [—4, 4].

La funcién velocidad es
_ds _ 3 _
v(t) = o 417 — 36t = 4t(t + 3)(t — 3)
y la funcién aceleracién es

2
a(t) = % = 1212 — 36 = 12(¢ + V3)(t — V3b).
Luego, a partir de las soluciones de v(f) = 0 podemos determinar los intervalos de tiempo
para los cuales s(f) es creciente o decreciente. A partir de la informacién que se muestra en
las tablas siguientes, se construye la funcién mostrada en la FIGURA 5.1.5. Al inspeccionar las
tablas observamos que la particula desacelera sobre los intervalos de tiempo (—4, —3), (—V/3, 0),
(\/3, 3) (se muestran en color claro en la figura) y acelera sobre los intervalos de tiempo
(—3, —\@), (0, \@), (3,4) (se muestran en oscuro en la figura).

FIGURA 5.1.5 Movimiento de una particula en el ejemplo 4

Intervalo | Signo | Direccion de | | Tiempo| Posicion | Velocidad | Aceleracion Intervalo | Signo
de tiempo | de v(f) | movimiento de tiempo | de a(?) | Velocidad
—4 -7 —112 156

(—4, —3) — |ala izquierda -3 —56 0 72 (—4,—V3)| + |creciente
(—3,0) + a la derecha 0 25 0 —-36 _ B .
0, 3) — |ala izquierda 3| _s6 0 72 (=V3,V3) decrf’C‘ente
(3, 4) + |ala derecha 4 —7 112 156 (V3,4) + |creciente

v>0, az 0 t=4 -

=3¢ =3 v<0, a<0
v>0,a>01=—3 > Ni=o
t=-34 t=—4
+ + + + + + + + + N
=50 —40 —-30 —20 —10 0 10 20 30
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“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-13.

= Fundamentos

En los problemas 1-8, s(f) es una funcién posicién de una
particula que se mueve sobre una recta horizontal. Encuentre
la posicién, velocidad, rapidez y aceleracién de la particula
en los instantes indicados.

1

1. s(t) = 41> — 61 + 1; t=§,t=3

2. 50=Q2t— 6% t=1,t=4

3.s(h=-1+32+t t=-2,t=2

4. s)=t*—-F+ t=-1,tr=3
11

5. 5=t pr t—4,t—1
_7t . = — =

6.s(t)—t+2, t 1,t =0

7. s(t) =t + senrt, t=l,t=%

8. s(t) = t cos 7t; t=%,t=1

En los problemas 9-12, s(¢) es una funcién posicién de una
particula que se mueve sobre una recta horizontal.

9. s(h=t*—4r—5

a) (Cudl es la velocidad de la particula cuando s(f) = 0?7
b) (Cudl es la velocidad de la particula cuando s(r) = 7?

10. s(r) = 1> + 61 + 10
a) (Cudl es la velocidad de la particula cuando s(f) =
v(1)?
b) ;Cudl es la velocidad de la particula cuando v(f) =
—a(t)?
11. s(t) = 13 — 4¢

a) ;Cudl es la aceleracion de la particula cuando v(f) = 2?
b) (Cudl es la posicién de la particula cuando a(r) = 18?
¢) (Cudl es la velocidad de la particula cuando s(r) = 0?

12. s@) =12 — 32+ 8

a) (Cudl es la posicién de la particula cuando v(¢) = 0?
b) ;Cudl es la posicion de la particula cuando a(r) = 0?
¢) ;Cuando desacelera la particula? ;Cuando acelera?

En los problemas 13 y 14, s(¢) es una funcidn posicién de
una particula que se mueve sobre una recta horizontal.
Determine los intervalos de tiempo sobre los cuales la par-
ticula desacelera y los intervalos de tiempo sobre los cuales
la particula acelera.

13. st) = 2 — 27t 14. s@t) =t* — ¢

En los problemas 15-20, s(f) es una funcién posicién de una
particula que se mueve sobre una recta horizontal. Encuentre
las funciones de velocidad y de aceleracion. Determine los
intervalos de tiempo sobre los cuales la particula desacelera
y los intervalos de tiempo sobre los cuales la particula ace-
lera. Represente el movimiento durante el intervalo de
tiempo indicado con una gréfica.

15. s() =% [—1,3]
16. s(t) =13, [—2,2]
17. s() =1>— 4t —2; [—1,5]

18. s) = (@ +3)r—1); [-3,1]
19. s(r) =23 — 613 [—2,3]
20. s() =@ — D*r—2):; [-2,3]

En los problemas 21-28, s(f) es una funcién posiciéon de una
particula que se mueve sobre una recta horizontal. Encuentre
las funciones de velocidad y de aceleracion. Represente el
movimiento durante el intervalo de tiempo indicado con una
gréfica.

21. s(r) = 3t* — 8% [—1,3]

22, s() =t* — 43 — 8>+ 60; [—2,5]
23. s) =t — 4V, [1,9]

24. s(t) = 1 + coswt; [—%, %]

25. (1) = sen%t; [0, 4]

26. s(t) = sen7rt — cosmrt; [0, 2]

27. s(t) =t~ [0, 00)

28. s()=t>—121In(r + 1); [0, )

29. En la FIGURA 5.1.6 se muestra la gréfica en el plano st de
una funcién posicién s(7) de una particula que se mueve
rectilineamente. Complete la tabla siguiente si v(¢) y a(t)
son positivas, negativas o cero. Proporcione los interva-
los de tiempo sobre los cuales la particula desacelera
y los intervalos sobre los cuales acelera.

1
1
I
I
I
I
1
1
I
I
I
1
e

[

a b d f g
FIGURA 5.1.6  Gréfica para el problema 29

Intervalo | v(r) | a(?)

(a, b)
(b, )
(c, d)
(d, e)
(e, f)
(f. 8

30. En la FIGURA5.1.7 se muestra la grafica de la funcién velo-
cidad v de una particula que se mueve sobre una recta
horizontal. Elabore una gréfica de una funcién posicion
s con esta funcién velocidad.

v v="s'(f)
AW
| /a4 b\_/ ¢

FIGURA 5.1.7  Gréfica para el problema 30
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2 ||

La altura (en pies) de un proyectil disparado vertical-
mente hacia arriba desde un punto a 6 pies por arriba
del nivel del suelo la proporciona s(f) = — 16> + 48t + 6,
0 =t =T, donde T es el instante en que el proyectil
choca contra el suelo. Vea la FIGURA 5.1.8.

a) Determine el intervalo de tiempo para el cual v > 0
y el intervalo de tiempo para el cual v < 0.
b) Encuentre la altura maxima alcanzada por el proyectil.

P ~
/ \

=

6 pies

— e - - — — — e — - - - -~ —

FIGURA 5.1.8  Proyectil
en el problema 31

32. Una particula se mueve sobre una recta horizontal segtin

la funcién posicién s(f) = —t> + 10t — 20, donde s se
mide en centimetros y ¢ en segundos. Determine la dis-
tancia total recorrida por la particula durante el intervalo
de tiempo [1, 6].

En los problemas 33 y 34, use la siguiente informacion.
Cuando se ignora la friccion, la distancia s (en pies) que un
cuerpo se mueve hacia abajo sobre un plano inclinado cuya
inclinacién es 6 esta dada por s(f) = 16¢% sen 0, [0, #;], donde
s(0) =0, s(t;) = L y t se mide en segundos. Vea la FIGURA

5.1.9.

FIGURA 5.1.9 Plano inclinado

33. Un objeto se desliza por una colina de 256 pies de lon-

gitud con una inclinacién de 30°. ;Cudles son la veloci-
dad y aceleracién del objeto en la parte superior de la
colina?

34.

35.

36.

Un participante en una carrera de automdviles de
juguete desciende la colina mostrada en la FIGURA 5.1.10.
(Cudles son la velocidad y aceleracién del automévil en
la parte inferior de la colina?

300 pies

|[«———400 pies—>|

FIGURA 5.1.10  Plano inclinado
en el problema 34

Un cubo, atado con una cuerda a un molinete circular,
se deja caer libremente en linea recta. Si se ignora la
inercia rotacional del molinete, entonces la distancia que
recorre el cubo es igual a la medida en radianes del
dngulo indicado en la FIGURA 5.1.11; es decir, 6 = %gtz,
donde g = 32 pies/s” es la aceleracién debida a la gra-
vedad. Encuentre la razén a la que cambia la coorde-
nada y de un punto P sobre la circunferencia del moli-
nete en t = V7/4 s. Interprete el resultado.
P(x,y)

o)
" A

FIGURA 5.1.11
el problema 35

Cubo en

En mecénica, la fuerza F que actia sobre un cuerpo se
define como la razén de cambio de su cantidad de movi-
miento: F = (d/dt)(mv). Cuando m es constante, a partir
de esta férmula obtenemos la conocida férmula denomi-
nada segunda ley de Newton F' = ma, donde la acelera-
cién es a = dv/dr. Segin la teorfa de la relatividad de
Einstein, cuando una particula con masa en reposo my se
mueve rectilineamente a gran velocidad (como en un ace-
lerador lineal), su masa varia con la velocidad v segin la
formula m = my/\V'1 — v*c?, donde c es la velocidad
constante de la luz. Demuestre que en la teoria de la rela-
tividad la fuerza F que actiia sobre la particula es
moa

Va = ved?

donde a es la aceleracion.

F:

5.2 Extremos de funciones

I Introduccion Ahora abordaremos el problema de encontrar los valores maximo y minimo
de una funcién f sobre un intervalo /. Veremos que al encontrar estos extremos de f (en caso de
haber alguno) en muchos casos es posible trazar facilmente su grafica. Al encontrar los extre-
mos de una funcién también es posible resolver ciertos tipos de problemas de optimizacién. En
esta seccion establecemos algunas definiciones importantes y mostramos cémo puede encontrar
los valores maximo y minimo de una funcién f que es continua sobre un intervalo cerrado 1.



I Extremos absolutos En la FIGURA 52.1 se ha ilustrado la grdfica de la funcién cuadratica
f(x) = x> — 3x + 4. A partir de esta grafica debe resultar evidente que el valor de la funcién
f(%) =7 es la coordenada y del vértice, y como la pardbola se abre hacia arriba, en el rango
de f no hay nimero menor que ;. Decimos que el extremo f' G) = 7 es el minimo absoluto de f.
A continuacién se definen los conceptos de méaximo absoluto y minimo absoluto de una funcién.

Definicion 5.2.1 Extremos absolutos

i) Un ndmero f(c;) es un maximo absoluto de una funcién f'si f(x) = f(c,) para toda x en
el dominio de f.

ii) Un ndmero f(c,) es un minimo absoluto de una funcién f si f(x) = f(c,) para toda x en
el dominio de f.

Los extremos absolutos también se denominan extremos globales.

A partir de su experiencia al graficar funciones debe serle ficil, en algunos casos, ver
cudando una funcién posee un maximo o un minimo absoluto. En general, una funcién cuadré-
tica f(x) = ax®> + bx + c¢ tiene un médximo absoluto o un minimo absoluto. La funcién
fx) =4 — x? tiene el maximo absoluto f(0) =4. Una funcion lineal f(x) = ax + b,a # 0, no
tiene extremos absolutos. Las graficas de las funciones conocidas y = 1/x, y = x’, y = tanx,
y=¢"y y=In x muestran que éstas no tienen extremos absolutos. Las funciones trigonomé-
tricas y = sen x y y = cos x tienen un maximo absoluto y un minimo absoluto.

N\ E Extremos absolutos

Para f(x) = senx, f(7/2) = 1 es su mdximo absoluto y f(37/2) = —1 es su minimo absoluto.
Por periodicidad, los valores médximo y minimo también ocurren en x = 7/2 + 2n7 y
x =3m/2 + 2nm,n = £1, X2, ..., respectivamente.

El intervalo sobre el que la funcién estd definida es muy importante en la consideracion
de extremos.

[=N]5\" [ A Funciones definidas sobre un intervalo cerrado

a) f(x) = x% definida s6lo sobre el intervalo cerrado [1, 2], tiene el miximo absoluto
f(2) =4 y el minimo absoluto f(1) = 1. Vea la FIGURA 5.2.2a).

b) Por otra parte, si f(x) = X2 estd definida sobre el intervalo abierto (1, 2), entonces f
no tiene extremos absolutos. En este caso, f(1) y f(2) no estdn definidos.

c) fx)= x> definida sobre [—1, 2], tiene el mdximo absoluto f(2) = 4, pero ahora el
minimo absoluto es f(0) = 0. Vea la figura 5.2.2b).

d) fx) = x> definida sobre (=1, 2), tiene un minimo absoluto f(0) = 0, pero no un
maximo absoluto.

Los incisos a) y ¢) del ejemplo 2 ilustran el siguiente resultado general.

Teorema 5.2.1 Teorema del valor extremo

Una funcién f continua sobre un intervalo cerrado [a, b] siempre tiene un maximo absolu-
to y un minimo absoluto sobre el intervalo.

En otras palabras, cuando f es continua sobre [a, b], hay nimeros f(c;) y f(c,) tales que
f(c) = f(x) = f(c,) para toda x en [a, b]. Los valores f(c,) y f(c;) son el mdximo absoluto y
el minimo absoluto, respectivamente, sobre el intervalo cerrado [a, b]. Vea la FIGURA 5.2.3.

I Extremos de un punto frontera Cuando un extremo absoluto de una funcién ocurre en un
punto frontera de un intervalo /, como en los incisos a) y c) del ejemplo 2, decimos que se
trata de un extremo de un punto frontera. Cuando / no es un intervalo cerrado; es decir,
cuando 7 es un intervalo como (a, b], (—00, b] o [a, 0), entonces aunque f sea continua no
hay garantia de que exista un extremo absoluto. Vea la FIGURA 5.2.4.
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y
0
2 }':,\”2*3){“!’4
4
2

< minimo absoluto
t i t t t t
-1 1 2 3 4
FIGURA 5.2.1

de una funcién

Minimo absoluto

y
1
I
. I
minimo | miéximo
absoluto ! __absoluto

e
|

1 1 X
1 2

a) f definida sobre [1, 2]

y

_— maximo

1 absoluto

N 2
\ minimo
absoluto

b) f definida sobre [—1, 2]

FIGURA 5.2.2  Gréficas de
funciones en el ejemplo 2

X

fe)=F) =f(c,) {

paraa=x=b

1 f(ey)
fle)!
ac & p
FIGURA 5.2.3 La funcion f tiene
un médximo absoluto y un minimo
absoluto
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méximo
relativo y = f(x)
flep !
: minimo
| relativo
: =—f(c,)
l 1
C

X
b a,¢, b,

b)
FIGURA 5.2.5 Miximo relativo
en ¢; y minimo relativo en ¢,

y
y y
no ha)?\ minimo h " bsolut
maximo \/‘I no es un S~ absoluto de no hay extremo absoluto
absoluto de I extremo de
punto frontera : punto frontera punto frontera A /\
A I X H X TS X
“ ¢ b b VA
minimo
absoluto
a) f definida sobre (a, b] b) f definida sobre (—, b] ¢) f definida sobre [0, %)

FIGURA 5.2.4 Una funcién f continua sobre un intervalo que no tiene ningdn extremo absoluto

I Extremos relativos En la FIGURA 525a) se ha ilustrado la grifica de f(x) = x* — 5x + 8.
Debido a que el comportamiento final de f es el de y = x?, f(x) =00 cuando x — 00 y
f(x) &> —0o0 cuando x — —oc0. Con base en esta observacion es posible concluir que esta fun-
cién polinomial no tiene extremos absolutos. No obstante, suponga que centramos la atencién
en valores de x préximos a, o en una vecindad de, los nimeros ¢; y ¢,. Como se muestra en
la figura 5.2.5b), f(c;) es el valor mayor o maximo de la funcién f cuando se compara con
todos los demds valores de la funcidén en el intervalo abierto (a;, b;); en forma semejante, f(c,)
es el valor minimo de f en el intervalo (a,, b,). Estos extremos relativos, o locales, se defi-
nen como sigue.

Definicion 5.2.2 Extremos relativos

i) Un ntmero f(c;) es un maximo relativo de una funcion f si f(x) = f(c,) para toda x
en algin intervalo abierto que contiene a c;.

ii) Un nimero f(c;) es un minimo relativo de una funcion fsi f(x) = f(c,) para toda x
en algin intervalo abierto que contiene a c;.

Como consecuencia de la definicién 5.2.2 podemos concluir que

e Todo extremo absoluto, con excepcion de un extremo de un punto frontera,
también es un extremo relativo.

Un extremo absoluto de un punto frontera se excluye de ser un extremo relativo con base en
el tecnicismo de que alrededor de un punto frontera del intervalo no puede encontrarse un
intervalo abierto contenido en el dominio de la funcién.

Hemos llegado al planteamiento de una pregunta evidente:

e ;Coémo se encuentran los extremos de una funcién?

Incluso cuando tenemos gréficas, para la mayor parte de las funciones la coordenada x en que
ocurre un extremo no es evidente. Con ayuda de la herramienta para acercar o alejar una pagina
de un dispositivo para graficar, es posible buscar y, por supuesto, aproximar tanto la ubicacién
como el valor de un extremo. Vea la FIGURA 5.26. A pesar de lo anterior, resulta aconsejable
poder encontrar la ubicacién exacta y el valor exacto de un extremo.

y y
y=3x"+4x° — 122+ 10 1+

10
/ 1 )=xInx
. . . . X

—

a) Minimo relativo proximo ax = —2 b) Minimo relativo préximo a x = 0.4
Maximo relativo préximo a x =0
Minimo relativo préximo a x =1

FIGURA 5.2.6  Ubicacién aproximada de extremos relativos



En la figura 5.2.6a) se plantea que un minimo relativo ocurre cerca de x = —2. Con las
herramientas de una calculadora o un SAC es posible convencernos de que este minimo rela-
tivo es realmente un minimo absoluto o global, pero con las herramientas del célculo es posi-
ble demostrar en verdad que éste es el caso.

I Niameros criticos El andlisis de la FIGURA 5.2.7 junto con las figuras 5.2.5 y 5.2.6 sugiere
que si ¢ es un nimero en el que la funcién f tiene un extremo relativo, entonces la tangente
es horizontal en el punto correspondiente a x = ¢ o no es diferenciable en x = c. Es decir,
una de las dos: f'(¢) = 0 o f'(c) no existe. Este nimero ¢ recibe un nombre especial.

Definicion 5.2.3 Numero critico

Un niimero critico de una funcién f es un nimero ¢ en su dominio para el cual f'(c¢) = 0o
f'(c) no existe.

En algunos textos un nimero critico x = ¢ se denomina punto critico.

=N]S\Y [N} Determinacion de nimeros criticos
Encuentre los nimeros criticos de f(x) = x In x.

Por la regla del producto,
f(x) =x~%+ l1-Inx=1+Inx.

La tnica solucién de f’(x) = 0 o Inx = —1 es x = ¢~ '. Hasta dos cifras decimales, el nimero
critico de fese ! = 0.36.

A\ |JHe MY Determinacion de nimeros criticos
Encuentre los niimeros criticos de f(x) = 3x* + 4x° — 12x* + 10.

Al diferenciar y factorizar se obtiene
fi(x) = 12x% + 12x% — 24x = 12x(x + 2)(x — 1).
Por tanto, observamos que f'(x) = 0 parax = 0, x = —2 y x = 1. Los ntimeros criticos de f

son 0,—2 vy 1.

NI\ [JXe MY Determinacion de nimeros criticos
Encuentre los ndmeros criticos de f(x) = (x + 4)%°.

Por la regla de potencias para funciones,
oz
3(x + HVF

En este caso observamos que f'(x) no existe cuando x = —4. Puesto que —4 estd en el domi-
nio de f, concluimos que €ste es su nimero critico.

S =5+ 4 =

A\ |JEeM:Y Determinacion de nimeros criticos

x2

Encuentre los nimeros criticos de f(x) =
X

Por la regla del cociente, después de simplificar encontramos,
fioy =22

X)=—""-.
(x—1)°

Ahora, f'(x) = 0 cuando el numerador de f es 0. Al resolver la ecuacién x(x — 2) = 0 obte-
nemos x = 0 y x = 2. Ademds, cuando se inspecciona el denominador de f se encuentra que
f'(x) no existe cuando x = 1. No obstante, al analizar f se observa que x = 1 no estd en su
dominio, y asi los tinicos nimeros criticos son 0 y 2.
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maximo
relativo

J(ey)

mfnimW minimo

relativo | relativo

fle) ~

Cc

e f(cy)
L X

C

[ .
0

1

FIGURA 5.2.7  fno es diferencia-
bleency;f esOencyyc3

3
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Teorema 5.2.2 Los extremos relativos ocurren en nimeros criticos

Si una funcién f tiene un extremo relativo en x = ¢, entonces ¢ es un nimero critico.

Suponga que f(c) es un extremo relativo.

i) Si f'(c) no existe, entonces, por la definicién 5.2.3, ¢ es un nimero critico.

ii) Sif'(c) existe, entonces hay tres posibilidades: f'(c) >0, f'(c) <0 o f'(c) = 0. Para aho-
rrar argumentos, también se supondrd que f(c) es un maximo relativo. Asi, por la defini-
cién 5.2.2 hay algiin intervalo abierto que contiene a ¢ donde

fle + h) = flo) )]

donde el nimero & es suficientemente pequefio en valor absoluto. Entonces, la desigual-
dad en (1) implica que
f(c+h)—f(6)<0 fle + 1) — flo)

h parah > 0 y #20 para h < 0. 2)

Pero como %15% [f(c + h) — f(c)]/h existe y es igual a f'(c), las desigualdades en (2)
muestran que f'(¢) = 0 y f'(c) = 0, respectivamente. La tnica forma en que esto puede

ocurrir es cuando f'(c¢) = 0. El caso en que f(c) es un minimo relativo se demuestra en forma
semejante.

I Extremos de funciones definidos sobre un intervalo cerrado Se ha visto que una funcién
f que es continua sobre un intervalo cerrado tiene tanto un maximo absoluto como un minimo
absoluto. El siguiente teorema indica dénde ocurren estos extremos.

Teorema 5.2.3 Determinacién de extremos absolutos

Si f es continua sobre un intervalo cerrado [a, b], entonces un extremo absoluto ocurre ya
sea en un punto frontera del intervalo o en un nimero critico ¢ en el intervalo abierto (a, b).

El teorema 5.2.3 se resume como sigue:

Directrices para encontrar extremos sobre un intervalo cerrado

i) Evalde f en los puntos frontera a y b del intervalo [a, b].

ii) Encuentre todos los nimeros criticos ¢y, ¢,, . . . , ¢, en el intervalo abierto (a, b).
iii) Evalde f en todos los nimeros criticos.
iv) Los valores mayor y menor en la lista

f(a)sf(cl)’f(CZ)’ ©oo 9f(cn)’f(b)a

son el maximo absoluto y el minimo absoluto, respectivamente, de f sobre el inter-
valo [a, b].

(A S\ [JHe WA Determinacion de extremos absolutos

Encuentre los extremos absolutos de f(x) = x> — 3x*> — 24x + 2 sobre el intervalo

a) [—3,1] b) [—3,8].

Debido a que f es continua, sélo es necesario evaluar f en los puntos frontera de
cada intervalo y en los nimeros criticos dentro de cada intervalo. A partir de la derivada

Fx)=3x2—6x — 24 =3(x + 2)(x — 4)

vemos que los nimeros criticos de la funcién f son —2 y 4.
a) A partir de los datos que se muestran en la tabla siguiente resulta evidente que el
maximo absoluto de f sobre el intervalo [—3, 1] es f(—2) = 30, y que el minimo abso-

Iuto es el extremo de un punto frontera f(1) = —24.



Sobre [—3, 1]
X -3 -2 1
FAES) 20 30 | —24
b) Sobre el intervalo [—3, 8] a partir de la tabla siguiente observamos que f(4) = —78
es un minimo absoluto y que f(8) = 130 es un maximo absoluto de un punto frontera.
Sobre [—3, 8]
X -3 -2 4 8
f) 20 30| —78| 130

f'(xX) NOTAS DESDE EL AULA

)

iii)

Una funcién puede, por supuesto, asumir sus valores mdximo y minimo mds de una vez
sobre un intervalo. Usted debe comprobar, con ayuda de un dispositivo para graficar,
que la funcién f(x) = sen x alcanza su valor de funcién méximo 1 cinco veces y su valor
de funcién minimo —1 cuatro veces en el intervalo [0, 97 ].

El converso del teorema 5.2.2 no necesariamente es cierto. En otras palabras:

Un nimero critico de una funcién f no necesita corresponder a un extremo relativo.

Considere f(x) = x>y g(x) = x'/. Las derivadas f'(x) = 3x?y g(x) = 3x~ %> muestran
que 0 es un nimero critico de ambas funciones. Pero a partir de las graficas de fy g en
la FIGURA 5.2.8 vemos que ninguna funcién posee algin extremo sobre el intervalo
(—00, 00).

Hemos indicado como encontrar los extremos absolutos de una funcién f que es conti-
nua sobre un intervalo cerrado. En las secciones 5.4 y 5.5 usamos la primera y segun-
da derivada para encontrar los extremos relativos de una funcién.
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FIGURA 5.2.8 0 es un nimero
critico para ambas funciones,
pero ninguna tiene extremos

“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-14.

= Fundamentos

En los problemas 1-6, use la gréfica de la funcién dada como
ayuda para determinar cualquier extremo absoluto sobre los
intervalos indicados.

funciones dadas.
7. f(x) = 2x* — 6x + 8

9. flx) = 2x3 — 15x% — 36x

En los problemas 7-22, encuentre los niimeros criticos de las

8. fx) =x>+x—2
10. f(x) = x* —4x° + 7

L) =x—4 1L () = (= 2P — 1) 12 f(x) = °x + 1)°
@) [-1,21 BB @25  dIlA4 3. fon = LT = X
’ = fo) == W f = 57—
a) [—1,21 b) [3,7] ¢) (2,5 d[l,4] 15. f(x) = (4x — 3" 16. f(x) = +4x
3. f(0) = 2% — dx 17. f) = e — Va2 18 f(x) = 2+
a) [1, 4] b) [1, 3] ) (=13) d) 45] Vi £ 1
4. f(x) = m 19. f(x) = —2x + sen x 20. f(x) = C(jj 4x
a) [-3.3]1 b) (=3.3) o) [0.3) d) [—1.1] 21. f(x) =x~— 8Inx 22. f(x) = e "+ 2x
5. f(x) = tan x En los problemas 23-36, encuentre los extremos absolutos de
a) [—m/2, m/2] b) [—m/4, m/4] la funcién dada sobre el intervalo indicado.
¢) [0, /3] d) [0, 7] 23, f(x) = —x* + 6x; [1,4] 24 f()=(x— 1% [2,5]
6. f(x) =2 cos x 25. f(x) = x*3 [—1,8]
a) [—m, 7] b) [—m/2, /2] 26. f(x) = xP(7 = 1); [—1,1]
¢) [7/3,2m/3] d) [—7/2,37/2] 27. fx) = x° —6x* +2; [—3,2]
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28. f(x) = —x> — x>+ 5x; [—2,2]

29. f(x) = =32+ 3x—1; [—4,3]

30. f(x) = x* + 4x° — 10; [0,4]

31 fx) =x*'xc = D% [—1,2]

32 f00 = +"1; .

33. f(x) = 2 cos 2x — cos 4x; [0, 27]

34. f(x) =1+ 5sen3x; [0,7/2]

35. f(x) = 3 + 2 sen”24x; [0, 7]

36. f(x) = 2x — tanx; [—1,1.5]

En los problemas 37 y 38, encuentre todos los niimeros cri-
ticos. Distinga entre extremos absolutos, extremos de un
punto frontera y extremos relativos.

37. f(x) = x* = 2x|; [—2,3]

dx+ 12, —-S=x=-2

wo= {5 S20E

39. Considere la funcién f continua definida sobre [a, b] que
se muestra en la FIGURA 5.29. Dado que de ¢; a ¢ son
nimeros criticos:

1 Cy [ &) b

|
|
L1 H : L\ L x
‘a cpce3 N csc6 \ | g Cg C
|

i
|
|
i
i
|
!

b

FIGURA 5.2.9 Gréfica para el problema 39

a) Enumere los ndmeros criticos en los cuales f'(x) = 0.

b) Enumere los nimeros criticos en los cuales f’(x) no
estd definida.

¢) Distinga entre los extremos absolutos y los extremos
absolutos de un punto frontera.

d) Distinga entre los maximos relativos y los minimos
relativos.

40. Considere la funcién f(x) = x + 1/x. Demuestre que el
minimo relativo es mayor que el maximo relativo.

=]

. La altura de un proyectil lanzado desde el nivel del suelo
estd dada por s(f) = —16¢> + 320¢, donde ¢ se mide en
segundos y s en pies.

a) s(1) estd definida sélo en el intervalo [0, 20]. ;Por qué?
b) Use los resultados del teorema 5.2.3 para determinar
la altura maxima alcanzada por el proyectil.

42. FEl fisico francés Jean Louis Poiseuille descubri6 que la
velocidad v(r) (en cm/s) del flujo sanguineo que circula
por una arteria con seccién trasversal de radio R estda
dada por v(r) = (P/4vl)(R* — r?), donde P, v y [ son
constantes positivas. Vea la FIGURA 5.2.10.

a) Determine el intervalo cerrado sobre el que estd defi-
nida v.

b) Determine las velocidades mdxima y minima del
flujo sanguineo.

&

45.

46.

47.

48.

49.

50.

51.

52.

A

54.

Seccidn transversal circular

i

FIGURA 5.2.10  Arteria para el problema 42

. Elabore una gréfica de una funcién continua f que no

tenga extremos absolutos pero si un méiximo relativo y
un minimo relativo que tengan el mismo valor.

. Proporcione un ejemplo de una funcién continua, defi-

nida sobre un intervalo cerrado [a, b], para el cual el
maximo absoluto es el mismo que el minimo absoluto.
Sea f(x) = | x| la funcién entero mayor. Demuestre que
todo valor de x es un nimero critico.

Demuestre que f(x) = (ax + b)/(cx + d) no tiene
ndmeros criticos cuando ad — bc # 0. ;Qué ocurre
cuando ad — bc = 0?

Sea f(x) = x", donde n es un entero positivo. Determine
los valores de n para los cuales f tiene un extremo relativo.
Analice: ;por qué una funcién polinomial de grado n
puede tener a lo sumo n — 1 nimeros criticos?
Suponga que f es una funcién par continua tal que f(a) es
un minimo relativo. ;Qué puede afirmarse sobre f(—a)?
Suponga que f es una funcién impar continua tal que f(a)
es un maximo relativo. ; Qué puede afirmarse sobre f(—a)?
Suponga que f es una funcién par continua que es dife-
renciable en todas partes. Demuestre que x = 0 es un
nimero critico de f.

Suponga que f es una funcién diferenciable que tiene
s6lo un nimero critico ¢. Si k # 0, encuentre los nime-
ros criticos de:

a) k+fx) b)) kf(x) ¢ flxtk  d) flkx)

. a) Use una calculadora o un SAC para obtener la gra-

fica de f(x) = —2 cos x + cos 2x.

b) Encuentre los nimeros criticos de f en el intervalo
[0, 27].

¢) Encuentre los extremos absolutos de fen el intervalo
[0, 27].

En el estudio del crecimiento de los copos de nieve, la

férmula

b b 2b
I(t) = - + Esen wt S?COS 2wt

es un modelo matemdtico para la variacién diaria en la

intensidad de radiacion solar que penetra la superficie

de la nieve. Aqui f representa el tiempo medido en horas

después del amanecer (r = 0) y w = 27/24.

a) Use una calculadora o un SAC para obtener la gra-
fica de I sobre el intervalo [0, 24]. Use b = 1.

b) Encuentre los nimeros criticos de / en el intervalo
[0, 24].
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5.3 El teorema del valor medio

I Introduccion Suponga que una funcién y = f(x) es continua y diferenciable sobre un inter-
valo cerrado [a, b] y que f(a) = f(b) = 0. Estas condiciones significan que los ntimeros a y b
son las coordenadas x de las intersecciones x de la grafica de f. En la FIGURA 5.3.1a) se muestra
una gréfica tipica de una funcién f que satisface estas condiciones. A partir de la figura 5.3.1b)
parece vélido que debe haber por lo menos un nimero c en el intervalo abierto (a, b) corres-
pondiente a un punto sobre la grafica de f donde la tangente es horizontal. Esta observacién
conduce a un resultado denominado teorema de Rolle. Usaremos este teorema para demostrar
el resultado mas importante de esta seccion: el teorema del valor medio para derivadas.

Teorema 5.3.1 Teorema de Rolle

Sea f una funcién continua sobre [a, b] y diferenciable sobre (a, b). Si f(a) = f(b) = 0,
entonces hay un ndmero ¢ en (a, b) tal que f'(c) = 0.

Ocurre que f es una funcion constante sobre el intervalo [a, b] o no lo es. Si
fes una funcién constante sobre [a, b], entonces debe tenerse f'(c) = 0 para todo niimero ¢ en
(a, b). Luego, si f no es una funcién constante sobre [a, b], entonces debe haber un nimero x
en (a, b) donde f(x) > 0 o f(x) < 0. Suponga que f(x) > 0. Puesto que f es continua sobre
[a, b], por el teorema del valor extremo sabemos que f alcanza un maximo absoluto en algin
nimero ¢ en [a, b]. Pero por f(a) = f(b) = 0y f(x) > 0 para alguna x en (a, b), concluimos que
el nimero ¢ no puede ser un punto frontera de [a, b]. En consecuencia, ¢ estd en (a, b). Puesto
que fes diferenciable sobre (a, b), es diferenciable en c. Entonces, por el teorema 5.2.2 tenemos
f'(c) = 0. La demostracion para el caso en que f(x) < 0 se concluye en forma semejante.

A3V [JEe BN Comprobacion del teorema de Rolle

Considere la funcién f(x) = —x° + x definida sobre [—1, 1]. La grifica de f se muestra en la
FIGURA 5.3.2. Puesto que f es una funcién polinomial, es continua en [—1, 1] y diferenciable
sobre (—1, 1). También, f(—1) = f(1) = 0. Por tanto, se cumplen las hipétesis del teorema de
Rolle. Concluimos que debe haber por lo menos un nimero en (—1, 1) para el cual f'(x) =
—3x*> + 1 es cero. Para encontrar este ndimero, se resuelve ) =00 =3+ 1=0.

-V3/3=—-057Tyc,=V3/3 =

Esta udltima conduce a dos soluciones en el intervalo: ¢; =
0.57.

En el ejemplo 1, observe que la funcién f dada satisface las hipétesis del teorema de Rolle
sobre [0, 1], asi como sobre [—1, 1]. En el caso del intervalo [0, 1], f'(c) = -32+1=0
produce la tnica solucién ¢ = V/3/3.

]3| JEel¥A Comprobacion del teorema de Rolle

1/3

a) La funcién f(x) = x — 4x/°, que se muestra en la FIGURA 5.3.3, es continua sobre [—8, 8] y
satisface f(—8) = f(8) = 0. Pero no es diferenciable sobre (—8, 8), puesto que en el origen
hay una tangente vertical. No obstante, como sugiere la figura, hay dos nimeros c; y ¢, en
(-8, 8) donde f'(x) = 0. Usted debe comprobar que f'(—8V/3/9) = 0y f'(8V3/9) = 0.
Tenga en cuenta que las hipétesis del teorema de Rolle son condiciones suficientes pero no
necesarias. En otras palabras, si no se cumple una de estas tres hipétesis: continuidad sobre
[a, b], diferenciabilidad sobre (a, b) y f(a) = f(b)=0, la conclusién de que en (a, b) hay
un nimero c tal que f'(c) = 0 puede cumplirse o no.

b) Considere otra funcién g(x) =1 — x?3. Bsta funcién es continua sobre [—1, 1] y
f(—=1) = f(1) = 0. Pero como la funcién f anterior, g no es diferenciable en x = 0 y por
tanto no es diferenciable sobre el intervalo abierto (—1, 1). En este caso, sin embargo, en
(=1, 1) no hay algun ¢ para el cual f'(c) = 0. Vea la FIGURA 5.3.4.

La conclusién del teorema de Rolle también se cumple cuando la condicién f(a) = f(b) = 0
se sustituye por f(a) = f(b). La validez de este hecho se ilustra en la FIGURA 5.3.5.

I Teorema del valor medio FEl teorema de Rolle es de utilidad para demostrar el siguiente
resultado importante denominado teorema del valor medio. Este teorema establece que
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y=fx)

A

a)

YA
y=f)

tangente horizontal

N

tangente horizontal

€l /- | ; .~
: & X
b)

FIGURA 5.3.1 Dos puntos donde
la tangente es horizontal

\

_Kfl 1\

FIGURA 5.3.2  Grifica de la
funcién en el ejemplo 1

FIGURA 5.3.3 Gréfica de la
funcién fen el ejemplo 2

/ 1
FIGURA 5.3.4  Grifica de la
funcién g en el ejemplo 2

f(a)Mf(m = fla)

jtangente horizontal;
T t t X
a b
FIGURA 535 El teorema
de Rolle se cumple cuando

y

fla) = f(b)
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)7
(x.y) y= @)
o)

¢ |
Y00 b, fb)
(a, f(@)

1
| 1
| 1
! i
a b
FIGURA 5.3.6 Recta secante que
pasa por (a, f(a)) y (b, f(b))

cuando una funcién f es continua sobre [a, b] y diferenciable sobre (a, b), entonces debe haber
por lo menos un punto sobre la grafica donde la pendiente de la recta tangente es la misma
que la pendiente de la recta secante que pasa por los puntos (a, f(a)) y (b, f(b)). La palabra
medio se refiere aqui a un promedio; es decir, al valor de la derivada en algtin punto es el
mismo que la razén de cambio media de la funcién sobre el intervalo.

Teorema 5.3.2 Teorema del valor medio para derivadas

Sea funa funcién continua sobre [a, b] y diferenciable sobre (a, ). Entonces en (a, b) existe
un ndimero c tal que

fb) ~ fla)
flo ===

Como se muestra en la FIGURA 5.3.6, sea d(x) la distancia vertical entre un
punto sobre la grafica de y = f(x) y la recta secante que pasa por (a, f(a)) y (b, f(D)). Puesto
que la ecuacién de la recta secante es

b
= f() f()( _b)

tenemos, como se muestra en la figura, d(x) = y, — y;, o bien,

b —
aw = 169 — | o) + =D ]

Puesto que d(a) = d(b) = 0 y d(x) es continua sobre [a, b] y diferenciable sobre (a, b), el
teorema de Rolle implica que en (a, b) existe un niimero ¢ para el cual d'(c¢) = 0. Entonces,

b —
a0 = oy 0@

y asi d'(c) = 0 es lo mismo que

1)~ fiw

flo =2

Como se indica en la FIGURA 537, en (a, b) puede haber mds de un nimero ¢ para el que
las rectas tangente y secante son paralelas.

) - f@
sec b_a

y=fx)

m,

My = f'(¢) Y Mgy = f'(cy)

. y=7
1 : 1
1 | :
i : : \ Mygn = f,(CZ)
| ! [
L ) — f@ b P
I ! | Msec = | ! R
| 1 | Cb—a | 1 : :
1 ! 1 X 1 H 1 1 X
a c b a cy ¢, b
a) Una tangente b) Dos tangentes

FIGURA 5.3.7 Las tangentes son paralelas a la recta secante que pasa por (a, f(a)) y (b, f(b))

NI\ [LXel] Comprobacion del teorema del valor medio

Dada la funcién f(x) = x> — 12x definida sobre el intervalo cerrado [—1, 3], (existe un
ndimero c en el intervalo abierto (—1, 3) que cumple la conclusién del teorema del valor medio?

Puesto que f es una funcién polinomial, es continua sobre [ —1, 3] y diferenciable
sobre (—1, 3). Entonces, f(3) = —9,f(—1) = 11,

fix) =3x*— 12 y  fllc) =3c* — 12.
Asi, debe tenerse
J@B) —f(=1) =20

= = 2 —_—
3= (—1) n 3¢ 12.




Por tanto, 3¢? = 7. Aunque la ultima ecuacion tiene dos soluciones, la dnica solucién en el
intervalo (=1, 3) esc = V7/3 = 1.53.

El teorema del valor medio es muy util para demostrar otros teoremas. Recuerde de la
seccion 4.3 que si f(x) = k es una funcién constante, entonces f'(x) = 0. El converso de este
resultado se demuestra en el siguiente teorema.

Teorema 5.3.3 Funci6n constante

Sif'(x) = 0 para toda x en un intervalo [a, b], entonces f(x) es una constante sobre el intervalo.

Sean x; y x, dos nimeros arbitrarios en [a, b] tales que x; < x,. Por el teo-
rema del valor medio, en el intervalo (x;, x,) hay un nimero c tal que

Jx) — fx)

A

Pero por hipétesis, f'(x) = 0. Entonces, f(x,) — f(x;) = 0 o f(x;) = f(x,). Puesto que x; y x,
se escogen de manera arbitraria, la funcién f tiene el mismo valor en todos los puntos en el
intervalo. Asi, f es constante.

I Funciones crecientes y decrecientes Suponga que una funcién y = f(x) esta definida sobre
un intervalo / y que x; y x, son dos nimeros cualesquiera en el intervalo tales que x; < x,.
En la seccién 2.3 vimos que f es creciente sobre [ si f(x;) < f(x,), y decreciente sobre / si
f(x)) > f(xy). Vea la figura 2.3.4. Intuitivamente, la grafica de una funcién creciente sube
cuando x crece (es decir, la grafica asciende cuando se lee de izquierda a derecha) y la gra-
fica de una funcién decreciente baja cuando x crece. Por ejemplo, y = e* crece sobre (—00, 00)
y y = e * decrece sobre (—00, 00). Por supuesto, una funcién f puede ser creciente sobre cier-
tos intervalos y decreciente sobre intervalos diferentes. Por ejemplo, y = sen x crece sobre
[—7/2, /2] y decrece sobre [/2, 37/2].

La grafica en la FIGURA 5.3.8 ilustra una funcidn f que es creciente sobre los intervalos [b, c]
y [d, e] y decreciente sobre [a, b], [c, d] vy [e, h].

decreciente

Fx3) > f(xy)

creciente y

fx 1 )< f(«\'z )

X

PO I

1
1
1
|
1
1
1
|
1

e

[ S

a b x; X X3 Xy ‘h
FIGURA 5.3.8  Una funcién puede crecer sobre algunos intervalos

y decrecer en otros

El siguiente teorema es una prueba de la derivada para crecimiento/decrecimiento.

Teorema 5.3.4 Prueba para crecimiento/decrecimiento

Sea funa funcién continua sobre [a, b] y diferenciable sobre (a, b).

i) Sif'(x) > 0 para toda x en (a, b), entonces f es creciente sobre [a, b].
ii) Sif'(x) < 0 para toda x en (a, b), entonces f es decreciente sobre [a, b].

i) Sean x; y x, dos nimeros arbitrarios en [a, b] tales que x; < x,. Por el
teorema del valor medio, en el intervalo (x;, x,) hay un niimero c tal que
o JO) — fl)
flo ="
Pero f'(¢) > 0 por hipdtesis. Entonces, f(x,) — f(x;) > 0 o f(x)) < f(x).
Puesto que x; y x, se escogen de manera arbitraria, concluimos que f es cre-
ciente sobre [a, b].

5.3 El teorema del valor medio

225
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En precalculo, este procedi-
miento para resolver desigual-
dades no lineales se denomina
método de la tabla de signos.

FIGURA 5.3.10 Grifica de la
funcién en el ejemplo 5

>

ii) Si f'(c) < 0, entonces f(x,) — f(x;) < 0 o f(x;) > f(x,). Puesto que x;
y X, se escogen de manera arbitraria, concluimos que f es decreciente
sobre [a, b].

1]\ [N l¥:} Prueba de la derivada para crecimiento/decrecimiento

Determine los intervalos sobre los cuales f(x) = x*> — 3x> — 24x es creciente y los intervalos
sobre los cuales f es decreciente.

La derivada es
i) =3x2—6x — 24 =3(x + 2)(x — 4).
Para determinar cudando f'(x) > 0y f'(x) < 0 es necesario resolver
x+2)x—4 >0 y x+2)x—4) <0,
respectivamente. Una manera de resolver estas desigualdades es analizar los signos algebrai-
cos de los factores (x + 2) y (x — 4) sobre los intervalos de la recta numérica determinada
por los puntos criticos —2 y 4: (—oo, —2], [—2, 4], [4, 00). Vea la FIGURA 5.3.9.

x+2)(x—4) x+2)(x—4) x+2)(x—4)

(=) (H)(—) (H)(+)
El signo El signo
de f'(x)es — de f'(x)es +

-2 4
1 1
| |
I I
I I
I I
| |
i i
I I
I I
| |
i i

FIGURA 5.3.9  Signos de f(x) en tres intervalos en el ejemplo 4

La informacién obtenida a partir de la figura 5.3.9 se resume en la tabla siguiente.

Intervalo | Signo de f'(x) y =fx)

(=00, =2) + creciente sobre (—00, —2]
(=2,4) - decreciente sobre [—2, 4]
(4, ) + creciente sobre [4, 00)

SNIS\[LNe A Prueba de la derivada para creciente/decreciente

Determine los intervalos sobre los cuales f(x) = Vxe */? es creciente y los intervalos sobre
los cuales f es decreciente.

Primero observe que el dominio de f estd definido por x = 0. Luego, la derivada
B AT e
’ — JA2-x2( 1 X 1/2 ,—x/2 _ _
flx) = x"'"e (2>+2x e 2\/};(1 X)

es cero en 1 y estd indefinida en 0. Puesto que O estd en el dominio de fy ya que f'(x) — o0
cuando x — 0", concluimos que la grafica de f tiene una tangente vertical (el eje y) en (0, 0).
Ademds, debido a que e ¥?/2Vx > 0 para x > 0, sélo es necesario resolver

I1—-x>0 y 1 —x<0

para determinar dénde f'(x) > 0y f'(x) < 0, respectivamente. Los resultados se muestran en
la tabla siguiente.

Intervalo | Signo de f'(x) y =f(x)
O, 1) + creciente sobre [0, 1]
(1, 00) - decreciente sobre [1, 00)

Con ayuda de un dispositivo para graficar obtenemos la grafica de f que se observa en la FIGURA
5.3.10.
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Si una funcién f es discontinua en uno o en ambos puntos extremos de [a, b], entonces
f'(x) > 0 (o f'(x) < 0) sobre (a, b) implica que f es creciente (o decreciente) sobre el inter-
valo abierto (a, b).

B Posdata: Un poco de historia Michel Rolle (1652-1719), francés, maestro de escuela ele-
mental, estaba profundamente interesado en las matematicas, y a pesar de que su educacién
fue bastante deficiente resolvi6 varios teoremas de importancia. Pero, curiosamente, Rolle no
demostré el teorema que lleva su nombre. De hecho, fue uno de los primeros criticos rotundos
del, entonces, nuevo cdlculo. A Rolle también se le acredita la invencién del simbolismo Vx
para denotar la raiz n-€sima de un nimero x.

f'(X) NOTAS DESDE EL AULA

i) Como ya se menciond, las hipdtesis planteadas en el teorema de Rolle, asi como las hipdte-
sis del teorema del valor medio, son condiciones suficientes pero no necesarias. En el teore-
ma de Rolle, por ejemplo, si una o mas de las hipétesis: continuidad sobre [a, b], diferencia-
bilidad sobre (a, b) y f(a) = f(b) = 0 no se cumple, entonces la conclusién de que en el
intervalo abierto (a, b) existe un niimero c tal que f'(c) = 0 puede cumplirse o no.

El converso de los incisos i) y ii) del teorema 5.3.4 no necesariamente son ciertos. En otras
palabras, cuando f es una funcién creciente (o decreciente) sobre un intervalo, no se con-
cluye que f'(x) >0 (o f'(x) < 0) sobre el intervalo. Una funcion puede ser creciente sobre
un intervalo e incluso no ser diferenciable sobre ese intervalo.

“ DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-14.

En

los problemas 1-10, determine si la funcién dada satis-

face las hipdtesis del teorema de Rolle sobre el intervalo
indicado. En caso afirmativo, encuentre todos los valores de
¢ que satisfacen la conclusién del teorema.

o RN AN RN =

[y
=

En los problemas 11 y 12, establezca por qué la funcién f

Cf) =Xt -4 [-2,2]
) = X —6x+5 [1,5]
) =23+ 27, [-3,-2]

fx) = X = 5x* + 4x; [0, 4]

. fx) =x+x% [—1,0]

S =x(x = D% [0,1]

. f(x) =senx; [—, 2]

. f(x) = tanx; [0, 7]
Cf)=x—-1; [—1,1]

. fx) = x*P = 3x"+2; [1,8]

cuya gréfica se proporciona no satisface las hipétesis del teo-
rema de Rolle sobre [a, b].

11.

y
N Y=/
|
1 ¢ > X
a b
FIGURA 5.3.11 Griéfica FIGURA 5.3.12  Grifica

para el problema 11 para el problema 12

En los problemas 13-22, determine si la funcién dada satis-
face las hipétesis del teorema del valor medio sobre el inter-
valo indicado. En caso afirmativo, encuentre todos los valo-
res de ¢ que satisfacen la conclusion del teorema.

13. fx) = x% [—1,7]

14. f(x) = —x>+ 8x — 6; [2,3]

15. f(x) = X+Hx+2; [2,5]

16. f(x) = x* — 2x%  [-3,3]

17. f(x) = 1/x; [—10, 10]

18. () =x+ = [15]

19. fx) =1+ Vx; [0,9]

20. f(x) = Vax + 1; [2,6]
_x+1 A

2L f) = — =2 1]

22, f(x) =x"*—x; [-8,1]

En los problemas 23 y 24, establezca por qué la funcién f
cuya grafica se proporciona no satisface las hipétesis del teo-
rema del valor medio sobre [a, b].

23. > 24y
I
i PN Y=
1
+ i
I : I
I | I
| o x : F>x
| a b | a b
FIGURA 5.3.13  Grifica FIGURA 5.3.14  Gréfica
para el problema 23 para el problema 24
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En los problemas 25-46, determine los intervalos sobre los
cuales la funcién dada f es creciente y los intervalos sobre
los cuales es decreciente.

25. fx) =x*+5 26. f(x) = x°
27. fx) = x>+ 6x — 1 28. f(x) = —x> + 10x + 3
29. f(x) = x* — 3x? 30. f(x) = %}f —x2— 8+ 1
3. fx) =x* —4x* + 9 32 f(x) = 4x° — 10x* + 2
3. /) =1-—x' 34, f(x) = X3 — P
35, f(x)=x+% 36. f(x)=i+é
=V o x+1l
37. fx) = xV8 — x? 38. f(x) = \/m
5 o x?
39. f(x) = [ 40. f(x) = T
41. f(x) = x(x — 3)? 2. fx) = @*—1)°
43. f(x) = sen x 44. f(x) = —x + tan x
45. fr)=xt+ e~ 46. f(x) = x%e

En los problemas 47 y 48, demuestre, sin graficar, que la
funcién dada no tiene extremos relativos.

47. f(x) = 4x* + x 48. fx) = —x+ V2 —x

&

. Un motociclista entra a una carretera de peaje y en el
comprobante de pago la hora indicada es 1:15 p.m. Luego
de 70 millas, cuando el motociclista paga en la caseta de
peaje a las 2:15 p.m., también recibe un comprobante
de pago. Explique esto por medio del teorema del valor
medio. Suponga que la velocidad limite es 65 mi/h.

50. En el andlisis matemadtico de la tos humana se supone que

la trdquea o tubo respiratorio es un tubo cilindrico. Un

modelo matemadtico para el volumen de aire (en cm3/s)
que fluye a través de la trdquea durante su contraccion es
V(r) =kr'(ro — 1), 1/2=r=r,

donde k es una constante positiva y ry es su radio cuando

no hay diferencia de presion en los extremos del tubo res-

piratorio. Determine un intervalo para el cual V sea cre-
ciente y un intervalo para el cual V sea decreciente. ;Con
qué radio obtiene el volumen méximo de flujo de aire?

o ]

Considere la funcién f(x) = x* + x* — x — 1. Use esta
funcién y el teorema de Rolle para demostrar que la
ecuacién 4x* 4+ 3x*> — 1 = 0 tiene por lo menos una
raizen [—1,1].

52. Suponga que las funciones fy g son continuas sobre
[a, b] y diferenciables sobre (a, b) de modo que f'(x) > 0

y g'(x) > 0 para toda x en (a, b). Demuestre que f+ g
es una funcién creciente sobre [a, b].

53. Suponga que las funciones fy g son continuas sobre
[a, b] y diferenciables sobre (a, b) de modo que f'(x) > 0
y g'(x) > 0 para toda x en (a, b). Proporcione una con-
dicién sobre f(x) y g(x) que garantice que el producto
feg es creciente sobre [a, b].

54. Demuestre que la ecuacién ax’ + bx + ¢ =0, a > 0,
b > 0, no puede tener dos raices reales. [Sugerencia:
Considere la funcién f(x) = ax® + bx + c. Suponga que
hay dos nimeros r, y r, tales que f(r;) = f(r,) = 0.]

55. Demuestre que la ecuacién ax*> + bx + ¢ = 0 tiene a lo
sumo una raiz real. [Sugerencia: Considere la funcion
f(x) = ax®> + bx + c. Suponga que hay tres nimeros
distintos ry, 1, y r3 tales que f(r) = f(r,) = f(r3) = 0.]

56. Para una funcién polinomial cuadritica f(x) = ax’ +
bx + ¢ demuestre que el valor de x5 que satisface la con-
clusion del teorema del valor medio sobre cualquier
intervalo [x;, x;] es x3 = (x; + x,)/2.

57. Suponga que la gréfica de una funcién polinomial f tiene
cuatro intersecciones x distintas. Analice: ;cudl es el
nimero minimo de puntos en los cuales una recta tan-
gente a la grafica de f es horizontal?

58. Como se mencioné después del ejemplo 2, la hipdtesis
f(a) =f(b) =0 en el teorema de Rolle puede sustituirse
por la hipétesis f(a) = f(b).

a) Encuentre una funcién explicita f definida sobre un
intervalo [a, b] tal que f sea continua sobre el inter-
valo, diferenciable sobre (a, b) y f(a) = f(b).

b) Encuentre un niimero ¢ para el que f'(c¢) = 0.

59. Considere la funcién f(x) = x sen x. Use fy el teorema

de Rolle para demostrar que la ecuacién cot x = —1/x
tiene una solucién sobre el intervalo (0, 7).

2

. a) Use una calculadora o un SAC para obtener la gra-
fica de f(x) = x — 4x'/3.
b) Compruebe que todas las hipétesis, excepto una del
teorema de Rolle, se cumplen en el intervalo [—8, 8].
¢) Determine si en (=8, 8) existe un nimero c¢ para el
cual f'(c) = 0.

En los problemas 61 y 62, use una calculadora para encon-
trar un valor de ¢ que satisfaga la conclusion del teorema del
valor medio.

61. f(x) = cos 2x; [0, 7w/4]
62. f(x) =1 +senx; [7/4, 7/2]

9.4 Criterio de la primera derivada

I Introduccion Saber que una funcidn tiene, o no, extremos relativos es de gran ayuda al tra-
zar su grafica. En la seccién 5.2 (teorema 5.2.2) vimos que cuando una funcién tiene un
extremo relativo debe ocurrir en un nimero critico. Al encontrar los niimeros criticos de una
funcidén, tenemos una lista de candidatos para las coordenadas x de los puntos que correspon-
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den a extremos relativos. A continuacidn se combinardn las ideas de las primeras secciones de
esta unidad para establecer dos pruebas para determinar cudndo un nimero critico es en rea-
lidad la coordenada x de un extremo relativo.

I Prueba de la primera derivada Suponga que f es continua sobre el intervalo cerrado [a, b]
y diferenciable sobre un intervalo abierto (a, b), excepto tal vez en un nimero critico ¢ den-
tro del intervalo. Si f'(x) > 0 para toda x en (a, ¢) y f'(x) < O para toda x en (c, b), entonces
la gréafica de f sobre el intervalo (a, b) puede ser como se muestra en la FIGURA 5.4.1a); es decir,
f(c) es un maximo relativo. Por otra parte, cuando f'(x) < 0 para toda x en (a, ¢) y f'(x) > 0
para toda x en (c, b), entonces, como se muestra en la figura 5.4.1b), f(c) es un minimo rela-
tivo. Se han demostrado dos casos especiales del siguiente teorema.

Teorema 5.4.1 Criterio de la primera derivada

Sea f continua sobre [a, b] y diferenciable sobre (a, b) excepto tal vez en el nimero critico c.

i) Sif'(x) cambia de positiva a negativa en ¢, entonces f(c) es un maximo relativo.
ii) Sif'(x) cambia de negativa a positiva en ¢, entonces f(c) es un minimo relativo.
iii) Si f'(x) tiene el mismo signo algebraico a cada lado de ¢, entonces f(c) no es un

extremo.

Las conclusiones del teorema 5.4.1 pueden resumirse en una frase:

e Una funcién f tiene un extremo relativo en un ndmero critico ¢ donde f'(x) cambia
de signo.

En la FIGURA 5.4.2 se ilustra cudl seria el caso cuando f’'(c) no cambia de signo en un nimero
critico c. En las figuras 5.4.2a) y 5.4.2b) se muestra una tangente horizontal en (c, f(c)) y
f'(c) = 0 pero f(c) no es ni mdximo ni minimo relativo. En la figura 5.4.2¢) se muestra una
tangente vertical en (c, f(c)) y asi f'(c) no existe, pero de nuevo f(c) no es un extremo rela-
tivo porque f'(c) no cambia de signo en el nimero critico c.

f[x>0

(e, f(e)

(c, f(e) >0  f <0 (c, f(e))

F'(x)>0 Fx<0

f'()>0

a c b a c b a c b
a) f'(c)=0 b) f'(¢c)=0 ¢) f'(c) = no existe

FIGURA 5.4.2 No hay extremo porque f’(x) no cambia de signo en el nimero critico ¢

En los cinco ejemplos siguientes se ilustra la utilidad del teorema 5.4.1 para trazar a mano
la grafica de una funcién f. Ademds del célculo:

* Encuentre la derivada de f'y factorice f' tanto como sea posible.
* Encuentre los nimeros criticos de f.
* Aplique el criterio de la primera derivada a cada nimero critico.

También resulta util preguntar:

intersecciones x: resuelva
para f(x) = 0
e La grifica de f, ;tiene alguna interseccion? < interseccion y: encuentre f(0)

e ;Cudl es el dominio de f?

e La gréfica de f, ;tiene alguna simetria? <« determine si
f(=x) = f(x) o bien,
e La gréfica de f, ;tiene alguna asintota? =) = —f(x)

[ >0 f'(x)<0

—t——t—+—>x
C
1
U
I
I

a b
<f creciente><f decrecient>
a)

F1() < ONTF'(x) > 0

X

1
I
a c b
I
<f decrecient>< f creciente>
1
b)

FIGURA 5.4.1 Maximo relativo en
a); minimo relativo en b)
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Vea las MRS para un breve
repaso de como encontrar las
raices de ecuaciones polino-
miales.

Las funciones consideradas en los ejemplos 1 y 2 son polinomiales. Observe que estas
funciones constan de potencias pares e impares de x; esto es suficiente para concluir que las
graficas de estas funciones no son simétricas con respecto al eje y o al origen.

NI\ [LXeBEN Funcion polinomial de grado 3

Grafique f(x) = x* — 3x> — 9x + 2.

La primera derivada
fx)=3x2—6x—9=30x+ Dx—3) (1)

produce los nimeros criticos —1 y 3. Luego, el criterio de la primera derivada es esencialmente
el procedimiento que se usé para encontrar los intervalos sobre los cuales f es creciente o decre-
ciente. En la FIGURA 543a) vemos que f'(x) > 0 para —00o < x < —1 y f'(x) < 0 para
—1 < x < 3. En otras palabras, f'(x) cambia de positiva a negativa en —1 y asi por el inciso i)
del teorema 5.4.1 concluimos que f(—1) = 7 es un maximo relativo. En forma semejante, f'(x) < 0
para —1 < x < 3y f'(x) > 0 para3 < x < 00. Debido a que f'(x) cambia de negativa a posi-
tiva en 3, el inciso ii) del teorema 5.4.1 indica que f(3) = —25 es un minimo relativo. Luego, como
f(0) = 2, el punto (0, 2) es la interseccion y para la grifica de f. Ademds, al buscar si la ecua-

B ci6n x* — 3x* — 9x + 2 = 0 tiene raices positivas se encuentra que x = —2 es una raiz real.

Luego, al dividir entre el factor x + 2 obtenemos (x + 2)(x2 — 5x + 1) = 0. Cuando la férmula
cuadrdtica se aplica al factor cuadrético se encuentran dos raices reales adicionales:

%(S—Vﬁ)zo.zl y %(5+\ﬁ)~479

Entonces, las intersecciones x son (=2, 0), (f -5 O) ( ) Al reunir toda esta infor-
macién se llega a la grafica mostrada en la ﬁgura 5.4.3b):

10+

nimero nimero y=x>—3x>—9x+2
critico critico /\
B B I 1 — .
-1

3
FO>0Nu" fm<0Nu f@>0
f creciente T f decreciente T f creciente

f(=1)esun f(3)esun

maximo relativo  minimo relativo

a) Criterio de la primera derivada b) Observe las intersecciones x y y
FIGURA 5.4.3 Gréfica de la funcién en el ejemplo 1

Funcion polinomial de grado 4
Grafique f(x) = x* — 4x* + 10.

La derivada
Fix) = 4x3 — 12x% = 4x*(x — 3)

muestra que los nimeros criticos son 0 y 3. Luego, como se observa en la FIGURA 5.4.4a), f” tiene el
mismo signo algebraico negativo en los intervalos adyacentes (—o0, 0) y (0, 3). Entonces f (0) = 10
no es un extremo. En este caso f'(0) = 0 significa que en la interseccion y (0, f(0)) = (0, 10)
hay una sola tangente horizontal. Sin embargo, por el criterio de la primera derivada resulta evi-
dente que f(3) = —17 es un minimo relativo. En efecto, la informacién de que f es decreciente
por el lado izquierdo y creciente por el lado derecho del nimero critico 3 (la grifica de f no
puede retroceder) permite concluir que f(3) = —17 también es un minimo absoluto. Por dltimo,
vemos que la grifica de f tiene dos intersecciones x. Con ayuda de una calculadora o un SAC
se encuentra que las intersecciones x son aproximadamente (1.61, 0) y (3.82, 0).



nimero
critico

ndmero
critico

f')<0
f decreciente

f')<0
f decreciente

f'x)>0
f creciente

0
I
U
I
1

—_—p X - e

f(O)noes
un extremo

f(3)esun
minimo relativo

a) Criterio de la primera derivada

FIGURA 5.4.4  Grifica de la funcién en el ejemplo 2

N5\ e ] Grafica de una funcion racional

5.4 Criterio de la primera derivada

Y y:x474x3+]0

\

—10 +

b) f'(0) =0 pero f(0) =10
no es un extremo

x> =3
2+

Grafique f(x) =

La lista que se muestra a continuacién resume algunos hechos que es posible des-
cubrir sobre la grafica de esta funcion racional f antes de graficarla realmente.

interseccion y: f(0) = —3; en consecuencia, la interseccid

nyes (0, —3).

intersecciones x: f(x) = 0 cuando x* — 3 = 0. Por tanto, x = —V3 y x = V3. Las

intersecciones x son (—V/3,0) y (V3, 0).
Simetria: Con respecto al eje y, puesto que f(—x) = f(x).

Asintotas verticales: Ninguna, puesto que x> + 1 # 0 para todos los nimeros reales.

Asintotas horizontales: Puesto que el limite en el infinito

es la forma indeterminada

00/00, podemos aplicar la regla de L'Hopital para demostrar que

x2=3h . 2x .2
= lim =— = lim
X—00 2x X—00

5=

lim
|

17

y asi la recta y = 1 es una asintota horizontal (ver seccién 5.9).

Derivada: Con la regla del cociente obtenemos f'(x) =

(x

8x

2 + 1)2

Niimeros criticos: f'(x) = 0 cuando x = 0. En consecuencia, 0 es el tnico nimero critico.

Criterio de la primera derivada: Vea la FIGURA 5.4.5a); f(0)
Grafique: Vea la figura 5.4.5b).

—3 es un minimo relativo.

y
nimero )_) T_l ______ —
critico
It X \ ;
—1

f'(x)<0
f decreciente

(x>0

6 t t
i -3 =2
i

! f creciente

!

f(0) es un

minimo relativo
a) Criterio de la primera derivada
FIGURA 545 Gréfica de la funcién en el ejemplo 3

NS\ [0S Grafica con una asintota vertical

b) y = 1 es una asintota horizontal

Grafique f(x) = x* + x — In|x|.

Primero observe que el dominio de fes (—o0, 0)U
el denominador de la derivada

1=2x2+x—1=(2x

(0, 00). Luego, al igualar a cero

- D+ 1)

flo =241 .

X

231
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se observa que —1 y 3 son ndmeros criticos. Aunque f no es diferenciable en x = 0, 0 no es
un nimero critico puesto que 0 no estd en el dominio de f. De hecho, x = 0 es una asintota
vertical para In|x| y también es una asintota vertical para la gréfica de f. Los nimeros criticos
y 0 se escriben en la recta numérica porque el signo de la derivada a la izquierda y a la dere-
cha de 0 indica el comportamiento de f. Como se observa en la FIGURA 5.4.6a), f'(x) < O para
—00 < x< —1yf(x)>0para —1 < x < 0. Concluimos que f(—1) = 0 es un minimo
relativo (al mismo tiempo, f(—1) = 0 muestra que x = —1 es la coordenada x de una intersec-
cién x). Al continuar, f'(x) < 0 para 0 < x < 3 y f'(x) > 0 para ; < x < 0O muestra que
f(3) =3 — In} = 1.44 es otro minimo relativo.

Verifique que f(=x) # f(x) > Como se observd, f no estd definida en x = 0, de modo que no hay interseccién y. Por

y S0 # (). ultimo, no hay simetria con respecto al eje y o con respecto al origen. La grafica de la fun-
cién f se muestra en la figura 5.4.6b).

y
nimero nimero
critico critico
+ + + X
-1 0 % 1
F<0 \, f'x)>0 <0 N\ f')>0
f decreciente / f creciente /\\f decreciente f creciente
fd t f s fd t f t il
f(—=1)esun x=0es una f(l)esun . .
minimo relativo  asintota vertical L \2 . i t X
minimo relativo —1 1
a) Criterio de la primera derivada b) x = 0 es una asintota vertical

FIGURA 5.4.6 Gréfica de la funcién en el ejemplo 4

=8]3\7 | JHeMCY  Grafica con una clspide

Grafique f(x) = —x*3 + 5x%°.

La derivada es

-
10 i3 éy.

1, _ _é 2/3
f(x) - 3x + 3 3 x1/3

Observe que f' no existe en 0 pero 0 estd en el dominio de la funcién puesto que £(0) = 0. Los
nimeros criticos son 0 y 2. El criterio de la primera derivada, ilustrado en la FIGURA 5.4.7a), mues-
tra que £(0) = 0 es un minimo relativo y que f(2) = —(2)°/> + 52/ = 4.76 es un maximo rela-
tivo. Ademds, puesto que f'(x) — 00 cuando x — 07 y f/(x) — —00 cuando x — 0~ en (0, 0) hay
una cispide. Por tltimo, al escribir f(x) = x*3(—x + 5), vemos que f(x) = 0 y que x = 5. Las
intersecciones x son los puntos (0, 0) y (5, 0). La gréafica de f se muestra en la figura 5.4.7b).

nimero nimero
critico critico
t X

f'(x)<0

f decreciente

f'(x)>0

f creciente

(<0

f decreciente

0 2
: |
I I

f f

f(0) es un f(2) es un t
minimo relativo maximo relativo

b) Cuspide en (0, 0)

a) Criterio de la primera derivada
FIGURA 5.4.7 Gréfica de la funcién en el ejemplo 5

Algunas veces resulta conveniente saber antes de graficar, e incluso antes de molestarse
en graficar, si un extremo relativo f(c) es un extremo absoluto. El siguiente teorema es algo
util. Usted debe trazar algunas graficas y convencerse sobre la validez del teorema.
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Teorema 5.4.2 Prueba del tGnico ndmero critico

Suponga que c¢ es el Unico niimero critico de una funcién f dentro de un intervalo 1. Si se
demuestra que f(c) es un extremo relativo, entonces f(c) es un extremo absoluto.

En el ejemplo 3, mediante el criterio de la primera derivada se demostré que f(0) = 0 es
un minimo relativo. También se hubiera podido concluir de inmediato que este valor de la fun-
cién es un minimo absoluto. Este hecho se concluye por el teorema 5.4.2 porque O es el Gnico
numero critico en el intervalo (—00, 00).

“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-15.

= Fundamentos

En los problemas 1-32, use el criterio de la primera derivada
para encontrar los extremos relativos de la funcién dada.

Grafique. Encuentre las intersecciones cuando sea posible.

2. f(x) = (x — D(x + 3)

4. f(x) = %x3 - %xz +1

1. f(x) = x>+ 2x+ 1
3. f(x) = x° — 3x

5. f(x)=xx—2)2
7. f) =x*+x—3
9. f(x) = x* + 4x

8. f)=x+3x*+3x—3
10. f(x) = (x> — 1)

11. f(x) = %x“ + %x3 + 2x712. f(x) = 2x* — 1622 + 3

13. f(x) = —x*(x — 3)* 14, f(x) = —-3x*+8x* —6x* —2
15. f(x) = 4x° — 5x* 16. f(x) = (x — 2)*(x + 3)°
Xt +3 B 25

17. f(x) = le 18. f(x) =x+ X

1 1 2

19. [0 == 2aﬂn=ﬁi4

10 X2

nﬂ@—ﬁ+1 njm—ﬁ+l
23. f(x) = (x* — 4)* 24. f(x) = (2 — D'
25. f(x) = xV1 — x? 26. f(x) = x(x> — 5)'3
27. f(x) = x — 12x'3 28. f(x) = x*? + 3243

Inx

29. f(x) = x* — 24 In|x| 30. f(x) = ~

31 f(x) = (x + 3)% 32. f(x) = 8x2e ™

En los problemas 33-36, trace una grafica de la funcién f

cuya derivada f' tiene la grafica dada.
33. vy 34.

\\me
| SN

FIGURA 5.4.8 Griéfica
para el problema 33

FIGURA 5.4.9 Grifica
para el problema 34

6. f(x)= —X+3x2+9x— 1

35.

M y=f'o 36.

\ .
l;\_/l b\

FIGURA 5.4.10 Gréfica

para el problema 35

FIGURA 5.4.11
para el problema 36

Grifica

En los problemas 37 y 38, trace la grafica de f’ a partir de
la grafica de f.

37.

v 38. v

y=fx)

T
a

FIGURA 5.4.12  Gréfica
para el problema 37

FIGURA 5.4.13  Grifica
para el problema 38

En los problemas 39-42, trace una grafica de una funcién f
que tenga las propiedades dadas.

39.

40.

41.

42.

f(=1)=0,f0) =1

f'(3) no existe, f'(5) =0
fx)>0,x<3yx>5
flx) <0,3<x<5

f0)=0
f(=1)=0,f0)=0,f(1)=0
F)<0,x<—-1,-1<x<0
F)>0,0<x<1,x>1

S(=x) = fx)

f2)=3

i) <0,0<x<2?2
flx) >0,x>2

S) = =2,f0) = —1
lim f(x) = 0o, f'(4) = 0
) <0,x<1

flx) <0,x >4
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En los problemas 43 y 44, determine dénde la pendiente de
la tangente a la gréfica de la funcién dada tiene un maximo
relativo o un minimo relativo.

43.
45.

46.

5 1

48.

fx) =x>+6x* — x 44. f(x) = x* — 6x2

a) A partir de la grifica de g(x) = sen 2x determine los
intervalos para los cuales g(x) > 0 y los intervalos
para los cuales g(x) < 0.

b) Encuentre los nimeros criticos de f(x) = sen” x. Use
el criterio de la primera derivada y la informacién en el
inciso a) para encontrar los extremos relativos de f.

¢) Trace la grafica de la funcién f en el inciso b).

a) Encuentre los nimeros criticos de f(x) = x — senx.
b) Demuestre que f no tiene extremos relativos.
¢) Trace la gréfica de f.

. La media aritmética, o promedio, de n nimeros a,,

a,, ..., a, estd dada por
ay + %) + .-
n

+ a

n

X =

a) Demuestre que X es un nimero critico de la funcién

W =G@—-—ay+x—-—a)+ - +x—a)

b) Demuestre que f(x) es un minimo relativo.

Cuando el sonido pasa de un medio a otro, puede per-
der algo de su energia debido a una diferencia en las
resistencias acusticas de los dos medios. (La resistencia
acustica es el producto de la densidad y la elasticidad.)
La fraccién de la energia transmitida estd dada por

&

51

52

53

4r

T(r) = m,

donde r es la razén de las resistencias acusticas de los
dos medios.

a) Demuestre que T(r) = T(1/r). Explique el signifi-
cado fisico de esta expresion.

b) Use el criterio de la primera derivada para encontrar
los extremos relativos de 7.

¢) Trace la gréfica de la funcién T para r = 0.

Encuentre valores de a, b y c tales que f(x) = ax® + bx
+ ¢ tenga un méaximo relativo 6 en x = 2 y la grafica
de f tenga interseccion y igual a 4.

Encuentre valores de a, b, c y d tales que f(x) = ax® +
bx* + cx + d tenga un minimo relativo —3 enx = 0y
un maximo relativo 4 en x = 1.

Suponga que fes una funcién diferenciable cuya grafica es
simétrica con respecto al eje y. Demuestre que f'(0) = 0.
(Tiene f necesariamente un extremo relativo en x = 0?

Sean m y n enteros positivos. Demuestre que f(x) =
X"(x — 1)" siempre tiene un minimo relativo.

Suponga que f'y g son diferenciables y que tienen maxi-
mos relativos en el mismo nimero critico c.

a) Demuestre que c es un nimero critico para las f + g,
f—sgyle

b) (Se concluye que las f + g, f — g y fg tienen maxi-
mos relativos en ¢? Demuestre sus aseveraciones o
dé un contraejemplo.

5.5 Criterio de la segunda derivada

a) “Contiene agua”

b) “Derrama agua”

FIGURA 5.5.1 Concavidad

I Introduccion En el siguiente andlisis el objetivo es relacionar el concepto de concavidad
con la segunda derivada de una funcién. Asi, la segunda derivada constituye otra manera para
probar si un extremo relativo de una funcién f ocurre en un nimero critico.

I Concavidad Tal vez usted tiene una idea intuitiva del significado de concavidad. En las
FIGURAS 5.5.1a) y 5.5.1b) se ilustran formas geométricas concavas hacia arriba y concavas hacia
abajo, respectivamente. Por ejemplo, el Arco de San Luis Missouri es concavo hacia abajo;
los cables entre los soportes verticales del puente Golden Gate son céncavos hacia arriba. A
menudo decimos que una forma céncava hacia arriba “contiene agua”, mientras una forma
concava hacia abajo “derrama agua”. No obstante, la definicién precisa de concavidad se pro-
porciona en términos de la derivada.

Definicion 5.5.1 Concavidad

Sea funa funcién diferenciable sobre un intervalo (a, b).

i) Si f' es una funcién creciente sobre (a, b), entonces la grafica de f es concava hacia
arriba sobre el intervalo.

if) Si f' es una funcién decreciente sobre (a, b), entonces la grafica de f es concava hacia
abajo sobre el intervalo.
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En otras palabras, si las pendientes de las rectas tangentes a la grafica de f crecen (decre-
cen) cuando x crece sobre (a, b), entonces la grafica de f es codncava hacia arriba (abajo) sobre
el intervalo. Si las pendientes crecen (decrecen) cuando x crece, entonces esto significa que
las rectas tangentes giran en sentido contrario al de las manecillas del reloj sobre el intervalo.
La validez de la definicién 5.5.1 se ilustra en la FIGURA 5.5.2. Una manera equivalente de con-
siderar la concavidad también resulta evidente a partir de la figura 5.5.2. La grafica de una
funcién f es céncava hacia arriba (hacia abajo) sobre un intervalo si la grafica en cualquier
punto se encuentra por arriba (abajo) de las rectas tangentes.

rectas
tangentes
y y ~—7
las rectas tangentes

giran en sentido
contrario al de las
manecillas del reloj

PR
las rectas

tangentes giran
en el sentido de las
manecillas del reloj

VRN
rectas

-—) - - - I

tangentes

, , . , , | o
f > X . —>x 7 | }
a b a b a b
I I I ] I I
I I I ] I I
I I I ] I I
1 1 1 1 ! - 7 !
! concava ! ! céncava ! P concava GO .
1N\_hacia arriba /1 1IN\ hacia abajo /1 N\ hacia abajo hacia arriba 1
I I
I I : : I I I

a) f' crece b) f' decrece ¢) " decrece sobre (a, c)

de —a+ de +a— f' crece sobre (c, b)

FIGURA 5.5.2 Concavidad sobre intervalos

I Concavidad y la segunda derivada En el teorema 5.3.4 de la seccién 5.3 vimos que el
signo algebraico de la derivada de una funcién indica cuando la funcién es creciente o decre-
ciente sobre un intervalo. En especifico, si la funcion referida en la oracién precedente es la
derivada f', entonces podemos concluir que el signo algebraico de la derivada de f’, es decir,
f", indica cudndo f' es creciente o decreciente sobre un intervalo. Por ejemplo, si f"(x) > 0
sobre (a, b), entonces f' es creciente sobre (a, b). Debido a la definicién 5.5.1, si f” es cre-
ciente sobre (a, b), entonces la grafica de f es concava hacia arriba sobre el intervalo. En con-
secuencia, se llega a la siguiente prueba para concavidad.

Teorema 5.5.1 Prueba para concavidad

Sea funa funcién para la cual f” existe sobre (a, b).

i) Sif"(x) > 0 para toda x en (a, b), entonces la grafica de f'es concava hacia arriba sobre
(a, b).

ii) Sif"(x) < 0 para toda x en (a, b), entonces la grifica de f'es concava hacia abajo sobre
(a, b).

(H)3\[JHe BN Prueba para concavidad

Determine los intervalos sobre los cuales la gréfica de f(x) = x> + %xz es concava hacia arriba
y los intervalos sobre los cuales la grafica es concava hacia abajo.

A partir de f'(x) = 3x*> + 9x obtenemos
J'@) = 6x + 9 =6(x +3).

Se observa que f"(x) < 0cuando 6(x + 3) < 0ox < —3yquef”(x) > 0cuando 6(x +3) > 0
ox > —%. Por el teorema 5.5.1 concluimos que la grifica de f es concava hacia abajo sobre
el intervalo (—OO, —%) y coéncava hacia arriba sobre el intervalo (—%, OO).

I Punto de inflexion La gréfica de la funcién en el ejemplo 1 cambia de concavidad en el
punto que corresponde a x = —%. Cuando x crece a través de —3, la grifica de f cambia de c6n-
cava hacia abajo a cdéncava hacia arriba en el punto ( 2 %77) Un punto sobre la grifica de una
funcién donde la concavidad cambia de arriba abajo o viceversa tiene un nombre especial.

235
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)
concava

. hacia arriba
concava

hacia abajo

concava
hacia arriba

X

concava
hacia abajo

b) f"(x) no existe en 0

FIGURA 5.5.3 Puntos de inflexion

y punto de .
i inflexion MAXIMO
=7 relativo
Fe)>0 f
\( i
f'(c2)<0
minillno relativo :
I‘ 1 X
G G

FIGURA 5.5.4  Criterio de la
segunda derivada

Definicion 5.5.2 Punto de inflexién

Sea f continua sobre un intervalo (a, b) que contiene al nimero c¢. Un punto (c, f(¢)) es un
punto de inflexion de la grifica de f si en (c, f(c)) hay una recta tangente y la grafica cam-
bia de concavidad en este punto.

Al volver a examinar el ejemplo 1 se observa que f(x) = x> + 3x> es continua en —3, tiene
una recta tangente en (—%, 24*7) y cambia de concavidad en este punto. Por tanto, (—%, 24*7) es un
punto de inflexién. También observe que f”(—%) = 0. Vea la FIGURA 55.3a). También sabemos
que la funcién f(x) = x'/3 es continua en 0 y tiene una tangente vertical en (0, 0) (vea el ejem-
plo 10 de la seccién 4.2). A partir de f"(x) = —2x >/ se observa que f"(x) > 0 para x <0y
que f"(x) < 0 para x > 0. Por tanto, (0, 0) es un punto de inflexion. Observe que en este caso
f'x) = —%x‘5/3 no estd definida en x = 0. Vea la figura 5.5.3b). Estos dos casos se ilustran
en el siguiente teorema.

Teorema 5.5.2 Punto de inflexion

Si (¢, f(c)) es un punto de inflexion para la grafica de una funcion f, entonces f"(¢) = 0 o f"(c)
no existe.

I Criterio de la segunda derivada Si ¢ es un ndmero critico de una funcién y = f(x) y, por
ejemplo, f"(c) > 0, entonces la gréifica de f es concava hacia arriba sobre algin intervalo
abierto (a, b) que contiene a c. Entonces, necesariamente f(c) es un minimo relativo. En forma
semejante, f"(¢) < 0 en un valor critico ¢ implica que f(c) es un méaximo relativo. Este teo-
rema se denomina criterio de la segunda derivada y se ilustra en la FIGURA 5.5.4.

Teorema 5.5.3 Criterio de la segunda derivada

Sea f'una funcién para la cual f” existe sobre un intervalo (a, b) que contiene al nimero critico c.

i) Sif"(c) > 0, entonces f(c) es un minimo relativo.
ii) Sif"(c) < 0, entonces f(c) es un maximo relativo.
iii) Si f"(c) = 0, entonces la prueba falla y f(c) puede ser o no un extremo relativo. En este
caso usamos el criterio de la primera derivada.

En este punto podria plantearse la pregunta: ;por qué se requiere otra prueba para extre-
mos relativos cuando ya se cuenta con el criterio de la primera derivada? Si la funcién f en
consideracién es un polinomio, es muy sencillo calcular la segunda derivada. Al usar el teo-
rema 5.5.3 s6lo necesitamos determinar el signo algebraico de f”(x) en el nimero critico.
Compare esto con el teorema 5.4.1, donde es necesario determinar el signo de f'(x) en los
numeros a la derecha y a la izquierda del nimero critico. Si no es fécil factorizar f”, el dltimo
procedimiento puede ser algo dificil. Por otra parte, puede resultar igualmente tedioso usar el
teorema 5.5.3 en el caso de algunas funciones que impliquen productos, cocientes, potencias,
etcétera. Por tanto, los teoremas 5.4.1 y 5.5.3 pueden tener ventajas y desventajas,

[=8]3\"| Kol Y Criterio de la segunda derivada
Grafique f(x) = 4x* — 4x
A partir de f(x) = 4x*(x> — 1) = 4x*(x + 1)(x — 1) se observa que la grifica de f

tiene las intersecciones (—1, 0), (0, 0) y (1, 0). Ademads, puesto que f es un polinomio que s6lo
tiene potencias pares, concluimos que su grafica es simétrica con respecto al eje y (funcién
par). Asi, las derivadas primera y segunda son

Fix) = 16x° — 8x = 8x(V2x + 1)(V2x — 1)

f'x) = 48x* — 8 = 8(V6x + 1)(V6x — 1).
A partir de f' vemos que los nimeros criticos de f son 0, —\/2/2 y V2/2. El criterio de la
segunda derivada se resume en la tabla siguiente.
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X Signo de f"(x) | f(x) Conclusion
0 - 0 | médximo relativo
V2/2 + —1 | minimo relativo
-V2/2 + —1 | minimo relativo

Por dltimo, a partir de la forma factorizada de f” observamos que f”(x) cambia de signo en
x=—V6/6 y en x = V6/6. Por tanto, la grifica de f tiene dos puntos de inflexién:
(—V6/6,—3) y (V6/6, —3). Vea la FIGURA 555.

=N]S\Y)[/Ne ] Fracaso del criterio de la segunda derivada

Considere la funcién simple f(x) = x* + 1. A partir de f'(x) = 4x* vemos que 0 es un niimero
critico. Pero por la segunda derivada f"(x) = 12x* obtenemos f"(0) = 0. Por tanto, el criterio
de la segunda derivada no conduce a ninguna conclusién. No obstante, a partir de la primera
derivada f'(x) = 4x° vemos lo siguiente:

fix) <0 para x <O y  f(x) >0 para x> 0.

El criterio de la primera derivada indica que f(0) = 1 es un minimo relativo. La FIGURA 5.5.6
muestra que f(0) = 1 es realmente un minimo absoluto.

|=H]3) | JXe )l Criterio de la segunda derivada
Grafique f(x) = 2 cos x — cos 2x.

Debido a que cos x y cos 2x son pares, la grifica de f es simétrica con respecto al
eje y. También, f(0) = 1 produce la interseccion (0, 1). Asi, las derivadas primera y segunda son

f'(x) = —2sen x + 2 sen 2x y f'(x) = —2cos x + 4 cos 2x.

Al usar la identidad trigonométrica sen 2x = 2 sen x cos x es posible simplificar la ecuacion f'(x)
= 0asenx(l — 2 cos x) = 0. Las soluciones de sen x = 0 son 0, =7, =27, ... y las solucio-
nes de cos x :% son £7/3, £57/3, ... Pero como el periodo de fes 27 (jdemuéstrelo!), es sufi-
ciente considerar sélo los nimeros criticos en [0, 277 ], a saber, 0, 77/3, 7, 57/3 y 27r. En la tabla
siguiente se resume la aplicacion del criterio de la segunda derivada a estos valores.

x Signo de f"(x) | f(x) Conclusion

0 + 1 minimo relativo
/3 - 3 | miximo relativo

T + —3 | minimo relativo
57/3 - 3 | méximo relativo
2 + 1 minimo relativo

La grafica de f es la extensién con periodo 277 de la porcién mds gruesa que se muestra en la
FIGURA 5.5.7 sobre el intervalo [0, 27 ].

f'(x) NOTAS DESDE EL AULA

i) Si(c, f(c)) es un punto de inflexion, entonces f"(c) = 0 o f"(c) no existe. El converso de
esta afirmacién no necesariamente es verdadero. No es posible concluir, simplemente a
partir del hecho de que cuando f"(c) = 0 o f"(c¢) no existe, que (c, f(c)) es un punto de
inflexién. En este sentido, en el ejemplo 3 vimos que f”(0) = 0 para f(x) = x* + 1. Pero
a partir de la figura 5.5.6 resulta evidente que (0, f(0)) no es un punto de inflexion.

y y= 4x* — 457
1 +

puntos de inflexion

1\>_/1 “\</1

FIGURA 555 Gréfica de la
funcién en el ejemplo 2

X

y y:xJ'-‘rl

t t X
-1 1
FIGURA 5.5.6 Gréfica de la
funcién en el ejemplo 3

%__ Y=2cosx —cos2x
+ + + > x
-7 ™ 27\ 37
— 1..
_2-.
_3-.

FIGURA 5.5.7 Grifica de la
funcién en el ejemplo 4
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También, para f(x) = 1/x, vemos que f"(x) = 2/x’ esté indefinida en x = 0 y que la gré-
fica de f cambia de concavidad en x = 0:

f'x) <0 para x <0 y

fx) >0 para x> 0.

No obstante, x = 0 no es la coordenada x de un punto de inflexién porque f no es con-

tinua en 0.

ii) Usted no debe pensar que la grifica de una funcién debe tener concavidad. Hay fun-
ciones perfectamente bien diferenciables cuyas graficas no poseen concavidad. Vea el
problema 60 en la seccién “Desarrolle su competencia 5.5”.

iii) Usted debe estar al tanto de que los libros de texto no coinciden respecto a la definicién
precisa de punto de inflexion. Esto no es algo por lo cual deba preocuparse, pero si usted
tiene interés, vea el problema 65 en la seccion “Desarrolle su competencia 5.5”.

“ DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-16.

En los problemas 1-12, use la segunda derivada para deter-
minar los intervalos sobre los cuales la gréfica de la funcién
dada es concava hacia arriba y los intervalos sobre los cua-
les es concava hacia abajo. Grafique.

1. f(x) = x>+ Tx 2. fx) = —(x + 2)? + 8

3. =—x+6x>+x—1 4. f(x) = (x + 5)°

5. f(x) = x(x — 4)° 6. f(x)=6x*+2x>— 12x*+3

7. f(x) = x'3 + 2x 8. f(x) = x*° — 20x%3

9. f(x)=x+% 10. f(x) = Va2 + 10
1 _x—1
11. f(X)_x2+3 12. f(x)—x+2

En los problemas 13-16, a partir de la grifica de la funcién
dada f calcule los intervalos sobre los cuales f' es creciente
y los intervalos sobre los cuales ' es decreciente.

13. v 14.

FIGURA 5.5.8 Grifica
para el problema 13

FIGURA 559 Grifica
para el problema 14

y=f) 16. y y=f(x)

FIGURA 5.5.10  Grifica
para el problema 15

FIGURA 5.5.11
para el problema 16

Grifica

17. Demuestre que la grafica de f(x) = sec x es céncava
hacia arriba sobre los intervalos donde cos x > 0 y cén-
cava hacia abajo sobre los intervalos donde cos x < 0.

18. Demuestre que la gréafica de f(x) = csc x es cOncava
hacia arriba sobre los intervalos donde sen x > 0 y cén-
cava hacia abajo sobre los intervalos donde sen x < 0.

En los problemas 19-26, use la segunda derivada para loca-
lizar todos los puntos de inflexion.

19. f(x) = x* — 12x> + x — 1 20. f(x) = x° + 4x

21. f(x) = senx 22. f(x) = cos x

23. f(x) = x — senx 24. f(x) = tan x

25. f(x) = x + xe 26. f(x) = xe ™~

En los problemas 27-44, use el criterio de la segunda deri-
vada, cuando sea pertinente aplicarlo, para encontrar los
extremos relativos de la funcién dada. Grafique y encuentre
todos los puntos de inflexién cuando sea posible.

27. f(x) = —(2x — 5)? 28. f(x) = %x3 —2x? — 12x

29. f(x) = x>+ 3x* + 3x + 1 30. f(x) = %x“ - 2x°
31. f(x) = 6x° — 10x° 32. f(x) = X*(x + 1)?
33. f(x) =
X
35. fx) = V9 — x?

37. fx) = x"Px + 1)

34, f(x) = x> + %
X
36. f(x) =xVx —6

38. f(x) = X2 — %x

39. f(x) = cos 3x, [0,27] 40. f(x) =2 + sen2x, [0, 27]
41. f(x) = cos x + senx, [0, 27]

42. f(x) = 2 senx + sen2x, [0, 27]

43. f(x) =2x —xInx 44. f(x) = In(x> + 2)

En los problemas 45-48, determine si la funcién dada tiene
un extremo relativo en el nimero critico indicado.

45. f(x) = senx cos x; m/4 46. f(x) = xsenx; 0

47. f(x) = tan’x; 48. f(x) = (1 + sen 4x)*; 7/8

En los problemas 49-52, trace una griafica de una funcién
que tenga las propiedades dadas.



49.

51.

52.

54.

5S.

56.

57.

f(=2)=0,f4)=0
f3)=0,f"(1)=0,f"2)=0
') <0,x<1,x>2
) >0,1<x<2

50. f(0) =5.f(2) =0
J'2) =0,/"3) no

existe

f'x) > 0,x <3
f'x) < 0,x >3
f0) = —1,f(m/2) > 0

f'(x) = 0 para toda x

") > 0,(2n — 1)% <x<(@n+ 1)%, n par

f'(x) < 0,(2n — 1)% <x<(Q@n+ 1)%, n impar

f(=x) = —f(x)

asintota vertical x = 2, lim f(x) = 0

X—0

') <0,0<x<2
f'x) > 0,x > 2

. Encuentre valores de a, b y c tales que la grifica de

f(x) = ax® + bx*> + cx pase por (—1, 0) y tenga un
punto de inflexién en (1, 1).

Encuentre valores de a, b y c tales que la grifica de
f(x) = ax® + bx* + cx tenga una tangente horizontal en
el punto de inflexién en (1, 1).

Use el criterio de la segunda derivada como ayuda para
graficar f(x) = sen(1/x). Observe que f es discontinua
enx = 0.

Demuestre que la grifica de una funcién polinomial
general

f =ax"+a_x" '+ - +ax+aya,#0

puede tener cuando mucho n — 2 puntos de inflexién.

Sea f(x) = (x — x)", donde n es un entero positivo.
a) Demuestre que (xy, 0) es un punto de inflexién de la
gréfica de f si n es un entero impar.

5.6 Razones de cambio

58.

59.

60.

61.

62.

63.

64.

A
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b) Demuestre que (xy, 0) no es un punto de inflexién de
la grifica de f, sino que corresponde a un minimo
relativo cuando n es un entero par.

Demuestre que la gréfica de una funcién polinomial cua-
dritica f(x) = ax®> + bx + ¢, a # 0, es coéncava hacia
arriba sobre el eje x cuando a > 0 y céncava hacia abajo
sobre el eje x cuando a < 0.

Sea f una funcién para la cual f” existe sobre un inter-
valo (a, b) que contiene al nimero c. Si f"(c) = 0y
f"(c) # 0, (qué puede afirmarse sobre (c, f(c))?
Proporcione un ejemplo de una funcién diferenciable
cuya grafica no tenga concavidad. No piense demasiado.
Demuestre o refute lo siguiente. Un punto de inflexién
para una funcién f debe ocurrir en un valor critico de f'.
Sin graficar, explique por qué la grifica de f(x)=
10x> — x — 40 + ¢* no puede tener un punto de infle-
Xion.

Demuestre o refute lo siguiente. La funcién

_ 42 —x, x=0
fx) = {—x3, x>0

tiene un punto de inflexién en (0, 0).

Suponga que f es una funcién polinomial de grado 3 y
que c¢; y ¢, son nimeros criticos distintos.

a) f(cy)yf(co), (son necesariamente extremos relativos
de la funcién? Demuestre su respuesta.

b) ;Cual considera que es la coordenada x del punto de
inflexion para la grafica de f? Demuestre su respuesta.

. Puntos de inflexion Encuentre otros libros de texto de

célculo y anote cémo definen el punto de inflexidn.
Luego, investigue en internet acerca de la definicién de
punto de inflexién. Escriba un breve articulo en que
compare estas definiciones. Ilustre su articulo con grafi-
cas idéneas.

I Introduccion En esta seccién abordaremos las razones de cambio. La derivada dy/dx de

una funcién y = f(x) es su razén de cambio instantdnea con respecto a la variable x. En la
seccion 5.1 vimos que cuando una funcién s = s(¢) describe la posicién de un objeto que se
mueve sobre una recta horizontal o vertical, la razén de cambio con el tiempo ds/dt se inter-
preta como la velocidad del objeto. En general, una razén de cambio con el tiempo es la res-
puesta a la pregunta: ;cudn rdpido cambia la cantidad? Por ejemplo, si V representa el volu-
men que cambia con el tiempo, entonces dV/dt es la razén, o cudn rdpido cambia el volumen
con respecto al tiempo 7. Una razén de, por ejemplo, dV/dt = 5 pies’/s significa que el volu-
men aumenta 5 pies ctbicos cada segundo. Vea la FIGURA 56.1. En forma semejante, si una per-
sona camina hacia el poste mostrado en la FIGURA 562 a razdn constante de 3 pies/s, entonces
sabemos que dx/dt = —3 pies/s. Por otra parte, si la persona se aleja del poste, entonces dx/dt
= 3 pies/s. Las razones negativa y positiva significan, por supuesto, que la distancia x de la
persona al poste disminuye (3 pies cada segundo) y aumenta (3 pies cada segundo), respecti-

vamente.

El radio r

crece cuando el

volumen V crece
]

FIGURA 5.6.1
globo esférico se llena con gas,
su volumen, radio y drea superfi-
cial cambian con el tiempo

A medida que un
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A A

le———— x———>1 e——— x———>
a)dx/dr<0 by dx/dt>0
FIGURA 5.6.2 x decreciente en a); x creciente en b)

I Regla de potencias para funciones Recuerde por (6) de la seccién 4.7 que si y denota una
funcién de x, entonces con la regla de potencias para funciones obtenemos

i n o n—1 @

dx y = ny dx’ (1)
donde n es un nimero real. Por supuesto, (1) es aplicable a cualquier funcién; por ejemplo r,
X 0 z, que dependa de la variable :

1 no_ n—1 @ i n _ n—1 @ 1 n _ n—1 % (2)
a” " ar at T ae @t T ar

Uso de (2)

Un globo esférico se expande con el tiempo. ;Cémo se relaciona la razén a que aumenta el
volumen con la razén a la que aumenta el radio?

Solucion En el instante ¢, el volumen V de una esfera es una funcién del radio r; es decir,
V = 471, Por tanto, obtenemos las razones relacionadas a partir de la derivada con respecto
al tiempo de esta funcién. Con ayuda del primer resultado en (2), vemos que
dv. 4 d ; 4 ,dr
E = g’ﬂ'ar = 37T<3r dl‘)
es lo mismo que

razones relacionadas
dV 2 d}’

ar = 47r i

Debido a que los problemas de esta seccion se describen con palabras, usted debe inter-
pretar el planteamiento en términos de simbolos matematicos. La clave para resolver proble-
mas planteados en lenguaje coloquial consiste en la organizacién. A continuacién se presen-
tan algunas sugerencias.

Directrices para resolver problemas relacionados

i) Lea varias veces con cuidado el problema. Si le es posible, trace un esquema.

ii) Identifique con simbolos todas las cantidades que cambian con el tiempo.

iii) Escriba todas las razones que se proporcionan. Use notacién de derivadas para escri-
bir la razén que desea encontrar.

iv) Escriba una ecuacién o una funcién que relacione todas las variables que haya intro-
ducido.

v) Diferencie con respecto al tiempo ¢ la ecuacién o la funcién encontrada en el paso iv).
Este paso puede requerir el uso de diferenciacién implicita. La ecuacién resultante des-
pués de la diferenciacion relaciona las razones de cambio con el tiempo de la variable.

]3| el Y Otro repaso al ejemplo 1

Un globo esférico se infla con aire a razén de 20 pies’/min. ;A qué razén cambia el radio
cuando éste es de 3 pies?

Como se muestra en la figura 5.6.1, denotamos el radio del globo con r y su volu-
men con V. Ahora, las interpretaciones de “Un globo esférico se infla ... a razén de 20
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pies*/min” y “;A qué razén cambia el radio cuando es de 3 pies?” son, respectivamente, la
razén que tenemos
dv . .
Dado: o 20 pies’/min

y la razén que se busca

Encontrar: dr

dt r:3.
Debido a que por el ejemplo 1 ya sabemos que
av _ , .dr
a

es posible sustituir la razén constante dV/dr = 20; es decir, 20 = 47'rr2(dr/dt). Al despejar
dr/dt en la Gltima ecuacién obtenemos

dr 20 5

dt  4mr*  @r?

dr 5 . . . .
Por tanto, dr|, s~ om pies/min =~ (.18 pies/min

)3\ [JNe ] Uso del teorema de Pitdgoras

Una mujer que corre a razén constante de 10 km/h cruza un punto P en direccién al norte.
Diez minutos después, un hombre que corre a razén constante de 9 km/h cruza por el mismo
punto P en direccién al este. ;Cudn rdpido cambia la distancia entre los corredores 20 minu-
tos después de que el hombre cruza por el punto P?

Sea el tiempo ¢ medido en horas desde el instante en que el hombre cruza el punto
P. Como se muestra en la FIGURA5.6.3, a t > 0 sean el hombre H y la mujer M que estdn en x
y y km, respectivamente, a partir del punto P. Sea z la distancia correspondiente entre los dos
corredores. Asi, dos razones son

dx
Dado: 7 9km/h y

Este

dy
— = 10 km/h 3
dt ) FIGURA 5.6.3 Corredores en el

ejemplo 3
y se busca

dz
Encontrar: —
di|i=15 «20min = th

En la figura 5.6.3 vemos que el tridngulo HPM es un tridngulo rectdngulo, asi que por el
teorema de Pitdgoras, las variables x, y y z estdn relacionadas por

2?2 =x* 4y @)
Al diferenciar (4) con respecto a t,

d , d ,, d, . d
4.2_2 a4 az _ 5 ¥ 5
ns = ar Ty proporciona 27 i 2x =+ 2y (5)

Al usar las dos razones proporcionadas en (3), entonces con la dltima ecuacién de (5) obtenemos

dz
— = 9x + 10y.
i Y
Cuando f = th usamos distancia = razén X tiempo para obtener la distancia que ha

corrido el hombre: x = 9 - (%) = 3 km. Debido a que la mujer ha corrido ¢h (10 min) més, la
distancia que ella ha recorrido es y = 10- (5 + %) =5km. En 7 =1h, se concluye que

z= V32 + 52 = \/34 km. Por dltimo,

Vﬁ% =9-34+10-5 o bien,
t=1/3

dz
dt

T 13.21 km/h.

t=1/3 - \/ﬂ
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FIGURA 5.6.4 Faro en el
ejemplo 4

6 cm

FIGURA 5.6.5 Reloj de arena en
el ejemplo 5

12—h

— _

h

11 l

6
FIGURA 5.6.6 En seccion trans-
versal, el cono inferior del reloj
de arena en el ejemplo 5 es un
triangulo

A3\ [N lW:8 Uso de trigonometria

Un faro estd situado en una isla pequefia a 2 mi de la costa. La baliza del faro gira a razén
constante de 6 grados/s. ;{Cudn rdpido se mueve el haz del faro a lo largo de la costa en un
punto a 3 mi del punto sobre la costa que es el mas proximo al faro?

Primero se introducen las variables 6 y x como se muestra en la FIGURA 5.6.4. Ademas,
se cambia la informacién sobre 6 a radianes al recordar que 1° es equivalente a /180 radia-
nes. Asi,

40 _ T T  dx
Dado: o 6 180 ~ 30 rad/s Encontrar: dr |5

A partir de la trigonometria de un tridngulo rectdngulo, por la figura vemos que

% = tan 0 o bien, x = 2 tan 6.

Al diferenciar la dltima ecuacién con respecto a ¢ y usar la razén dada obtenemos
dx _ dx df

dx e

== =12sec’ -~ =~z sec’ . « Regladel P

d sec” 0 dt 15 sec” . <« Reglade la cadena % 0
3

En el instante en que x = 3, tan § = 3, de modo que por la identidad trigonométrica 1 +

2 2 2 13
tan” 6 = sec” 6 obtenemos sec” # = 7. Por tanto,

dx 7 13 _ 13w

Al 15 4 " 60 M

En el siguiente ejemplo es necesario usar la férmula para el volumen de un cono circular
recto de altura H y radio en la base R:

V= %RZH. (6)

1]\ [JXe A Uso de tridngulos semejantes

Desde la parte superior del reloj de arena que se muestra en la FIGURA 5.6.5, la arena cae a razén
constante de 4 cm?/s. Exprese la razén a que crece la altura de la pila inferior en términos de
la altura de la arena.

Primero, como sugiere la figura 5.6.5, se establece la hipétesis de que la pila de
arena en la parte inferior del reloj de arena tiene la forma del frustrum de un cono. En el ins-
tante ¢ > 0, sean V el volumen de la pila de arena, & su altura y r el radio de su superficie
plana inferior. Asi,

Dado: v _ 4 cm’/s Encontrar: @.
dt dt

Necesitamos encontrar el volumen V de la pila de arena en el instante ¢ > 0. Esto puede
lograrse como se muestra a continuacion:

V = volumen de todo el cono inferior — volumen del cono que no es arena.

Al usar la figura 5.6.5y (6) con R = 6 y H = 12,
V= 5776 (12) — 3T (12 — h)

1
o V= 77(144 — 4”7 + grzh) @)
Podemos eliminar la variable r de la dltima ecuacién al usar tridngulos semejantes. Como
se muestra en la FIGURA 5.6.6, el tridngulo rectdngulo claro es semejante al tridngulo rectdngulo
oscuro, y asi las proporciones de lados correspondientes son iguales:
12—h _ 12 h

p 6 o bien, r=6— >
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La dltima expresion se sustituye en (7) y se simplifica.

V= W<1h3 - 30 + 36h>. )

12

Al diferenciar (8) con respecto a ¢ obtenemos

dt

v _ (1,dn
_W<4h dt

- 6h@ + 36dh> = w(lhz —6h + 36)dh.

dt dt 4 dt

Por dltimo, al usar la razén dada dV/dr = 4 es posible despejar dh/dt:

dh 16

dr ~ a(h — 12)* ©)

Observe en (9) del ejemplo 5 que la altura de la pila de arena en el reloj de arena crece
mads rdpido cuando la altura & de la pila estd proxima a 12 cm.

“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-17.

En los siguientes problemas, una solucion puede requerir una
férmula especial que usted tal vez no conozca. En caso de
ser necesario, consulte la lista de férmulas que se encuentra
en las paginas de recursos, al final de esta obra.

1.

Un cubo se expande con el tiempo. ;Cémo estd relacio-
nada la razén a la cual crece el volumen con la razén a
la que aumenta la arista?

El volumen de una caja rectangular es V = xyz. Dado
que cada lado se expande a una razén constante de
10 cm/min, encuentre la razén a la cual se expande el
volumen cuando x = 1l cm,y =2 cmy z = 3 cm.
Una placa en forma de tridngulo equildtero se expande
con el tiempo. La longitud de un lado aumenta a razén
constante de 2 cm/h. (A qué razén crece el drea cuando
un lado mide 8 cm?

En el problema 3, ja qué razén crece el area en el ins-
tante en que el drea es V75 cm??

Un rectangulo se expande con el tiempo. La diagonal del
rectdngulo aumenta a razén de 1 pulg/h y la longitud
crece a razén de 1 pulg/h. ;Cudn répido crece el ancho
cuando éste mide 6 pulg y la longitud mide 8 pulg?
Las longitudes de las aristas de un cubo aumentan a
razén de 5 cm/h. (A qué razdn crece la longitud de la
diagonal del cubo?

Un velero se dirige hacia el acantilado vertical mostrado
en la FIGURA 56.7. ;Como estdn relacionadas las razones
a las que cambian x, s y 6?

Lo~
Acan- 0 >~ s
tilado ~

FIGURA 5.6.7 Velero en el problema 7

Un escarabajo se mueve a lo largo de la grafica de
y = x*> + 4x + 1, donde x y y se miden en centimetros.
Si la coordenada x de la posicién del escarabajo (x, y)
cambia a razén constante de 3 cm/min, ;cudn rapido

10.

11.

12.

13.

cambia la coordenada y cuando el escarabajo estd en el
punto (2, 13)? (Cudn rdpido cambia la coordenada y
cuando el escarabajo estd 6 cm arriba del eje x?

Una particula se mueve sobre la grifica de y* = x + 1 de
modo que dx/dt = 4x + 4. (Cuél es dy/ dr cuando x = 8?
Una particula en movimiento continuo se mueve sobre la
grifica de 4y = x*> + x. Encuentre el punto (x, y) sobre
la grafica en el que la razén de cambio de la coordenada
x y la razén de cambio de la coordenada y son iguales.
La coordenada x del punto P mostrado en la FIGURA 5.6.8
aumenta a razon de %cm/h. (Cuén rapido crece el drea
del tridngulo rectangulo OPA cuando las coordenadas de
P son (8, 2)?

y ) 3 P
X =Yy

o A

FIGURA 5.6.8 Tridngulo en el problema 11

Una maleta estd sobre la banda transportadora mostrada
en la FIGURA 5.6.9 que se mueve a razon de 2 pies/s. {Cudn
rdpido aumenta la distancia vertical de la maleta a par-
tir de la parte inferior de la banda?

FIGURA 5.6.9 Banda transportadora en el problema 12

Una persona de 5 pies de estatura se aleja caminando de
un poste de 20 pies de altura a razén constante de 3
pies/s. Vea la FIGURA 5.6.10.
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a) (A qué razén crece la sombra de la persona?
b) (A qué razén se aleja la punta de la sombra desde la
base del poste?

Sombra
FIGURA 5.6.10 Sombra en el problema 13

14. Una roca arrojada a un estanque tranquilo provoca una

onda circular. Suponga que el radio de la onda se

expande a razén constante de 2 pies/s.

a) ;Cuan rapido crece el didmetro de la onda circular?

b) ;(Cuan rapido crece la circunferencia de la onda
circular?

¢) ;Cuan rapido se expande el drea de la onda circular
cuando el radio es de 3 pies?

d) ;Cuan rapido se expande el drea de la onda circular
cuando el 4rea es 87 pies>?

15. Una escalera de 15 pies estd apoyada contra el muro de
una casa. La parte inferior de la escalera se aleja de la base
del muro a razén constante de 2 pies/min. ;A qué razén
desciende la parte superior de la escalera en el instante en
que la parte inferior de la escalera estd a 5 pies del muro?
Una escalera de 20 pies estd apoyada contra el muro de
una casa. La parte superior de la escalera se desliza hacia
abajo sobre el muro a razén constante de 5 pie/min. ;A
qué razoén se aleja del muro la parte inferior de la escale-
ra en el instante en que la parte superior de la escalera
estd a 18 pies por arriba del suelo?

Considere la escalera cuya parte inferior se desliza ale-
jandose de la base del muro vertical mostrado en la
FIGURA 56.11. Demuestre que la razén a la cual crece 6,
es la misma que la razén a la cual decrece 6,.

16.

17.

FIGURA 5.6.11 Escalera en el problema 17

18. La cuerda de un cometa se suelta a razén constante de
3 pies/s. Si el viento se lleva al cometa horizontalmente
a una altitud de 200 pies, ¢cudn rdapido se mueve el
cometa cuando se han soltado 400 pies de cuerda?

Dos buques tanque zarpan de la misma terminal petro-
lera. Uno se dirige hacia el este a mediodia a una velo-
cidad de 10 nudos. (1 nudo = 1 milla nautica/h. Una
milla ndutica mide 6 080 pies o 1.15 milla estdndar.) El

otro buque se dirige hacia el norte a la 1:00 p.m. a razén

19.

20.

21.

22.

23.

24.

de 15 nudos. ;A qué razén cambia la distancia entre los
dos buques a las 2:00 p.m.?

A las 8:00 a.m., el barco S estd a 20 km direccidn norte
del barco S,. El barco §; navega hacia el sur a razén de
9 km/h y el barco S, se dirige hacia el oeste a razén
de 12 km/h. A las 9:20 a.m., ja qué razén cambia la dis-
tancia entre los dos barcos?

Una polea estd asegurada a una orilla de un muelle
situado a 15 pies por arriba de la superficie del agua.
Un bote pequeiio es jalado hacia el muelle por medio de
una cuerda en la polea. La cuerda estd unida a la proa
del bote a 3 pies antes de la linea del agua. Vea la FIGURA
56.12. Si la cuerda se jala a razon constante de 1 pie/s,
(cudn rapido se aproxima el bote al muelle cuando se
encuentra a 16 pies de éste?

Polea

15 pies
3 i
%_le
FIGURA 56.12 Bote y muelle en el problema 21

Un bote se jala hacia un muelle por medio de un cabres-
tante. El cabrestante estd situado al final del muelle y se
encuentra a 10 pies por arriba del nivel al que la cuerda
de arrastre estd atada a la proa del bote. La cuerda se jala
a razén constante de 1 pie/s. Use una funcién trigonomé-
trica inversa para determinar la razén a la cual cambia el
angulo de elevacion entre la proa del bote y el final del
muelle cuando se han soltado 30 pies de cuerda.

Un reflector en un bote patrulla que estd a 3 km de la
costa sigue un buque de dunas de arena que se mueve
en forma paralela al agua a lo largo de una playa recta.
El buque se desplaza a razén constante de 15 km/h. Use
una funcién trigonométrica inversa para determinar la
razén a la cual gira el reflector cuando el buque estd a
3 km del punto sobre la playa mas préximo al bote.
Un diamante de beisbol es un cuadrado de 90 pies por
lado. Vea la FIGURA 56.13. Un jugador golpea la pelota y
corre hacia la primera base a razén de 20 pies/s. (A qué
razén cambia la distancia del corredor a segunda base
en el instante en que el corredor estd a 60 pies de home?
(A qué razén cambia la distancia del corredor a tercera
base en ese mismo instante?

Segunda base

<
Tercera Primera
base © Y base
«
AL [4
90 pies 5
/ Home

FIGURA 5.6.13 Diamante de beisbol en el problema 24



25.

26.

27.

28.

29.

Un avién que se mueve en forma paralela al nivel del
suelo a razén constante de 600 mi/h se aproxima a una
estacion de radar. Si la altitud del avion es de 2 mi,
(cudn rapido disminuye la distancia entre el avién y la
estacion de radar cuando la distancia horizontal entre
ambos es 1.5 mi? Vea la FIGURA 5.6.14.

1

2 mi

Suelo Estacion de radar

FIGURA 5.6.14  Avi6n en el problema 25

En el problema 25, en el punto directamente por arriba
de la estacion de radar, el avién asciende formando un
angulo de 30° sin aminorar su velocidad. ;(Cudn rapido
aumenta la distancia entre el avién y la estacién 1 minuto
después? [Sugerencia: Use la ley de los cosenos.]

Un avién a una altitud de 4 km pasa directamente por
arriba de un telescopio de rastreo ubicado en tierra.
Cuando el dngulo de elevacién es de 60°, se observa que
el dngulo decrece a razén de 30 grados/min. ;Cudn
rdpido se mueve el avién?

Una cdamara de rastreo, ubicada a 1200 pies del punto
de lanzamiento, sigue a un globo de aire caliente con
ascenso vertical. En el instante en que el angulo de ele-
vacién 0 de la cdmara es 7/6, el dngulo 6 crece a razén
de 0.1 rad/min. Vea la FIGURA 5.6.15. { A qué razén sube el
globo en ese instante?

Cédmara 1 200 pies

FIGURA 5.6.15 Globo en el problema 28

Un cohete se desplaza a razén constante de 1 000 mi/h a
un angulo de 60° con respecto a la horizontal. Vea la FIGU-
RA 5.6.16.

Suelo

FIGURA 5.6.16  Cohete en el problema 29

30.

31.

32.

33.

34.
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a) (A qué razén crece su altitud?

b) (Cudl es la velocidad del cohete con respecto a tie-
rra?

Un tanque de agua en forma de cilindro circular recto
de 40 pies de didmetro se drena de modo que el nivel
del agua disminuye a razén constante de % pies/min.
(Cudn rdpido decrece el volumen del agua?

Un tanque de aceite en forma de cilindro circular recto
de 8 m de radio se llena a razén constante de 10 m*/min.
(Cuén rapido sube el volumen del aceite?

Como se muestra en la FIGURA 5.6.17, un tanque rectangu-
lar de agua de 5 pies de ancho estd dividido en dos tan-
ques por medio de una separaciéon que se mueve en la
direccién indicada a razén de 1 pulg/min cuando al tan-
que frontal se bombea agua a razén de 1 pie*/min.

a) (A qué razén cambia el nivel del agua cuando el
volumen de agua en el tanque frontal es de 40 pies’
y x = 4 pies?

b) En ese instante, el nivel del agua ;sube o baja?

I
T
h

|<— 5 pies—»l/ '

FIGURA 5.6.17 Tanque en el problema 32

Por la parte inferior de un tanque cénico se fuga agua a
razon de 1 pie3/min, como se muestra en la FIGURA 5.6.18.

a) ;A qué razén cambia el nivel del agua cuando el agua
tiene 6 pies de profundidad?

b) (A qué razén cambia el radio del agua cuando el agua
tiene 6 pies de profundidad?

¢) Suponga que el tanque estaba lleno en t = 0. ;A qué
razén cambia el nivel del agua en t = 6 min?

‘4— 6 pies —>‘

9 pies

FIGURA 5.6.18 Tanque en el problema 33

Un canal de agua con extremos verticales en forma de
trapezoides is6sceles tiene las dimensiones mostradas en
la FIGURA 5.6.19. Si se bombea agua a razén constante de
3 m’/s, jcudn rapido sube el nivel del agua cuando la
profundidad del agua es de } m?
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3s.

36.

37.

38.

39.

40.

= ‘4—2m—>1

5%
T

e

FIGURA 5.6.19 Tanque en el problema 34

Cada uno de los extremos verticales de un canal de agua
de 20 pies de longitud es un tridngulo equildtero con el
vértice hacia abajo. Se bombea agua a razén constante
de 4 pies*/min.
a) ;Cuan rapido sube el nivel & del agua cuando la pro-
fundidad del agua es de 1 pie?
b) Si hy es la profundidad inicial del agua en el canal,
demuestre que
dh N3 (,, V3 \
dr = 10(}’“r 57) -

[Sugerencia: Considere la diferencia de volumen des-
pués de ¢ minutos.]

¢) Si hy = 1 pie y la altura del extremo triangular es 5
pies, determine el instante en que el canal estd lleno.
(Cuan rapido sube el nivel del agua cuando el canal
estd lleno?

El volumen V entre dos esferas concéntricas estd en
expansion. El radio de la esfera exterior crece a razén
constante de 2 m/h, mientras el radio de la esfera inte-
rior disminuye a razén constante 5 m/h. ;A qué razén
cambia V cuando el radio exterior es 3 m y el radio inte-
rior es 1 m?

Muchos objetos esféricos, como las gotas de lluvia, las
bolas de nieve y las bolas de naftalina se evaporan a una
razén proporcional a su drea superficial. En este caso,
demuestre cémo el radio del objeto decrece a razén
constante.

Si la razén a la cual cambia el volumen de una esfera
es constante, demuestre que la razén a la cual cambia
su drea superficial es inversamente proporcional al radio.
Suponga que un cubo de hielo se derrite de modo que
siempre conserva su forma cubica. Si el volumen del
cubo decrece a razén de § pulg*/min, ¢cuédn rapido cam-
bia el drea superficial del cubo cuando el drea superfi-
cial es de 54 pulg®?

La rueda de la fortuna mostrada en la FIGURA 56.20 gira
una vuelta completa en sentido contrario al movimiento
de las manecillas del reloj cada 2 minutos. ;Cudn rdpido
sube una pasajera en el instante en que estd 64 pies por
arriba del suelo? ;Cudn rdpido se mueve horizontal-
mente en el mismo instante?

Suelo

FIGURA 5.6.20 Rueda de la fortuna en el problema 40

41.

42,

&

Suponga que la rueda de la fortuna en el problema 40
estd equipada con reflectores de colores fijos situados en
varios puntos a lo largo de su circunferencia. Considere
el reflector ubicado en el punto P en la FIGURA 5.6.21. Si
los haces de luz son tangentes a la rueda en el punto P,
(a qué razén se aleja el reflector en Q en tierra del punto
R en el instante en que 6 = 7/4?

FIGURA 5.6.21 Rueda de la fortuna en el problema 41

Un clavadista salta desde una plataforma elevada con
velocidad inicial hacia abajo de 1 pie/s hacia el centro
de un gran tanque circular de agua. Vea la FIGURA 5.6.22.
Por fisica, la altura del clavadista por arriba del nivel del
suelo estd dada por s(f) = —16£* — ¢ + 200, donde
t = 0 es el tiempo medido en segundos.

a) Use una funcién trigonométrica inversa para expresar
0 en términos de s.

b) Encuentre la razén a la cual el angulo 6 subtendido
por el tanque circular, segtin lo ve el clavadista, crece
ent = 3s.

¢) ;Cudl es el valor de 0 cuando el clavadista golpea el
agua?

d) ;Cudl es la razén de cambio de 6 cuando el clava-
dista golpea el agua?

Suelo

FIGURA 5.6.22 Clavadista en el problema 42

. Resistencia La resistencia total R en un circuito para-

lelo que contiene dos resistores de resistencias R; y R,
estd dada por 1/R = 1/R, + 1/R,. Si cada resistencia
cambia con el tiempo ¢, entonces ;como estdn relacio-
nadas dR/dt, dR,/dt y dR,/dt?



44. Presion En la expansion adiabdtica del aire, la presion

45.

P y el volumen V estin relacionados por PV'* =k,

donde k es una constante. En cierto instante, la presion

es 100 Ib/pulg” y el volumen es 32 pulg’. ;A qué razén
cambia la presién en ese instante si el volumen dismi-
nuye a razén de 2 pulg’/s?

Cangrejos de rio Un estudio acerca de cangrejos de

rio (Orconectes virilis) indica que el caparazén de lon-

gitud C estd relacionado con la longitud total 7 segtn la
férmula C = 0.493T — 0.913, donde C y T se miden en

milimetros. Vea la FIGURA 5.6.23.

a) A medida que el cangrejo de rio crece, la razén R de
la longitud del caparazén a la longitud total, ;aumen-
ta o disminuye?

b) Si el cangrejo de rio crece en longitud a razén de
1 mm por dia, ja qué razén cambia la relacién del
caparazén a la longitud total cuando el caparazén es
un tercio de la longitud total?

FIGURA 5.6.23 Cangrejo de rio en el problema 45

46. Peso del cerebro Segin estudios de alometria, el peso

del cerebro E en los peces estd relacionado con el

9.7 Optimizacién

47.

5.7 Optimizacion 247
peso corporal P por E = 0.007P%3, y el peso corporal estd
relacionado con la longitud del cuerpo por P = 0.12L*™,
donde E y P se miden en gramos y L se mide en centi-
metros. Suponga que la longitud de cierta especie de pez
evolucion6 a razén constante desde 10 cm hasta 18 cm a
lo largo de 20 millones de afios. ;A qué razén, en gramos
por millones de afios, crecid el cerebro de esta especie
cuando el pez pesaba la mitad de su peso corporal final?
Cantidad de movimiento En fisica, la cantidad de
movimiento p de un cuerpo de masa m que se mueve en
linea recta con velocidad v estd dada por p = muv.
Suponga que un avién de masa 10° kg vuela en linea recta
mientras en los bordes de entrada de sus alas se acumula
hielo a razén constante de 30 kg/h. Vea la FIGURA 5.6.24.

a) (A qué razén cambia la cantidad de movimiento del
avion si vuela a razén constante de 800 km/h?

b) /A qué razén cambia la cantidad de movimiento del
avién en t = 1 h si en ese instante su velocidad es
750 km/h y aumenta a razén de 20 km/h?

FIGURA 5.6.24  Avi6n en el problema 47

I Introduccion En ciencia, ingenieria y negocios a menudo tenemos interés en los valores
maximo y minimo de una funcién; por ejemplo, una empresa tiene interés natural en maximi-
zar sus ganancias a la vez que minimiza los costos. La préxima vez que vaya al supermercado,
observe que todas las latas que contienen, por ejemplo, 15 oz de alimento (0.01566569 pies®)
tienen el mismo aspecto fisico. El hecho de que todas las latas de un volumen especifico ten-
gan la misma forma (mismos radio y altura) no es coincidencia, puesto que hay dimensiones
especificas que minimizan la cantidad de metal usado y, entonces, reducen los costos de cons-
truccién de la lata a una empresa. En el mismo tenor, muchos de los denominados automdvi-
les econémicos comparten muchas caracteristicas extraordinariamente semejantes. Esto no es
tan simple como el que una empresa copie el éxito de otra empresa, sino, en vez de ello, que
un gran nimero de ingenieros buscan el disefio que minimice la cantidad de material usado.

I Jugar con algunos nimeros Se empezard con un problema simple:

En el ejemplo 1 de la seccién 2.7 presentamos el problema:

Encontrar dos nimeros no negativos cuya suma sea 5 tales que el producto
de uno y el cuadrado del otro sea el mds grande posible.

La suma de dos nimeros no negativos es 5. Exprese el producto de uno
y el cuadrado del otro como una funcién de uno de los nimeros.

| | En este punto se recomienda
(D bastante repasar la seccion 2.7.

2)
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Al comparar (1) y (2) se observa que (2), donde simplemente se pide establecer una funcién,
estd contenido en el problema de cdlculo (1). La parte de cédlculo de (1) requiere encontrar
nimeros no negativos de modo que su producto sea maximo. Al revisar los ejemplos 1 y 2 de
la seccién 2.7 se indica que el producto descrito en (1) es

P =x(5— x> obien, P(x) = 25x — 10x* + x°. 3)

El dominio de la funcién P(x) en (3) es el intervalo [0, 5]. Este hecho proviene de la combi-
nacién de las dos desigualdades x =0y y =5 — x = 0 o del reconocimiento de que si se
permite que x fuese mds grande que 5, entonces y seria negativo, contradiciendo la hipétesis
inicial. Hay una cantidad infinita de pares de nimeros reales no negativos (racionales e irra-
cionales) cuya suma es 5. jObserve que no dijimos enteros no negativos! Por ejemplo

Numeros: x, y Producto: P = xy*
1,4 P=1-2=16
2,3 P=2-3=18
19 L (oY
) P—E- 2) = 10.125
T, 5 — P=m-(5—m)?*=10.85

Pares de nimeros como —1 y 6, cuya suma es 5, se rechazan porque ambos nimeros deben
ser no negativos. ;Cémo saber cuando se han descubierto los nimeros x y y que proporcio-
nan el valor mas grande; es decir, el maximo 6ptimo, de P? La respuesta reside en darse cuenta
que el dominio de la funcién P(x) es el intervalo cerrado [0, 5]. Por el teorema 5.2.3
sabemos que la funcién continua P(x) tiene un extremo absoluto ya sea en el punto frontera
del intervalo o en un ndmero critico en el intervalo abierto (0, 5). Por (3) vemos que
P'(x) = 25 — 20x + 3x* = (3x — 5)(x — 5) de modo que el dnico nimero critico en el inter-

valo abierto (0, 5) es % Resulta evidente que los valores de la funcién P(0) =0y P(5) =0

representan el producto minimo, de modo que el producto mdximo absoluto es P(;) = 2(5) -

(%)2 = 2 ~ 18.52. En otras palabras, los dos nimeros son x =3y y =5 — 2=2

I Terminologia En general, la funcién que describe la cantidad que se quiere optimizar, al
encontrar su valor maximo o minimo, se denomina funcién objetivo. La funcién en (3) es la
funcién objetivo para el problema dado en (1). Una relacién entre las variables en un problema
de optimizacién, como la ecuacién x + y = 5 entre los niimeros x y y en el andlisis anterior,
se denomina restriccion. La restriccién permite eliminar una de las variables en la construc-
cion de la funcioén objetivo, como P(x) en (3), asi como impone una limitacién sobre la forma
en que variables como x y y pueden variar en realidad. Vimos que las limitaciones x =0 y
y =5 — x = 0 fueron de utilidad para inferir que el dominio de la funcién P(x) en (3) era el
intervalo [0, 5]. Usted debe considerar que el tipo de problemas coloquiales en esta seccién
pueden o pueden no tener una restriccion.

I Sugerencias En los ejemplos y problemas siguientes se proporciona una funcién objetivo
y es necesario traducir el lenguaje coloquial a simbolos matemadticos y construir una funcién
objetivo. Estos son los tipos de problemas coloquiales que muestran el poder del calculo y
constituyen una de muchas respuestas posibles a la vieja pregunta: ;para qué es bueno?
Mientras no se garantice nada, hay algunas sugerencias que es necesario tomar en cuenta al
resolver un problema de optimizacién. Primero y lo mds importante:

Desarrolle una actitud positiva y analitica. Trate de ser claro y organizado.

Directrices para resolver problemas de optimizacion

i) Lea el problema con atencién; luego 1éalo de nuevo.
ii) Elabore un dibujo cuando sea posible; hagalo sencillo.



iii) Introduzca variables (en su dibujo, en caso de haber alguna) y observe cualquier restric-
cién entre las variables.

iv) Use todas las variables necesarias para establecer la funcién objetivo. Si usa mas de una
variable, aplique la restriccién para reducir la funcién a una variable.

v) Note el intervalo en que estd definida la funcién. Determine todos los niimeros criticos.

vi) Si la funcién objetivo es continua y estd definida sobre un intervalo cerrado [a, b],
entonces compruebe los extremos en puntos frontera. Si el extremo deseado no ocurre
en un punto frontera, debe ocurrir en un nimero critico en el intervalo abierto (a, b).

vii) Si la funcién objetivo estd definida sobre un intervalo que no es cerrado, entonces es
necesario aplicar una prueba de la derivada en cada nimero critico en ese intervalo.

En el primer ejemplo se analiza un modelo matematico que proviene de fisica.

]S\ [JEe BN Alcance maximo

Cuando se ignora la resistencia del aire, el alcance horizontal R de un proyectil estd dado por
2

Vo
R(9) = Esen 20, 4)

donde vy es la velocidad inicial constante, g es la aceleracion de la gravedad y 6 es el dngulo
de elevacién o salida. Encuentre el alcance mdximo del proyectil.

Como modelo fisico del problema puede imaginarse que el proyectil es una bala
de cafién. Vea la FIGURA 5.7.1. Para dngulos # mayores que /2, la bala de cafién mostrada en
la figura debe salir hacia atrds. Por tanto, tiene sentido fisico restringir la funcién en (4) al
intervalo cerrado [0, 7/2]. A partir de

dR _ v}
a0 g 2 cos 20
se observa que dR/df = 0 cuando cos 260 = 0 0 20 = /2, de modo que el tnico nimero cri-
tico en el intervalo abierto (0, 7w/2) es 7/4. Al evaluar la funcién en los puntos finales y el
nimero critico obtenemos
2

R(0) = 0, MW®=%,MWD=O

Puesto que R(6) es continua sobre el intervalo cerrado [0, 7/2], estos valores indican que el
alcance minimo es R(0) = R(m/2) = 0y que el alcance maximo es R(w/4) = v}/g. En otras
palabras, para lograr la distancia médxima, el proyectil debe ser lanzado a un dngulo de 45°
con respecto a la horizontal.

Si las balas de candn en el ejemplo 1 se disparan con la velocidad inicial vy pero con
dngulos de elevacion variables 6 diferentes de 45°, entonces sus alcances horizontales son
menores que Rz = v%/ g. Al analizar la funcién en (4) se observa que obtenemos el mismo
alcance horizontal para dngulos complementarios como 20° y 70°, y 30° y 60°. Vea la FIGURA
57.2. Si se toma en cuenta la resistencia del aire, el alcance de todos los proyectiles es mis
corto que v}/g, aunque se hayan disparado a un dngulo de elevacién de 45°.

A\ e A Volumen méaximo

Un canal6n para agua de 20 pies de longitud tiene extremos en forma de tridngulos isdsceles
cuyos lados miden 4 pies de longitud. Determine la dimensién a través del extremo triangular
de modo que el volumen del canalén sea maximo. Encuentre el volumen maximo.

El canalén con la dimensién desconocida x se muestra en la FIGURA 5.7.3. El volu-
men V del canaldn es

V = (érea del extremo triangular) X (longitud).

5.7 Optimizacién
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FIGURA 5.7.1 Bala de cafién en

el ejemplo 1

vi/g
FIGURA 5.7.2  Mismo alcance
para dngulos complementarios

FIGURA 5.7.3 Canal6n de agua
en el ejemplo 2
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—i
« altura =

4 pies
16 —x2/4

FIGURA 5.7.4 Extremo triangular
del canal6n en el ejemplo 2

/<

4 pies

FIGURA 5.7.5 Extremo triangular
del canalén en el ejemplo 3

AN
N

FIGURA 5.7.6  Circulo y punto en
el ejemplo 4

Por la FIGURA 574 y el teorema de Pitdgoras, el drea del extremo triangular como una funcién
de x es zix V16 — x2/4. En consecuencia, el volumen del canalén como una funcion de x, la

funcién objetivo, es
Vix) = 20~(;x\/ 16 — ixz) =5x\V64 — x°.

La funcién V(x) sélo tiene sentido sobre el intervalo cerrado [0, 8]. (;Por qué?)
Al tomar la derivada y simplificar se obtiene

xr— 32

V64 — x2
Aunque V'(x) = 0 para x = +4V/2, el tinico nimero critico en el intervalo abierto (0, 8) es
4\/2. Puesto que la funciéon V(x) es continua sobre [0, 8], sabemos por el teorema 5.2.3 que
V(0) = V(8) = 0 debe ser su minimo absoluto. Entonces, el maximo absoluto de V(x) debe

ocurrir cuando el ancho a través de la parte superior del canalén es 4\/2 = 5.66 pies. El volu-
men méximo es V(4\V/2) = 160 pies’.

Vi(x) = —10

Nota: A menudo un problema puede resolverse en mds de una forma. En retrospectiva, usted
debe comprobar que la solucién del ejemplo 2 es ligeramente “mds limpia” si la dimensién a
través de la parte superior del extremo del canalén se identifica como 2x en vez de como x.
En efecto, como se muestra en el siguiente ejemplo, el ejemplo 2 puede resolverse usando una
variable completamente distinta.

=8]3)7 | JHe MY Solucion alterna del ejemplo 2

Como se muestra en la FIGURA 5.7.5, 6 denota el dngulo entre la vertical y uno de los lados. A
partir de trigonometria de tridngulos rectdngulos, la altura y la base del extremo triangular son
4 cos 0y 8 sen 6, respectivamente. Cuando V se expresa como una funcién de 6 obtenemos
(% - base - altura) X (longitud), o bien,

V(o) = %(4 cos 6)(8 sen 0) - 20
320 sen 6 cos 6
160(2sen 6 cos 0)

= 160 sen 26, « férmula de dngulo doble

donde 0 = 6 =< 7/2. Al proceder como en el ejemplo 1, encontramos que el valor maximo
V = 160 pies> ocurre en 6 = /4. La dimension a través de la parte superior del canalén, o
la base del tridngulo isosceles, es 8 sen(w/4) = 4\/2 pies.

I Problemas con restricciones A menudo es mds conveniente plantear una funcién en tér-
minos de dos variables en lugar de una. En este caso es necesario encontrar una relacion entre
estas variables que pueden usarse para eliminar una de las variables de la funcién en conside-
racion. Como se analiz6 junto con (1), esta relacion suele ser una ecuaciéon denominada res-
triccion. Este concepto lo ilustran los dos siguientes ejemplos.

()3 [JNeBW:8 Punto mas proximo

Encuentre el punto en el primer cuadrante sobre el circulo x* + y* = 1 mds préximo a (2, 4).

Sea (x, y), x >0, y > 0 el punto sobre el circulo mas préximo al punto (2, 4). Vea
la FIGURA 5.7.6.
Como se muestra en la figura, la distancia d entre (x, y) y (2, 4) es

d=V@x-27+ (y — 47 obien, d>=(x -2+ (y — 4>~
Luego, el punto que minimiza el cuadrado de la distancia d> también minimiza la distancia d.
Se escribird D = d°. Al desarrollar (x — 2)? y (y — 4)? y usar la restriccién x> + y> = 1 en
la forma y = V1 — x2, encontramos
\'2 )
oo ml=l=
DX)=x*—4x+4+0—-xH—-8VI1I—x*+16
—4x — 8V1 — x> + 21.



Debido a que se ha supuesto que x y y son positivos, el dominio de la funcién anterior es
el intervalo abierto (0, 1). No obstante, la solucién del problema no es afectada de ninguna
manera si se supone que el dominio es el intervalo cerrado [0, 1].

Al diferenciar obtenemos

—4V1 — x* + 8

2

D'(x) = —4 — 4(1 = x»)A(=2x) =

1 —x

Luego, D'(x) = 0 s6lo si =4V 1 — x> + 8x = 00 2x = V1 — x°. Después de elevar al cua-
drado ambos miembros y simplificar, encontramos que \@/5 es el unico nimero critico en
el intervalo (0, 1). Debido a que D(x) es continua sobre [0, 1], a partir de los valores de la
funcién

DO) =13, D(V5/5)=21-4V5~1206 y D()=17

concluimos que Dy, por consiguiente, la distancia d son minimos cuando x = V/5/5. Al usar
la restriccién x* + y* = 1, de manera correspondiente encontramos que y = 2V/5/5. Esto sig-
nifica que (\f5/ 5, 2\@/ 5) es el punto sobre el circulo mds préximo a (2, 4).

NS\ [ MY Cerca minima

Un granjero intenta delimitar un terreno rectangular que tenga un drea de 1 500 m?. El terreno
estard cercado y dividido en dos partes iguales por medio de una cerca adicional paralela a
dos lados. Encuentre las dimensiones del terreno que requiere la menor cantidad de cerca.

Como se muestra en la FIGURA5.7.7, x y y denotan las dimensiones del terreno cercado.
La funcién que queremos minimizar es la cantidad total de cerca; es decir, la suma de las lon-
gitudes de las cinco porciones de cerca. Si esta suma se denota por el simbolo L, tenemos

L = 2x + 3y. (5)

Debido a que el drea del terreno cercado debe ser de 1500 m?, x y y deben estar relaciona-
dos por el requisito de que xy = 1 500. Usamos esta restricciéon en la forma y = 1 500/x para
eliminar y en (5) y escribir la funcién objetivo L como una funcién de x:

L(x) = 2x + @ (©6)

Puesto que x representa una dimensioén fisica que satisface xy = 1 500, concluimos que
es positiva. Pero aparte de esta restriccion, sobre x no hay ninguna otra restricciéon. Por tanto,
a diferencia de los ejemplos anteriores, la funcién en consideracion no esta definida sobre un
intervalo cerrado; L(x) estd definida sobre el intervalo no acotado (0, ©0).

Al igualar a cero la derivada

4 500

x2

L) =2 -

y despejar x, encontramos que el Unico nimero critico es 15V 10. Puesto que es fécil calcu-
lar la segunda derivada, usamos el criterio de la segunda derivada. A partir de

9 000
e

L/r(x) —

observamos que L"(15V10) > 0. Por el teorema 5.5.3 concluimos que L(15V/10) = 2(15V10
) +4 500/(15\/@) =60 V10 m es la cantidad minima requerida de cerca. Volviendo a la res-
triccién y = 1 500/x, encontramos que el valor correspondiente de y es 10V/10. En consecuen-
cia, las dimensiones del terreno deben ser 15V10m X 10V10 m.

Si un objeto se mueve a razén constante, entonces la distancia, la razén y el tiempo estian
relacionados por distancia = razon X tiempo. Este resultado se usard en el dltimo ejemplo en
la forma

distancia

tiempo = ,
razon

N

5.7 Optimizacion 251

ARy
et

FIGURA 5.7.7  Terreno rectangular
en el ejemplo 5
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I 15 mi .
f—x—] ﬁ
P

oblacion

FIGURA 5.7.8  Mujer que se
desplaza en el ejemplo 6

X)=2x+4: X, x>
LA L(x) =2x+4500/x, x>0

minimo
absoluto

L(15410)

|
|
|
I
|
L X

>

15410

FIGURA 5.7.9  Gréfica de la fun-
cion objetivo en el ejemplo 5

A\ [T} Tiempo minimo

Una mujer en el punto P sobre una isla desea llegar a una poblacién situada en el punto S
sobre una playa recta en tierra firme. El punto P estd a 9 millas del punto mds préximo Q
sobre la playa y la poblacion en el punto S estd a 15 millas de Q. Vea la FIGURA 5.7.8. Si la mujer
rema un bote a razén de 3 mi/h hacia un punto R en tierra, luego camina el resto del camino
hacia S a razén de 5 mi/h, determine dénde debe desembarcar en la playa a fin de minimizar
el tiempo total de viaje.

Como se muestra en la figura, si x denota la distancia del punto Q en la playa al
punto R donde la mujer desembarca en la playa, entonces por el teorema de Pitdgoras, la dis-
tancia que ella rema es V81 + x°. La distancia que camina es 15 — x. Por (7), el tiempo total
del viaje desde P hasta S es

V81 + x? 15 — x

T = tiempo de remado + tiempo caminando, o bien, T(x) = 3 + 5

Puesto que 0 = x = 15, la funcién T(x) estd definida sobre el intervalo cerrado [0, 15].
La derivada de T es

dr 1 - 1 X 1
=Bl )V s ———=— 1.
dx 6 5 37\ /81 + X2 5

Igualamos esta derivada a cero y despejamos x:

X 1
3V8l + 2 D
X 9
81+x2_25
16x* = 729
i
T

.27 L. . o .
Es decir, 5 es el Unico nimero critico en [0, 15]. Puesto que 7(x) es continua sobre el

intervalo, a partir de los tres valores de la funcién
T0)=6h, T(})=54h y T(15) ~583h

el tiempo de viaje minimo ocurre cuando x = % = 6.75. En otras palabras, la mujer desem-
barca en el punto R, a 6.75 millas del punto Q, y luego camina las 8.25 millas restantes hacia
el punto S.

f'(xX) NOTAS DESDE EL AULA

Un lector perspicaz podria cuestionar por lo menos dos aspectos del ejemplo 5.

i) En la solucién, ;dénde entra la hipdtesis de que el terreno sea dividido en dos partes
iguales? De hecho, no lo hace. Lo importante es que la cerca divisoria sea paralela a los
dos extremos. Pregtintese cudl seria L(x) si éste no fuera el caso. No obstante, la ubicacién
real de la cerca divisoria entre los extremos es irrelevante en tanto sea paralela a éstos.

ii) En un problema aplicado, por supuesto que tenemos interés sélo en los extremos absolu-
tos. En consecuencia, otra pregunta podria ser: puesto que la funcién L en (6) no esta
definida sobre un intervalo cerrado y como el criterio de la segunda derivada no garanti-
za extremos absolutos, ;cémo puede tenerse la certeza de que L(15V/10) es un minimo
absoluto? Cuando se tengan dudas, siempre es posible trazar una grafica. La FIGURA 5.7.9
responde la pregunta para L(x). También, observe de nuevo el teorema 5.4.2 en la seccién
5.4. Debido a que 15V/10 es el sinico nimero critico en el intervalo que (0, 50) y ya que
se demostré que L(15V/10) es un minimo relativo, el teorema 5.4.2 garantiza que el valor
de la funcién L(15V10) = 60V10 es un minimo absoluto.
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DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-17.

= Fundamentos

1.

10.

Encuentre dos niimeros no negativos cuya suma sea 60
y cuyo producto sea maximo.

Encuentre dos nimeros no negativos cuyo producto sea
50 y cuya suma sea minima.

Encuentre un nimero que exceda su cuadrado por la
mayor cantidad.

Sean m y n enteros positivos. Encuentre dos nimeros no
negativos cuya suma sea S de modo que el producto de
la m-ésima potencia de uno y la n-ésima potencia del
otro sea maximo.

Encuentre dos niimeros no negativos cuya suma sea 1|
de modo que la suma del cuadrado de uno y el doble
del cuadrado del otro sea minima.

Encuentre el valor minimo de la suma de un niimero no
negativo y su reciproco.

Encuentre el o los puntos sobre la grifica de y* = 6x
mds préximo(s) a (5, 0), mas préximo(s) a (3, 0).
Encuentre el punto sobre la grafica de x + y = 1 mads
préximo a (2, 3).

Determine el punto sobre la grifica de y = x* — 4x% en
que la recta tangente tiene pendiente minima.
Determine el punto sobre la grafica de y = 8x* + 1/x
en que la recta tangente tiene pendiente maxima.

En los problemas 11 y 12, encuentre las dimensiones de la
region sombreada de modo que su drea sea maxima.

11.

13.

y 12. y

N
t t .\ X / \ .

FIGURA 5.7.10  Grifica
para el problema 11

2x+3y=6

FIGURA 5.7.11  Grifica
para el problema 12

Encuentre los vértices (x, 0) y (0, y) de la regién trian-
gular sombreada en la FIGURA 57.12 tal que su drea sea
minima.

©.y
2.4)

(x, 0)

FIGURA 5.7.12  Gréfica
para el problema 13

14.

15.

16.

17.

18.

19.

20.

Encuentre la distancia vertical mdxima d entre las gra-
ficasdey =x>—1yy=1—xpara—2=x= 1. Vea
la FIGURA 5.7.13.

t X
/y\=1—x

FIGURA 5.7.13  Grifica
para el problema 14

Un granjero tiene 3 000 pies de cerca a la mano.
Determine las dimensiones de un corral rectangular que
contenga el drea maxima.

Un terreno rectangular ha de cercarse en tres porciones
iguales al dividir cercas paralelas a dos lados. Vea la
FIGURA 5.7.14. Si el drea a encerrar es de 4 000 m?, encuen-
tre las dimensiones de terreno que requiere la cantidad
minima de cerca.

FIGURA 5.7.14 Terreno rectangular en el problema 16

Si la cantidad total de cerca usada es 8 000 m, encuen-
tre las dimensiones de terreno encerrado en la figura
5.7.14 que tenga el drea mixima.

Se piensa cercar un patio rectangular sujetando la cerca
a una casa de 40 pies de ancho. Vea la FIGURA 5.7.15. La
cantidad de cerca es 160 pies. Describa como debe usar
la cerca de modo que se abarque la mayor drea.

FIGURA 5.7.15 Casa y patio en el problema 18

Resuelva el problema 18 si la cantidad de cerca a usar
mide 80 pies.

Un granjero desea construir un corral rectangular de
128 000 pies” con un lado a lo largo de un acantilado
vertical. El cercado a lo largo del acantilado cuesta
$1.50 por pie, mientras que a lo largo de los otros tres
lados cuesta $2.50 por pie. Encuentre las dimensiones
del corral, de modo que el costo del cercado sea minimo.
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21.

22,

23.

24.

25.

26.

Se desea construir una caja rectangular cerrada con base
cuadrada y volumen de 32000 cm’. Encuentre las
dimensiones de la caja que requiera la menor cantidad
de material.

En el problema 21, encuentre las dimensiones de una
caja cerrada que requiera la menor cantidad de material.
Se producird una caja, abierta por la parte superior, de
una pieza cuadrada de cartén cortando un cuadrado
de cada esquina y doblando los lados. En la FIGURA 5.7.16,
los cuadrados blancos se han cortado y el cartén se ha
doblado a lo largo de las lineas discontinuas. Dado que
la pieza de cartén mide 40 cm por lado, encuentre las
dimensiones de la caja con que se obtiene el volumen
maximo. (Cudl es el volumen maximo?

40 cm

b)
FIGURA 5.7.16  Caja abierta en el problema 23

Se producird una caja, abierta por la parte superior, de una
pieza rectangular de cartén que mide 30 pulg de largo por
20 pulg de ancho. La caja puede cerrarse al cortar un cua-
drado en cada esquina, al cortar sobre las lineas sélidas
interiores y doblar luego el cartén por las lineas discon-
tinuas. Vea la FIGURA 5.7.17. Exprese el volumen de la caja
como una funcién de la variable indicada x. Encuentre las
dimensiones de la caja con que se obtiene el volumen
méximo. ;Cudl es el volumen maximo?

P Dobleg/ P
Corte| i
K | |
X X
X X X X
a) b)

FIGURA 5.7.17 Caja abierta en el problema 24

Se producird un canal6én con seccién transversal rectan-
gular al doblar cantidades iguales de los extremos de una
plancha de aluminio de 30 cm de ancho. ;Cudles son las
dimensiones de la seccién transversal de modo que el
volumen sea méaximo?

Se producird un canalén cuya seccién transversal es un
trapezoide isdésceles con dimensiones indicadas en la
FIGURA 5.7.18. Determine el valor de 6 tal que maximice
el volumen.

o

N
}‘7 10 pulg~>{

FIGURA 5.7.18  Canal6n en el problema 26

27.

28.

29.

Dos astabanderas estdn aseguradas con cables sujetos a
un solo punto entre las astas. Vea la FIGURA 5.7.19. ;Dénde
debe ubicarse el punto a fin de minimizar la cantidad de
cable usado?

f«———30 pies ——|

Suelo

FIGURA 5.7.19  Astabanderas en el problema 27

La pista de carreras que se muestra en la FIGURA 5.7.20
debe constar de dos partes rectas paralelas y dos partes
semicirculares. La longitud de la pista debe medir 2 km.
Encuentre el disefio de la pista de modo que el terreno
rectangular encerrado por la pista sea maximo.

pista de
carreras

FIGURA 5.7.20 Pista de carreras en el problema 28

Una ventana normanda es un rectangulo con un semi-
circulo arriba de éste. Encuentre las dimensiones de la
ventana con mayor drea si su perimetro mide 10 m. Vea
la FIGURA 5.7.21.

FIGURA 5.7.21 Ventana
normanda en el problema 29

30. Vuelva a trabajar el problema 29 dado que el rectangulo

estd arriba de un tridngulo equildtero.

31. Un muro de 10 pies de altura estd a 5 pies de un edifi-

cio, como se muestra en la FIGURA 5.7.22. Encuentre la lon-
gitud L de la escalera mds corta, apoyada en el muro,
que llega desde el suelo hasta el edificio.

o< Escalera
Q

Edificio l
FIGURA 5.7.22 Escalera en el problema 31

Suelo



32.

33.

34.

35.

Las regulaciones del servicio postal estadounidense esta-
blecen que una caja rectangular enviada por servicio de
cuarta clase debe satisfacer el requerimiento de que su
longitud mds su circunferencia (perimetro de un extremo)
no debe exceder 108 pulg. Dado que se elaborard una
caja con base cuadrada, encuentre las dimensiones de
la caja que tenga volumen maximo. Vea la FIGURA 5.7.23.

[«—x—>] -

> Longitud
.

N

l N
N
—— = —D

NN

FIGURA 5.7.23  Caja en el problema 32

Circunferencia

|
I
|
Y
|
I
|

Encuentre las dimensiones del cilindro circular recto con
volumen maximo que puede inscribirse en un cono circu-
lar recto de 8 pulg de radio y 12 pulg de altura. Vea la
FIGURA 5.7.24.

|<8 pulg
FIGURA 5.7.24  Cilindro inscrito
en el problema 33

Encuentre la longitud maxima L de una ldmina delgada
que puede transportarse horizontalmente alrededor de
una esquina en angulo recto mostrada en la FIGURA 5.7.25.
[Sugerencia: Utilice tridngulos similares.]

<8 pies
\

Lamina /

- |

8 pies

FIGURA 5.7.25 Lémina en el problema 34

Se producird una lata para jugo en forma de cilindro
circular recto con volumen de 32 pulg®. Vea la FIGURA
5.7.26. Encuentre las dimensiones de la lata de modo que
para hacerla se use la menor cantidad de material. [Suge-
rencia: Material = drea superficial total de la lata = drea
de la parte superior + drea de la parte inferior + 4rea de
lado lateral. Si las partes circulares superior e inferior se
retiran y el cilindro se corta en forma recta por el lado
y se aplana, el resultado es el rectingulo mostrado en la
figura 5.7.26¢).]

.
1

a) Cilindro circular
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|<— 2‘n'r—>|

T

h

1

c) El lado es rectangular

b) Las partes superior e
inferior son circulares

FIGURA 5.7.26 Lata de jugo en el problema 35

36.

37.

38.

En el problema 35, suponga que las partes circulares
superior e inferior se cortan de laminas metdlicas cua-
dradas como se muestra en la FIGURA 5.7.27. Si se desper-
dicia el metal cortado de las esquinas de la ldmina cua-
drada, encuentre las dimensiones de la lata de modo que
para elaborarla se use la menor cantidad de material
(incluyendo el desperdicio).

J—Metal de
desecho

FIGURA 5.7.27 Partes superior e
inferior de la lata en el problema 36

Algunas aves vuelan mds lentamente sobre agua que
sobre tierra. Un ave vuela a razones constantes de
6 km/h sobre agua y 10 km/h sobre tierra. Use la infor-
macién de la FIGURA 5.7.28 para encontrar la trayectoria a
la cual el ave debe seguir para minimizar el tiempo total
de vuelo entre la costa de una isla y su nido ubicado en
la costa de otra isla. [Sugerencia: Use distancia = razon
X tiempo.]

Isla

FIGURA 5.7.28  Ave en el problema 37

Se va a construir una tuberfa desde una refineria a tra-
vés de un pantano hasta tanques de almacenamiento. Vea
la FIGURA 5.7.29. El costo de construccién es $25 000 por
milla sobre el pantano y $20 000 por milla sobre tierra.
(Cémo debe construirse la tuberia para que el costo de
produccion sea minimo?
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39.

40.

41.

42,
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Tanques de almacenamiento

Tierra

Pantano

Refineria

FIGURA 5.7.29 Tuberia en el problema 38

Vuelva a trabajar el problema 38 dado que el costo por
milla a través del pantano es el doble del costo por milla
sobre tierra.

A medianoche, el barco A esta a 50 km al norte del
barco B. El barco A se dirige hacia el sur a 20 km/h y
el barco B se dirige al oeste a 10 km/h. ;En qué instante
es minima la distancia entre los barcos?

Un contenedor que transporta desechos peligrosos se
fabrica de pléstico pesado y se forma al unir dos hemis-
ferios a los extremos de un cilindro circular recto como
se muestra en la FIGURA 57.30. El volumen total del con-
tenedor es de 307 pie’. El costo por pie cuadrado para
los extremos es una vez y media el costo por pie cua-
drado del pléstico usado en la parte cilindrica. Encuentre
las dimensiones del contenedor de modo que su costo
de produccion sea minimo. [Sugerencia: El volumen de
una esfera es %77r3 y su drea superficial es 4]

< h > hemisferio
FIGURA 5.7.30  Contenedor en el problema 41

Una pdgina impresa debe tener margenes izquierdo y
derecho de 2 pulg de espacio en blanco y madrgenes
superior e inferior de 1 pulg de espacio en blanco. Vea
la FIGURA 5.7.31. El 4rea de la porcién impresa es 32 pulg”.
Determine las dimensiones de la pagina de modo que se
use la menor cantidad de papel.

2 pulg 2 pulg
o

1
1 pulg
T

L] 1
+ puig

FIGURA 5.7.31 Pégina impresa en el problema 42

43.

44.

45.

46.

Una esquina de una hoja de papel de 8.5 pulg X 11 pulg
se dobla sobre el otro borde del papel como se muestra
en la FIGURA 5.7.32. Encuentre el ancho x del doblez de
modo que la longitud L del pliegue sea minima.

[<—28.5 pulg—>]|

11 pulg

FIGURA 5.7.32  Pieza de papel
en el problema 43

El marco de una cometa consta de seis partes de plastico
ligero. Como se muestra en la FIGURA 5.7.33, el marco exte-
rior de la cometa consta de cuatro piezas precortadas, dos
piezas de 2 pies de longitud y dos piezas de 3 pies de lon-
gitud. Las partes restantes en forma de cruz, identificadas
por x en la figura, deben cortarse de longitudes tales que
la cometa sea lo mds grande posible. Encuentre estas lon-
gitudes.

2 pies, 2 pies

3 pies 3 pies

FIGURA 5.7.33 Cometa en el problema 44

Encuentre las dimensiones del rectiangulo de drea maxi-
ma que puede circunscribirse alrededor de un rectangulo
de longitud a y ancho b. Vea el rectingulo grande en la
FIGURA 5.7.34.

rectangulo
3

FIGURA 5.7.34 Rectdngulo en el problema 45

Una estatua se coloca sobre un pedestal como se mues-
tra en la FIGURA 5.7.35. ;A qué distancia del pedestal debe
pararse una persona para maximizar el dngulo de vision
0? [Sugerencia: Revise la identidad trigonométrica para
tan(f, — 6,). También es suficiente maximizar tan 6 mas
que 6. ;Por qué?]
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48.
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FIGURA 5.7.35 Estatua en el problema 46

La seccidn transversal de una viga de madera cortada de
un tronco circular de didmetro d mide x de ancho y y
de profundidad. Vea la FIGURA 5.7.36. La resistencia de la
viga varfa directamente con el producto del ancho y el
cuadrado de la profundidad. Encuentre las dimensiones
de la seccion transversal de maxima resistencia.

FIGURA 5.7.36 Tronco en el problema 47

El contenedor que se muestra en la FIGURA 5.7.37 se cons-
truird al unir un cono invertido (abierto en la parte supe-
rior) con la parte inferior de un cilindro circular recto
(abierto en sus partes superior e inferior) de radio 5 pies.
El contenedor debe tener un volumen de 100 pies”.
Encuentre el valor del d4ngulo indicado de modo que el
area superficial total del contenedor sea minima. ;Cual
es el drea superficial minima? [Sugerencia: Vea el pro-
blema 38 en la parte C de la revisién de la unidad 2.]

abierto m

!
/

FIGURA 5.7.37 Contenedor en el problema 48

La iluminancia E debida a una fuente de luz o intensi-
dad I a una distancia r de la fuente estd dada por
E = I/r*. La iluminancia total proveniente de dos focos
de intensidades I, = 125 e I, = 216 es la suma de las
iluminancias. Encuentre el punto P entre los dos focos
a 10 m de distancia de éstos en que la iluminancia total
es minima. Vea la FIGURA 5.7.38.

Q.Y

—

FIGURA 5.7.38  Focos en el problema 49

50.

51.

52.
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La iluminancia E en cualquier punto P sobre el borde
de una mesa redonda originada por una luz colocada
directamente arriba del centro de la mesa estd dada por
E = (i cos 6)/r*. Vea la FIGURA 5.7.39. Dado que el radio
de la mesa es 1 m y que / = 100, encuentre la altura en
que debe colocarse la luz de modo que E sea mixima.

FIGURA 5.7.39 Luz y mesa en el problema 50

El principio de Fermat en optica establece que la luz
se desplaza del punto A (en el plano xy) en un medio
hasta el punto B en otro medio siguiendo una trayecto-
ria que requiere tiempo minimo. Si ¢; es la rapidez de
la luz en el medio que contiene al punto A y ¢, es la
rapidez de la luz en el medio que contiene al punto B,
demuestre que el tiempo de recorrido de A a B es
minimo cuando los dngulos 0, y 6,, que se muestran en
la FIGURA 5.7.40, cumplen la ley de Snell:

sen 6, sen ),
€1 ¢
"}
Medio 1

d Medio 2

FIGURA 5.7.40 Dos medios en el problema 51

La sangre es transportada por el cuerpo mediante el
tejido vascular, que consta de vasos capilares, venas, arte-
riolas y arterias. Una consideracién de los problemas de
minimizacién de la energia utilizada para mover la san-
gre a través de varios 6rganos consiste en encontrar un
dngulo 6ptimo 0 para la ramificacion vascular de modo
que sea minima la resistencia total de la sangre a lo largo
de una trayectoria de un vaso capilar mds grande a un
vaso capilar mas pequefo. Vea la FIGURA 5.7.41. Use la ley
de Poiseuille, que establece que la resistencia R de un
vaso capilar de longitud / y radio r es R = kl/r*, donde
k es una constante, para demostrar que la resistencia total

X y
R=k=<)+ 12
(r‘l‘) <r‘2‘>
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a lo largo de la trayectoria P;P,P; es minima cuando
cos 0 = r3/ri. [Sugerencia: Exprese x y y en términos
de 0y a.l]

X »}17 [—x ———>
(variable) i
(constante)

FIGURA 5.7.41

Ramificacion vascular en el problema 52

53. La energia potencial entre dos dtomos en una molécula

diatémica estd dada por U(x) = 2/x'> — 1/x°. Encuentre
la energia potencial minima entre los dos atomos.

La altitud de un proyectil lanzado con una velocidad ini-
cial constante v, a un angulo de elevacion 6, estd dada
-8
2v3 cos? 6,
plazamiento horizontal medido desde el punto de lanza-
miento. Demuestre que la altitud maxima alcanzada por
el proyectil es h = (v3/2g) sen’ 6.

. Una viga de longitud L se incrusta en muros de concreto
como se muestra en la FIGURA 5.7.42. Cuando una carga
constante w se distribuye uniformemente a lo largo de
su longitud, la curva de desviacion y(x) para la viga estd
dada por

pory = (tan 6y)x — >x2, donde x es su des-

Wo l42

_ WoL
YO = umr®

_ X Wo 4
12EI

2
VTR

3

donde E e I son constantes (E es el moédulo de elasti-
cidad de Young e [ es el momento de inercia de una
seccion transversal de la viga). La curva de desviacion
aproxima la forma de la viga.

a) Determine la deflexién maxima de la viga.
b) Trace la grifica de y(x).

Muro

y
FIGURA 5.7.42  Viga en el problema 55

La relacion entre la altura 4 y el didmetro d de un arbol
puede aproximarse por la expresion cuadratica h = 137 +
ad — bd®, donde h y d se miden en centimetros, y a 'y b
son parametros positivos que dependen del tipo de arbol.
Vea la FIGURA 5.7.43.

a) Suponga que el drbol alcanza una altura mdxima
de H centimetros a un didmetro de D centimetros. De-
muestre que

H — 137

h= 137+ 25 = T

57.

58.

b) Suponga que cierto arbol alcanza su altura maxima
posible (segtn la féormula) de 15 m a un didmetro de
0.8 m. /Cudl es el didmetro del 4rbol cuando mide
10 m de alto?

—>db—

FIGURA 5.7.43  Arbol en el problema 56

Los huesos largos en los mamiferos pueden represen-
tarse como tubos cilindricos huecos, llenos con médula,
de radio exterior R y radio interior r. Se piensa fabricar
huesos ligeros pero capaces de soportar ciertos momen-
tos de flexion. Para resistir un momento de flexion M,
puede demostrarse que la masa m por longitud unitaria
del hueso y médula estd dada por

el (-3
" P ka - 2Y )

donde p es la densidad del hueso y K es una constante
positiva. Si x = r/R, demuestre que m es minima
cuando r = 0.63R (aproximadamente).

La razén P (en mg de carbono/m’/h) a la cual se lleva
a cabo la fotosintesis para ciertas especies de fitoplanc-
ton est4 relacionada con la intensidad de la luz I (en 10°
pies-candela) por la funcién

_ 1001
P+1+4

(A qué intensidad de la luz se cumple que P es maxima?

= Piense en ello

59.

60.

61.

Un clasico matematico Una persona desea cortar una
pieza de 1 m de longitud de alambre en dos partes. Una
parte debe doblarse en forma de circulo y la otra en
forma de cuadrado. ;Cémo debe cortarse el alambre de
modo que la suma de las dreas sea maxima?

En el problema 59, suponga que una parte del alambre
se dobla en forma de circulo y que la otra se dobla en
forma de tridngulo equildtero. ;Cémo debe cortarse el
alambre de modo que la suma de las dreas sea minima?
(Y maxima?

Un vaso conico se elabora a partir de una pieza circular
de papel de radio R al cortar un sector circular y luego
unir los bordes sombreados como se muestra en la
FIGURA 5.7.44.

a) Determine el valor de r indicado en la figura 5.7.44b)
de modo que el volumen del vaso sea miximo.

b) (Cual es el volumen maximo del vaso?

¢) Encuentre el dngulo central 6 del sector circular de
modo que el volumen del vaso conico sea maximo.
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63.

64.

2 1l

Corte

a) b)
FIGURA 5.7.44  Vaso cénico en el problema 61

Se piensa elaborar la cara lateral de un cilindro a partir
de un rectdngulo de ldmina de plastico ligero. Debido a
que el material pldstico no puede sostenerse por si
mismo, en el material se incrusta un delgado alambre
rigido, como se muestra en la FIGURA 5.7.45a). Encuentre
las dimensiones del cilindro de volumen méiximo que
puede elaborarse si el alambre tiene una longitud fija L.
[Sugerencia: En este problema hay dos restricciones. En
la figura 5.7.45b), la circunferencia de un extremo circu-
lar del cilindro es y.]

Alambre

L r

X

a) Lamina rectangular b) Lado del
de plastico cilindro
FIGURA 5.7.45 Cilindro en el problema 62

En el problema 27, demuestre que cuando se usa la can-
tidad 6ptima de alambre (la cantidad minima) entonces
el angulo 0, que el alambre del asta bandera izquierda
forma con el suelo es el mismo que el dngulo 6, que el
alambre del asta bandera derecha forma con el suelo.
Vea la figura 5.7.19.

Encuentre una ecuacion de la recta tangente L a la gra-
ficade y = 1 — x? en P(x,, yo) tal que el tridgngulo en el
primer cuadrante acotado por los ejes coordenados y L
tenga drea minima. Vea la FIGURA 5.7.46.

y

P(xg, o)

A
y=1—x"

FIGURA 5.7.46  Triangulo en el problema 64

En una carrera, a una mujer se le solicita que nade desde
un muelle flotante A hacia la playa y, sin detenerse, que
nade de la playa hacia otro muelle flotante C. Las dis-
tancias se muestran en la FIGURA 5.7.47a). La mujer calcula
que puede nadar del muelle A a la playa y luego al mue-
lle C a razén constante de 3 mi/h y luego del muelle C

ITni

!
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a la playa a una razén de 2 mi/h. ;Dénde debe tocar la
playa a fin de minimizar el tiempo total de natacién de
A a C? Introduzca un sistema de coordenadas xy como
se muestra en la figura 5.7.47b). Use una calculadora o
un SAC para encontrar los nimeros criticos.

%/@Eﬂi ' A0, 1) @ 1
. .

Playla
I

B(x, 0)

4 mi |

a) b)

FIGURA 5.7.47 Nadadora en el problema 65

66.

67.

Una casa de dos pisos en construccién consta de dos
estructuras A y B con secciones transversales rectangu-
lares como se muestra en la FIGURA 5.7.48. Para elaborar
el armazon de la estructura B se requieren sostenes tem-
porales de madera desde el nivel del suelo apoyados
contra la estructura A como se muestra.

a) Exprese la longitud L del sostén como una funcién
del angulo 6 indicado.

b) Encuentre L'(0).

¢) Use una calculadora o un SAC para encontrar la gra-
fica de L'(0) sobre el intervalo (0, 77/2). Use esta gra-
fica para demostrar que L sélo tiene un ndmero cri-
tico 6, en (0, 7/2). Use esta gréfica para determinar
el signo algebraico de L'(f) para 0 < 0 < 6, y el
signo algebraico de L'(f) para 0. < 6 < /2. ;Cuil
es su conclusiéon?

d) Encuentre la longitud minima de un sostén.

|~

e\~ Contrafuerte
A

10 pies

|<—10 pies—>|

FIGURA 5.7.48 Casa en el problema 66

Considere los tres cables mostrados en la FIGURA 5.7.49.

a) Exprese la longitud total L de los tres cables mostra-
dos en la figura 5.7.49a) como una funcién de la lon-
gitud L del cable AB.

b) Use una calculadora o un SAC para comprobar que
la grifica de L tiene un minimo.

¢) Exprese la longitud del cable AB de modo que la lon-
gitud total L de las longitudes de los tres cables sea
minima.

d) Exprese la longitud total L de los tres cables mostra-
dos en la figura 5.7.49b) como una funcién de la lon-
gitud del cable AB.

e) Use una calculadora o un SAC para comprobar que
la grifica de L tiene un minimo.
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g

tangente

f) Use la gréfica obtenida en el inciso ¢) o un SAC
como ayuda en la aproximacién de la longitud del
cable AB que minimiza la funcién L obtenida en el
inciso d).

2 Jle 2 . 2
I*pies pies_»| _>|1 Plel*pies '>|
c H DT T c\ ¥ b
1 1
i 4 pies 4 pies i
a) b)

FIGURA 5.7.49 Cables en el problema 67

. Interferencia de frecuencia Cuando la Administra-

cién Federal de Aviacidn (FAA, por sus siglas en inglés)
asigna numerosas frecuencias para un radiotransmisor en
un aeropuerto, bastante a menudo los transmisores cerca-
nos usan las mismas frecuencias. Como consecuencia, la
FAA intenta minimizar la interferencia entre estos trans-
misores. En la FIGURA 5.7.50, el punto (x,, y,) representa la
ubicacién de un transmisor cuya jurisdiccion radial estda
indicada por el circulo C de radio con centro en el origen.
Un segundo transmisor se encuentra en (x;, 0) como se
muestra en la figura. En este problema, usted desarrolla y
analiza una funcién para encontrar la interferencia entre
dos transmisores.

a) La intensidad de la sefial de un transmisor a un punto
es inversamente proporcional al cuadrado de la dis-
tancia entre ambos. Suponga que un punto (x, y) estd
ubicado sobre la porcién superior del circulo C como
se muestra en la figura 5.7.50. Exprese la intensidad
primaria de la sefial en (x, y) desde un transmisor en
(x;, y,) como una funcién de x. Exprese la intensidad
secundaria en (x, y) desde el transmisor en (x;, 0)
como una funcién de x. Luego defina una funcién
R(x) como un cociente de la intensidad primaria de

la sefial entre la intensidad secundaria de la sefial.
Puede considerarse que R(x) es una razon seiial a
ruido. Para garantizar que la interferencia perma-
nezca pequefia es necesario demostrar que la razén
seflal a ruido minima es mayor que el umbral minimo
de la FAA de —0.7.

b) Suponga que x;, = 760 m, y, = —560 m, r = 1.1 km
y x; = 12 km. Use un SAC para simplificar y luego
trazar la gréfica de R(x). Use la gréfica para estimar
el dominio y el rango de R(x).

¢) Use la gréfica en el inciso b) para estimar el valor de
x donde ocurre la razén minima R. Estime el valor
de R en ese punto. Este valor de R, ;excede el umbral
minimo de la FAA?

d) Use un SAC para diferenciar R(x). Use un SAC para
encontrar la raiz de R'(x) = 0 y para calcular el valor
correspondiente de R(x). Compare sus respuestas
aqui con las estimaciones en el inciso ¢).

e) (Cudl es el punto (x, y) sobre el circulo C?

f) Se supuso que el punto (x, y) estaba en el semiplano
superior cuando (x,, y,) estaba en el semiplano infe-
rior. Explique por qué esta suposicién es correcta.

g) Use un SAC para encontrar el valor de x donde
ocurre la interferencia minima en términos de los
simbolos x;, y, x; y 7.

h) ;(Doénde esta el punto que minimiza la razén sefial a
ruido cuando el transmisor en (x,, y,) estd sobre el
eje x? Proporcione un argumento convincente y jus-
tifique su respuesta.

(x, y)

/ M *; 0)

5 ¥

FIGURA 5.7.50 Radiotransmisores en el problema 68

5.8 Linealizacion y diferenciales

y=Lx) y=fx)

<

1(x, f(x)

I
1
1
I
I
I
I
1
1
X

FIGURA 5.8.1 Cuando x estd

proximo a a, el valor L(x) estd
cerca de f(x)

I Introduccion Empezamos el andlisis de la derivada con el problema de encontrar la recta tan-
gente a la grafica de una funcién y = f(x) en un punto (a, f(a)). Intuitivamente, es de esperar que
una recta tangente esté muy proxima a la grafica de f siempre que x esté cerca del nimero a. En
otras palabras, cuando x estd en una pequefia vecindad de a, los valores de la funcién f(x) estan
muy proximos al valor de las coordenadas y de la recta tangente. Asi, al encontrar una ecuacién
de la recta tangente en (a, f(a)) podemos usar esa ecuacion para aproximar f(x).

x Una ecuacién de la recta tangente mostrada en la FIGURA 5.8.1 estd dada por

y — fla) = fa)x — a)

Al usar notacién funcional estdndar, la ultima ecuacién en (1) se escribirda como
L(x) = f(a) + f'(a)(x — a). Esta funcion lineal recibe un nombre especial.

o bien,

y =fl@) + fla)x — a). ey
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Definicion 5.8.1 Linealizacion

Si una funcién y = f(x) es diferenciable en un nimero a, entonces decimos que la funcién

L(x) = f(a) + fa)x — a) @
es una linealizacién de f en a. Para un niimero x préximo a a, la aproximacion
f(x) = L(x) (3)

se denomina aproximacion lineal local de f en a.

No es necesario memorizar (2); es simplemente la forma punto-pendiente de una recta tan-
gente en (a, f(a)).

A\ |JHe BN Linealizacion de sen x

Encuentre una linealizacion de f(x) = sen xen a = 0.

Al usar f(0) = 0, f'(x) = cos x y f'(0) = 1, la recta tangente a la grafica de f(x) =
senxen (0,0)esy — 0 = 1-(x — 0). En consecuencia, la linealizacién de f(x) =senxena =0
es L(x) = x. Como se observa en la FIGURA 5.8.2, la grifica de f(x) = senx y su linealizacién en
a = 0 son casi indistinguibles cerca del origen. La aproximacion lineal local f(x) = L(x) de f
ena=0es

senx = x. “4)

I Errores En el ejemplo 1 se recalca algo que usted ya sabe por trigonometria. La aproxima-
cion lineal local (4) muestra que el seno de un dngulo pequeiio x (medido en radianes) es apro-
ximadamente el mismo que el dngulo. Para efectos de comparacién, si se escoge x = 0.1, enton-
ces (4) indica que f(0.1) = L(0.1) o sen(0.1) = 0.1. Para efectos de comparacién, con una
calculadora se obtiene (redondeado hasta cinco cifras decimales) f(0.1) = sen(0.1) = 0.09983.
Luego, un error en el cdlculo se define por

error = valor verdadero — valor aproximado. &)
No obstante, en la practica

. error

error relativo = T erdadero ©)

suele ser mds importante que el error. Ademads (error relativo) - 100 se denomina error porcen-

tual. Asi, con ayuda de una calculadora se encuentra que el error porcentual en la aproximacion

f(0.1) = L(0.1) es so6lo alrededor de 0.2%. En la figura 5.8.2 se muestra claramente que cuando

x se aleja de 0, la precision de la aproximacién sen x = x disminuye. Por ejemplo, para el niime-

ro 0.9, con una calculadora obtenemos f(0.9) = sen(0.9) = 0.78333, mientras que L(0.9) = 0.9.
En esta ocasion el error porcentual es aproximadamente 15%.

También hemos visto el resultado del ejemplo 1 presentado de manera ligeramente distinta

en la seccién 3.4. Si la aproximacién lineal local senx = x la dividimos entre x, obtenemos

sen x ‘o P .
=~ | para valores de x proximos a 0. Esto lleva de regreso al limite trigonométrico impor-
. senx

tante lim—— = 1.
=0 x

)3\ Ko BV N Linealizacion y aproximacion

a) Encuentre una linealizacién de f(x) = Vx + lena = 3.
b) Use una aproximacion lineal local para aproximar V3.95y V4.01.

a) Por la regla de potencias para funciones, la derivada de fes

Gy = L L
[ 2(x+ 9] N T

y
1 4

0.5
0, 0)

-1 —-0.5
.5

-1

FIGURA 5.8.2 Gréfica de funcién
y linealizacién en el ejemplo 1
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-1 l 1 2 3 4 5
FIGURA 5.8.3 Gréficas de
funcién y linealizacion en el
ejemplo 2

(a+ Ax, f(a+ Ax))

a a+ Ax
FIGURA 5.8.4 Interpretaciones
geométricas de dx, Ay y dy

Cuando ambas se evalian en a = 3 obtenemos:

fQ3) = \/Z =2 < el punto de tangencia es (3, 2)

1 1

7 3 = — = —,

AR 2V4 4

Asf, por la forma punto-pendiente de la ecuacion de la recta, la linealizacién de f en
a=3estidadapory — 2 = %(x — 3), o bien

< la pendiente de la tangente en (3, 2) es %

Lx)=2+ %(x - 3). (7

Las graficas de fy L se muestran en la FIGURA 5.8.3. Por supuesto, L puede expresarse en
la forma punto-pendiente L(x) = x + 2, pero para efectos de calculo es mas conve-
niente la forma proporcionada en (7).

b) Al usar (7) del inciso a), tenemos la aproximacién lineal local f(x) = L(x), o bien

\/x+1%2+i(x—3), (8)

siempre que x esté cerca de 3. Luego, al hacer x = 2.95 y x = 3.01 en (8) obtenemos,
a su vez, las aproximaciones:

L(2.95
(39 SoooofBboooog
V395 =2+ 1295 - 3) =2 - 22 = 19875,
£(3.01) L(3.01)
SO gooooooooooog
y VAOT =2+ 7301 = 3) = 2+ 2L = 2,005,

I Diferenciales La idea fundamental de linealizacién de una funcién originalmente fue expre-
sada en la terminologia de diferenciales. Suponga que y = f(x) es una funcién diferenciable en
un intervalo abierto que contiene al nimero a. Si x; es un nimero diferente sobre el eje x, enton-
ces los incrementos Ax y Ay son las diferencias

Ax=x —a y Ay = f(x) — fla@).
Pero ya que x; = a + Ax, el cambio en la funcién es
Ay = f(a + Ax) — f(a).
Para valores de Ax que estdn préximos a 0, el cociente diferencial

fla+ Ax) — fla) ﬂ
Ax T Ax

es una aproximacion del valor de la derivada de fen a:
Ay : :
Arx = f(a) obien, Ay = f'(a)Ax.
Las cantidades Ax y f'(a)Ax se denominan diferenciales y se denotan por los simbolos dx y dy,
respectivamente. Es decir,
Ax = dx y dy = f'(a)dx.

Como se muestra en la FIGURA 5.8.4, para un cambio dx en x la cantidad dy = f'(a)dx representa
el cambio en la linealizacién (el ascenso en la recta tangente en (a, f(a)).* Y cuando dx = 0, el
cambio en la funcién Ay es aproximadamente el mismo que el cambio en la linealizacién dy:

Ay = dy. )

* Por esta razon, la notacién dy/dx de Leibniz para la derivada parece un cociente.
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Definicion 5.8.2 Diferenciales

La diferencial de la variable independiente x es el nimero diferente de cero Ax y se denota
por dx; es decir,

dx = Ax. (10)

Si f'es una funcién diferenciable en x, entonces la diferencial de la variable dependiente y se
denota por dy; es decir,

dy = f'(X)Ax = f'(x)dx. (11)

A\ e Diferenciales

a) Encuentre Ay y dy para f(x) = 5x* + 4x + 1.
b) Compare los valores de Ay y dy parax = 6, Ax = dx = 0.02.

a) Ay =fx+ Ax) — f0)
=[50+ Ax)* + 4(x + Ax) + 1] — [5x* + 4x + 1]
= 10xAx + 4Ax + 5(Ax)>
Luego, puesto que f'(x) = 10x + 4, por (11) de la definicién 5.8.2 tenemos
dy = (10x + 4)dx. (12)

Al volver a escribir Ay como Ay = (10x + 4)Ax + 5(Ax)* y usar dx = Ax, se obser-
va que dy = (10x + 4)Ax y Ay = (10x + 4)Ax + 5(Ax)* difieren por la cantidad
5(Ax)%

b) Cuando x = 6, Ax = 0.02:

Ay = 10(6)(0.02) + 4(0.02) + 5(0.02)> = 1.282
mientras dy = (10(6) + 4)(0.02) = 1.28.

Por supuesto, la diferencia en las respuestas es 5 (Ax)*> = 5(0.02)> = 0.002.

En el ejemplo 3, el valor Ay = 1.282 es la cantidad exacta por la cual la funcién
f(x) = 5x* + 4x + 1 cambia cuando x cambia de 6 a 6.02. La diferencial dy = 1.28 representa
una aproximacion de la cantidad por la cual cambia la funciéon. Como se muestra en (9), para un
cambio o incremento pequenio Ax en la variable independiente, el cambio correspondiente Ay
en la variable dependiente puede aproximarse por la diferencial dy.

I Otro repaso a la aproximacion lineal Las diferenciales pueden usarse para aproximar el
valor f(x + Ax). A partir de Ay = f(x + Ax) — f(x), obtenemos
fx + Ax) = f(x) + Ay.
Pero debido a (9), para un cambio pequefio en x puede escribirse como
flx + Ax) = f(x) + dy.
Con dy = f'(x)dx = f'(x)Ax la linea precedente es exactamente la misma que
Jfx + Ax) = f(x) + f'(x)dx. (13)

La férmula en (13) ya se ha visto bajo otra forma. Si se hace x = ay dx = Ax = x — a, enton-
ces (13) se vuelve

J@) = fla) + f@x — a). (14)

El miembro derecho de la desigualdad en (14) se identifica como L(x) y (13) se vuelve
f(x) = L(x), que es el resultado proporcionado en (3).

N1\ [/Xe "8 Aproximacion por diferenciales
Use (13) para aproximar (2.01)3.

Primero se identifica la funcién f(x) = x°. Deseamos calcular el valor aproximado de
fx + Ax) = (x + Ax)* cuando x =2y Ax = 0.01. Asi, por (11),

263
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dy = 3x%dx = 3x*Ax.
Por tanto, (13) proporciona
(x + Ax)* = x* + 3x2Ax.
Con x = 2y Ax = 0.01, la férmula precedente proporciona la aproximacién

(2.01)° = 2* + 3(2)%0.01) = 8.12.

N1\ [JXe M Aproximacion por diferenciales

La arista de un cubo mide 30 cm con un error posible de =0.02 cm. ;Cudl es el maximo error
posible aproximado en el volumen del cubo?

El volumen de un cubo es V = x°, donde x es la longitud de la arista. Si Ax repre-
senta el error en la longitud de la arista, entonces el error correspondiente en el volumen es

AV = (x + Ax)® — X3

Para simplificar la situacion se utiliza la diferencial dV = 3x*dx = 3x*Ax como una aproxima-
cién a AV. Asi, parax =30 y Ax = £0.02 el méaximo error aproximado es

dV = 3(30)%(=0.02) = *54 cm’.

En el ejemplo 5, un error de alrededor de 54 cm® en el volumen para un error de 0.02 cm en
la longitud de la arista parece considerable. Sin embargo, observe que si el error relativo (6) es
AV/V, entonces el error relativo aproximado es dV/V. Cuando x =30y V= (30)3 =27 000, el
error porcentual méaximo es =54/27 000 = =1/500, y el error porcentual maximo es aproxima-
damente de sélo =0.2%.

I Reglas para diferenciales Las reglas para diferenciacién consideradas en esta unidad pue-
den volver a plantearse en términos de diferenciales; por ejemplo, si u =f(x) yv=gx)y y=
f(x)+ g(x), entonces dy/dx = f'(x) + g'(x). Por tanto, dy = [f"(x) + g'(x)] dx=f"(x) dx + g'(x) dx
= du + dv. A continuacién se resumen los equivalentes diferenciales de las reglas de la suma, el
producto y el cociente:

d(u + v) = du + dv (15)

d(uv) = udv + vdu (16)

d(ufv) = L= 1dY, a7
V2

Como se muestra en el siguiente ejemplo, casi no es necesario memorizar las expresiones
(15), (16) y (17).

A3\ [JXeM:N Diferencial de y

Encuentre dy para y = x> cos 3x.

Para encontrar la diferencial de una funcién, simplemente puede multiplicar su deri-
vada por dx. Asi, por la regla del producto,

Q = x%(—sen3x - 3) + cos3x(2x)
dx
dy 5
de modo que dy = <7dx> ~dx = (—3x"sen3x + 2x cos3x)dx. (18)

Al aplicar (16) obtenemos
dy = x’d(cos3x) + cos3x d(x?)
= x*(—sen3x - 3dx) + cos3x(2x dx). (19)

Al factorizar dx en (19) obtenemos (18).
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“ DESARROLLE SU COMPETENCIA  Las respuestas de los problemas impares comienzan en la pagina RES-17.

= Fundamentos

En los problemas 1-8, encuentre una linealizacién de la fun-
cién dada en el nimero indicado.

1L fx) = Vx; a=9 2.f(x)=%; a=1

X
3. f(x) = tanx; a=m/4 4. f(x) =cosx; a=m/2
5. fx) =Inx; a=1 6. f(x)=5x+ &% a=2

7. f0) = V1 +x; a=3 8. f(x) = a==6

1
V3 + i
En los problemas 9-16, use una linealizacién en a = 0 para
establecer la aproximacion lineal local dada.

9. ¢f=1+x 10.
11. (1 + %=1+ 10x 12 1 +2x) 3 =1—6x

13. \/1—xz1—%x 14. \/x2+x+4z2+ix
11

4
11 T A~ 1 &
3313 9x 16. V1 —4x =1 3x

En los problemas 17-20, use un resultado idéneo de los proble-
mas 1-8 para encontrar una aproximacién de la cantidad dada.

17. (1.0H)™* 18. V9.05 19. 10.5 + &' 20. In0.98

En los problemas 21-24, use un resultado idéneo de los proble-
mas 9-16 para encontrar una aproximacion de la cantidad dada.

L ; 24. V411
(1.1)

En los problemas 25-32, use una funcién idénea y una apro-
ximacioén lineal local para encontrar una aproximacion de la
cantidad dada.

tanx = x

15

21 22. (1.02)'° 23, (0.88)!"

25. (1.8)° 26. (7.9)%3
(0.9)* s 5
27. 09 + 1 28. (1.1 + 6(1.1)
29. cos(% - 0.4> 30. sen 1°
o
31. sen 33° 32. tan(z + 0.1)

En los problemas 33 y 34, encuentre una linealizacién L(x) de
fen el valor dado de a. Use L(x) para aproximar el valor de la
funcién dado.

33. a=1; f(1.04) 34. a=—-2; f(—1.98)

y=Lx)

-3 -2 -1
FIGURA 5.8.6 Grifica
para el problema 34

: >
-2 ﬁ/l 1 2
FIGURA 5.8.5 Griéfica

para el problema 33

En los problemas 35-42, encuentre Ay y dy.
35. y=x*+1 36. y=3x>—-5x+6

3. y=(x+ 1) 38. y=x°
39, y=x*t1 4. y=L
X
41. y=senx 42. y = — 4cos2x

En los problemas 43 y 44, complete la tabla siguiente para
cada funcién.

x| Ax | Ay | dy | Ay —dy
2 1
21 05
2| 0.1
2 10.01
43. y = 5x? 4. y=1/x

45. Calcule la cantidad aproximada por la cual la funcién
f(x) = 4x* + 5x + 8 cambia cuando x cambia de:
a) 4a4.03 b) 3a29.
46. a) Encuentre una ecuacion de la recta tangente a la gra-
ficade f(x) = x> + 3x%enx = 1.
b) Encuentre la coordenada y del punto sobre la recta
tangente en el inciso a) que corresponde a x = 1.02.
¢) Use (3) para encontrar una aproximacién a f(1.02).
Compare su respuesta con la del inciso b).

47. El 4rea de un circulo con radio res A = 7>
a) Dado que el radio de un circulo cambia de 4 cm a 5
cm, encuentre el cambio exacto en el drea.
b) (Cudl es el cambio aproximado en el area?

= Aplicaciones

48. Segtin Poiseuille, la resistencia R de un vaso capilar de
longitud [ y radio r es R = kl/r*, donde k es una constan-
te. Dado que [ es constante, encuentre el cambio aproxi-
mado en R cuando r cambia de 0.2 mm a 0.3 mm.

49. Muchas pelotas de golf constan de una cubierta esférica
sobre un nicleo sélido. Encuentre el volumen exacto de
la cubierta si su grosor es ¢ y el radio del nicleo es r.
[Sugerencia: El volumen de una esfera es V = 7.
Considere esferas concéntricas cuyos radios son r y
r + Ar.] Use diferenciales para encontrar una aproxima-
cién al volumen de la cubierta. Vea la FIGURA 587. En-
cuentre una aproximacién al volumen de la cubierta si
r=0.8yt=0.04 pulg.

Nucleo sélido

FIGURA 5.8.7 Pelota de golf en el problema 49



266 UNIDAD 5 Aplicaciones de la derivada

50.

51.

52,

53.

54.

5S.

56.

57.

g:

Un tubo de metal hueco mide 1.5 m de longitud. En-
cuentre una aproximacién al volumen del metal si el
radio interior mide 2 cm y el grosor del metal es 0.25 cm.
Vea la FIGURA 5.8.8.

2 0.25 cm

FIGURA 5.8.8 Tubo en el problema 50

El lado de un cuadrado mide 10 cm con un error posible
de =0.3 cm. Use diferenciales para encontrar una aproxi-
macién al error maximo en el area. Encuentre el error
relativo aproximado y el error porcentual aproximado.
Un tanque de almacenamiento de petréleo en forma de
cilindro circular mide 5 m de altura. El radio mide 8§ m
con un error posible de =0.25 m. Use diferenciales para
estimar el error maximo en el volumen. Encuentre el error
relativo aproximado y el error porcentual aproximado.
En el estudio de ciertos procesos adiabdticos, la presion
P de un gas estd relacionada con el volumen V que ocupa
por P = ¢/V?, donde ¢ y 7y son constantes. Demuestre
que el error relativo aproximado en P es proporcional al
error relativo aproximado en V.

El alcance de un proyectil R con velocidad inicial vgy
4dngulo de elevacién 6 estd dado por R = (v3/g)sen 20,
donde g es la aceleracion de la gravedad. Si vy y 6 se man-
tienen constantes, demuestre entonces que el error porcen-
tual en el alcance es proporcional al error porcentual en g.
Use la férmula en el problema 54 para determinar el
alcance de un proyectil cuando la velocidad inicial es
256 pies/s, el angulo de elevacion es 45° y la aceleracion
de la gravedad es 32 pies/s”. ;Cudl es el cambio aproxi-
mado en el alcance del proyectil si la velocidad inicial se
incrementa a 266 pies/s?

La aceleracion debida a la gravedad g no es constante, ya
que varia con la altitud. Para efectos practicos, en la
superficie terrestre, g se considera igual a 32 pies/s”, 980
cm/s* 0 9.8 m/s%.

a) A partir de la ley de la gravitacién universal, la fuerza
F entre un cuerpo de masa m; y la Tierra de masa m,
es F = kmlmz/rz, donde k es una constante y r es
la distancia al centro de la Tierra. En forma alterna, la
segunda ley de movimiento de Newton implica
F = mg. Demuestre que g = km,/r*.

b) Use el resultado del inciso a) para demostrar que
dg/g = —2dr/r.

¢) Sea r= 6400 km en la superficie de la Tierra. Use el
inciso b) para demostrar que el valor aproximado de g
a una altitud de 16 km es 9.75 m/s”.

La aceleracion debida la gravedad g también cambia con

la latitud. La International Geodesy Association ha defi-

nido g (a nivel del mar) como una funcién de la latitud 0

como sigue:

978.0318 (1 +53.024 X 10 * sen”  — 5.9 X 10~ ° sen” 26),

donde g se mide en cm/s>.

58.

59.

60.

2

62.

a) Segln este modelo matemaético, ;donde es minima g?
(Dénde es maxima?

b) (Cudl es el valor de g a latitud 60° N?

¢) ;Cudl es el cambio aproximado en g cuando # cambia
de 60°N a 61°N? [Sugerencia: Recuerde usar medida
en radianes. ]

El periodo (en segundos) de un péndulo simple de longi-
tud Les T = 2m\V/L/g, donde g es la aceleracién debida
a la gravedad. Calcule el cambio exacto en el periodo si
L se incrementa de 4 m a 5 m. Luego use diferenciales
para encontrar una aproximacion al cambio en periodo.
Suponga g = 9.8 m/s”.

En el problema 58, dado que L es fijo a 4 m, encuentre
una aproximacion al cambio en el periodo si el péndulo
se mueve a una altitud donde g = 9.75 m/s”.

Puesto que casi todas las placas de circulacién son del
mismo tamafo (12 pulg de largo), un detector Optico
computarizado montado en la parte frontal del automdvil
A puede registrar la distancia D al automévil B directa-
mente enfrente del automdvil A para medir el dngulo 6
subtendido por la placa de circulacién del automévil B.
Vea la FIGURA 5.8.9.

—>

0
[ N EeE N B
Placa de i

A circulacién B

a)

| D |
! | ¥
———===————9]1pic
b) *
FIGURA 5.8.9 Automéviles en el problema 60

a) Exprese D como una funcién del dngulo subtendido 6.

b) Encuentre la distancia al automdévil de enfrente si el
angulo subtendido 0 es 30 minutos de arco (es decir,
2°).

¢) Suponga en el inciso b) que 6 decrece a razén de
2 minutos de arco por segundo, y que el automévil A
se mueve a razén de 30 mi/h. ;A qué razén se mueve
el automovil B?

d) Demuestre que el error relativo aproximado al medir
D esta dado por

abD db

D sen 6’
donde df es el error aproximado (en radianes) al
medir 6. ;Cudl es el error relativo aproximado en D
en el inciso b) si el dngulo subtendido 6 se mide con
un error posible de =1 minuto de arco?

. Suponga que la funcién y = f(x) es diferenciable en un

nimero a. Si un polinomio p(x) = c¢x + ¢, tiene las pro-
piedades de que p(a) = f(a) y p'(a) = f'(a), demuestre
entonces que p(x) = L(x), donde L se define en (2).

Sin usar trigonometria, explique por qué para valores
pequefios de x, cosx = 1.



63.

64.

65.

Suponga que una funcién f'y f’ son diferenciables en un
nimero a y que L(x) es una linealizacién de f en a.
Analice: Si f"(x) > 0 para toda x en algin intervalo
abierto que contiene a a, L(x) jsobrestima o subestima
Jf(x) para x préximo a a?

Suponga que (¢, f(c)) es un punto de inflexion para la gra-
fica de y = f(x) tal que f"(c) = 0y suponga también que
L(x) es una linealizacién de f'en c. Describa a qué se pare-

ce la grafica de y = f(x) — L(x) en una vecindad de c.

El 4rea de un cuadrado cuyo lado mide x es A = x°.

Suponga, como se muestra en la FIGURA 5.8.10, que cada

5.9 La regla de L'Hopital

I Introduccion En las unidades 3 y 4 vimos cémo el concepto de limite conduce a la idea
de derivada de una funcién. En esta seccidn se invierte la situacién. Vemos cémo la derivada
puede usarse para calcular ciertos limites con formas indeterminadas.
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lado del cuadrado se incrementa por una cantidad Ax. En
la figura 5.8.10, identifique las dreas AA, dA y AA — dA.

X Ax
FIGURA 5.8.10 Cuadrado en el problema 65

I Terminologia Recuerde que en la unidad 3 se consideraron limites de cocientes como

h,mx2 +3x — 4
x—1 x—1 y

Lo2xr—x
w003y + 1

ey

El primer limite en (1) tiene la forma indeterminada 0/0 en x = 1, mientras que el segundo
tiene la forma indeterminada 0o/co. En general, decimos que el limite

Iim /&
x—a (%)

tiene la forma indeterminada 0/0 en x = a si

fx)—=0 y gx)—0 cuando

y la forma indeterminada «/® en x = a si

|f)] =00y |gl)] — 00

xX—>a

cuando x—a.

Los signos de valor absoluto aqui significan que cuando x tiende a a es posible tener, por ejem-

plo,

f(x) >0, g(x) = —00; o bien,

f(x) > —00, g(x) —00; o bien,

f) = =00, glx) > —o0,

y asi sucesivamente. Un limite también puede tener una forma indeterminada como

xX—a , x—a", x— —00,

Limites de la forma

0 k Kk
0 kY

k)

o bien, x — 0.

o Nota

donde k es una constante diferente de cero, no son formas indeterminadas. Merece la pena
recordar que:

¢ El valor de un limite cuya forma es 0/k o k/oo es 0.

e Un limite cuya forma es k/0 o co/k no existe.

2
3)

Al establecer si limites de cocientes como los que se muestran en (1) existen, usamos

manipulaciones algebraicas de factorizacion, cancelacion y division. No obstante, recuerde que

en la demostracion de Hn(} (senx)/x = 1 se usé un razonamiento geométrico elaborado. Sin
X—>
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embargo, la intuicién algebraica y geométrica fracasan lamentablemente cuando intentan abor-
dar un problema del tipo
senx

X

lim — =

x—0e — e
que tiene una forma indeterminada 0/0. El siguiente teorema es de utilidad cuando se demues-
tra una regla de suma importancia en la evaluacién de muchos limites que tienen una forma
indeterminada.

Teorema 5.9.1 Teorema del valor medio ampliado

Sean fy g continuas sobre [a, b] y diferenciables sobre (a, b) y g'(x) # 0 para toda x en (a, b).
Entonces en (a, b) existe un nimero c tal que

Jb) — fla) _ fo)

gb) —gl@ gy

Observe que el teorema 5.9.1 se reduce al teorema del valor medio cuando g(x) = x. Aqui
no se proporciona ninguna demostracion de este teorema, que evoca la demostracién del teo-
rema 5.3.2.

La siguiente regla se denomina asi en honor del matematico francés G. F. A. L’Hopital.

Teorema 5.9.2 Regla de L'Hopital

Suponga que fy g son diferenciables sobre un intervalo abierto que contiene al nimero a,
excepto posiblemente en @ mismo, y que g'(x) # 0 para toda x en el intervalo salvo posible-
mente en a. Si lim f(x)/g(x) es una forma indeterminada, y lim f'(x)/g'(x) = L o *oo,
entonces e e
Ao I i(¢))
lim~—— = lim—,_—

= 11m — .
x—a g(x) xX—a g (x)

4)

Sea (r, s) el intervalo abierto. Como se supone que
Iim f(x) = 0 y Iim g(x) = 0,
x—a x—a

también puede asumirse que f(a) = 0 y g(a) = 0. Concluimos que f'y g son continuas en a.
Ademads, puesto que f'y g son diferenciables, éstas son continuas sobre los intervalos abiertos
(r, a) y (a, s). En consecuencia, f'y g son continuas en el intervalo (r, s). Luego, para cual-
quier x # a en el intervalo, el teorema 5.9.1 es aplicable a [x, a] o [a, x]. En cualquier caso,
entre x y a existe un nimero c tal que

@ —fla) [ _ [flo)
gx) —gl@ g gl

Al hacer x — a implica ¢ — a, y entonces

G I A B A N 4 C)
x—a g(x) xX—a g’(c) c—a g'(c) xX—a g’(x).

=8]3\7|JEe BN Forma indeterminada 0/0

enx

, .S
Evalde lim
x—0

Puesto que el limite dado tiene la forma indeterminada 0/0 en x = 0, por (4) es
posible escribir

d
La letra /1 en cursiva arriba de la P  senx h asenx
primera desigualdad indica que )1(1_1)13 . = 11_% d
los dos limites son iguales como —X
resultado de aplicar la regla de dx
L’Hopital. CcOSX 1



N3\l A Forma indeterminada 0/0

Evalde lim - — .
x—0 et — e

Puesto que el limite dado tiene la forma indeterminada 0/0 en x = 0, se aplica (4):

d
——senx
senx dx
1 - — = lim
x—0e — e x—0 d(x ,\)
—((e* — e
dx
COSX 1 1

Rl e R R S

El resultado proporcionado en (4) sigue siendo valido cuando x — a se sustituye por limites
por un lado o por x — 00, x — —00. La demostracién para el caso x — 00 puede obtenerse al
usar la sustitucién x = 1/t en lfm f(x)/ g(x) y al observar que x — 00 es equivalente a t — 07,

X—>00

)=\ Kol] Forma indeterminada oo/oo

Evalde 1im lnixx .

x—00 @

Puesto que el limite dado tiene la forma indeterminada co/o0o. Asi, por la regla de
L’Hopital tenemos
Inx 1/x 1

limfx = 11’me = lim
X—00 € X—00 € x—>00 Xe

X

En este ultimo limite, xe* — 00 cuando x — 00, mientras 1 permanece constante. En conse-
cuencia, por (2),
Inx 1

lim — = lim —x = 0
X—00 € x—00 Xe

Al resolver un problema puede ser necesario aplicar varias veces la regla de L'Hopital.

SN]S\Y[JNe ¥ Aplicaciones sucesivas de la regla de L'Hopital

2 4+ 5x +
Evalie lim O+ Sx 7 5 x 7
x=00 4x” + 2x

Resulta evidente que la forma indeterminada es 00/0co, de modo que por (4),
h,m6x2+5x+7 RPN V% 3
X—>00 4)62 + 2x x—00 8x + 2 ’

Puesto que el nuevo limite sigue teniendo la forma indeterminada 0o/co, aplicamos (4) por
segunda vez:

g l2e+ 5 123
A8y 2 g T 2

Hemos demostrado que

6P+ 5x+7 3
m-——-— — .
¥o00 4x? + 2x 2

NI\ [Ny Aplicaciones sucesivas de la regla de L'Hopital

3x

Lo e
Evalte lim -
X—00 y

5.9 La regla de L'Hopital

269



270 UNIDAD 5 Aplicaciones de la derivada

El limite dado y el limite obtenido después de una aplicacién de la regla de
L’Hopital tienen la forma indeterminada co/co:
e3x o 3e3x no 963)(

— = lim = lim
X—>00 x2 X—>00 X X—>00 2

Después de la segunda aplicacién de (4), observamos que e** — 0o mientras el denominador
permanece constante. A partir de ello concluimos que

e3x

lfm—2 = 0,
xaoox

En otras palabras, el limite no existe.

NI\ [N lN:Y Aplicaciones sucesivas de la regla de L'Hopital

)C4
Evalte lim =—.
x—=0, 2x

e

Aplicamos (4) cuatro veces:

II=

En aplicaciones sucesivas de la regla de L’Hopital, algunas veces es posible cambiar un
limite de una forma indeterminada a otra; por ejemplo, 00/00 a 0/0.

SASVJeMFA Forma indeterminada oo/co

Evalie lim tan £ .
1= /2" tan 3t

Se observa que tan t — —oo y tan 3t — —oo cuando ¢ — /2", Entonces, por (4),

. tant » _, sec’ ¢ o
im = lim N 2. (OO/OO) < se vuelve a escribir usando sec t = 1/cos ¢
ismprtan 3t apt 3 sec? 3¢

cos? 3¢
= Ilim 0/0
1—m/2* 3 cos® t ©/0)
n . 2cos 3t(—3 sen 3¢)
im
1—m/2* 6 cos t(—sent)

. 2 sen 3¢ cos 3t se vuelve a escribir usando la férmula
;—>17512 . 42 sen £ cos ¢ del dngulo doble en el numerador

y en el denominador
sen 6f

= 1lim (0/0)

—m/2* sen 2t
LY 6cos6t _ —6 _

T ohe2cos2t —2 3
=] S\ JNe B} Limite por un lado

Evalde 1fm —
vald .
x—>1% A / x—1
El limite dado tiene la forma indeterminada 0/0 en x = 1. Asf, por la regla de L’Hopital,

. Inx h o Ix 2vk—1_0
Iim = lim . = lim———— = —
=PV =1 et =172 et x 1

=0.



I Otras formas indeterminadas Hay cinco formas indeterminadas adicionales:
co—o00, 0-00, 0° oo’ y 1% 3)

Por medio de una combinacién de dlgebra y un poco de astucia a menudo es posible conver-
tir una de estas nuevas formas de limites ya sea a 0/0 0 a 00/00.

I La forma o — o« El siguiente ejemplo ilustra un limite que tiene la forma indeterminada
00—o00. Este ejemplo debe anular cualquier conviccién garantizada de que co—o0 = 0.

(A \|JHe:} Forma indeterminada co—oo
3x+1 1
senx X

Evalie lim [
x—0"

Se observa que (3x + 1)/senx — co 'y 1/x — 00 cuando x — 0. No obstante, des-
pués de escribir la diferencia como una fraccién simple, se identifica la forma 0/0:

sen x X

= lim . .
x—0t X sen x <« comun denominador

lim

x—0*

{3x+1 1} 3x* + x — senx

|| =

. 6x+ 1 — cosx
Iim——————
1—0* X COS X + sen x

L 6 + senx
= lim

r—0* —Xxsenx + 2 cosx
_ 6+ 0 —3

0+2 ’

I Laforma0-» Si

f(x)—0 y |g&x)|—>o0 cuando x-—>a,

entonces lim f(x)g(x) tiene la forma indeterminada 0 - co. Un limite que tiene esta forma puede
X—a
cambiarse a uno con la forma 0/0 o 00/c0 al escribir, a su vez,

_ J& : C))
S gkx) = /00 obien,  f(x)gx) = 11

A\ |JXe M8 Forma indeterminada 0 - oo

P 1
Evalde lim xsen—.
X—00 X

Puesto que 1/x — 0, tenemos sen(1/x) — 0 cuando x — oo. Por tanto, el limite
tiene la forma indeterminada O - c0. Al escribir
sen(1/x)
im———
00 /x

ahora tenemos la forma 0/0. Entonces,

sen(1/x) 4, (—x *)cos(1/x)
im ———=1lim—————
X—>00 l/x x—>00 (_xfz)

h 1
= lim cos— = 1.
xX—>00 X

En la dltima linea se us6 el hecho de que 1/x—0 cuando x — 00 y cos 0 = 1.

I Las formas 0°, =° y 1°  Suponga que y = f(x)*™ tiende a 0°, c0” 0 1™ cuando x — a. Al
tomar el logaritmo natural de y:

Iny = In fx)*% = g(@)ln f(x)
observamos que el miembro derecho de

IimIny = 1f_r)n g@)n f(x)

xX—a X

5.9 La regla de L'Hopital
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tiene la forma 0 - 00. Si se supone que lim Iny = In(lim y) = L, entonces

limy = e* o bien, lim f(x)*™ = .
X—a

X—a

Por supuesto, el procedimiento que acaba de presentarse es aplicable a limites que implican

x—a, x—a', x—>oo0 obien, x— —.

[ATVIMEEN Forma indeterminada 0°

1/1In x

Evalte lim x
x—0"

Ya que In x — —00 cuando x — 0", por (2) concluimos que 1/Inx— 0. Asi, el
limite dado tiene la forma indeterminada 0°. Luego, si se hace y = X/ entonces

Iny = élnx = 1.

Observe que en este caso no es necesaria la regla de L’Hopital, ya que

limlny = lim1 =1 o bien, ln(lfmy> -1

x—0* x—0% x—0%

1/In x

Por tanto, lim y = e' o de manera equivalente, 1im x = e.
x—0" x—0"

(A3 [N P Forma indeterminada 1%

3 2x
Evalde lim <1 — *) .

X—00 X

Ya que 1 — 3/x — 1 cuando x — 00, la forma indeterminada es 1%. Si

3\ 3
y = (1 - ;) entonces Iny = 2x ln(l - ;)

Observe que la forma de lim 2x In(1 — 3/x) es 00 - 0, mientras la forma de
2 ln(l - i)
N X/
1

X

Iim
X—>00

es 0/0. Al aplicar (4) al dltimo limite y simplificar obtenemos

3/x?
In(1 = 3/x) 4, (1 = 3/x) -6
im2—— = 1lim2 = lim = —
X—00 l/x X—00 _1/x2 Y500 (1 _ 3/x)
A partir de 11;m Iny = ln( lim y) = —6 concluimos que lim y=¢e¢ %0
X 00 X (o.¢) 3 Zx X 00
lim (1 — *) =e ",
X—>00 X

B Posdata: Un poco de historia Es cuestionable si el matematico francés Mar-
quis Guillaume Francois Antoine de I’Hopital (1661-1704) descubri6 la regla
.'":. que lleva su nombre. El resultado se debe probablemente a Johann Bernoulli. Sin
) embargo, L"Hopital fue el primero en publicar la regla en su texto Analyse des
Infiniment Petits. Este libro fue publicado en 1696 y es considerado como el pri-
L Hopital mer libro de texto de calculo.




f'(X) NOTAS DESDE EL AULA

i) En la aplicacion de la regla de L’Hopital, los estudiantes a veces interpretan mal

f,( ) cuando hmi@
x~>a ( ) x—a d_x g(_x)

Recuerde que en la regla de L'Hopital se utiliza el cociente de derivadas y no la deriva-
da del cociente.

ii) Analice un problema antes de saltar a su solucién. El limite 11m (cos x)/x es de la forma
1/0 y, en consecuencia, no existe. La falta de prevision matématica al escribir

., COS X ., —senx
lim = lim =0

x—0 X x—0 1

es una aplicacién incorrecta de la regla de L’Hopital. Por supuesto, la “respuesta” carece
de significado.
iii) Lareglade L’Hopltal no es un remedio para todas las formas indeterminadas. Por ejem-
plo, }g?o e / ¢" es ciertamente de la forma 0o/00, pero
X X

. € .
lim —; = lim
X—>00 ex X—00 zxex

no es de ayuda préctica.
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“ DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la pagina RES-18.

= 25. lim XX 26. 1 01 29
En los problemas 1-40, use la regla de L'Hopital donde sea =0y =0 i
idéneo para encontrar el limite dado, o concluya que no existe. 27 lm e% 28, 1im el/x
L 1im SO * ~ 1 2 1f £ =27 X500 x x—00 sen(1/x)
g X =3 r—3 29. 1im x — tan"'x 30. If 13— pr
. — . lim————
3 1m2x—2 4 fmln2x =0 x — sen” ' x == 1
Tl Inx " o+ In 3x 31 lim In(senu) 3. 1 tan 0
5. lim ¥ — 1 6. 1im tan x T T2y — 1r)? * 9—m/2 In(cos 6)
03k 2 3. 1m LEe EY I T
7. 1im 5sen’t 8. lim 0* -1 Taomo] — ™ R
Tisml 4 cost S DA 35, Jim L —CO8 7 36. 1tm cscTt
9. Ifm 6 + 6x + 3x* — 6e* 10. Iim 3x% — 4a° Ts0r — se? r *iom csc2t
. . — — 2
=0 x —senx =00 5x + 7x 3. Jim 1x+ ; 38. lim (lni — 13“ 3)
cot 2x arcsen(x/6) nZ ( X X) —x o
11. lim 12. lim ————— 39, i Ix"t+ e —e —ZSenx40 I Vx+1-3
x—0* cotx =0 arctan(x/2) gt X sen x e x> — 64
2 _ 3 _ 2 —
13 1im 10 gy gy ST T3
2P =20+ 2 rol (r+1) En los problemas 41-74, identifique el limite dado como una
15. 1im X Senx 16. 1t x>+ 4 de las formas indeterminadas proporcionadas en (5). Use la
e X3 "2 241 regla de L’Hopital donde sea idéneo para encontrar el limite
dado, o concluya que no existe.
4x s
17. 1im S5 2 18. lim 22X L
=0 x x—=00 g™+ 3y 41. 11m0< 1 *) 42. li%(cotx — CSC X)
) 1n\/7 In (3x + 5) x—0\e* X X—>
19. lim ~7— 20. H‘”iln(Sx s 43. lim x(e'* = 1) 44. lim x Inx
x? 2x X
21, fm &~ 2 1imF =3 45. limx* 46. 1im x'/0 =0
=2 x— 2 x—0 X x—0 x—1
. xlnx . 1 —cosht PN o1 cos 3x
23. x1—>oo 2+ 24. }I_If(} ) 47. )lcl—r}(l){x sen x} 48. )lcl—r}(l){ x2 x2
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Vet 1 2 |1 1
49. }551[ 2_9 £_9 . T e+ D
51. 1im 0 csc 40 52. lim (sen? x)®"*
0—0 x—7/2
53. lim (2 + e’ 54, h'nol_ (1 — o~
3 t
55. h’m(l + —) 56. lim(1 + 2h)*"
1—>00 1 h—0
57. lfn(l)x“*c"”) 58. lim(cos 26)'*"
x— 90
59. lim % 60. lim(x* — 1)*
=% x* sen”(2/x) x—1
61. lim L > 62. lim 1
—llx—1 5243y —4 =0 2 X
63. lim x’¢* 64. lim (x + eh)x
65. h’mx<z — arctan x> 66. 1im (t — z)tan 2t
x—00 \ 2 1—>m/4 4
67. 11’1101o X tan(%) 68. lir{)1+x In(sen x)
69. ll’moo[elx — xz} 70. lim(1 + Ssen x)°oF
71. lim (37’“) 72. lim (sec® @ — tan® 6)
: x—oo\3x + 1 : O—m/2”
73. lim (senh x)“" 74. h'r(r)1+x(1”)2
En los problemas 75 y 76, identifique el limite dado.
75. h'mlln(e — 1) 76. h'mlln(e — 1)
X0+ X X x—00 X X

En los problemas 77 y 78, use una calculadora o un SAC
para obtener la grafica de la funcién dada para el valor de n
sobre el intervalo indicado. En cada caso, conjeture el valor
de lim f(x).

ex

77. f() = 3

xi

n = 3 sobre [0, 15]; n = 4 sobre [0, 20];

n = 5sobre [0, 25]

78. f(x) = ;; n = 3 sobre [0, 15]; n = 4 sobre [0, 15];
n = 5sobre [0, 20]

En los problemas 79 y 80, use n! = 1

4"

dx"

2:3--(n—1)-n,

X" = nl,

donde n es un entero positivo, y la regla de L'Hopital para
encontrar el limite.
n X

, e
80. lim <
x—00 X

81. Considere el circulo que se muestra en la FIGURA 5.9.1.

a) Si el arco ABC mide 5 pulg de longitud, exprese el
drea A de la regiéon oscura como una funcién del
angulo indicado 6. [Sugerencia: El area de un sector
circular es 3% y la longitud del arco de un circulo
es 78, donde 0 se mide en radianes.]

b) Evalte %Lr% A(O)

¢) Evalde lim dA /do

A v C

B

FIGURA 5.9.1

82. En ausencia de fuerzas de amortiguamiento, un modelo

matematico para el desplazamiento x(f) de una masa en

un resorte (vea el problema 60 en la seccién “Desarrolle

su competencia 3.5”) cuando el sistema es activado sinu-

soidalmente por una fuerza externa de amplitud F, y fre-
cuencia y/2 es

Circulo en el problema 81

I
w(@® = ¥?)

x(t) = (—ysenwt + wsenyt), vy + w,
donde w/27 es la frecuencia de las vibraciones libres

(no excitadas) del sistema.

a) Cuando y = w, se dice que el sistema masa-resorte
estd en resonancia pura, y el desplazamiento de la
masa se define por

Fy

x(t) = lim———
® Yoo a)(w2 — 'yz)

(—vsenwt + w sen y1).

Determine x(¢) al encontrar este limite.

b) Use un dispositivo para graficar y analice la grafica de
x(¢) encontrada en el inciso a) en el caso en que
Fy=2,v=w = 1. Describa el comportamiento del
sistema masa-resorte en resonancia pura cuando ¢ — Q.

83. Cuando un gas ideal se expande a partir de la presién
p1 vy volumen v, hasta la presiéon p, y volumen v, tal
que pv” = k (constante) durante toda la expansion, si
v # 1, entonces el trabajo realizado estd dado por

W= P2va — pivy
1=y
a) Demuestre que
(/v 7 = 1
W= pwi {H -

b) Encuentre el trabajo realizado en el caso en que
pv = k (constante) durante toda la expansién al hacer
v — 1 en la expresion en el inciso a).

84. La retina es mds sensible a fotones que penetran al ojo
cerca del centro de la pupila y menos sensible a la luz
que entra cerca del borde de la pupila. (Este fendmeno
se denomina efecto Stiles-Crawford del primer tipo.) El
porcentaje o de fotones que llegan a los fotopigmentos



estd relacionado con el radio de la pupila p (medido en
radianes) por el modelo matematico

1 — 10—0405p2

5 100.
0.115p

Vea la FIGURA 5.9.2.

a) (Qué porcentaje de fotones llega a los fotopigmentos
cuando p = 2 mm?

b) Segin la férmula, ;jcudl es el porcentaje limitante
cuando el radio de la pupila tiende a cero? ;Puede
explicar por qué parece ser mas de 100%?

FIGURA 5.9.2  Qjo en el problema 84

Las respuestas de los problemas impares comienzan en la pagina RES-18.

8s.

86.
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Suponga que una funcién f tiene segunda derivada. Evalide
. St h) = 2f(0) + fx — )
lim .
h—0 W

a) Use una calculadora o un SAC para obtener la gra-
fica de

b) A partir de la gréifica en el inciso a), conjeture el
valor de Xlgglg fx).

¢) Explique por qué la regla de L'Hdpital no es vélida
para }HEO fx).

En los problemas 1-20, indique si la afirmacién dada es falsa (F) o verdadera (V).

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

2. Una funcién f tiene un extremo en ¢ cuando f'(c) = 0.
3.
4

. Si la posicién de una particula en movimiento rectilineo sobre una recta horizontal es

Si f'es creciente sobre un intervalo, entonces f'(x) > 0 sobre el intervalo.

Una particula en movimiento rectilineo desacelera cuando su velocidad v(#) disminuye.

s(f) = 1> — 2t, entonces la particula acelera para t > 1.

Sif"(x) < 0 paratodaxen el intervalo (a, b), entonces la grafica de fes concava hacia abajo

sobre el intervalo.

Si f"(c) = 0, entonces (c, f(c)) es un punto de inflexion.

Si f(c¢) es un maximo relativo, entonces f'(c) = 0y f'(x) > 0 para x <cy f'(x) < 0 para

x> c.
Si f(c) es un minimo relativo, entonces f"(c) > 0.

Una funcién f que es continua sobre un intervalo cerrado [a, b] tiene tanto un maximo abso-

luto como un minimo absoluto sobre el intervalo.

Todo extremo absoluto también es un extremo relativo.

Si ¢>0es una constante y f(x) = 3x> — cx?, entonces (c, f(c)) es un punto de inflexién.

x = 1 es un nimero critico de la funcién f(x) =

Vx? — 2x.

Sif'(x) > 0y g'(x) > 0 sobre un intervalo 7, entonces f + g es creciente sobre /.

Si f'(x) > 0 sobre un intervalo I, entonces f"(x) > 0 sobre 1.

Un limite de la forma co — oo siempre tiene valor 0.
Un limite de la forma 1°° siempre es 1.
Un limite de la forma 0o/00 es indeterminado.

Un limite de la forma 0/c0 es indeterminado.

f@o o f®)

SO i L)
rosog(x) Y xoto g'(x)

son ambos de la forma 0o0/00, entonces el primer limite no existe.
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20.

Para una forma indeterminada, la regla de L 'Hopital establece que el limite de un cociente
es lo mismo que la derivada del cociente.

En los problemas 1-10, llene los espacios en blanco.

1.

2.
3.

Para una particula que se mueve rectilineamente, la aceleracién es la primera derivada de

La gréfica de un polinomio ctibico puede tener a lo sumo punto(s) de inflexién.

Un ejemplo de una funcién y = f(x) que es codncava hacia arriba sobre (—o0, 0), concava
hacia abajo sobre (0, co) y creciente sobre (—00, o) es

. Dos niimeros no negativos cuya suma es 8 tales que la suma de sus cuadrados es maximo

son

. Si fes continua sobre [a, b], diferenciable sobre (a, b) y f(a) = f(b) = 0, entonces en (a, b)

existe algin c tal que f'(c) =

L X
lim ~ = para todo entero n.

X—00 @

7. La suma de un nlimero positivo y su reciproco siempre es mayor que o igual a

10.

Sif(l) =13y fx)= 5, entonces una linealizacién de fena =1es y
fa.1) =

Siy = x* — x, entonces Ay =

Siy = x’¢™*, entonces dy =

En los problemas 1-4, encuentre los extremos absolutos de la funcién dada sobre el intervalo

indicado.
1. f(x) = x> — 75x + 150; [—3,4] 2.f@)=4ﬁ——%;[iﬂ
2
S S _ 2 1/2.
3' f(x) x+49 [ 193] 4' f(x) (-x 3X+5) ’ [1’ 3]
5. Trace la grafica de una funcién continua que tenga las propiedades:

O =1, f2)=3
f1(0) =0, f(2)noexiste
fix) >0 x<0
flx)y>0, 0<x<2
fix) <0, x>2.

. Use las derivadas primera y segunda como ayuda para comparar las graficas de

y =Xx + senx y y = x + sen2x.

. La posicion de una particula que se mueve sobre una linea recta esta dada por

s() = -1 + 6%

a) Grafique el movimiento sobre el intervalo de tiempo [—1, 5].
b) (En qué instante la funcién velocidad es maxima?

¢) (Corresponde este instante a la rapidez médxima?

. La altura por arriba del nivel del suelo alcanzada por un proyectil disparado verticalmente

es s(t) = —4.9t> + 14.7t + 49, donde s se mide en metros y 7 en segundos.
a) (Cudl es la altura mdxima alcanzada por el proyectil?
b) (A qué velocidad choca el proyectil contra el suelo?

. Suponga que f'es una funcién polinomial con ceros de multiplicidad 2 en x = ay x = b; es

decir,
f) = (x — a)’(x — b)’g(x)

donde g es una funcién polinomial.
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a) Demuestre que f' tiene por lo menos tres ceros en el intervalo cerrado [a, b].
b) Si g(x) es constante, encuentre los ceros de f' en [a, b].

10. Demuestre que la funcién f(x) = x'/ no satisface las hipétesis del teorema del valor medio
sobre el intervalo [—1, 8], aunque es posible encontrar un niimero ¢ en (—1, 8) tal que

f© = [fb) = fl1/(b — a). Explique.

En los problemas 11-14, encuentre los extremos relativos de la funcién dada f. Grafique.

11. f(x) = 2x> + 3x* — 36x 12. f(x) = x° — %x3 + 2
2 _
13. f(r) = dx — 6x2° + 2 4. f(x) = %

En los problemas 15-18, encuentre los extremos relativos y los puntos de inflexién de la funcién
dada f. No grafique.

15. f(x) = x* + 8x> + 18x? 16. f(x) =x°—3x*+5

17. f(x) = 10 — (x — 3)'/3 18. f(x) = x(x — 1)*?

En los problemas 19-24, relacione cada figura con una o mds de las siguientes afirmaciones.
Sobre el intervalo correspondiente a la porcién de la grafica de y = f(x) mostrada:

a) ftiene una primera derivada positiva.

b) ftiene una segunda derivada negativa.

¢) La grafica de f tiene un punto de inflexion.

d) fes diferenciable.

e) ftiene un extremo relativo.

f) Las pendientes de las rectas tangentes crecen cuando x crece.

19. Y 20. y

y=f)

FIGURA 5.R.1  Grifica
para el problema 19

FIGURA 5.R.2  Grifica
para el problema 20

22, y\T

X FIGURA 5.R.4 Gréfica
para el problema 22

21.

y=fx)

FIGURA 5.R.3  Grifica para
el problema 21

23. 24.

1 X

FIGURA 5.R.6  Grifica
para el problema 24

FIGURA 5.R.5 Grifica
para el problema 23

25. Sean a, b y c nimeros reales. Encuentre la coordenada x del punto de inflexién para la gra-
fica de

fx) =& — a)x — b)x — o).
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26.

27.

28.

29.

30.

31.

Un tridngulo se expande con el tiempo. El drea del tridngulo crece a razén de 15 pulg®/min,
mientras la longitud de su base decrece a razon de % pulg/min. ;A qué razén cambia la altu-
ra del tridngulo cuando la altura mide 8 pulg y la base mide 6 pulg?

Un cuadrado estd inscrito en un circulo de radio r, como se muestra en la FIGURA5.R.7. { A qué
razén cambia el drea del cuadrado en el instante en que el radio del circulo mide 2 pulg y
crece a razén de 4 pulg/min?

N

~_

FIGURA 5.R.7 Circulo
en el problema 27

De un tanque hemisférico de 10 m de radio gotea agua a razén de 15 m*/min, y ésta sale por
un orificio en la parte inferior del tanque a razén de + m*min. Es posible demostrar que el
volumen del agua en el tanque en ¢ es V = 107h* — (/3)h’. Vea la FIGURA 5.R 8.

a) La profundidad del agua, ;jaumenta o disminuye?
b) (A qué razén cambia la profundidad del agua cuando la profundidad es de 5 m?

T

h
!

FIGURA 5.R.8 Tanque en el problema 28

Dos bobinas que conducen la misma corriente producen en el punto Q sobre el eje x un
campo magnético de intensidad

1 ) ) 1 2 1-3/2 ) 1 21-3/2
BZE/-LOrOI rg + x+§r0 + |5+ X_EFO s

donde ., 1y e I son constantes. Vea la FIGURA 5.R.9. Demuestre que el valor maximo de B ocu-

R
(VLY

—

FIGURA 5.R.9 Bobinas en el problema 29

Una bateria con fem constante E y resistencia interna constante r estd conectada en serie con

un resistor cuya resistencia es R. Entonces, la corriente en el circuito es I = E/(r + R).

Encuentre el valor de R para el que la potencia P = RI” disipada en la carga externa es

maéxima. Esto se denomina comparacion de impedancia.

Cuando en el lado de un cilindro lleno de agua se perfora un orificio, la corriente resultan-

te choca contra el piso a una distancia x de la base, donde x = 2Vy(h — y). Vea la FIGURA

5.R.10.

a) ;En qué punto debe hacerse el orificio de modo que la corriente alcance una distancia
maxima de la base?

b) (Cuadl es la distancia maxima?
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Suelo

FIGURA 5.R.10 Tanque perforado en el problema 31

32. El drea de un sector circular de radio r y longitud de arco s es A = jrs. Vea la FIGURA5R.11.
Encuentre el drea maxima de un sector limitado por un perimetro de 60 cm.

FIGURA 5.R.11  Sector circular en el problema 32

33. Un chiquero, junto a un granero, se delimita usando cerca en dos lados, como se muestra en
la FIGURA 5.R.12. La cantidad de cerca que se usard mide 585 pies. Encuentre los valores de x
y y indicados en la figura de modo que se delimite la mayor drea.

FIGURA 5.R.12  Chiquero en el problema 33

34. Un granjero desea usar 100 m de cerca para construir una valla diagonal que conecte dos
muros que se encuentran en angulo recto. ;Cémo debe proceder el granjero de modo que el
drea limitada por los muros y la valla sea mdxima?

35. Segtin el principio de Fermat, un rayo de luz que se origina en un punto A y se refleja en
una superficie plana hacia el punto B recorre una trayectoria que requiere el menor tiempo.
Vea la FIGURA 5.R.13. Suponga que la rapidez de la luz ¢, asi como #;, h, y d, son constantes.
Demuestre que el tiempo es minimo cuando tan 6, = tan 6,. Puesto que 0 < 6, < 7/2y
0 < 6, < /2, se concluye que 8, = 6,. En otras palabras, el dngulo de incidencia es igual
al angulo de reflexién. [Nota: La figura 5.R.13 es inexacta a propdsito.]

normal a la superficie

superficie
==

d |

FIGURA 5.R.13 Rayos de luz reflejados en el problema 35
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36. Determine las dimensiones de un cono circular recto que tiene volumen minimo V que cir-
cunscribe una esfera de radio r. Vea la FIGURA 5.R.14. [Sugerencia: Use tridngulos semejantes. ]

FIGURA 5.R.14  Esfera y cono
en el problema 36

37. Un contenedor en forma de cilindro circular recto tiene un volumen de 100 pulg®. La parte
superior del contenedor cuesta tres veces por unidad de drea que la parte inferior y los lados.
Demuestre que la dimensién con que se obtiene el menor costo de construccion es una altu-
ra igual a cuatro veces el radio.

38. Se va a elaborar una caja con cubierta hecha de una pieza rectangular de cartén de 30 pulg
de longitud y 15 pulg de ancho al cortar un cuadrado en un extremo del cartén y cortando
un rectangulo de cada esquina del otro extremo, como se muestra en la FIGURA 5.R.15.
Encuentre las dimensiones de la caja con que se obtiene el volumen méaximo. ;Cudl es el
volumen méximo?

""""" T
1 1 1
1 1 1
1 1 1
| doblez>| |=< doblez
i Lo
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
_______ 1
A A-
corte corte
a) b)

FIGURA 5.R.15 Caja en el problema 38

En los problemas 39-48, use la regla de L’Hopital para encontrar el 1imite.

39. lim w 40. lim 106 — Ssen 20
R x— V3 * 650 100 — 2sen 50
m x( cost — 1 1
_ (sen 1) ~ tan(5x%)
- }KY‘% sen £ 4. Jm 2 g2
45. 11/1'{)1+(3_x)_1/1nx 46. lfﬂ(l) (2x 4 63)()4/)(

2x
47. lim In (m) 48.  lim x(In x)’

=00 1+ e*



Apéndice

Sucesiones y series

En este apéndice La experiencia cotidiana brinda un sentimiento intuitivo de la nocion
de una sucesion. Las palabras sucesion de eventos o sucesion de numeros sugiere un arreglo
en el que los eventos E o los nimeros n se establecen en algun orden: £, E, E5, ... 0 m, ny,
N, ...
Cualquier estudiante de matematicas también esta familiarizado con el hecho de que
cualquier namero real puede escribirse como un decimal. Por ejemplo, el nimero racional
3 = 0.333..., donde los misteriosos tres puntos (una elipsis) significan que los tres digitos se
repiten eternamente. Esto quiere decir que el decimal 0.333... es una suma infinita o la serie
infinita

3 3 3 3

70 T 700 T 7000 T 0000 T

En este apéndice se observara que los conceptos de sucesion y serie infinita estan relacio-
nados.

A.1 Sucesiones

A.2 Sucesiones mondtonas

A.3 Series

A.4 Prueba de la integral

A.5 Pruebas de comparacion

A.6 Pruebas de las proporciones y de la raiz

A.7 Series alternantes

A.8 Series de potencias

A.9 Representacion de funciones mediante series de potencias
A.10 Serie de Taylor

A.11 Serie del binomio
281
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Algunos textos utilizan las pala-
bras sucesion infinita. Cuando

el dominio de la funcién es un
subconjunto finito del conjunto

de los enteros positivos, obtene-
mos una sucesion finita. Todas

las sucesiones en este apéndice
serdn infinitas.

A.1 Sucesiones

I Introduccion Si el dominio de una funcion fes el conjunto de enteros positivos, entonces los
elementos f(n) en el rango pueden arreglarse en un orden correspondiente a los valores crecien-
tes de n:

£, f2), f3),..., fn),...

En la discusién que sigue sélo se considerardan funciones cuyo dominio es el conjunto de ente-
ros positivos y cuyos elementos del rango son nimeros reales.

N1\ [JXe BN Funcion con los enteros positivos como dominio

Si n es un entero positivo, entonces los primeros elementos en el rango de la funcién

fm) = (1 + 1/n)" son

9
=2 =5 =S

Una funcién cuyo dominio es el conjunto completo de enteros positivos recibe un nombre
especial.

Definicion A.1.1 Sucesion

Una sucesion es una funcién cuyo dominio es el conjunto de enteros positivos.

I Notacion y terminos En lugar de la notacién de funcién usual f(n), una sucesioén suele deno-
tarse mediante {a,} o {a,},=,. El entero n algunas veces recibe el nombre de indice de a,,. Los tér-
minos de la sucesion se forman dejando que el indice n tome los valores 1, 2, 3, . . . ; el nimero a;
es el primer término, a, es el segundo término, y asi en lo sucesivo. El nimero a,, se denomina el
término n-ésimo o el término general de la sucesion. De tal modo, {a,} es equivalente a

ay, dy, ds, ..., Q... < nimeros en el rango
1 2 3 n < nimeros en el dominio

Por ejemplo, la sucesién definida en el ejemplo 1 seria escrita {(1 + 1/n)"}.
En algunas circunstancias es conveniente tomar el primer término de una sucesién como a
y la sucesién es entonces

Ao, Ay, Aoy A3y eney Ay een

A\ JEe P A Términos de una sucesion

Escriba los primeros cuatro términos de las sucesiones

1
a) {2,1} b) {n’ + n} o) {(=D"}.
Al sustituir n = 1, 2, 3, 4 en el término general respectivo de cada sucesion, obtenemos
1111
a) T b) 2,6,12,20,... c) —1,1,—-1,1,...

I Sucesion convergente Para la sucesion del inciso a) del ejemplo 2, se ve que como el indi-
ce n se vuelve progresivamente mds grande, los valores a, = 7: no se incrementan sin limite. En
realidad, observamos que cuando n — o0, los términos

1111 1 1

se aproximan al valor limite 0. Se afirma que la sucesién {3} converge a 0. En contraste, los tér-
minos de las sucesiones en los incisos b) y ¢) no se aproximan a un valor limite cuando n — 00.
En general se tiene la siguiente definicion.
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Definicion A.1.2 Sucesién convergente

Se dice que una sucesion {a,} converge a un nimero real L si para todo € > 0 existe un | o Compare esta definicion con la
entero positivo N tal que redaccién en la definicién 3.6.5.

la, — L| < & siempre que n > N. (1)

El nimero L se llama el limite de la sucesion.

Si una sucesion {a,} converge, entonces su limite L es dnico.

I Sucesion convergente Si {a,} es una sucesién convergente, (1) significa que los términos
a, pueden hacerse arbitrariamente cercanos a L para n suficientemente grande. Se indica que una
sucesion converge a un nimero L escribiendo

lima, = L.

n—o00
Cuando {a,} no converge, esto es, cuando lim a,, no existe, la sucesion diverge.

La FIGURA A1.1 ilustra varias maneras en las cuales una sucesion {a,} puede converger a un
nimero L. Las partes a), b), ¢) y d) de la figura A.1.1 muestran que para cuatro sucesiones con-
vergentes diferentes {a,}, al menos un niimero finito de términos de a, estdn en el intervalo
(L — &, L + ¢&). Los términos de la sucesion {a,} que estdn en (L — &, L + &) paran > N se
representan por medio de puntos en la figura.

a, paran>Ntodaa, a,
estien(L—¢g,L+¢) °
1 ° 1
I L] ° 1
L+ef-—------ I —— L+tegt--—------ o o NN
L 1 L ; ® o o
| g ® © & O [
L-—gp------ P e T L—gfp----cac-uu- dmmm -
° | I
. i i
® L n [ B R n
123...N 123 .. N
a) b)
a}l aVl
°
. i i
L+epb-———————- o~ _ L+£——: ————————————————————
L ;, * L
L—scsb----coe-= -.—4—.————.——— L — ¢ | -G L T e
° I I
(] I I
I I
[ A R n Ll n
123 .. N 123..N
c) d)
FIGURA A.1.1  Cuatro maneras en las que una sucesion puede converger a L

A3\ JHe &N Sucesion convergente

Use la definicién A.1.2 para demostrar que la sucesién {I1/V/n} converge a 0.

Intuitivamente, es posible ver a partir de los términos

1 1 1 1

que cuando el indice n aumenta sin limite los términos tienden al valor limite 0. Para probar la
convergencia, suponemos primero que € > 0 estd dado. Puesto que los términos de la sucesién
son positivos, la desigualdad |a, — 0| < & es la misma que

L<z~:.

Vn
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y
fD=q
f@2)=a}
3 =asf

L

12345
FIGURA A.1.2  Si f(x) — L cuando
x — 090, entonces f(n) = a, —>L
cuando n — 00

Esto es equivalente a \Vn > 1/gon>1/ &2. En consecuencia, s6lo se necesita elegir N como el
primer entero positivo mayor o igual que 1/&% Por ejemplo, si se elige & = 0.01, entonces
|1/Vn — 0] = 1/Vn < 0.01 siempre que n> 10 000. Esto es, se elige N = 10 000.

En la prictica, para determinar si una sucesion {a,} converge o diverge, debemos trabajar
directamente con nh_g)lo a, y proceder igual que al examinar el nh_g)lo f(x). Si a,, aumenta o disminu-
ye sin limite cuando n — o0, entonces {a,} es necesariamente divergente y escribimos, respec-
tivamente,

lima, = o© 0 lima, = —oo. 2)
n—00

n—oo

En el primer caso en (2) afirmamos que {a,,} diverge a infinito y en el segundo que {a,} diver-
ge a infinito negativo. Una sucesion tal vez diverja de manera distinta a la que se indica en (2).
El siguiente ejemplo ilustra dos sucesiones; cada una diverge de un modo diferente.

]\ [XelV's Sucesiones divergentes

a) Lasucesién {n® + n} diverge a infinito, ya que le (n* + n) =cc.
n (o]

b) La sucesién {(—1)"} es divergente puesto que lim (—1)" no existe. El término general
2z . n—00
de la sucesién no se aproxima a una constante cuando n — 00; como puede verse en el
inciso ¢) del ejemplo 2, el término (—1)" se alterna entre 1 y —1 cuando n — 0.

)3\ [JXe BN Determinacion de la convergencia
3n(—1)"
n+1

Determine si la sucesién { } converge o diverge.

Al dividir el numerador y el denominador del término general entre n se obtiene

TG A GV
o+ 1 el + 1/n

Aunque 3/(1 + 1/n) — 3 cuando n — oo, el limite anterior sigue sin existir. Debido al factor
(—=1)", se observa que cuando n — 00,

a,—3, npar, y a,— —3, nimpar.

La sucesion diverge.

Una sucesion, como aquella del inciso b) del ejemplo 4 y la del ejemplo 5, para la cual
ll'rgoaz,, =L y ll’rgoaz,lﬂ = —L,

L # 0, se dice que diverge por oscilacion.
I Sucesion de constantes Una sucesion de constantes
c,c,C,...

se escribe {c}. El sentido comun indica que esta sucesién converge y que su limite es c. Vea la
figura A.1.1d). Por ejemplo, la sucesién {7} converge a 7.

Al determinar el limite de una sucesion resulta muchas veces util sustituir la variable discre-
ta n por una variable continua x. Si una funcién es f tal que f(x) — L cuando x — o0 y el valor
de fen los enteros positivos, f(1), f(2), f(3), ..., concuerda con los términos a,, a,, as, ... de
{a,}, esto es,

fy=a, [fQ)=a,  [O)=a,..,

entonces necesariamente la sucesion {a,} converge al niimero L. La validez de este resultado se
ilustra en la FIGURA A.1.2.
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Teorema A.1.1 Limite de una sucesion

Suponga que {a,} es una sucesion y f es una funcion tal que f(n) = a, paran = 1. Si

1290 fix) =1L entonces lirgoa,, = L. 3)

NI\ [JEe NN Empleo de la regla de L'Hopital

Muestre que la sucesion {(n + H/my converge.

Si definimos f(x) = (x + 1'%, entonces reconocemos que }1_)11010 f(x) tiene la forma

indeterminada oo cuando x — oo. Por tanto, y utilizando la regla de L' Hopital, o Vea la seccién 5.5 para un
1 repaso de como manejar la
0
In(x + 1) Y+ 1 1 forma c0".
limIn f(x) = lim = lim = lim =0
X—00 xX—>00 xX—00 x—oox + 1

Esto demuestra que lim In f(x) = ln[lim f(x)] =0y que lim fx) = ¢° = 1. Por tanto, por (3)

tenemos lim (n + 1)1/ "=¢"=1. La sucesién converge a 1.
n—00

NI\ [JXe VA Sucesion convergente

n(dn + 1)(5n + 3)
6n® + 2

Demuestre que la sucesién { } converge.
) x(4x + D(Sx +3)  20x° + 17x% + 3x
Siflx) = 3 = 3

6x° + 2 6x° + 2
indeterminada 0o/o0. Por la regla de L’Hopital,

, entonces lim f(x) tiene la forma
n—od

o x(4x + D(x + 3) o200 + 17x% + 3x
Iim 3 = lim 3
x¥—>00 6x° + 2 ¥00 6x” + 2
hoy 60x* + 34x + 3
= lim—————
x—00 18x?

- 120x + 34
x—00 36x

[I=
N
—
[\)
(e}
—_
(e}

De (3) del teorema A.1.1, la sucesién dada converge a %0~

=N]\Y[/Xe}¥:¥ Determinacion de convergencia

. . . [ n
Determine si la sucesion converge.
{ On + 1 g

Se contintia con la aplicacién de la regla de I’Hopital, se divide el numerador y el
denominador entre x y resulta que x/(9x + 1) — § cuando x — oo. De tal modo, podemos escribir

1’\/ n :\/1, n — l:l
i\ 9 + 1 69 + 1 9 3

La sucesién converge a 3-

I Propiedades Las siguientes propiedades de sucesiones son andlogas a las que se indicaron
en los teoremas 3.2.1, 3.2.2 y 3.2.3.
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Teorema A.1.2 Limite de una sucesion

Sean {a,} y {b,} sucesiones convergentes. Si lima, = L,y limb, = L,, entonces
n—00 n—o00

i) limc = ¢, ¢ unnimero real

n—0o0
i) limka, = klima, = kL;, kun nimero real
n—00 n—00

. 4 — 17 + i — 4+
i) lim(a, +b,) = lima, + limb, = L, + L,

iv) limab, = lima,- limb, = L, L,
n n—00

n—00 —00
lima,
1, a, n—oo Ll [,2 ~ O
) lim-— = — = — .
) I = Ymb, Ly
n—00

N1\ [JXe BN Determinacion de convergencia

Determine si la sucesion 2= 3 converge
6+ 4e™" &e:

Observe que 2 — 3e™" =2y 6 + 4¢ " — 6 # 0 cuando n — 00. De acuerdo con el
teorema A.1.2v), tenemos

ager Jmeoden
i 6 + de " lim(6 +4e ) 6

1

3
sz 1

La sucesion converge a 3+

El primero de los siguientes dos teoremas debe ser verosimil de acuerdo con su conocimien-

Revise la seccion 2.6, especifi- P to del comportamiento de la funcién exponencial. Recuerde que, para0 < b < 1, b*— 0 cuan-

camente la figura 2.6.2.

do x — 00, en tanto que para b > 1, b* — 00 cuando x — 0.

Teorema A.1.3 Sucesiones de la forma {r"}

Suponga que r es una constante distinta de cero. La sucesion {r"} converge a O si |[r] < 1y
diverge si |r| > 1.

Teorema A.1.4 Sucesiones de la forma {1/n"}

La sucesion {n’ converge a 0 para r cualquier nimero racional positivo.

Aplicaciones de los teoremas A.1.3 y A.1.4

a) La sucesion {e "} converge a 0 por el teorema A.1.3, ya que e " = (l> y

r=1/e < 1. ¢

b) La sucesion {(;)n} diverge por el teorema A.1.3, ya que r = 3 > 1.

¢) La sucesién {’:/2} converge a 0 por el teorema A.1.2ii) y el teorema A.1.4, ya que

r = 5 es un niimero racional positivo.

AN BNV Determinacion de convergencia

Del teorema A.1.2iii) y el teorema A.1.4 observamos que la sucesion { 10 + ?/2} converge a 10.
n




I Sucesion definida recursivamente Como el siguiente ejemplo indica, una sucesién puede
definirse especificando el primer término a; junto con una regla para obtener los términos sub-
secuentes a partir de los términos precedentes. En este caso se dice que la sucesion estd defini-
da recursivamente. La regla de definicion se denomina férmula de recursion. Vea los proble-
mas 59 y 60 en los ejercicios A.1.

A\ e PR Una sucesion definida recursivamente

Suponga que una sucesion se define recursivamente mediante a,+; = 3a, + 4, donde a; = 2.
Sustituyendo entonces n =1, 2, 3, . . . se obtiene

el nimero estd dado como 2

l
@ =3, +4=32)+4=10

a3 = 3a, + 4 = 3(10) + 4 = 34
ay = 3a; + 4 = 3(34) + 4 = 106

y asi sucesivamente.

I Teorema de compresion El siguiente teorema es el equivalente de la sucesion del teorema 3.4.1.

Teorema A.1.5 Teorema de compresion

Suponga que {a,}, {b,} v {c,} son sucesiones tales que
an S Cn S b)‘l

para todos los valores de n mayores que algtin indice N (esto es, n > N). Si {a,} y {b,} con-
vergen a un limite comin L, entonces {c,} también converge a L.

I Factorial Antes de presentar un ejemplo que ilustre el teorema A.1.5, necesitamos revisar un
simbolo que aparece con frecuencia en esta unidad. Si n es un entero positivo, el simbolo 7!, que
se lee “n factorial”, es el producto de los primeros n enteros positivos:

nl=1-2-3---(m— 1) n 4)
Por ejemplo, 5! = 1-2-3-4-5 = 120. Una propiedad importante del factorial estd dada por
n!'=m-— 1Dln.
Para ver esto, considere el caso cuando n = 6:
5!

6!=1-2-3-4-5-6=(1-2-3-4-5)6 = 5l6.
Enunciada de una manera un poco diferente, la propiedad n! = (n — 1)!n es equivalente a
(n+ D!'=nln+1). Q)

Un ultimo punto: por propésitos de conveniencia y para asegurar que la férmulan! = (n — 1)!n
es valida cuando n = 1, se define 0! = 1.

=N]\Y[JXe BN kN Determinacion de convergencia

n

Determine si la sucesion {n'} converge.

La convergencia o divergencia de la sucesién dada no es evidente ya que 2" — 00 y
n! — 0o cuando n — 00. Aun cuando la forma limite de 1im (2"/n!) es 00/00 no es posible que
utilicemos la regla de L’Hdpital puesto que no hemos estudiado ninguna funcién f(x) = x! Sin
embargo, podemos recurrir al teorema A.1.5 manipulando algebraicamente el término general de
la sucesién. En vista de (4), el término general puede escribirse
n factores de 2 n fracciones
2" _2-2-2-2---2 _2
n! 1-2-3-4---n 1

SN
wWIN

INITNY
S o

A.1 Sucesiones

287
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n

El resultado 1im 2—‘ =0
n—oon!

muestra que n! crece mucho
mads rapido que 2" cuando

n — 090, Por ejemplo, para

n =10, 2'° = 1 024, en tanto
que 10! = 3 628 800.

De la linea anterior se obtiene la desigualdad

n fracciones n—2 fracciones
2" 2 2 2 2 2 2 2 2 2\ 2
- 2. 2. 2. 2. 2<9.1.2.=2... 2 = =
0= =1 233 »=2133"3 2(3) ©

Las n — 2 fracciones de  en el lado derecho de (6) resultan del hecho de que después del segun-
do factor en el producto de n fracciones, 3 es el denominador més pequefio que hace 5 mds
grande que 3, m4s grande que %, y asf sucesivamente hacia abajo hasta el tiltimo factor Z. Por las
leyes de los exponentes (6) es lo mismo que

OSrzl'Sg(g) o a,=c,=b,

donde se han identificado las sucesiones {a,} = {0}, {b,} = {(3(3)"} y {c.} = {2"/n!}. La
sucesion {a,} es una de ceros y por ello converge a 0. La sucesién {b,} = {%(%)"} también con-
verge a 0 al invocar el teorema A.1.2ii) y el teorema A.1.3 conr = % 1. De tal manera que por

P el teorema A.1.5, {¢,} = {2"/n!} también debe converger a 0.

La sucesion en el ejemplo anterior también puede definirse recursivamente. Para n = 1,
a, = 2'/1! = 2. Entonces por (5) y las leyes de los exponentes,

estoes a,

2n+l 2.0n _ 2 on

S TG F I A+ D)ot o+l oal
Asi, {2"/n!} es lo mismo que

2
Ape1 = 2l a; = 2. (7

Es posible usar la férmula de recursion (7) como un medio alterno de encontrar el limite L de la
sucesién {2"/n!}. Puesto que se mostrd que la sucesion es convergente tenemos 1im a,, = L. Este
n—00

dltimo enunciado es equivalente también a lim a,+1 = L. Haciendo que n — o0 en (7) y usando
. , . . . n o0
las propiedades de limites podemos escribir

) _ (2 2\
nh—>r£10an+| N nll>nC>10<I’l + 10,,) B <nh—>I£lOn + 1) (nll—>r£1<>an>' (8)

En la dltima linea se ve que L = 0 - L, lo cual implica que el limite de la sucesion es L = 0.
El dltimo teorema para esta seccion es una consecuencia inmediata del teorema A.1.5.

Teorema A.1.6 Sucesién de valores absolutos

Si la sucesién {|a,|} converge a 0, entonces {a,} converge a 0.

DEMOSTRACION Por la definicién de valor absoluto, la,| = a, si a, =0y |a,] = —a, si
a, < 0. Se sigue que

—la,| = a, = |a,|. ©)

Por suposicion, {|a,|} converge a 0y por ello lim|a,| = 0. De la desigualdad (9) y el teorema
A.1.5 se concluye que lgn a, = 0. Por tanto, {a,} converge a 0.

=8]5\7 Ko MRS Empleo del teorema A.1.6
_1 n
La sucesion {( \f) } converge a 0 puesto que ya se ha demostrado en el ejemplo 3 que la suce-
n

sién de valores absolutos {|(—1)"/Vn|} = {1/Vn} converge a 0.
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{0 0E RN Las respuestas de los problemas impares comienzan en la pagina RES-18.

En los problemas 1-10, liste los primeros cuatro términos de
la sucesién cuyo término general es a,,.

1 _ 3
Loa,=75"7 24 =05
_ _
3. a,= " 4'a”_n+1
5. a, = 10" 6. a, = 10"
7. a, = 2n! a, = (2n)!
9. q,= }‘} 10. a, = >,2°*
o1k k=1

En los problemas 11-14, emplee la definicién A.1.2 para
demostrar que cada sucesion converge al nimero dado L.

11. {1}; L=0 12. {12}, L=0
n n
. "+ 11. _
Y N TS (XL R

En los problemas 15-46, determine si la sucesién dada con-
verge. Si la sucesion converge, entonces encuentre su limite.

10 1
s { ) 16 {5}
1
17. {5n+6} 18. {2n+7}
3n — 2
o, {11-2) .
21. {20(—1)"""} 22. { én}
n — 1 n
s {1t 2 (T
25. {ne™"} 26. {n’e™"}
n+ 1
7 (Vi 2 {2
29. {cos n} 30. {sennm}

31. “"} 32.
n

5_2_} 34,

{ Utr 5 1
{ {
s {0 wfer2)
{ {
{ H

33.

37. In sen<6>} 38. (1 ) }
n
en_e:n} 40. {— — arctan(n)}

41. {n¥0) 42. (100D

39.

dn + 1 n
. {m(Sn + 1)} . {ln 3n}
45. (Vn + 1 — Vn} 46. (Vn(Vn+1— Vn)}

En los problemas 47-52, encuentre una férmula para el térmi-
no general a,, de la sucesion. Determine si la sucesion dada con-
verge. Si la sucesién converge, entonces encuentre su limite.

2468
47. P35y

48. 1 + +

W | =
51—
N
[T

11,1
22" 3
7

49. 3,

9 b 9
50. 2,.

=5
-2,2, -2,
22 2
51. 2, 39 07
1 1 1 1
1-4°2-83-1674-32°""

52.

En los problemas 53-56, para la sucesién dada definida recur-
sivamente, escriba los siguientes cuatro términos después del
(de los) término(s) inicial(es) indicado(s).

53. a,4 = %an, a = —1
54. a,., = 2a,— 1, a; =2
an
55. a,+ :E’ a=1, a, =3
56. a,.; = 2a, — 3a,;, a =2, a =4

En los problemas 57 y 58, se sabe que la sucesion definida
recursivamente converge para un valor inicial dado a; > 0.
Suponga que lim a, =L, y proceda como en (8) de esta sec-
., n—00 P .,
cién para encontrar el limite L de la sucesion.
a, + 6

57. a,+1 = i n . = ;(an + as>

58 Apt1
En los problemas 59 y 60, encuentre una férmula de recursién
que defina la sucesién dada.

o {31}
n.
60. V3, V3+ V3, V3+V3+ V3 ..

En los problema 61-64, utilice el teorema de compresion para
establecer la convergencia de la sucesion dada.

sen2n} { 1 }
61. \—,— 62. {+/16 + —
{ 4 n’
!
64. {n,,} [Sugerencia: a, = 1<2 3.4 n)}
n n\n n n n

65. Demuestre que para cualquier nimero real x, la sucesion
{(1 + x/n)"} converge a ¢".
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66.

SRIl|

68.

69.

70.

71.

72.

=

Se sabe que la sucesion

1,1 1
{1+2+3+ +n lnn}

converge a un nimero vy llamado constante de Euler.
Calcule los primeros 10 términos de la sucesion.

. Una pelota se deja caer desde una altura inicial de 15 pies

sobre una plancha de concreto. Cada vez que rebota,
alcanza una altura de 3 de su altura precedente. (A qué
altura llegara en su tercer rebote? ;En su n-ésimo rebote?
Vea la FIGURA A.1.3.

15 pies

FIGURA A.1.3  Rebote de
la pelota del problema 67

Una pelota, que cae desde una gran altura, recorre 16 pies
durante el primer segundo, 48 pies durante el segundo, 80
pies durante el tercero, y asi en lo sucesivo. ;Cudl es la
distancia recorrida por la pelota durante el sexto segundo?
Un paciente toma 15 mg de un firmaco cada dia. Su-
ponga que 80% del farmaco acumulado es excretado
cada dia por las funciones corporales. Escriba los prime-
ros seis términos de la sucesion {A,,}, donde A,, es la can-
tidad de farmaco presente en el cuerpo del paciente inme-
diatamente después de la dosis n-ésima.
Se deposita un ddlar en una cuenta de ahorros que paga
una tasa de interés anual r. Si no se extrae dinero, ¢cudl
es la cantidad de dinero acumulado en la cuenta después
del primero, segundo y tercer afios?
Cada persona tiene dos padres. Determine cudntos tatata-
tarabuelos tiene cada persona.
La sucesién definida recursivamente
3p, — v
400°
se denomina ecuacion logistica discreta. Una sucesion
de este tipo se utiliza a menudo para modelar una pobla-
cién p,, en un ambiente; aqui p, es la poblacién inicial
en el ambiente. Determine la capacidad de transporte
K= }13)10 p, del ambiente. Calcule los siguientes nueve
términos de la sucesién y demuestre que estos términos
oscilan alrededor de K.

Pnt1 = po = 450

. Considere la sucesion {a,} cuyos primeros cuatro térmi-

nos son

1+

1
1, 1+2,

74.

75.

76.

3

a) Con a; = 1, encuentre una férmula de recursién que
defina a la sucesion.

b) ;Cuiles son el quinto y el sexto términos de la suce-
sién?

¢) Se sabe que la sucesion {a,} converge. Encuentre el
limite de la sucesion.

Conjeture respecto al limite de la sucesién convergente

V3, V3V3, V3V3V3, ...

Si converge la sucesién {a,}, ;diverge la sucesion {a2}?
Apoye su respuesta con argumentos matematicos sélidos.
En la FIGURA A.1.4 el primer cuadrado que se muestra es de

1 unidad por lado. Un segundo cuadrado se construye

dentro del primer cuadrado conectando los puntos

medios del primero. Un tercer cuadrado se construye
conectando los puntos medios de los lados del segundo
cuadrado, y asi en lo sucesivo.

a) Encuentre una férmula para el area A, del n-ésimo
cuadrado inscrito.

b) Considere la sucesiéon {S,}, donde S, = A, + A,
+--- +A,. Calcule los valores numéricos de los pri-
meros 10 términos de esta sucesion.

¢) Conjeture acerca de la convergencia de {S,,}.

FIGURA A.1.4  Cuadrados
incrustados del problema 76

. Un clasico matematico Considere un tridngulo equila-

tero con lados de longitud 1 como se muestra en la FIGU-
RA A.15a). Como se muestra en la figura A.1.5b), sobre
cada uno de los tres lados del tridngulo se construye otro
tridngulo equildtero con lados de longitud 1. Como se
sefiala en las figuras A.1.5¢) y A.1.5d), se continta esta
construccién: se construyen tridngulos equilateros sobre
los lados de cada nuevo tridngulo previo de modo tal que
la longitud de los lados del nuevo tridngulo es % la longi-
tud de los lados del tridngulo anterior. Considere que el
perimetro de la primera figura es P, el perimetro de la
segunda figura P, y asi en lo sucesivo.
a) Encuentre los valores de Py, P, P3y Py.
b) Encuentre la férmula para el perimetro P, de la
n-ésima figura.
¢) (Cuidlesel limP,? El perimetro de la regién similar
a un copo dé nieve que se obtuvo dejando n — 00 se
llama curva del copo de nieve de Koch y fue inven-
tada en 1904 por el matematico sueco Helge von
Koch (1870-1924). La curva de Koch aparece en la
teorfa de fractales.
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Distinga el patrén de la solucién de este problema y com-

1
3 \ plete la siguiente tabla.
1
Inicios Después de cada mes
\/ 1 23456 7 89 10 11 12

Parejas
adultas

a) b) 1 1 2 3581321

1 1

9 Parejas

27
\ debebés| 0 |1 1 235 813
Total de
parejas | 1 |2 3 5 8132134
<) )

79. Escriba cinco términos, después de los dos iniciales, de la
FIGURA A.1.5 Regiones de copos de sucesion definida recursivamente por medio de F,,.| = F,,
nieve del problema 77 +F,_1, F; = 1, F, = 1. Reexamine el problema 78.

Ademis de 80. Razon aurea Si la férmula de recursion del problema

78. Un poco de historia: ;Cuantos conejos? i
79 se divide entre F,,, entonces

su famosa torre inclinada, la ciudad de Pisa, Italia, se

conoce también como el lugar natal de F, F,.
Leonardo Pisano, alias Leonardo F, =1+ F,
Fibonacci (1170-1250). Fibonacci fue
el primero en Europa en introducir el Si se define @, = F,,/F,, entonces la sucesién {a,} se
sistema de lugares decimales hindi- define recursivamente por medio de
drabe y el uso de los numerales ardbi- 1
gos. Su libro Liber Abacci, publicado a =1+ a=1n=2
en 1202, es basicamente un texto acerca de como hacer ol
aritmética en este sistema decimal. Sin embargo, en Se sabe que la sucesién {a,} converge en la razén durea
el capitulo 12 de Liber Abacci, Fibonacci plantea y ¢= }Lfgam
resuelve el siguiente problema sobre la reproduccion de a) Encuentre ¢.
conejos: b) Escriba un pequefio informe acerca del significado del

(Cudntos pares de conejos se reproducirdn en un afio empe- nimero ¢ que incluya la relacién entre ?Ste numero y
zando con un solo par, si cada mes cada par tiene un la forma del caparazén de cdmaras multiples del nau-

nuevo par que se vuelve fértil a partir del segundo mes en tilo. Vea la foto en el inicio de este apéndice.
adelante?

A.2 Sucesiones monétonas

I Introduccion En la seccién anterior se demostré que una sucesién {a,} convergia al deter-
minar lim a,,. Sin embargo, no siempre es facil o incluso posible determinar si una sucesion {a,,}
n—o0

converge buscando el valor exacto de 1im a,,. Por ejemplo, ;la sucesion
n—00

11 1
{1+2+3+---+n—1nn}

converge? Resulta que es posible demostrar que esta sucesion converge, pero no utilizando las
ideas bésicas de la tlltima seccién. En esta seccidn se considera un tipo especial de sucesioén cuya
convergencia puede establecerse sin determinar el valor de {a,}.

Empezamos con una definicion.
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Definicion A.2.1 Sucesién mondtona

Una sucesion {a,} se dice que serd

i) creciente si a,., > a, para todan = 1,

ii) no decreciente si a,,; = a, para todan = 1,
iii) decreciente si a,,; < a, paratodan = 1,
iv) no creciente si a,,; = a, para todan = 1,

Si una sucesion {a,} es de alguno de los tipos anteriores, se dice entonces que es monoétona.

En otras palabras, sucesiones del tipo

g <a<a<--<a <aq <
ay > a, > ay; > > A, > Ay > "0,

son crecientes y decrecientes, respectivamente. Mientras,

I\

a = ay = a =0, = Ay S

v

=

A =y = a3 =" = Ay = Ay =07,

son sucesiones no decrecientes y no crecientes, respectivamente. Las nociones de no decrecien-
te y no creciente permiten que algunos términos adyacentes en una sucesion resulten iguales.

A\ IO N Mondtona/no monotona

a) Las tres sucesiones

111

4.6,810....  Lyigpge. ¥

5,5,4,4,4,3,3,3,3,...

son mondtonas. Estas son, respectivamente, creciente, decreciente y no creciente.

b) Lasucesion —1, %, —%, ﬁ, —é, ... €s no mondtona.

No siempre resulta evidente si una sucesion es creciente, decreciente, y asi en lo sucesivo.
Las siguientes guias ilustran algunas de las maneras en que puede demostrarse la monotonia.

Guias para demostrar la monotonia

i) Formar una funcion f(x) tal que f(n) = a,. Si f'(x) > 0, entonces {a,} es cre-
ciente. Si f'(x) < 0, entonces {a,} es decreciente.

ii) Formar el cociente a, . /a, donde a, > 0 para toda n. Si a,;,/a, > 1 para toda
n, entonces {a,} es creciente. Si a,.,/a, < 1 para toda n, entonces {a,} es
decreciente.

iii) Formar la diferencia a,,,; — a,. Si a,.; — a, > 0 para toda n, entonces {a,} es
creciente. Si a,.; — a, < 0 para toda n, entonces {a,} es decreciente.

1A S\Y|JHe BN Una sucesion mondtona

n ‘2 )
Demuestre que {en} €S una sucesion monotona.

Si se define f(x) = x/¢e", entonces f(n) = a,. En este caso,

Fo=1E <0

para x > 1 implica que f es decreciente sobre [ 1, ©0). De ese modo se concluye que

f(n+ l) = Qpt <f(n) = a,.

Por la definicion A.2.1, la sucesioén dada es decreciente.
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Del cociente

1 _n+1 " n+1

1
ne

=
a, en+1 n ne

1,11
e e

1 2
+-="<1

e e
vemos que a,+ < a, para toda n = 1. Esto demuestra que la sucesion es decreciente.

A\ o] Una sucesion mondtona

La sucesion 2nt 1 0é 379
n+1 2’3 45"

o _m+3 2241 _ 1
It = = T i+l m+ )+ 1)

.. parece ser creciente. De

>0

se concluye que a,,4; > a,, para toda n = 1. Eso demuestra que la sucesion es creciente.

Definicion A.2.2 Sucesién acotada

i) Una sucesion {a,} se dice que estd acotada por arriba si hay un nimero positivo M
tal que a, = M para toda n.

if) Una sucesion {a,} se dice que estd acotada por abajo si hay un nimero positivo m
tal que a, = m para toda n.

iif) Una sucesion {a,} se dice que estd acotada si estd acotada por arriba y acotada por abajo.

Desde luego, si una sucesion {a,} no estd acotada, entonces se afirma que es no acotada.
Una sucesién no acotada es divergente. La sucesion de Fibonacci (vea los problemas 78 y 79 en
los ejercicios A.1)

1,1,2,3,5,8, 13,21, ...

es no decreciente y es un ejemplo de una sucesion no acotada.

La sucesién 1,3, 1,4, ... en el ejemplo 1 es acotada puesto que 0 =< a, = 1 para toda n.
Cualquier nimero mas pequeflo que una cota inferior m de una sucesion también es una cota
inferior y cualquier nimero mayor que una cota superior M es una cota superior; en otras pala-
bras, los niimeros m y M en la definicién A.2.2 no son tnicos. Para la sucesién 1,3, 4,4, ... es

igualmente cierto que —2 = @, = 2 paratodan = 1.

A\ |JHe:N Una sucesion acotada

. + . .
La sucesién {2’1”4_]1} estd acotada por arriba por 2, ya que la desigualdad

2nt1_2n+2 2mt1)

n+1  n+1 n+1

muestra que a, = 2 paran = 1. Ademas,

_2n+1

b =0

para n = 1 muestra que la sucesion esta acotada por abajo por 0. De tal modo, 0 = a,, = 2 para o En realidad, del ejemplo 3

293

toda n implica que la sucesién estd acotada. advertimos que los términos de
la sucesion estdn acotados por

El siguiente resultado serd 1til en las secciones subsecuentes de este apéndice. la sucesion

Teorema A.2.1 Condicion suficiente para la convergencia

Una sucesién monétona acotada {a,} converge.

abajo por el primer término de
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Demostraremos el teorema en el caso de una sucesion no decreciente. Por
suposicion, {a,} estd acotada y por ello m = a, = M para toda n. A su vez, esto significa que el
conjunto infinito de términos S = {ay, a», as, ..., a,, ...} estd acotado por arriba y por tanto tiene

La existencia de una cota supe- B yna cota superior minima o mas pequefia L. La sucesién en realidad converge a L. Para € > 0
rior minima, esto €s, una cota sabemos que L — ¢ < L,y consecuentemente L. — & no es una cota superior de S (no hay cotas
SUPETIOr que es mas pequena superiores mds pequefias que la cota superior minima). En consecuencia, existe un entero posi-

que todas las demas cotas supe- ivo N tal > L P 1 d i
hores de Ta sucesion. cs uno de tivo N tal que ay e. Pero, puesto que {a,} es no decreciente,

los axiomas bdsicos en matemd-
ticas. Recibe el nombre de pro-
piedad de completitud del sis- Se concluye que paran > N,L — e =a, =L + €o|a, — L| < &. Deladefinicién A.1.2 deter-
tema de nimeros reales (ver minamos que }ilg a,=L.

L-e=ay=ayn =aynp=ay3 ==Lt e

unidad 1).
(AN Acotada y monotona
. + . .
Se demostré que la sucesion {M} es mondétona (ejemplo 3) y acotada (ejemplo 4). Por
consiguiente, por el teorema A.2.1 la sucesion es convergente.
A3\ [N l:-N Determinacion de convergencia
b . ) o [1-3:5---2n—1)
emuestre que la sucesion 2-4-6---(2n) converge.
Primero, el cociente
Ay 1-3-5---2n—1)2n + 1) 2:4-6---2n) 2n+1 <1
a,  2-4-6---2n2n+2) 1-3-5---Q2u—1 2n+2
muestra que a,+; < a, para toda n. La sucesién es mondtona puesto que es decreciente. Luego,
de la desigualdad
(Por qué el producto > 0<1.3.5 (Zn—l) l §§12”7_1<1
1357 2n—1 2-4 -+ (2n) 2 4 6 8 2n
2 4 6 8 o se observa que la sucesion estd acotada. Se concluye del teorema A.2.1 que la sucesion es con-
menor que 1? vergente.

El teorema A.2.1 es util para probar que la sucesion {a,} converge, esto es, lim a,=L, pero
el teorema no brinda el nimero especifico L. Sin embargo, el siguiente ejemplo muestra cémo
determinar L cuando la sucesion se define recursivamente.

NI\ [Xe By A Determinacion de convergencia
Demuestre que la sucesién {a,} definida por la férmula de recursién a,; = ian +6,a, =1,
converge.
Esto puede Probafse_lltilizéndo > Primero, la sucesion {a,} estd acotada. Puede demostrarse que a, < 8, para toda n.
un método llamado induccion Este hecho se sugiere al calcular a,, paran = 1,2, 3, ...
matematica.
@ = Jay+ 6= 1()+6=2 =625 <38
L 125 121 _
a3—4a2+6 4<4>+6 16 7.5625 < 8
1 121 505
= —q; + = = <
as = 44 6 = 4( 16> 6 = 64 = 7.890625 < 8

Como a, > 0 para toda n, se tiene que 0 < a,, < 8 para toda n. De tal modo, {a,} estd acotada.
Luego, demostraremos que la sucesion {a,} es monétona. Debido a que a, < 8 necesaria-

mente 3a, < 3-8 = 6. Por tanto, de la férmula de recursién,
1 1 3
a,. = Za” +6 > Za,, + Za” = a,.

Esto demuestra que a,+; > a, para toda n, y por ello la sucesion es creciente.



Como {a,} es acotada y monétona, se sigue del teorema A.2.1 que la sucesién converge.
Puesto que debemos tener lima, = Ly lima,; = L, el limite de la sucesién se determina a
. . n—;09 n—00
partir de la férmula de recursion:

. |
e = ,}5&(4 @ 6)
i = ll’ +6
M0 = 5 i

1

LZZL+6.

Al resolver la tltima ecuacién para L encontramos que 3L = 6 0 L = 8.

NOTAS DESDE EL AULA

i) Toda sucesidn convergente {a,} estd necesariamente acotada. Vea el problema 31 en los
ejercicios A.2. No obstante, no se concluye que toda sucesion acotada es convergente. Se
le pedird que dé un ejemplo que ilustre este ultimo enunciado en el problema 30 de los
ejercicios A.2.

ii) Algunas sucesiones {a,} no exhiben comportamiento monétono hasta algin punto en la
sucesion, esto es, hasta que el indice satisface n = N, donde N es algin entero positivo.
Por ejemplo, los términos de la sucesién {5"/n!} paran = 1,2,3,4,5,6, ... son:

5 25 125 625 625 3125 0

Para observar mejor lo que estd ocurriendo en (1), se aproximaran los términos utilizan-
do nimeros redondeados hasta dos decimales:

5,12.5,20.83, 26.04, 26.04, 21.70, ... 2)

En (2) vemos que los primeros cuatro términos de {5"/n!} aumentan de manera eviden-
te, pero empezando con el cuarto término los términos parecen empezar a no crecer. Esto
se prueba a partir de la versién definida recursivamente de la sucesiéon. Procediendo
como se hizo al obtener la férmula de recurrencia en (7) en la seccién A.1, {5"/n!} es la

misma que a,; = a,, a; = 5. Puesto que = | para n = 4 observamos que

S

n+1 n+1
a,+1 = a,, esto es, {5"/n!} es no creciente s6lo para n = 4. De la misma manera, es fécil
demostrar que {100"/n!} se vuelve a la larga no creciente sélo cuando n = 99. Tomando
el limite de la férmula de recursién como n — 00, como en el ejemplo 7, es posible
demostrar que tanto {5"/n!} como {100"/n!} convergen a 0.

{0 0A T ARWAWA | as respuestas de los problemas impares comienzan en la pagina RES-19.

A.2 Sucesiones monétonas

295

= 1

9 {n + =
En los problemas 1-12, determine si la sucesiéon dada es n
mondtona. Si es asi, indique si es creciente, decreciente o no
decreciente o no creciente.

=

10. {n* + (—1)'n}

11. {(sen )(sen?2) - - - (senn)} 12. {m(” + 2)}

n+1

3. {((—=1)"Vn) 4. {(n — D(n — 2)} trar que la sucesion dada converge.

g

n 7 4n - 1
5] o {5 R
2 221(n1)? .

' {n'} 5 { @n)! } 15 {1 +3"}

3

a2
14. {6 4n}
1+ n?

16. {n5™

{ n } 2 {10 + n}
3n + 1 ) n En los problemas 13-24, utilice el teorema A.2.1 para demos-
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17.

19.

21

23
24

" n!
{e'm} m.{w}
{ n! } 20{ 2:4-6--(2n) }
1-3:5---2n—1) l1-3-5--@2n+ 1)
{tan"'n} 22. {hl(n+3)}
n+3

(0.8), (0.8)% (0.8)°, ...

V3, VV3, VVV3, ..

En los problemas 25 y 26, use el teorema A.2.1 para demos-
trar que la sucesién definida recursivamente converge. En-
cuentre el limite de la sucesion.

25.

27.

28.

2

V2 +a,a =0

pt1 = %an + 5? a, = 1 26. pt1 =

Exprese

VI, VIV, NIN IV, - .

como una sucesion {a,,} definida recursivamente. Utilice
el hecho de que la sucesién estd acotada, 0 < a, < 7
para toda n, para demostrar que {a,} es creciente. En-
cuentre el limite de la sucesién.

Recurra al teorema A.2.1 para demostrar que la sucesion
definida recursivamente
1
pey =\ 1 = a,, ay=2,ap=1,n=2
n
es acotada y mondtona y en consecuencia converge.

Explique por qué la férmula de recursién no es de ayuda
para determinar el limite de la sucesion.

. Ciertos estudios en administracion pesquera argumentan

que el tamafio de una poblacién de peces no perturbada
cambia de un afio al siguiente de acuerdo con la férmula

bp,
a+p,

Pn+1 = n= 0’

donde p, > 0 es la poblacion después de n afios, y a'y b
son parametros positivos que dependen de las especies y
de su ambiente. Suponga que el tamafio de una poblacién
Do se introduce en el afio 0.

A.3 Series

31.

32.

33.

| —

a) Emplee la férmula de recursién para demostrar que
los Unicos valores limite posibles para la sucesion
{pJson0yb — a.

b) Demuestre que p,+1 < (b/a)p,.

¢) Utilice el resultado del inciso b) para demostrar que
si a > b, entonces la poblaciéon muere; esto es,
limp,, = 0.

n—00

d) Suponga ahoraa < b. Demuestre que si 0 <py<b—a,
entonces la sucesion {p,} es creciente y estd acotada
por arriba por b — a. Demuestre que si 0 <b —a < p,
entonces la sucesion {p,,} es decreciente y acotada por
abajo por b — a. Concluya que }1_)11010 p, = b — a para
cualquier py > 0. [Sugerencia: Examine |b —a —p,.1|,
la cual es la distancia entre p,; y |b —al.]

. Proporcione un ejemplo de una sucesién acotada que no

es convergente.

Demuestre que toda sucesion convergente {a,} estd aco-
tada. [Sugerencia: Puesto que {a,} es convergente, se
sigue de la definicién A.1.2 que existe una N tal que
la, — L| < 1 siempre que n > N.]

Demuestre que { [fe "dt} converge. [Sugerencia: Para
x> 1, e ¥ = e "]

Un cldsico matematico Demuestre que la sucesion

1,1 1
{1—+2-+3 ot lnn}

es acotada y mondtona, y, en consecuencia, convergente.
El limite de la sucesién se denota por medio de y y se
llama constante de Euler en honor al notable matemati-
co suizo Leonhard Euler (1707-1783). Del problema 66
del ejercicio A.1, y = 0.5772 . . . [Sugerencia: Primero
demuestre la desigualdad

L T E 0 I i ST
n—1 n n—1

4+ e+

W | =

2 3

considerando el drea bajo la grifica de y = 1/x sobre el
intervalo [1, n].]

I Introduccion EI concepto de una serie se relaciona estrechamente con el concepto de suce-

sion. Si {a,} es la sucesién a,, a,, as, ..., a,, ..., entonces la suma de los términos
a+a+ay+-+a, + ()
se llama serie infinita, o simplemente una serie. Las a;, k = 1,2, 3, . . ., se denominan los tér-

minos de la serie y a,, se llama el término general. Escribimos (1) de manera compacta utili-

zando la notacion de sumatoria como

[es]
> 0 por conveniencia > a.
k=1



La pregunta que deseamos responder en ésta y en varias de las secciones siguientes es:

¢ ;Cuando una serie infinita de constantes “suma” un nimero?

N5\ [ BN Una serie infinita

En los comentarios de inicio de este apéndice se advirtié que la representacién decimal de un
. . 1 . . . .
nimero racional 5 es, de hecho, una serie infinita

3 3 3 = 3
0333 = 4 o4 3 L. =3
10 103 /;110/(

10?
De manera intuitiva, esperamos que % sea la suma de la serie E,to: 1%~ Sin embargo, de
manera intuitiva, esperamos que una serie infinita tal como 10
100 + 1 000 + 10 000 + 100 000 + ---

donde los términos se vuelven mds y mds grandes, no tenga suma. En otras palabras, no se espe-
ra que la serie dltima “sume” o converja a un nimero cualquiera. El concepto de convergencia
de una serie infinita se define en términos de la convergencia de un tipo especial de sucesion.

I Sucesion de sumas parciales Asociada con toda serie finita > a;, existe una sucesion de
sumas parciales {S,} cuyos términos estian definidos por

Sl=a1

S22a1+a2
S3:(11+612+Cl3

n

S,,=a1+a2+a3+"'+(l

El término general S, = a; + a, + - + a, = 2n7 a; de esta sucesion se denomina la suma
n 1 2 n k=1%k
parcial n-ésima de la serie.

N5\ [ B Una serie infinita

. . . o 3
La sucesién de sumas parciales {S,} para la serie >, _,—— es

10°
&:%zm
Sz=13—0+%=o.33
53=%+1i02+1%3:0.333
3n
s,1=13—0+1i02+1%3+---+1‘:’)n:0.333...3

En el ejemplo 2, cuando n es muy grande, S, dard una buena aproximacién a 1, de modo que
parece razonable escribir

%z lim$, = lim 3= = >

n—09 n—00 = 10" k=1 10"

Esto lleva a la siguiente definicion.

A.3 Series

297
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Definicion A.3.1 Serie convergente

La serie infinita X372 ,a, se dice que es convergente si su sucesién de sumas parciales
{S,} = {Z{=,a;} converge; esto es,

n—00

n
Iim S, = lim a, = S.
n 114>OCI; k

El nimero S se dice que es la suma de la serie. Si 1im S,, no existe, entonces se dice que la
. . n—00
serie es divergente.

NI\ Xe BN Empleo de la sucesion de sumas parciales

R 1
Demuestre que la serie 1;1 *+HE+3)

€s convergente.

Por fracciones parciales el término general a,, de la serie puede escribirse como

|11 11 LA S 1 1
S"_{s 6}+[6 7}+{7 8}+ +{n+3 n+4}+[n+4 n+5}

De la tltima linea observamos que lim 1/(n +5) =0,y por ello

DA I S S I SN |
}EE‘OS"‘JE&{S n-I-S] =57 0=7%

En consecuencia, la serie converge y se escribe

N _1
;(k+4)(k+5)_5'

I Serie telescopica Debido a la manera en la cual el término general de la sucesion de sumas
parciales “colapsa” hasta dos términos, la serie en el ejemplo 3 se dice que es una serie telesco-
pica. Vea los problemas 11-14 en los ejercicios A.3.

I Serie geométrica Otro tipo de serie que puede probarse como convergente o divergente a
partir directamente de su sucesion de sumas parciales tiene la forma

Mg

atar+arr+ - Farm 4= ar® !, )

k

1

donde a # 0y r son nimeros reales fijos. Una serie de la forma (2) se llama serie geométrica.
Advierta en (2) que cada término después del primero se obtiene al multiplicar el término pre-
cedente por r. El niimero r se denomina la razén comin y, como se ve en el siguiente teorema,
su magnitud determina si una serie geométrica converge o diverge.
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Teorema A.3.1 Suma de una serie geométrica

i) Si|r] < 1, entonces una serie geométrica converge y su suma es

1 —r

N a
Eark*1 = , a#0.
k=1

i) Si |r] = 1, entonces una serie geométrica diverge.

La prueba del teorema A.3.1 se dard en dos partes. En cada parte se supone
que a # 0.
Empezaremos con el caso en el que |r| = 1. Para r =1, la serie es

00
Ea=a+a+a+~~~
k=1

na

y por ello la suma parcial n-ésima S, = a + a + --- + a es simplemente S,, = na. En este caso,
IimS,=a - limn = o0. De tal modo, la serie diverge. Para r =—1, la serie es
n (o]

n—oo

ia(—l)kil =a+(—a)t+a+ (—a) + -
k=1

y por ello la sucesion de sumas parciales es
81, 85, 83, 84, S5, S - - - 0o a,0,a,0,a,0,...,

la cual es divergente,
Considere ahora el caso |r| # 1, el cual significa que |r| <1 o|r| > 1. Considere el término
general de la sucesion de sumas parciales de (2):

S,=a+ar+a’*+ -+ ar" . 3)
Multiplicando ambos lados de (3) por r, se obtiene
rS,=ar+ ar* +ar + - + ar’. @)
Después se resta (4) de (3) y se resuelve para S,;:
S, —rS,=a— ar"
1 =nS,=all —r")
a(l —r"
S”_ﬁ’ r# 1. (5)
Ahora, de acuerdo con el teorema A.1.3 sabemos que }1_)1101O r" =0 para |r| < 1. En consecuencia,
a(l —r") a

lim S, = lim = , ] < L
n—00 n—o 1 —r 1 —r

Si|r| > 1, entonces lim r" no existe y por ello el limite de (5) tampoco existe.

=H]5\Y [N lV'S Serie geométrica

a) En la serie geométrica
N 11 1
;( 3) Slo3tg Tt
1

S . . 1 1 :
se identifica @ = 1y la razén comidn r = —3. Puesto que |r| = |—3| = 5 < 1, la serie
converge. Del teorema A.3.1, la suma de la serie es entonces

6y

3
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b) Larazén comun en la serie geométrica

& (3 15, 45 135
215(2) =S+t

es r = 3. La serie diverge debidoar =3 > 1.

Todo niimero racional p/gq, donde p y ¢ # 0 son enteros, se puede expresar como un deci-

mal interrumpido o como un decimal repetido. De tal modo, la serie S lli()" en el ejemplo 1

. o 1 3
converge puesto que es una serie geométrica con r = 75 < 1. Con a = 7; encontramos

3

ii: 100 _10_3_1

=1 10* ]_L 9 9 3
10

En general:

* Todo decimal repetido es una serie geométrica convergente.

A\ [LJEe MM Nimero racional

Exprese el decimal repetido 0.121212 . . . como un cociente de enteros.

Se escribe primero el nimero dado como una serie geométrica

12 12 12
0.121212... = 100 T 10000 T 1000000 T

12 12 12
= -2 4L =2 4 2 4
10> 10*  10°

. . . 12 1 1 .
y se hacen las identificaciones a = 55 y r = 752 = 199. Por el teorema A.3.1, la serie converge

1
pues r = 155 < |y susuma es

12
_ 100 _100 _12_ 4
0.121212... = I~ 99 — 99~ 33

100 100

=8]3\7|JoMGN Observacion de una pelota que rebota

—- Si una pelota se deja caer desde una altura de s pies sobre el suelo, entonces el tiempo 7 que tarda
en llegar al suelo se relaciona con s por medio de s = 5 gr%. En otras palabras, la pelota
tarda t = V2s/g s para llegar al suelo. Suponga que la pelota rebota siempre hasta cierta frac-
ciéon fija B(0 < B < 1) de su altura previa. Encuentre una férmula para el tiempo T que la pelo-
s ta tarda en llegar al reposo. Vea la FIGURA A3.1.

Bs El tiempo para caer desde una altura de s pies hasta el suelo es: V2s/g; el tiempo
B(Bs) para ascender Bs pies y después caer Bs pies hasta el suelo es: 2V2s/g; el tiempo para ascen-
Y der B(Bs) pies y después caer B(Bs) pies hasta el suelo es 2\/28%s/g; y asi sucesivamente. De

esta manera, el tiempo total 7 estd dado por la serie infinita

FIGURA A.3.1 Pelota que rebota

del ejemplo 6 T=V2/g+2V2Bs/g +2 2325/8 4o DA /Z,B"S/g 4.

= Vs/g {1 + 22(\/@%-

Como 0 < B < 1, la serie 22021(\/3)" es una serie geométrica convergente con a = V3 y
r= \/E . En consecuencia, de acuerdo con el teorema A.3.1,

. ' VB 1+ VB
Foto estroboscopica de una pelota T="V 2s/g { 1+ Z\F} (o) T="V ZS/g{\F].
de basquetbol rebotando 1=V 1 —=VB



I Serie armonica Una de las series mds famosas es también un ejemplo de una serie divergen-
te. La serie armonica es la suma de los reciprocos de los enteros positivos:

1,1 s
k=1

L+o+g++
El término general de la sucesion de las sumas parciales para (6) estd dado por
1,1 1

S,=14+z++ - +—

: (6)

SHE
x~|—

2 3 n
1,1 1 1 1
De tal modo, S2n:1+§+§+---+z+n+1+n+2+---+2—n
1 1 1
_S"+n+l+n+2+m+%
1 | | 1 1
=Sty b bt =S b5 =8, 4o

P 1
términos de n —
2n

La desigualdad S,, = S, + 3 implica que la sucesién de sumas parciales para la serie arménica
no estd acotada. Para ver lo anterior, observe que

S22S1+%=1+%:%
S42S2+%Z%+%=2
PRI P
S162S8+%Z%+%=3

y asi sucesivamente. En consecuencia, se concluye que la serie arménica es divergente.
I Una consecuencia de convergencia Sia,y S, son los términos generales de una serie y la
sucesion correspondiente de sumas parciales, respectivamente, entonces de la resta
Sn - Sn*l = (al + a, + -+ a, | + a,,) - (al + ay + -+ an,l) = a,
vemos que a, = S, — S,_,. En este caso, si la serie X a; converge a un nimero S, se tiene que

lim S, =8y lim S,—1 = S. Esto implica que

lima, = ILIEIO(S" -S,)=8S-S5=0.

n—00

Hemos establecido el siguiente teorema.

Teorema A.3.2 Condicién necesaria para convergencia

. . (e8] s
Si la serie X, _, a; converge, entonces lima, = 0.
n—00

I Prueba para una serie divergente El teorema A.3.2 establece simplemente que si una serie
infinita converge, es necesario que el término n-ésimo, o general, tienda a cero. De modo equi-
valente, se concluye:

¢ Si el n-ésimo término a,, de una serie infinita no tiende a cero cuando n — oo, entonces
la serie no converge.

Formalizamos este resultado como una prueba para la divergencia.

A3 Series 301

o Recuerde esta serie. Serd

importante en las secciones
subsecuentes de este apéndice.
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Teorema A.3.3 Prueba del término n-ésimo para divergencia

. z. . o0 .
Si lima,, # 0, entonces la serie 2, _ ; a; diverge.
n—00

El teorema A.3.3 corrobora de inmediato la parte ii) de la prueba del teorema A.3.1, a saber,
una serie geométrica E,fo:lark’l, a # 0, diverge cuando r = *1. Por ejemplo, cuando r = 1,
limar"™" = lima # 0.

n—00 n—00

A1\ [JXe BV A Serie divergente

. L o4k -1
a) Considere la serie ]Z Sk T3 De
dn — 1 4- %
lima, = lim = lim =—#0
n—>00 n—>00 5n + 3 =%, %

se concluye del teorema A.3.3 que la serie diverge.

b) Considere la serie
DF'=1—-141—-1+4"-.
=1
Puesto que }1_1)1010 a,= }1_)1101O (—1)""! no existe, es posible afirmar que }1_)1130 a, # 0.

(La serie diverge por el teorema A.3.3?

En este momento se le recomienda leer (y recordar) iii) de las Notas desde el aula. Se enun-
cian los siguientes tres teoremas sin demostracion.

Teorema A.3.4 Miultiplo constante de una serie

. . . . . (o) (o)
Si ¢ es cualquier constante distinta de cero, entonces las series >, — a; y 2 ;- ca; convergen
ambas o divergen ambas.

Teorema A.3.5 Suma de dos series convergentes

Si E,fo: ar 'y EEO: b, convergen a S; y S,, respectivamente, entonces
i) Sl (ap + by) converge a S; + S5, y

i) Sr.(ap — by) converge a S; — Ss.

El teorema A.3.5 indica que cuando Efz ax y Eio: by convergen, entonces

Dl xb)= Da * by
k=1 k=1

(L

k

1

Teorema A.3.6 Suma de una serie convergente y una divergente

Si 3, a4, converge y 3. b, diverge, entonces 3, (a; + by) diverge.




A/ [JXel: N Suma de dos series convergentes

. L. oo (1\k—1 0 1\k—1
Con la ayuda del teorema A.3.1, se observa que las series geométricas >, — 1(5) A 1<§)
convergen a 2 y 3, respectivamente. En consecuencia, del teorema A.3.5, la serie

Sl = ()] converge y

Sl -G 1-26) - 86) 23

S

]S\ [N Suma de dos series

Del ejemplo 3 se sabe que E

. nverge. Puest il 1 f méni
| (k + 4)(k + 5) CONVEIRE: THENIO AUE oy o8 Ta Serie armonied

divergente, se sigue del teorema A.3.6 que la serie

< 1
E (k+4)(k+5)+

k=1

diverge.

NOTAS DESDE EL AULA
i) El término n-ésimo de la sucesién de sumas parciales de la serie arménica a menudo se
denota mediante H, = X;_,(1/k). Los términos de la sucesiéon H, = 1, H, = 3,
H; =% ... se denominan mimeros arménicos. Vea el problema 71 en los ejercicios A.3.
ii) Cuando se escribe en términos de notacién de sumatoria, una serie geométrica quiza no
se reconozca de inmediato, o si lo es, los valores de a y r tal vez no sean manifiestos.
Por ejemplo, para ver si >, -3 4( ) "2 es una serie geométrica es buena idea escribir dos
o tres términos:

a ar {l"z
o S

ST

Del lado derecho de la dltima igualdad, es posible hacer las identificaciones a = 4(5)5 y

4GP 1 N
T Si se desea, aunque no hay

2
. [o¢]
una necesidad real para hacer esto, puede expresarse E,,:34(%)

r =% < 1. En consecuencia, la suma de la serie es

"2 en la forma mds fa-

miliar 3,_ ;ar* " haciendo k = n — 2. El resultado es

o] 1 n+2 00 1 k+4 00 k—1
S - 246 - 206
i=3 \2 =1 \2 k=1
iii) Observe con cuidado cémo se enuncian los teoremas A.3.2 y A.3.3. En especifico, el teo-
rema A.3.3 no dice si h'm a, = 0, entonces X, a; converge. En otras palabras, h'm a,=0
no es suficiente para garantlzar que X a; converge. De hecho, si hma = 0 la serie

puede ser convergente o divergente. Por ejemplo, en la serie arménica E =1(1/k), a, =
I/ny lim (1/n) = 0, pero la serie diverge.

A.3 Series
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iv) Cuando se determina la convergencia, es posible, y algunas veces conveniente, borrar o
ignorar varios de los primeros términos de la serie. En otras palabras, las series infinitas
Efz axy S va N> 1 difieren a lo sumo por un nimero finito de términos y son ambas
convergentes o ambas divergentes. Desde luego, eliminar los primeros N — 1 términos de
una serie convergente suele no afectar la suma de la serie.

{0 RS AR | as respuestas de los problemas impares comienzan en la pagina RES-19.

En los problemas 1-10, escriba los primeros cuatro términos
de cada serie.

2k + 1 &, 2k

1. 2. M=

a0k ;; k

00 _1k*l 00 _1k+l
3. GO 4. 2( )

S k(k + 1) = k3t

< nt 1 - _(2m)!
5. 6.

r;) n! nglnz-i-l

S 46 (2m) © 1:3:-5--Q2m—1)
T 27535 am-n b2 !

X, CoS jm S
9. ,;2j+1 10. i:ESlsen 5

En los problemas 11-14, proceda como en el ejemplo 3 para
encontrar la suma de la serie telescopica dada.

0 1 0
11. Zk(k N 2 2w 1)(k +2)
13. 14.

;418—1 kEk2+7k+12

En los problemas 15-24, determine si la serie geométrica dada
converge o diverge. Si es convergente, encuentre la suma de
la serie.

15. i 3(1>k1 16.
(— 1)

»
b2
—
)
7 N
AW
~—~

|

[eS] 1 k—1
17. 18. K=
pe s 3(5)
19. D 547" 20. > (=37
r=1 s=1
00 ; 00 ( )H
21. ;1000(0.9) 22. 2 000
0 1 00 \/5 >k
23, 24,
;)(\f - V2) 2( 1+ V5

En los problemas 25-30, escriba cada nimero decimal que se
repite como un cociente de enteros.

25. 0.222... 26. 0.555...
27. 0.616161... 28. 0.393939...
29. 1.314314... 30. 0.5262626...

En los problemas 31 y 32, encuentre la suma de las series

dadas.
1 kl] &2 -1
+ (= 32.
(4) ;; 4k

w 3|6)

En los problemas 33-42, muestre que la serie dada es diver-
gente.

M
S

33. 34. > 5k + 1)
k=1 k=1
00 k 00 k2 + 1
35. 3. > ——
;; 2k + 1 2 K+ 2k + 3
37. ;( 1) 38. ;_:]ln<3k+1
10 31
39. > — 40. >, —
,; k ,; 6k
41. i {1 1} 42. iolksenl
ALtk k=1 k

En los problemas 43-46, determine los valores de x para los
cuales la serie dada converge.
3o S (E) a S(L)
' 2 T A\x
i ok 2k

(x + D >

S

45.

5 1l

Se deja caer una pelota desde una altura inicial de 15 pies
sobre una plancha de concreto. Cada vez que la pelota
rebota, alcanza una altura de % de su altura precedente.
Recurra a la serie geométrica para determinar la distancia
que la pelota recorre antes de quedar en reposo.

48. En el problema 47 determine el tiempo que tarda la pelo-

ta en llegar al reposo.

49. Para erradicar plagas agricolas (como la mosca de la
fruta), se liberan moscas macho esterilizadas dentro de
la poblacién general en intervalos de tiempo regulares.
Considere que N, es el nimero de moscas liberadas cada
dia y que s es la proporcién de las que sobreviven en un
dia determinado. De los Ny machos esterilizados origina-
les, Nys" sobreviviran en n semanas sucesivas. En conse-
cuencia, el nimero total de tales machos que sobreviven
n semanas después de que se ha iniciado el programa es
Ny + Nos + Nys* + -+ + Nys". (A qué se aproxima esta
suma cuando n — oco? Suponga s = 0.9 y que se necesi-
tan 10 000 machos esterilizados para controlar la pobla-



50.

51.

52.

54.

5S.

56.

1 1 1 1 1
ows <o () (B D)L

57.

58.

59.

cién en cierta drea. Determine el nimero de moscas
macho que debe ser liberado cada dia.

En algunas circunstancias la cantidad de un farmaco que se
acumularfa en el cuerpo de un paciente después de un largo
periodo es Ay + Age ¥ + Age * 4+ ---> donde k > 0 es
una constante y Aq es la dosis diaria del formaco. Encuentre
la suma de la serie.

Un paciente toma 15 mg de un farmaco diariamente. Si
80% del farmaco acumulado se excreta cada dia median-
te las funciones corporales, ;qué cantidad del farmaco se
acumulard después de un largo periodo, esto es, cuando
n — c0? (Suponga que la medicién de la acumulacién se
hace inmediatamente después de cada dosis. Vea el pro-
blema 69 en los ejercicios A.1.)

Se aplica una fuerza a una particula, que se mueve en una
linea recta, de tal manera que después de cada segundo la
particula sélo se mueve la mitad de la distancia que re-
corrié en el segundo anterior. Si la particula se mueve 20
cm en el primer segundo, ;cudnto se desplazard?

Suponga que la sucesién {a,} converge a un nimero
L # 0. Explique por qué la serie 3, ,a, diverge.
Determine si la serie
1 1 1
ot
1.1 111 1.111
converge o diverge.
Determine si la suma de dos series divergentes es necesa-
riamente divergente.

Considere la serie Ei Puesto que k* = k - k, la n-ésima

k=1
suma parcial de la serie es
1 1 1 1
STTat2a T s T T

Explique por qué las siguientes desigualdades son ciertas
y por qué pueden usarse para demostrar que una serie
dada converge:

Encuentre la suma de la serie

1+9  1+27

1+ 81
25 125 R

625

Encuentre la suma de la serie

0 k+1
> ( J xe " dx).
=i\

Encuentre todos los valores de x en (—/2, 77/2) para los
cuales

. 1 N k)
nll—{go(l—tanx k}:%)tan x)—O.

60.

61.

62.

63.

64.
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Muestre que si }1_)n010 f(m + 1) = L, donde L es un niime-

ro, entonces ki[f(k + 1) — fib] =L - fQ).

Determine si >, (E}C) converge o diverge.

n=1\k=1
x 1
Muestre que la serie k217 es divergente demostrando
que S, = Vn.
. . Y
Vimos que la serie arménica kElE diverge puesto que el

término general S, de la sucesién de sumas parciales

puede hacerse tan grande como se quiera tomando a n 1o

suficientemente grande (S, — ©0 cuando n — 00). No

obstante, la serie armodnica diverge muy lentamente.

a) Use la gréfica de f(x) = 1/x para x = 1 a fin de esta-
blecer la desigualdad

1 1 1 1
ln(n+1)<1+§+§+Z+~'+;<1+lnn.
b) Emplee una calculadora y la desigualdad del inciso a)
para estimar el valor de n para el cual S, = 10. Estime
el valor de n para el cual S, = 100.

En el problema 77 en los ejercicios A.1 se consideraron
los perimetros de las regiones acotadas por las curvas de
Koch que se muestran en la figura A.1.5. En el inciso c)
del problema usted debe haber demostrado que el peri-
metro de la region limite es infinito. En este problema se
consideran las dreas de las figuras sucesivas. Considere
que el drea de la primera figura es A}, el 4rea de la segun-
da figura A,, y asi en lo sucesivo.

a) Utilizando el hecho de que el drea de un tridngulo
equildtero con lados de longitud s es %\@sz, encuen-
tre los valores de Ay, A,, A3y Aj.

b) Demuestre que el area de la figura n-ésima es

A, = 210\@[8 - 3(3)ﬂ|}.

¢) ;Cudles limA,”?
n—00

. Un poco de historia: Muerte por pan En 1972, un

brote de envenenamiento por metilmercurio en Irak pro-
dujo 459 muertes entre 6 530 casos
de envenenados admitidos en hos-
pitales. El brote epidémico fue pro-
vocado por el consumo de pan
casero preparado a partir de trigo
que habfa sido tratado con un fun-
gicida de metilmercurio. Los primeros sintomas de pares-
tesia (pérdida de sensaciones en la boca, manos y pies)
empezaron a ocurrir cuando el nivel acumulado de mer-
curio alcanzé 25 mg. Los sintomas de ataxia (pérdida de
coordinacién al andar) iniciaron con 55 mg, la disartria
(arrastrar las palabras) con 90 mg y la sordera con 170
mg. La muerte se volvié una posibilidad cuando el nivel
de mercurio acumulado superé 200 mg. Se estimé que

Pan casero
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66.

67.

68.

una barra de pan tipica elaborada a partir de trigo conta-

minado contenfa 1.4 mg de mercurio, y también que el

cuerpo elimina sé6lo alrededor de 0.9% del mercurio acu-
mulado diariamente.

a) Suponga que una persona recibié una dosis d de mer-
curio al dia, y que el cuerpo eliminé una fraccién p
del mercurio acumulado diariamente. Encuentre una
férmula para L, el nivel acumulado después de comer
en el n-ésimo dia, y una férmula para el nivel limite,
lim L,

n—00

b) Empleando d = 1.4y p = 0.009, encuentre el valor
limite del mercurio y determine qué dia empezaron a
ocurrir los diversos sintomas.

¢) (Cudl seria la dosis diaria para que la muerte fuera
posible en el dia 100? (Utilice p = 0.009.)

Un poco de historia: La paradoja de Zenén El fil6so-
fo griego Zenén de Elea (c. 490 a.C.) fue discipulo del
filésofo presocritico Parménides, que afirmaba que el
cambio o el movimiento era una ilusién. De las parado-
jas de Zendn que apoyaban esta filosoffa, la mas famosa
es su argumento acerca de que Aquiles, conocido por su
habilidad de correr rdpido, no podria superar a una tortu-
ga en movimiento. La forma usual de la historia es como
se narra a continuacion:

Aquiles empieza desde el punto S, y exactamente en el mismo
instante una tortuga empieza desde un punto A adelante de S.
Después de cierta cantidad de tiempo, Aquiles alcanza el
punto de inicio A de la tortuga, pero durante este tiempo la
tortuga ha avanzado a un nuevo punto B. Durante el tiempo
que tarda Aquiles en alcanzar B, la tortuga se ha movido hacia
delante otra vez hasta un nuevo punto C. Al continuar de esta
manera, eternamente, Aquiles nunca alcanzard a la tortuga.

Vea la FIGURA A3.2. Utilice una serie infinita para resolver
esta aparente paradoja. Suponga que cada uno se mueve
con una velocidad constante. Ayudaria inventar valores
razonables para ubicar en el inicio la cabeza de la tortu-
ga y para las dos velocidades.

N A B C
FIGURA A.3.2 Aquiles y la tortuga en el problema 66

Numeros primos Escriba un breve informe en el cual
defina un numero primo. Incluya en el informe una
demostracién acerca de si la serie de los reciprocos de
primos,

< 1 1,1, 1 1 1

2, =atytstgta o
converge o diverge.
Longitud de una trayectoria en zigzag En la FIGURA
A33a), el tridngulo ABC es un tridngulo recto isésceles. El
segmento de linea AP; es perpendicular a BC, el segmen-
to de linea PP, es perpendicular a AC, y asi en lo suce-
sivo. Encuentre la longitud de la trayectoria en zigzag
APP,P5 . ..

/ s Ps
7/ 7/ Lg

Ll()

P, P P C Ly

a) Trayectoria en zigzag b) Trayectoria poligonal

FIGURA A.3.3 Trayectorias en zigzag y poligonal de los problemas 68 y 69

69.

70.

Longitud de una trayectoria poligonal En la figura
A.3.3b), hay doce rayos que emanan del origen y el dngu-
lo entre cada par de rayos consecutivos es 30°. El seg-
mento de recta AP, es perpendicular al rayo L, el seg-
mento de recta PP, es perpendicular al rayo L, y asi en
lo sucesivo. Encuentre la longitud de la trayectoria poli-
gonal AP P>P;5 . ..

Una integral impropia En un curso de célculo integral
se plantea la pregunta de si f(x) — 0 cuando x — ©0 es un
requisito necesario para la convergencia de una integral
impropia [ ;Of(x) dx. A continuacion se presenta la res-
puesta. Observe que la funcién f cuya grafica estd dada
en la FIGURA A3.4 no se aproxima a 0 cuando x — 0.
Demuestre que | (fo “f(x) dx converge.

1

1
2

FIGURA A.3.4  Grifica del problema 70

71.

Un problema de apilamiento Toémese su tiempo para
hacer su tarea y efectie un experimento. Necesitard un
suministro de n objetos rectangulares idénticos, por
ejemplo, libros, aunque también pueden ser tableros, car-
tas, fichas de domind, etcétera. Suponga que la longitud
de cada libro es L. A continuacion encontrard un enuncia-
do burdo del problema:

¢ Qué tanto puede sobresalir una pila de n libros colocada
sobre el borde de una mesa sin que se caiga?

Intuitivamente la pila no caerd siempre que su centro de
masa permanezca por arriba de la cubierta de la mesa.
Empleando la regla de apilamiento que se ilustra en la
FIGURA A3.5, observe que lo que sobresale del libro mos-
trado en la figura A.3.54) alcanza su médximo d, = L/2
cuando su centro de masa estd ubicado directamente en el
borde de la mesa.
a) Calcule las distancias que sobresalen los libros d», d;
y d, del borde de la mesa para la pila de libros de la
figura A.3.5D), A.3.5¢) y A.3.5d), respectivamente.
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FIGURA A.35 Método de apilamiento de libros del problema 71

Luego demuestre que el centro de masa de cada pila
estd en el borde de la mesa. [Sugerencia: Para n libros
ponga el eje x a lo largo de la cubierta horizontal de la
mesa con el origen O en el borde izquierdo del primer
libro, o del fondo, en la pila.]

b) ;Qué indica el valor de d, en el inciso a) acerca del
cuarto libro, o superior, en la pila?

¢) Siguiendo el patrén de apilamiento que se indica en la
figura A.3.5, para n libros la parte que sobresale del
primer libro desde el borde de la mesa seria L/2n, lo
que sobresale del segundo libro desde el borde del pri-
mer libro serfa L/2(n — 1), lo que sobresale del tercer
libro desde el borde del segundo corresponderia a

A.4 Prueba de la integral
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L/2(n — 2), y asi en lo sucesivo. Encuentre una
férmula para d,, lo que sobresalen n libros desde el
borde de la mesa. Demuestre que el centro de masa de
la pila de n libros estd en el borde de la mesa.

d) Utilice la féormula d,, para encontrar la distancia que
sobresale un libro en el inciso ¢) y encuentre el valor
mds pequefio de n de manera que lo que sobresalen n
libros apilados en la manera descrita en el inciso c) es
mayor que el doble de la longitud de un libro.

e) En teoria, utilizando la regla de apilamiento del inci-
so ¢), ¢hay alguna limitacién acerca del nimero de
libros en una pila?

. Un clasico matematico: Los trenes y la mosca En un

tiempo especifico dos trenes 7 y T, separados por 20
millas sobre el mismo riel, inician un curso de choque a
una velocidad de 10 mph. Suponga que en el preciso ins-
tante en que parten los trenes, una mosca sale del frente
del tren 7, vuela a una velocidad de 20 mph en linea
recta hacia el frente del motor del tren 75, después vuela
de regreso hacia 7', a 20 mph, después regresa a 75, y asi
en lo sucesivo. Recurra a una serie geométrica para
encontrar la distancia total recorrida por la mosca cuando
los trenes chocan (y la mosca es aplastada). Después use
el sentido comin para determinar la distancia total que
vuela la mosca. Vea la FIGURA A36.

FIGURA A3.6 Trenes y mosca en el problema 72

I Introduccion A menos que 3, ,a; sea una serie telescGpica o una serie geométrica, es una
tarea dificil, si no inutil, demostrar la convergencia o divergencia directamente de la sucesion de
sumas parciales. Sin embargo, suele ser posible determinar si una serie converge o diverge por
medio de una prueba que utiliza sélo los términos de la serie. En ésta y en las dos secciones que
siguen se examinardn cinco de tales pruebas que son aplicables a series infinitas de términos

positivos.

I Prueba de la integral La primera prueba que se considerard relaciona los conceptos de con-
vergencia y divergencia de una integral impropia con la convergencia y divergencia de una serie

infinita.

Teorema A.4.1 Prueba de la integral

i) Si [7°f(x) dx converge, entonces E;i 14, converge.

i) Si [{°f(x) dx diverge, entonces X, ,a; diverge.

Suponga que ., es una serie de términos positivos y f es una funcién continua que es no
negativa y decreciente sobre [ 1, 00) tal que f(k) = a; para k= 1.




308 APENDICE Sucesiones y series

Si la grafica de f estd dada como en la FIGURA A.4.1, entonces considerando
las dreas de los rectdngulos que se muestran en la figura, observamos que

n

0Sa2+a3+a4+'~+ansJf(x)deal+a2+a3+-~+an_1
1

Y Sn_aISJf(x)de n—1-
1

De la desigualdad S, — a; = [}f(x)dx, es claro que 11_)1101O S, existe siempre que exista
lgn J'f(x) dx. Por otro lado, de la desigualdad S, | = [ [ f(x) dx, concluimos que h;mS _; no
existe siempre que [ f(x) dx diverja.

A3\ [JNe BN Empleo de la prueba de la integral

[o8]
. 1
Demuestre la convergencia de E .
=11+ i

La funcién f(x) = 1/(1 + x%) es continua, no negativa y decreciente para x = 1 tal
que f(k) = a; para k = 1. De
FIGURA A41 Rectdngulos en la JOO 1 fb
1 1

prueba del teorema A.4.1 dx = lim dx

1+ x? b f ]+ X2

b
limtan ~'x
b—0 1

= lim (tanflb - tanfll) «— tan"'l = 7/4
b—0

_ 1 —1 w '
= lim| tan~" b — — <« vea la figura 2.5.15
bh—00 4

v v aw

2 4 4
es claro que la integral impropia es convergente. Del teorema A.4.1i) se concluye que la serie
dada también converge.

. . . , . .. 00
En la prueba de la integral, si la serie de términos positivos es de la forma X, _ y a;, usamos
entonces

J f(x) dx donde f(k) = a.

N

N3\ [JNe BV A Empleo de la prueba de la integral

Pruebe la convergencia de M
=k
J'(x) <0 sobre el intervalo > La funcién f{x) = (Inx)/x satisface la hipétesis de la prueba de la integral sobre el

(3, 09). intervalo [3, 00). En este caso,

“In x . ’In x
—dx = lim | —dx
., X b—oo | X

lim l(ln )? ’
h—>002 x 3

lim %[(m b)* — (In3)}] = o0

muestra que la integral impropia diverge. Se concluye del teorema A.4.1ii) que la serie dada tam-
bién diverge.

Serie p  La prueba de la integral es particularmente 1til en cualquier serie de la forma

Ei=l+i+i+”‘, (1)



donde p es cualquier nimero real fijo. La serie infinita (1) se conoce como la serie p o hiperar-
moénica. El siguiente teorema indica los valores de p para los cuales converge (diverge) la serie p.

Teorema A.4.2 Convergencia de la serie p

La serie p E L converge sip > lydivergesip = 1.

Se distinguen cuatro casos: p>1,p=1,0<p <1y p = 0. En el primero y
tercer casos usamos la prueba de la integral con f(x) = 1/x” = x 7.

i) Sip > l,entoncesp — 1 > 0y por ello

00 —p+1 b
J Py = lim — } ! h’m{ 1—1]=1 0—1]=—1.
. 1—p p—1

b0 —p + 1 1 — p b>oo| pr-l

La serie p es convergente por el teorema A.4.1i).
ii) Sip = 1, entonces se reconoce a la serie p como la serie armdnica divergente.
iii) Si0 < p < 1, entonces —p + 1 > 0y por ello

s x*erl b
x Pdx = hm
1

Iim [ b 1] = oo,

b—00 p+1 l—pb

La serie p es divergente por el teorema A.4.1i7).
iv) Por ultimo, si p =0, entonces —p = 0y asi lijn (1/n?) = ll;mrf’7 # 0. La serie p es diver-
gente por la prueba del término n-ésimo, teorema A.3.3.

R\ [JHeBEN Serie p

a) Del teorema A 4.2, la serie p

E L/ diverge, yaque p = 5 < 1.

MgﬁMg
PR

b) Del teorema A.4.2, la serie p converge,yaquep = 2 > 1.

k

E NOTAS DESDE EL AULA

i) Cuando se aplica la prueba de la integral, es necesario tener la seguridad de que el valor
de la integral impropia convergente [7°f(x) dx no se relaciona con la suma real de la serie
infinita correspondiente. De tal modo, la serie en el ejemplo 1 no converge a /4. Vea el
problema 36 en los ejercicios A.4.

i) Los resultados de la prueba de la integral para 3. ,a; se cumplen incluso si la funcién
no negativa continua f no empieza a decrecer hasta que x = N = n. Para la serie
Eokil (In k)/k la funcién f(x) = (In x)/x disminuye sobre el intervalo [3, co). De cualquier
manera, en la prueba de la integral es posible utilizar [ 1°° (In x dx)/x.

0] RSN EWAWIN | as respuestas de los problemas impares comienzan en la pagina RES-19.
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= Fundamentos ETE N ST S

En los problemas 1-30, determine si la serie dada converge o 2V2 3V3

diverge. Recurra a la prueba de la integral en los casos en que 1 1 1

sea apropiado. 4. 100 + 100V2 + 100V3 +

1 S
gk— 2. Doss

0.9
=1k
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& Sk

s ,glzk+7 6',;13k+1
S &k

7. 8.
,; 1+ 5K ,;318 +5

9. Dke 10. >,
k=1 =l o

n Yt 12. DK
k=1€ k=2
& &k

13. 14, > —
k}::zkln k ,Eln k
S 10 <

15. 16.
kgz k(I k)’ ,;zk In k
< arctan k <>k

17. 18.
;;1 1+ i ,;11 + K
& & 1

19. > —— 20, D ——
k:zl V1 +k /;1 V1 + i3
- n < 1

21, > ———— 2 0> —
,Z n*+1)7° ,;(4;1 + 1)

23. Eksen<1> 24 Eln(1 + lk)
k=1 k k=1 3
| S 2k + 1

25, > —— 26, >
,Zk(k+1) ,;k(kJrl)

27, Y 28, > ———
2 (k + Dk + 2) ,;k(kz +1)
& 2 S —1

29, > —— 30.
1; e+ et k—ZO ek

En los problemas 31-34, sin hacer ningtin trabajo determine si
la serie dada converge o diverge. Enuncie sus razones.

31. ;( > 32. i(sz«‘f) - 10k”)

. kzl< ) kiil 1+ 4Vk

En los problemas 35 y 36, determine los valores de p para los
cuales la serie dada converge.

1 o0
B 2o 6. 3 kit T

g

38.

39.

40.

41.

42,

. Determine los valores de p para los cuales la serie

>k Ink

k=2
es convergente.
Suponga que f es una funcién continua que es positiva y
decreciente para x = 1 tal que f(k) = a; para k = 1.
Demuestre que

n+l n
J S dx = Eak =a t jf(x) dx.
1 1

k=1

Demuestre que

Se demostr6 que la serie arménica >, (1/k) es diver-

gente debido a que la sucesion de sumas parciales diver-

ge. Recuerde que S, = X;_(1/k) — 00 cuando n — 0.

a) Use el resultado del problema 38 para estimar la suma
de los primeros 10 mil millones de términos de la
serie armonica.

b) (Cuantos términos de la serie armdnica son necesa-
rios para garantizar que S, = 100?

Deje que S denote la suma de la serie de términos positi-
VoS o 1ay y S, el término general en su sucesién de
sumas parciales. Defina el residuo, o el error, que se
efectia cuando S, se aproxima a S, como

Rn =5- Sn = dp+1 + Ap+2 + Ap+3 + -

Suponga que f es una funcién continua que es positiva y
decreciente parax = 1 tal que f(k) = a;,parak = 1y que
) 1°°f(x) dx converge. Demuestre que

J fx)dx =R, = J f(x) dx.
n+1 n

La suma S de la serie p convergente Efz 1(1/k%) se sabe
que es igual a 77%/6. Recurra al problema 41 para deter-
minar n de manera que S, dard una aproximacion a S que
es exacta hasta tres lugares decimales.

A.5 Pruebas de comparacion

I Introduccion A menudo es posible determinar la convergencia o divergencia de una serie de
términos positivos > a, comparando sus términos con los términos de una serie de prueba X b,
que se sabe que es convergente o divergente. En esta seccién se consideraran dos pruebas de
comparacion para la convergencia y la divergencia.

I Prueba de comparacion directa La demostracion de la siguiente prueba utilizard dos propie-
dades importantes de las sucesiones. Recuerde de la seccidn A.2 que si una sucesion estd acota-
da y es mondétona debe converger. También que si los términos de una sucesion se vuelven no
acotados entonces ésta diverge. Aplicamos estos resultados a la sucesion de sumas parciales de

una serie.



Teorema A.5.1 Prueba de comparacion directa

00 o] . L . ..
Suponga que X, — a4, ¥ 2= by son series de términos positivos.

i) Si X, — b, converge y a, = b, para todo entero positivo k, entonces X, _ a; converge.

i) Si E;o: by diverge y a;, = by, para todo entero positivo k, entonces E;o: 1a; diverge.

Seaa, > 0y b, > Oparak = 1,2, ...y considere que
S,,=a1+a2+~~-+a,, y Tn:b1+b2++bn
son los términos generales de las sucesiones de sumas parciales para > a, y > by, respectivamente.

i) Si X b, es una serie convergente para la cual q; < by, entonces S, = T,,. Puesto que ,!I_H}O T,
existe, {S,} es una sucesion creciente acotada y, en consecuencia, convergente por el teore-
ma A.2.1. Por tanto, > a; es convergente.

ii) SiXb;diverge y a; > by, entonces S, > T,,. Puesto que 7, aumenta sin cota, asi lo hace S,,.
Por consiguiente, >, es divergente.

En general, si ¢, y >d, son dos series para las cuales ¢; = d; para toda k, se afirma que la
serie X ¢, estd dominada por la serie X d;. De tal modo que para series de términos positivos, los
incisos 7) y ii) del teorema A.5.1 pueden reenunciarse de la siguiente manera:

» Una serie X g, es convergente si estd dominada por una serie convergente >, b;.
* Una serie X g, diverge si domina a una serie divergente X, b;.

Los siguientes dos ejemplos ilustran el método. Desde luego, no sefialan que para recurrir a las
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series de prueba X b, es necesario estar familiarizado con algunas series que convergen y con o Seria buena idea en este punto

algunas que divergen.

A3\ JHe BN Empleo de la prueba de comparacion directa

. ~ k
Pruebe la convergencia de .
£ I<=El K+ 4

Se observa que al reducirse el denominador en los términos generales se obtiene una
fraccién mayor:

k k 1

=< — = —

+4 ek

Debido a que la serie dada es dominada por una serie p convergente 220: 1(1/k%), se concluye del
teorema A.5.1i) que la serie dada también es convergente.

=H]\"[]Xel¥H Uso de la prueba de comparacion directa

< In(k + 2
Pruebe la convergencia de E %
k=1

Puesto que In(k + 2) > 1 para k =1, se tiene
Intk +2) 1
_— > .
k k
En este caso se ha demostrado que la serie dada domina a la serie armdnica divergente
Zf: 1(1/k). En consecuencia, por el teorema A.5.1ii) la serie dada diverge.

revisar la nocion de serie p en la
seccion A 4.
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I Prueba de comparacion del limite Otro tipo de prueba de comparacién implica tomar el
limite del cociente entre el término general de la serie X a; y el término general de la serie de
prueba X b, que se sabe que es convergente o divergente.

Teorema A.5.2 Prueba de comparacion del limite

(o] 00 . , . .. .
Suponga que X~ a; ¥ 2= 10y son series de términos positivos. Si

donde L es finita y L > 0, entonces las dos series son ya sea ambas convergentes o ambas
divergentes.

DEMOSTRACION Puesto que }1_)11010 a,/b, =L >0, es posible elegir n tan grande, como n = N
para algin entero positivo N, que

1

3
L 2L.

%“3&

Puesto que a, > 0, la desigualdad implica que a, = 2Lb paran = N. Si Ek—1bk converge, se
concluye de la prueba de compara010n directa que > =10 Y, €n consecuen01a S «=10x €S con-
vergente. Ademads, puesto que 2Lb,, =aq, paran = N, se observa que si > «=1by diverge, entonces
Sl y s a; divergen.

La prueba de comparacion del limite es aplicable a menudo a series > a; para las cuales no
es conveniente la prueba de comparacién directa.

(A3 [N BN Uso de la prueba de comparacion del limite

El propio lector debe convencerse de que es dificil aplicar la prueba de comparacién directa a la

serie Ekﬂ# Sin embargo, se sabe que E,fo:l(l/k3) es una serie p convergente
(p=3>1). En consecuencia, con
1 1
a, = ———-—— b, =—
S—snt+ 1 Y n’
, Uy . I’l3
tenemos Iim — = lim

n—oo b, 003 — §5u2 4 -
Del teorema A.5.2 se concluye que la serie dada converge.

Si el término general a,, de la serie > a; es un cociente ya sea de potencias racionales de n o
de raices de polinomios en n, es posible distinguir el término general b,, de la serie de prueba
> by examinando el “comportamiento de grado” de a,, para valores grandes de n. En otras pala-
bras, para encontrar un candidato correspondiente a b,, s6lo se necesita examinar el cociente de
las potencias mds altas de n en el numerador y en el denominador de a,,.

=]\ [Xel's Uso de la prueba de comparacién del limite

Pruebe la convergencia de E %
V8K + 7

. . Y
Para valores grandes de n, el término general de la serie a, = n/V/8n° + 7 “se com-
porta de manera similar” a un miltiplo constante de

n _ n _ 1

s n?R n??
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G|
De tal modo, se ensaya la serie p divergente >, W como una serie de prueba:
k=1
n

4 a, , \/3 81/15 + 7
Iim—=Ilim —

n—00 b}’l n—00 1
03

_ i nS 1/3 _ l 1/3 _ l
- nLnC}O 8}15 + 7 - 8 N 2

Asi, de acuerdo con el teorema A.5.2, la serie dada diverge.

2 NOTAS DESDE EL AULA

i) La hipdtesis en la prueba de comparacién directa también puede debilitarse, al conside-
rar un teorema mads fuerte. Para una serie con términos positivos, sélo se requiere que
ay = b 0 a; = by para k suficientemente grande y no para todos los enteros positivos.

ii) En la aplicacién de la prueba de comparacién directa, a menudo es facil alcanzar un
punto en que la serie dada estd dominada por una serie divergente. Por ejemplo,

1 1
7§7
5+ Vk  Vk

. N (. . .
es realmente cierto y >, —~ diverge. Este tipo de razonamiento no prueba nada acerca
k=1

Vk
=l

de la serie >, ———. Desde luego, la dltima serie converge. ;Por qué? De manera
=155 + Vi
similar, no puede llegarse a una conclusion al mostrar que una serie dada domina a una
serie convergente.
La siguiente tabla resume la prueba de comparacion directa. Sea > a, una serie
de términos positivos y b, una serie que se sabe que converge o diverge (una serie de

pruebas).
Comparacion Serie de prueba | Conclusion sobre
de términos > by Say
a; = by converge converge
a;y = by diverge ninguna
a; = by diverge diverge
a; = by converge ninguna

{0 0E BRI | as respuestas de los problemas impares comienzan en la pagina RES-19.

n
(L

En los problemas 1-14 utilice la prueba de comparacién direc- Snk =y
ta para determinar si la serie dada converge. X1 + 3k © 1 + 8k
. " 7. > - p
1 2; 2 1 =1 2 =13+ 10
. . 5
Gkt D+ 2) IS g, 2t senk S 2k |
< 1 < 2k7 + 1 . 3 . kln k
3D 4. =1 Vi + 1 k=2
kzzz Vk — 1 kzzz K~k
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& jte’ S et
S as

CASG+9) “
13. E—W
k=1

—
—
o=
—

En los problemas 15-28, utilice la prueba de comparacion del
limite para determinar si la serie dada converge.

N 1 N 1

15. 16. —_—
,sz+7 ,;110+ Vk
N 1 N 1

17. 18.
Zzn n?—1 Zv(n+ D(n + 2)
An?—n+2 - n

19. 20. —_—
FEI 3n° + n? 2(4;1 + 1)%?
o) A/ 00 2 _

21. 23]{7_’_1 22. E%
=1 V64K + 40 i=22k> + 2k- — 8
<~ k+Ink < 10

23. 24.
Dy 2

Mg

25.

(-l2)

»
i \gk:
w2
<)
=
7N
x| =
~~_
~
l

27.

T
/N
D [ =
_|_
2l
—

—

&)
clw

I

28 s+ + + ot

En los problemas 29-40, utilice cualquier prueba apropiada
para determinar si la serie dada converge.

< k < 1
29. Sy 30.
S1100VE + 1 ;Zk+ Vk
3. Zln(s + k) 32. Eln(1 + 1k>
k=1 5 k=1 3
< k < k
33. 34.
lgl(kval)2 /;2 k— 1V =2
LA - 36. 33
=19 + sen’k 13k -1
< 2 < 2
37. 38.
12 + k2* ;;12+k2’k
S & (0.9)F
39. Eln(l + 1) s0. 3
k=2 k =k
41. Vuelva a leer ii) de las Notas desde el aula en la pagina

anterior y discuta las razones por las que el siguiente
enunciado es cierto:

Si a; > 0 para todo k y >a; converge, entonces Zai
converge.

42,

43.

44.

En

ge.
45.

47.

&

. (Cuan grande es infinito?

Suponga que p y g son funciones polinomiales sin facto-
res comunes de grado n y m, respectivamente, y que
p(x)/q(x) > 0 parax > 0. Discuta: ;Bajo qué condicio-
nes convergera la serie E,fo: Wp(k)/qk)?

Analice si el siguiente enunciado es verdadero o falso:

Si ay < by para todo k y 2by converge, entonces >,ay,
converge.

Demuestre que si la serie X a; de términos positivos con-
verge, entonces >, In(1 + a) converge.

los problemas 45 y 46, determine si la serie dada conver-

< 1
E KLk

N 1
= 46',;1+2+3+~~+k

La representacién decimal de un nimero real positivo es
una serie infinita:

0 ay a, as ay
AahasQy ... = —— + —— + —— + —— ‘,
S 10 102 10°  10*
donde q; representa uno de los 10 enteros no negativos 0,
1,2,...,9. Demuestre que la serie de la forma
a, a, as ay S ay
—_ R _ _ + cee =— _—
10102 100 10* ;; 10

siempre es convergente.

La prueba de la integral

(e

puede usarse para verificar que E
k=1

W converge, en

< 1
tanto que E Xk diverge. Sin embargo, con la ayuda de
k=2

un SAC se observa a partir de las graficas de y = 1/x'%!

y=1/(x In x) en la FIGURA A5.1 que

1 1
klnk < 10001

para 2 = k = 15 000. De hecho, la desigualdad anterior
es cierta para 2 = k = 99 999 999 X 10%°. ;Entonces

1
por qué E, % In kDO converge por la prueba de compara-
S kInk

cion directa?

5000

FIGURA A5.1  Gréfica para el problema 48
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A.6 Pruebas de las proporciones y de la raiz

I Introduccion En esta seccidn, como en la anterior, las pruebas que se consideran son aplica-
bles a series infinitas de términos positivos.

I Prueba de las proporciones La primera de estas pruebas emplea el limite del cociente entre
el primer término (n + 1) y el término n-ésimo de la serie. Esta prueba es especialmente util
cuando a; implica factoriales, potencias k-ésimas de una constante y, algunas veces, potencias
k-ésimas de k.

Teorema A.6.1 Prueba de las proporciones

00 . L . ..
Suponga que X, _ ,a; es una serie de términos positivos tal que

a
lim— = L.
n— d,
i) Si L < 1, la serie es convergente.
i) Si L > 1, 0si L=o00, la serie es divergente.
iii) Si L =1, la prueba no es conclusiva.

i) Sea run nimero positivo tal que 0 = L = r = 1. Para n suficientemente grande, n = N para
algin entero positivo N, a,.,/a, < r; esto es, a,+; < ra,, n = N. La tdltima desigualdad
implica

ay+1 < Tay
Ay+y < Ty < aN”2

3
ay+3 < rayyo < ayr’,

s . . S8 ., .
y asi sucesivamente. De tal modo la serie X, _ v, ; a; converge por comparacién con la serie
sy 0 k 0 . 00
geométrica convergente >, _ ayr". Puesto que X, q; difiere de >;_ . a; a lo sumo un
nimero finito de términos, se concluye que la primera serie tambi€n converge.

ii) Sea r un nimero finito tal que 1 < r < L. Entonces para n suficientemente grande, n = N
para algin entero positivo N, a,+,/a, > r o a,, > ra,. Para r > 1 esta tltima desigual-
. . , . 0
dad implica a,,; > a,, y por ello lima, # 0. Del teorema A.3.3 concluimos que >, _ ,a;
. X—>00

diverge.

En el caso en el que L = 1, debemos aplicar otra prueba a la serie para determinar su con-
vergencia o divergencia.

A3\ [JKe BN Empleo de la prueba de las proporciones

O gk

Sk

Pruebe la convergencia de

Se identifica que a, = 5"/n! y por ello a,,; = 5""'/(n + 1)!. Luego se forma el
cociente de a,, 1 y a,, se simplifica y se toma el limite cuando n — o0:

5n+l

fim = 2
% @, e (n + DS
= limsa T 1!
= ,}Lf&%!(n”iil)
- nlggon -?— 1 0.

Puesto que L = 0 < 1, se concluye del teorema A.6.17) que la serie es convergente.

o Repase las propiedades del fac-
torial en la seccion A.1. Vea (4)
y (5) en esa seccion.
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A1\ [LXe BN Empleo de la prueba de las proporciones

o0
Examinar la convergencia de it
=1k
En este caso se tiene que a, = n"/n!'y a,;; = (n + 1)""'/(n + 1)!. Entonces
1i Ap+1 = 1i (I’l + l)n+l n!
% @, e (n+ D
1, (I’L + l)n-H 1
T T R

, (n + 1)”
= lim
n—o0 n

1 n
= lim( 1 + " = e. <« Este limite es (3) de la seccién 2.6.

n—00

Puesto que L = e > 1, se concluye del teorema A.6.1i7) que la serie es divergente.

I Prueba de la raiz Si los términos de una serie Xa; consisten sélo en potencias k-ésimas,
entonces puede aplicarse la siguiente prueba, la cual implica tomar la raiz n-ésima del término
n-ésimo.

Teorema A.6.2 Prueba de la raiz

o] . , . ..
Suponga que X, _ a; es una serie de términos positivos tal que

lim Va, = lim (a,)"" = L.
n—0o0 n—0o0
i) Si L < 1, la serie es convergente.
ii) Si L > 1,0 si L = 00, la serie es divergente.
iii) Si L =1, la prueba no es conclusiva.

La demostracién de la prueba de la raiz es muy similar a la prueba de las proporciones y no
se presentard.

A3\ [N BN Empleo de la prueba de la raiz

e8] k
Examinar la convergencia de E (i) .
k=1

Se identifica primero a, = (5/n)", y después se calcula el limite cuando n — oo de

la raiz n-ésima de a,,:
n|l/n
Iim [<5> } = lim Bl =0.
n—00 n n—00 11

Puesto que L = 0 < 1, se concluye del teorema A.6.2i) que la serie converge.

E NOTAS DESDE EL AULA

i) Laprueba de las proporciones siempre producird un caso no conclusivo cuando se aplique
a una serie p. Inténtelo con la serie E;o: \1/K* y vea lo que ocurre.

ii) Las pruebas examinadas en ésta y en las dos secciones anteriores indican cuando una serie
tiene una suma, pero ninguna de estas pruebas da alguna pista respecto a lo que es la suma
real. Sin embargo, al saber que una serie converge, es posible sumar cinco, cien o mil tér-
minos en una computadora para obtener una aproximacion de la suma.
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{0 0E T ARWANTN s respuestas de los problemas impares comienzan en la pagina RES-19.

En los problemas 1-16, recurra a la prueba de las proporcio-
nes para determinar si la serie dada converge.

1. :l% 2. ig
. S v 243)
o 10 x
> /21(1].1)-7 6 121]5(099)’
. 34 s S
) g(zkk!)! 10 ;ﬁ;k('igl)c‘)k
11. 299’25;0; D 12. 2?"
B33 4, S
=1k k=1
5. 2 1 .3.5.;!(2k -1 16. gﬁ

En los problemas 17-24, utilice la prueba de la raiz para deter-
minar si la serie dada converge.

1 o ke Y
17. gﬁ 18. E(H )
(kY S 1
19. — 20.
kz‘z(ln k) ;Z (In k)*
00 k k> 00 2 k*
21. kEl(kJr 1) 22. g,l 1 —k>
00 62k+1 00 kk
23 > 24, >~

En los problemas 25-32, use cualquier prueba apropiada para
determinar si la serie dada converge.

00 00 k
5 S Kk 26. E(zzﬁ- 1)

k=|k3+2k+] k=1

oo 1/n 2
7. 3¢ 28 0

n=1 N n=1

S 5% N 3
29. — 30.

];(k-i‘ D! ;;2"+k

N 2k 1 2 3 4
31.203k+4k R+ttt

En los problemas 33 y 34, recurra a la prueba de las propor-
ciones para determinar los valores no negativos de p para los
cuales la serie dada converge.

33.

00 00 2k

p L 2R
D kp* 34 k()
k=1 k=1 p

En los problemas 35 y 36, determine todos los valores reales
de p para los cuales la serie dada converge.

35.

37.

38.

39.

40.

N In k
;ﬁ 36. E“

En los problemas 78 y 79 de los ejercicios A.1 se vio que
la sucesion de Fibonacci {F,,},

1,1,2,3,5,8, ...,

estd definida por la férmula de recursion F,. = F,, + F,—;
donde F;, = 1, F, = 1.
a) Verifique que el término general de la sucesion es

F o (H\@) _ 1<1—\6>
n ,\/5 2 ,\/5 2

mostrando que este resultado satisface la férmula de
recursion.
b) Utilice el término general en el inciso @) para calcular
F,Fy, F5, Fyy Fs.
Sea F, el término general de la sucesién de Fibonacci
dada en el problema 37. Demuestre que
Hm Foit - M
n—oo I, 2 ’
Explique cémo el resultado del problema 38 demuestra
que la serie

converge.

Un poco de historia En 1985, William Gosper utilizé
la siguiente identidad para calcular los primeros 17
millones de digitos de 7:

1
—= 98012(1 103 + 26, 390n)

(4n)!
( ‘)4(4 . 99)411 :

Esta identidad fue descubierta en 1920 por el matema-

tico indio Srinivasa Ramanujan (1887-1920). Rama-

nujan fue notable por su excepcional conocimiento en

el manejo de manipulaciones y célculos algebraicos ex-

tremadamente complejos.

a) Verifique que la serie infinita converge.

b) ;Cuantos lugares decimales correctos de 7 produce el
primer término de la serie?

¢) (Cuantos lugares decimales correctos de 7 producen
los dos primeros términos de la serie?
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Una serie geométrica tal como

>

SO ISR R P P B

k=1
es una serie alternante. Vea el
ejemplo 4 en la seccién A.3.

La condicion 0 < a4 = a;
significa que
A=A =a3= "= q, =

Ay = -7

>

A.7 Series alternantes

I Introduccion En las dltimas tres secciones se consideraron pruebas para la convergencia que
resultaron aplicables s6lo para series con términos positivos. En la presente discusion se consi-
deran series en las cuales los términos se alternan entre nimeros positivos y negativos, esto es,
las series tienen la forma

8

ay—ata—as+ -t (*l)nﬂan + - (*1)“10/( (D
1

~
I

I
M

Y —ay+a —a3+ay— -+ (=D'aq, + - (_l)kak’ ()

~
Il

donde a; > Oparak = 1,2, 3, ... Las series (1) y (2) se dice que son series alternantes. Ya se
encontrd un tipo especial de serie alternante en la seccion A.3, pero en esta seccidon se examina-
ran las propiedades de series alternantes generales y las pruebas de su convergencia. Debido a
que la serie (2) es s6lo un multiplo de (1), se confinard la discusion a la dltima serie.

A\ [N Serie alternante

Las series
1.1 1 =
I=2%3 4+"'_k:21 k
2 I3 4 WS, _ X Ik
Y 48 "6 2" _E(l)zk
son ejemplos de series alternantes.
I Prueba de la serie alternante La primera serie en el ejemplo 1, 1 — % +3 — 1 + -+, se

denomina serie arménica alternante. Aunque la serie armdnica

&1 1,11
;k—1+2+3+4+---

es divergente, la introduccién de términos positivos y negativos en la sucesion de sumas parcia-

les para la serie armoénica alternante es suficiente para producir una serie convergente. Se demos-
00 _1 k+1

trard que E — _ converge por medio de la siguiente prueba.
k=1

Teorema A.7.1 Prueba de la serie alternante

Si lima, = 0y 0 < a4+, = a; para todo entero positivo k, entonces la serie alternante
n—00

S (=1 g, converge.

Considere las sumas parciales que contienen 27 términos:
Sw=ar—ataz—ayt 0t ay —ay 3)
=(ay —ay) + (a3 — ay) + =+ + (a1 — a).
Puesto que la suposiciéon 0 < a;,; = aq, implica @, — a;; = 0 parak = 1,2, 3, ... tenemos
S =S, =Sg=- =8y, =

De tal modo, la sucesion {S,,}, cuyo término general S5, contiene un nimero par de términos
de la serie, es una sucesién monatona. Al reescribir (3) como

Sy =ay = (ay —az) — -+ — ay,
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demuestre que S,, < a, para todo entero positivo n. En consecuencia, {S,,} estd acotada. Por el
teorema A.2.1 se concluye que {S,,} converge a un limite S. Ahora,

Soni1 = Sop T g4

implica que lim S,,, 1 = lim S,, + lim a,,,+; =S + 0 =S. Esto muestra que la sucesiéon de sumas
. n—oo n>00 n—00 . . . . . .

parciales {S,,+}, cuyo término general S, ; contiene un niimero impar de términos, también

converge a S. Como {S,,} vy {S>,+1} convergen a S, se concluye que {S,} converge a S.

]S\ [N Serie armonica alternante
00 ( 1k+l

Demuestre que la serie armonica alternante 2 converge.

Con la identificacién a,, = 1/n tenemos de inmediato

lima, = lim— =0
n— n—xon
Ademds, puesto que
1 1
S —
k+1 &

para k = 1 se tiene 0 < a;4; = a;. Se concluye del teorema A.7.1 que la serie arménica alter-
nante converge.

=N]\Y Mo} Serie alternante divergente

La serie alternante 2( 1)’“rl Zk i diverge, ya que
k=1
lim a, = lim ntl_2
n—>oo n—o03n — 1 3’
Este tltimo resultado indica que
lim (- 1)"“2” + }

no existe. Recuerde del teorema A.3.2 que es necesario que el dltimo limite sea O para la conver-
gencia de la serie.

Aunque demostrar que @, = a; quizd sea una tarea directa, éste muchas veces no es el caso.

R\ [JHe s Uso de la prueba de la serie alternante

Vi
k+ 1

Pruebe la convergencia de E (—Df—=
=1

Para demostrar que los términos de la serie satisfacen las condiciones a;;; = a;, se
considerara la funcion f(x) = \/;c/ (x + 1) para la cual f(k) = a;. De la derivada, se observa que
x—1
2Vax(x + 1)

y, en consecuencia, la funcion fdecrece para x > 1. De tal modo, a;,; = a, es cierta parak = 1.
Ademéds, la regla de L"Hopital muestra que

f'x) =~ <0 para x> 1,

lim f(x) = 0 y por ello lim f(n) = lim a, = 0.

Por consiguiente, la serie dada converge por el método de la serie alternante.

319
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| a,
ma—
| a3 |
! | |
! e I
| |
: 4 | :
[l T T 1
| |
! Loy
0o S Sy S S5 5

FIGURA A.7.1  Sumas parciales
sobre la recta numérica

I Aproximacion de la suma de una serie alternante Suponga que la serie alternante
00 L .
> (=D 1a, converge al niimero S. Las sumas parciales

S1=a1, Sg=a1—a2, S3=a1—a2+a3, S4=a1—a2+a3—a4,...

pueden representarse sobre una linea numérica como se muestra en la FIGURA A.7.1. La sucesion
{S,} converge de la manera ilustrada en la figura A.1.1c¢); esto es, los términos S,, se acercan a S
cuando n — 00 aunque oscilan a ambos lados de S. Como se indica en la figura A.7.1, las sumas
parciales con niimero par son menores que Sy las sumas parciales con niimero impar son mayo-
res que S. De manera aproximada, las sumas parciales numeradas par se incrementan hacia el
nimero Sy, a su vez, las sumas parciales numeradas impar disminuyen hacia S. Debido a ello,
la suma S de la serie debe ubicarse entre sumas parciales consecutivas S,y S, +1:

S, =S8=S§,:, paran par, 4
y S,+1 =8 =S, paranimpar. 5)

En este caso (4) produce 0 =S8 —S,=S,,;, —S, para n par, y (5) implica que
0=S,—S=S,— S, paranimpar. De este modo, en cualquier caso |[S, — S| = [S,+1 — S,|.

Pero S,41 — S, = a,s paranpary S,y — S, = —a,4 para n impar. Asi, S, — S| = a,
para toda n. Se enuncia este resultado como el siguiente teorema.

Teorema A.7.2 Cota de error para una serie alternante

. 0 . L .
Suponga que la serie alternante >, ,(—1)**'a,, @, > 0, converge hacia un nimero S. Si S,
es la suma parcial n-ésima de la serie y a,+; = a, para todo k, entonces

|Sn - S| = Ayt

para toda n.

El teorema A.7.2 es ttil para aproximar la suma de una serie alternante convergente. Sefiala
que el error |S, — S| entre la n-ésima suma parcial y la serie es menor que el valor absoluto del
primer término (n + 1) de la serie.

NI\ [LNe BN Aproximacion de la suma de una serie
00 (_1 k+1

Aproxime la suma de la serie convergente e hasta cuatro lugares decimales.
k=1 :

Primero, observamos que @, = 1/(2n)!. El teorema A.7.2 indica que debe tenerse

o
G = Gy gy < 000003

para aproximar la suma de la serie hasta cuatro lugares decimales. Ahora a partir de

j— P— 1 ~
n=1, a == 0.041667
=2 — L~ 0001
n=2 a5 =g = 0001389
n =3, a, = % ~ (0.000025 < 0.00005
se ve que |S3 — S| = a4 < 0.00005. Por tanto,
11,1
S3—E—J+a~o.4597

tiene la exactitud deseada.
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I Convergencia absoluta y condicional Una serie que contiene signos mezclados tal como

ORORCRORO

no es estrictamente de la forma dada en (1) y por ello no se clasifica como una serie alternante.
El teorema A.7.1 no es aplicable a este tipo de serie. No obstante, veremos que la serie (6) es
convergente debido a que la serie de valores absolutos

2 3 4 5 6
2 + <2> + (2) + <2> + (2) + (2) + .. (7) D€ un vistazo adelante y lea las
3 3 3 3 3 3 dos oraciones que siguen inme-
es convergente (una serie geométrica con r = 2 < 1). La serie (6) es un ejemplo de una serje ~ didtamente al ejemplo 7.
que es absolutamente convergente.
. - . e, . . , e o] . .
En la siguiente definicién se estd dejando que el simbolo X ,_  a; represente cualquier serie
(los términos a; podrian alternar como en (1) o contener signos mezclados); los signos pueden

seguir cualquier regla (como en (6)) o no.

Definicién A.7.1 Convergencia absoluta

. o0 . . .
Una serie >, —a; se dice que es absolutamente convergente si la serie de valores absolutos
(o]
> i=1lax| converge.

N5\ JEeMGR Convergencia absoluta

00 _1 k+1
La serie alternante E W es absolutamente convergente, puesto que se mostré que la serie
k=1
de valores absolutos
S D S
S+ S+ K

era convergente por la prueba de la integral en el ejemplo 1 de la seccién A.4.

Definicion A.7.2 Convergencia condicionada

. . 9] o e . o0
Se dice que una serie X, _ a, es convergente de manera condicional si X, _ ,a, converge pero
. [ee] .
la serie de valores absolutos >, _ || diverge.

A1\ [JXeBVA Convergencia condicional
—1 k+1

S (
En el ejemplo 2 vimos que la serie armdnica alternante E Tk es convergente. Pero al tomar
k=1
o0

el valor absoluto de cada término se obtiene la serie arménica divergente EE Por ello,
k=1

00 (_1 k+1

5SS convergente de manera condicional.
k=1

El siguiente resultado muestra que toda serie absolutamente convergente es también conver-
gente. Por esta razén es que la serie en (6) converge.

Teorema A.7.3 La convergencia absoluta implica convergencia

. [ee] [ee]
Si X< |a;| converge, entonces >, _ a; converge.
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Si se define ¢, = a; + |a;/, entonces ¢, = 2|a,|. Puesto que X |a;| converge,
se sigue de la prueba de comparacién que X ¢; converge. Ademds, >, (¢, — |a;|) converge, ya que
tanto D¢, como X |a| convergen. Pero

(o) o0
Eak = E(Ck - \ak\)
k=1 k=1

Por tanto, X a; converge.

Advierta que X|a;| es una serie de términos positivos, y por ello las pruebas de la seccién
anterior pueden utilizarse para determinar si una serie converge absolutamente.

=S JNe RN La convergencia absoluta implica convergencia

La serie

< senk  senl sen 2 sen3 sen 4
= - - +
,le k2 1 4 9 16

contiene términos positivos y negativos puesto que
senl >0, sen2 >0, sen3 >0, send <0, sen5 <0, sen6 <O,

y asi sucesivamente. De la trigonometria se sabe que [senk| = 1 para todo k. Por tanto,

senk| _ 1
K K
> sen k
para todo k. Por la prueba de comparacion directa, teorema A.5.1, la serie E converge
=K
< | < k
puesto que es dominada por la serie p convergente k; ? Por consiguiente, P es abso-

lutamente convergente, y en virtud de ello por el teorema A.7.3 converge.

I Pruebas de las proporciones y de la raiz Las siguientes formas modificadas de la prueba de
las proporciones y de la prueba de la raiz se aplican directamente a una serie alternante.

Teorema A.7.4 Prueba de las proporciones

00 . , . o e
Suponga que X, _a, es una serie de términos distintos de cero tal que:

Ap+1
a

Iim

n—00

= L.

i) Si L < 1, la serie es absolutamente convergente.
ii) SiL> 1,0si L = o0, la serie es divergente.
iii) Si L =1, la prueba no es conclusiva.

]\ [{Xe BN Empleo de la prueba de las proporciones

00 (_ 1)k+] 22](*1
Examine la convergencia de E —_—
=1 k3"
Con a, = (—1)""12%"7!/(n3"), observamos que
. Ay o (_1)n+2 22n+l n3"
lim = .
n— | a, N—>00 (}’l + 1)3n+l (_1)n+122n*l
p 4n 4
=lim57——— =5

6 3m+ 1) 3

Puesto que L = % > 1, veremos por el teorema A.7.4ii) que la serie alternante diverge.



Teorema A.7.5 Prueba de la raiz

o0 .
Suponga que X, _ ;a, es una serie tal que:
)3 n )3
lim Y/ |a,| = lim|a,|'" = L
n—00 n—00

i) SiL < 1, la serie es absolutamente convergente.
i) SiL > 1,0siL = 00, la serie es divergente.
iii) Si L =1, la prueba no es conclusiva.

I Rearreglo de terminos Cuando trabajamos con una serie finita de términos tales como

ay —ay + a3 —ay + as — ag, ®)
cualquier rearreglo del orden de los términos, tal como

—a, tay —ayt+ ay — ag + as
o (ar — ap) + (a3 — ay) + (as — ag)

tiene la misma suma que la original (8). Este tipo de manipulacién despreocupada de términos
no lleva a una serie infinita:

e Si los términos de una serie convergente de manera condicional se escriben en un orden
diferente, la nueva serie puede diverger o converger hacia un nimero por completo dife-
rente.

De hecho, es posible demostrar que mediante un rearreglo adecuado de sus términos, una serie
convergente de manera condicional puede hacerse converger a un niimero real r predeterminado.

En contraste, un rearreglo de los términos de una serie absolutamente convergente no efec-
ta su suma:

 Siuna serie X a; es absolutamente convergente, entonces los términos de la serie pueden
rearreglarse en cualquier manera y la serie resultante convergera al mismo nimero que la
serie original.

Por ejemplo, la serie geométrica 1 — 44§ — 25 + -+ es absolutamente convergente y su suma
1 . JIR) . 4y s

ess. Elrearreglo —5 + 1 — 55 + § — -+ de la serie geométrica no es una serie geométrica, aun-

que la serie rearreglada converge y su suma es %. Vea los problemas 53-56 en los ejercicios A.7.

E NOTAS DESDE EL AULA

i) La conclusion del teorema A.7.1 sigue siendo vélida cuando la hipétesis “a;.; = a, para
todo k positivo” se sustituye con el enunciado “a;.; = @ para k suficientemente grande”.
Para la serie alternante EOI;I (—1)k+1(1n k)/ K3 , se muestra de inmediato por medio del
procedimiento utilizado en el ejemplo 4 que a; .+, = a; parak = 21. Ademas, hm na, = 0.
En consecuencia, la serie converge por la prueba de la serie alternante.

i) Si la serie de valores absolutos > || resulta divergente, entonces no es posible estable-
cer ninguna conclusién relativa a la convergencia o divergencia de la serie >, ay.

{0 0E AR WAWA Las respuestas de los problemas impares comienzan en la pagina RES-19.

A.7 Series alternantes

323

= Fundamentos < 1 ko
2 D k + 1

En los problemas 1-14 utilice la prueba de la serie alternante

para determinar si la serie dada converge.
k2 +2
( 1)k+1

( 1)k+l 00 (_l)k—l 5. ;
E P 2. ](:217 k=1 K

i Mg

M8

k2+1

I Mg

k13
-D k+5
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k=1 3t k=1 4k
N n+1 4W N _1\yn—1 %
9;1( A P 10 ,E} D
& Vi + 1 O CVEE+ 1
11. ;z(cosmr) o 12. ;2( D e
Sk 5D
13. 1;2( D' 14. ;;2 =

En los problemas 15-34, determine si la serie dada es absolu-
tamente convergente, convergente de manera condicional o
divergente.

00 (_1)k+l 00 (_1)/(*1
15. 16. —
,;1 2k + 1 ,;1 k+ 5
17 i _1 k+1 % - 18 i 1 k+12’7
. ( ) 3 . ( ) k
k=1 =1 3
19. 2(—1)’% 20, D (—1)F(k27H?
k=1 k=1
& (—DF & (k!
21. 22. — 1)k
kgl k! ,;1( )(2k)!
3. Sk u Sy
= 100¢ = 10¢%2
< ok < k
25. -l 26. I
,Z( ) 1+ k2 k;( ) 1+ &
sen<2k + 177)
o0 o0 2
217. k 28.
];COS v ];1 P

29. i:(—l)]‘fI sen(%)
& 1 1

31 E(—l){wr . —k] 32.
S w2k Y

33. D (-1 (k+50> 34.

En los problemas 35 y 36, aproxime la suma de la serie con-
vergente al nimero indicado de lugares decimales.

o~
I

( 1)k+l 00 _1 k+1
35. ;  cinco 36. ;o tres
E 12k — 1)! ,;1 k!

En los problemas 37 y 38, encuentre el entero positivo n mas
pequeiio de modo que S, aproxime la suma de la serie conver-
gente al nimero indicado de lugares decimales.

( 1)k+l 00 (_1)k+l
37. ;o d 38. ;o
E 0S ];1 \/]E Ires

En los problemas 39 y 40, aproxime la suma de la serie con-
vergente de manera que el error sea menor que la cantidad
indicada.

1 1 1
39 I_E-FE—E'F“';

2 3 4
00-SFSog

1073

+ e 1074

En los problemas 41 y 42, estime el error de usar la suma par-
cial indicada como una aproximacién a la suma de la serie
convergente.

( 1)k+1
41. E 5 Sioo

( 1)k+1
42.
250

En los problemas 43-48, indique por qué la prueba de la serie
alternante no es aplicable a la serie dada. Determine si la
serie converge.

, sen (k/6) © 100 + (—1)*2*
,;1 K+ 1 2—
45.1—%—%+%+%——++
R e i A

[Sugerencia: Considere las sumas parciales S,, para
n=1,2,3,...]

En los problemas 49-52, determine si la serie dada converge.
49. 1 —1+1—-1+ -

50. 1 -DH+d -+ —=1)+ -

5. 1+ (—-1+D)+(—=1+1)+--

5. 1+(—-1+D+(—=1+1—-1)+ -

53. Vuelva a leer la discusion previa a Notas desde el aula de
esta seccion. Explique después por qué el siguiente enun-
ciado es cierto:

Si una serie de términos positivos 2,y es convergente, enton-
ces los términos de la serie pueden rearreglarse de cualquier
maneray la serie que resulta converge al mismo niimero que la
serie original.

54. Suponga que S es la suma de la serie armonica alternan-
te convergente | — 3 + 35—+ + 31— L+

Demuestre que el rearreglo de la serie

1 1 1 1 1 1 1 1 1 1
=274 37 6 8%5 10 277 14
A S A A S A R R
_(1 2> 4+(3 6) 8 <5 10) 12

1 1
+(7‘m‘ ’

produce 3§ = 5 — §
55. UtiliceS =1 — 4+ % —
del problema 54 en la forma

le_ogrtlig_1 L S
P =0+ S0 =g+ 0+ 0o

N
Jf_
=
|
=
+

-y el resultado
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Proporcione un ejemplo de una serie convergente > ay

Proporcione un ejemplo de una serie convergente > ay

Dé un ejemplo de una serie divergente X, a; para la cual

para demostrar que la suma de otro rearreglo de términos 58.
de la serie armonica alternante es para la cual X aj diverge.
1 1,1, 1 1
%S:1+§—§+§+7—Z+“'. 59'
para la cual X a; converge.

56. La serie 1 — 5 + ¢ — 5 + -+ es una serie geométrica 60.

ablsolufame?te c?nvergente. Demuestre que su rearreglo S a? converge.

—3+1—3 +3— - es convergente. Intente con la

prueba de las proporciones y con la prueba de la raiz. 61. Explique por qué la serie

[Sugerencia: Examine 3"V k=0, 1,2, .. ]

e senx + ¢ Zsen2x + e Fsen3x + -

57. Si Y a, es absolutamente convergente, pruebe que > a;
converge. [Sugerencia: Para n suficientemente grande,

la,| < 1. ;Por qué?]

A.8 Series de potencias

I Introduccion En matemadticas aplicadas es comun trabajar con la serie infinita de funciones,

Eckuk(x) = cotto(x) + ¢y (x) + cup(x) + - (D
k=0

Los coeficientes c; son constantes que dependen de k y las funciones u,(x) podrian ser diversos
tipos de polinomios o incluso funciones seno y coseno. Cuando se especifica la variable x, por
ejemplo x = 1, entonces la serie se reduce a una serie de constantes. La convergencia de una
serie tal como (1) dependerd, desde luego, de la variable x, con la serie convergiendo usualmen-
te para algunos valores de x mientras que divergird para otros valores. En ésta y en la siguiente
seccion se considerardn series infinitas (1) donde las funciones u;(x) son polinomios (x — a).
Estudiaremos las propiedades de este tipo de series y se demostrard cémo determinar los valo-
res de x para los cuales la serie converge.

I Series de potencias Una serie que contiene potencias enteras no negativas de (x — a)~,

o
Eck(x — a)k =cot clx —a)+ cx — a)2 +-tex—a@)" A+,
k=0

@

recibe el nombre de serie de potencias en x — a. Se dice que la serie de potencias (2) esta cen-
trada en a o tiene centro a. Un importante caso especial de (2), cuando a = 0,

28

, 2
E ckx‘ = ¢y + X + CoxX” + -+ L'”X” + e
k=0

3)
se denomina serie de potencias en x. La serie de potencias en (3) estd centrada en 0. Un proble-
ma que enfrentaremos en esta seccion es:

* Encontrar los valores de x para los cuales una serie de potencias converge.

Observe que (2) y (3) convergen a ¢y cuando x = a y x = 0, respectivamente.

A3\ [JHe BN Serie de potencias centrada en 0

La serie de potencias en x donde los coeficientes ¢, = 1 para todo k,

o0
Exk=l+x+x2+~~~+x”+---,
=0

se reconoce como una serie geométrica con el mismo cociente comun » = x. Por el teorema
A.3.1, la serie converge para aquellos valores de x que satisfacen [x| < 10 —1 < x < 1. La serie

diverge para|x| = 1, esto es, parax =—1 ox = 1.
En general, la prueba de las proporciones, como se establece en el teorema A.7.4, es espe-

cialmente util al determinar los valores de x para los cuales una serie de potencias converge. La
prueba de la raiz, en la forma del teorema A.7.5, también es util pero en menor grado.

converge para todo valor positivo de x.

o Es conveniente definir
x—a)l’=1yx’=1
incluso cuandox =a y x =0,
respectivamente.
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divergente convergente divergente
1 I I I I

— [ LI B S I
-2 0 2
lr= 2}~
FIGURA A8.1 EI conjunto de
ndmeros x para los cuales la serie
en el ejemplo 2 converge se
muestra entre corchetes.

A3\ [JNe BV A [ntervalo de convergencia
o)

3
. . X
Encuentre el intervalo de convergencia para T
g P kzzo 2Kk + 1)2
Con la identificacién de que a, = x"/(2"(n + 1)) se usa la prueba de las proporcio-
nes, teorema A.7.4,
el 2"(n + 1)?
2 +27

tim (E LY
n—oo\ n + 2 2

W (1 + 1/n)2 i
2 BE\1 +2/n) 2

Del inciso i) del teorema A.7.4, se tiene convergencia absoluta siempre que este limite sea estric-
tamente menor que 1. De tal modo, la serie es absolutamente convergente para aquellos valores
de x que satisfacen [x|/2 < 1 o |x] < 2. Puesto que la desigualdad de valor absoluto x| < 2 es
equivalente a —2 < x < 2, advertimos que la serie dada convergera para cualquier nimero x en
el intervalo abierto (—2, 2). Sin embargo, si |x| /2=1,0 X =2, 0cuando x =2 0 x = =2,
entonces la prueba de las proporciones no brinda informacién. Es necesario efectuar verificacio-
nes independientes de la serie dada para la convergencia en estos puntos extremos. Al sustituir 2
por x la serie se convierte en

Ap+1
a

p

Iim im
n—o0 n—00

divida entre n el numerador y el
denominador del primer término

que es convergente por comparacién directa con la serie p convergente S /k*). De manera
similar, al sustituir —2 por x se obtiene

$

S+ DY
que es convergente por la prueba de la serie alternante, teorema A.7.1. Concluimos que la serie

dada converge para toda x en el intervalo cerrado [ —2, 2]. La serie diverge para x <—2y x> 2,
o0 equivalentemente, para |x| > 2.

I Intervalo de convergencia En la FIGURA A8.1 se ha ilustrado el conjunto [—2, 2] de todos los
numeros reales x para los cuales la serie en el ejemplo 2 converge y el conjunto (—o0, —2) U (2, 00)
de nimeros x para los cuales la serie diverge. El conjunto de nimeros para los cuales la serie
converge es un intervalo centrado en O (el centro de la serie). Como se muestra en la figura, el
radio de este intervalo es R = 2. En general, el conjunto de fodos los niimeros reales x para los
cuales converge una serie de potencias Sc,(x — a)* se dice que es su intervalo de convergen-
cia. El centro del intervalo de convergencia es el centro a de la serie. El radio R del intervalo de
convergencia se denomina radio de convergencia.

El siguiente teorema, que se presenta sin demostracion, resume todas las maneras posibles
en las que puede converger una serie de potencias.

Teorema A.8.1 Convergencia de una serie de potencias

Para una serie de potencias >, ¢ (x — a)“ exactamente uno de los siguientes puntos es cierto:

i) La serie converge s6lo en el niimero x = a.
ii) La serie converge absolutamente para fodos los niimeros reales x.

iii) La serie converge absolutamente para los niimeros x en un intervalo finito (a — R, a + R),
R > 0, y diverge para los nimeros en el conjunto (=00, a — R) U (a + R, o0). En un
punto extremo del intervalo finito, x =a — R 0 x = a + R, la serie puede converger abso-
lutamente, converger de manera condicional o divergir.

Desde luego en ii) y en iii), cuando la serie de potencias converge absolutamente a un nime-
ro x, sabemos, por el teorema A.7.3, que converge. En i) del teorema A.8.1 el intervalo de con-
vergencia consiste de un elemento {a} y afirmamos que la serie tiene radio de convergencia
R = 0. En ii) del teorema A.8.1, el intervalo de convergencia es (—00, 00) y la serie tiene radio



de convergencia R = . Por tltimo, en iii) del teorema A.8.1, hay cuatro posibilidades para el
intervalo de convergencia con radio de convergencia R > 0:

(@a—R,a+R), [a—Ra+R], (@a—R,at+R] o
Vea la FIGURA A.8.2.

Como en el ejemplo 1, si R > 0, debe manejarse la cuestion de convergencia en un punto
extremo x = a £ R al sustituir estos nimeros en la serie dada y reconociendo después la serie
resultante como convergente o divergente o probando la serie que resulta respecto a la conver-
gencia mediante una prueba apropiada diferente a la prueba de las proporciones. Recuerde que:

[a — R,a + R).

* La prueba de las proporciones siempre es no conclusiva en un punto extremo x = a £ R.

A3\ e BN [ntervalo de convergencia
k

Encuentre el intervalo de convergencia para E T

Por la prueba de las proporciones, teorema A.7.4, se tiene

xn+1 n!

ol + D! "

n—0

Ap+q |)C‘

ay

P

lim =

n—o0

[x] = lim

= lim _nt 7
n—)OO(n + 1)' n—con + 1

Puesto que lim |x|/(n + 1) = 0 para cualquier eleccién de x, la serie converge absolutamente para
n—00 . . .

todo nimero real. De tal modo, el intervalo de convergencia es (—00, 0) y el radio de conver-

gencia es R = 00.

)3\ Ko '8 [ntervalo de convergencia
2 (x — 5)k

Encuentre el intervalo de convergencia para E

Por la prueba de las proporciones, teorema A.7.4, tenemos
(x — 5! n3"
(n+ D3t (= 5)

— Iim n =3
n—oo\ n + 1 3
=3

ll'm( 1 >|x—5:
n—>o\ 1 + 1/n 3 3

La serie converge absolutamente si x — 5|/3 < 1 o |x — 5| < 3. Esta desigualdad de valores
absolutos produce el intervalo abierto (2, 8). En x = 2 y x = 8, los puntos extremos del interva-
lo, obtenemos, a su vez,

n+1
ay

s

lim

n—00

n—00

|
—_
P

ST
y

-1k k=

La primera serie es un mdltiplo de la serie arménica alternante y por ello es convergente, la segun-

da serie es la serie arménica divergente. Consecuentemente, el intervalo de convergencia es [2, 8).
El radio de convergencia es R = 3. La serie diverge six < 2 ox = 8. Veala FIGURAA8.3.

A3\ JEe BN [ntervalo de convergencia

Encuentre el intervalo de convergencia para Sl kl(x + 10)%

|-

De la prueba de las proporciones,
(n + DIx + 10y
n!(x + 10)"
= lim(n + D|x + 10|
n—00

Ap+1
al’l

lim

n—00

n—o0

se observa que el limite cuando n — 00 sélo puede existir si |x + 10| = 0, a saber, cuando

x = —10. De tal manera,
_ oo, x # —10
0, x = —10.

Ap+1
a,

lim
n—o0
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a—-R @ g4R
FIGURA A.8.2 Posibles intervalos
finitos de convergencia con R > 0

La primera serie es
1 1 .

o (=Dl —3+3+-]

4 La serie entre corchetes es la

serie armoénica alternante
convergente.

divergente convergente divergente

PR s N T N T W
T LI T T T T / T T
2

0 5 8

| R=3 |«

FIGURA A.8.3 Intervalo de
convergencia del ejemplo 4
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La serie diverge para todo nimero real x, excepto x =—10. En x =—10, obtenemos una serie con-
vergente que consta s6lo de ceros. El intervalo de convergencia es el conjunto {10} y el radio de
convergencia es R = 0.

{0 RE DRI | as respuestas de los problemas impares comienzan en la pagina RES-19.

= En los problemas 31-38, la serie dada no es una serie de
potencias. No obstante, encuentre todos los valores de x para
los cuales la serie dada converge.

1

En los problemas 1-24, recurra a la prueba de las proporcio-

nes para encontrar el intervalo y el radio de convergencia de .

la serie de potencias dada. 31. = 32. i Al
00 (_1)k 00 xk k= x k:1x2k
1. E k Xk 2. E? 00 o) 1 X k
= ik 33. E( ) 34. ,;?(x = 2)
3. Ezka 4. Ei‘xk x 2k
=k =0 k! 35. E 36. >, P N
e . St ° ko
CE P =R/ 37, DM 38. D kle ™
k=0 k=0
Sl k N k k 39. Encuentre todos los valores de x en [0, 277 ] para los cua-
7 g‘llok x—5) 8';(k+ P p [0, 2] p
N N P les >, ) sen® x converge.
19k k 10. — vk
) ;;)k 2 0 kzzo K * 40. Demuestre que 332, (sen kx)/k* converge para todos los
" i (3x — 1) " i (4x — 5) valores reales de x.
) k=1 K+ k .k=0 3% =
o 0o [ 1\kyek
13. E Ea 14. E (=Dx 41. Algunas funciones importantes en matemadticas aplicadas
= nk = kink se definen en términos de integrales no elementales.
< k2 L S aa . Algunas de estas funciones especiales de matemadticas
15. ;ﬂ()‘ +7 16. k§=:l 2% (x = 1) aplicadas también se definen mediante series infinitas. La
. AN = 1 000! serie de potencias
X k
17. 252]((3) 18. 2 kk X 3 ( l)k 2k
= k=1 Jo(x) = E
00 ( )k 00 31( 0 =0 22k(k')2
L S Y k45
19. 2:: (k + Dk + 2) (r = 17 20. /;1 (—2)k(k+1) x+3) recibe el nombre de funcion de Bessel de orden 0.
= (=) — 2\ x (6 — )t a) El dominio de la funcion Jy(x) es su intervalo de con-
21 > ar U3 22. Eﬁ vergencia. Determine el dominio.
k=1 - (1')3‘ k=0 . b) El valor de Jy(x) se define como la suma de la serie
[ee] [ee] 5 coe
23 E e 24. E 2k para x en su dominio:
=0 9 =1 2h)! Jo(x) = 1im S, (x),
n—oo
En los problemas 25-28, emplee la prueba de la raiz para n(—=1)F "
donde S,(x) = 2

determinar el intervalo y el radio de convergencia de la serie
de potencias dada.

Sy
- . - es el término general de la sucesién de sumas parcia-
i E X 26. E(k + D + DF les. Emplee una calculadora o SAC y grafique las
=5 (In k) k=1 sumas parciales So(x), S1(x), So(x), S3(x) y S4(x).

% k x K ¢) Hay varios tipos de funciones de Bessel de diferentes
27. E(;‘)(x+3)k 28. E(kf 1) (x — e)f
k=1 k=1

ordenes. Jy(x) es un caso especial de una funcién mas
general J,(x) llamada funcion de Bessel de primer
En los problemas 29 y 30, encuentre el radio de convergencia tipo de orden v. Las funciones de Bessel son funcio-
de la serie de potencias dada. nes incorporadas en sistemas algebraicos computari-
e k! x \ zados tales como Mathematica y Maple. Emplee un
29. 1;1 1 2k — 1) <> SAC para obtener la grafica de Jy(x) y compdrela con
© 1. 2k — 3) las graficas de las sumas parciales en el inciso b).
E P (x — DF [Sugerencia: En Mathematica, Jy(x) se denota por

= 3%k! medio de BesselJ[0, x].]




A.9 Representacion de funciones mediante series de potencias

A9 Representacion de funciones mediante
series de potencias

I Introduccion Para cada x en su intervalo de convergencia, una serie de potencias >c,(x — a)*
converge a un nimero. Por esta razén, una serie de potencias es en si misma una funcion, la cual
se denota como f, cuyo dominio es su intervalo de convergencia. Entonces para cada x en el inter-
valo de convergencia se define el elemento correspondiente en el rango de la funcién, el valor
f(x), como la suma de la serie:

O =t at—ator—a = Sak - at
k=0

Los dos siguientes teoremas, que se anuncian sin demostracion, responden algunas de las
preguntas fundamentales acerca de la diferenciabilidad, integrabilidad y continuidad de una fun-
cion f definida por una serie de potencias.

I Diferenciacion de una serie de potencias La funcion f definida por una serie de potencias
S cx — a)fes diferenciable.

Teorema A.9.1 Diferenciacién de una serie de potencias

Si f(x) = E;iock(x — a)* converge sobre un intervalo (¢ — R, a + R) para el cual el radio de
convergencia R es positivo o oo, entonces f es diferenciable en cada xen (¢ — R,a + R), y

Fi) = D kex — a)f . (1

k=1

El radio de convergencia R de (1) es el mismo que el de la serie original.

El resultado de (1) establece simplemente que una serie de potencias puede diferenciarse
término por término como se haria para una funcién polinomial:
! — i i _ i _ 2 e i — 1 e
flx) = 0 + dxcl(x a) + dxcz(x a)y” + + dxc,,(x a)' + o
= +2cx—a) +3c(x —a)’+ - +ncx—a)y + - = Ekck(x —af .
k=1

Puesto que (1) es una serie de potencias con un radio de convergencia R, es posible aplicar el
teorema A.9.1 a f' definida en (2). Esto es, puede afirmarse que f” es diferenciable en cada x en
(@ — R,a + R)yf" esta dada por

') =2c,+32c3sx—a)+ -+ +nn—e,(x—a) >+ - = ik(k - Deplx — a) 2
k=2

Continuando de esta manera, se concluye que:
e Una funcién f definida por una serie de potencias sobre (a — R, a + R), R >0, o sobre
(—00, 00), posee derivadas de todos los 6rdenes en el intervalo.
El radio de convergencia R de cada serie derivada es el mismo que el de la serie original.
Ademads, puesto que la diferenciabilidad implica continuidad, también tenemos el resultado:

e Una funcién f definida por una serie de potencias sobre (@ — R, a + R), R > 0, o sobre
(—o0, 00), es continua en cada x en el intervalo.

I Integracion de una serie de potencias Como en (1), el proceso de integracién de una serie
de potencias puede llevarse a cabo término por término:

Jf(x) dx = Jco(x —a)dx + Jc](x —a)dx + ch(x —aYdx+ -+ fcn(x —a)'dx+ -
- _ e P+ P+ o+ = e — gyt
colx a)+2(x a)+3(x a)’ + +n+1(x a)'" + +C
N % kI
k;)kJr [ =+ C

El resultado se resume en el siguiente teorema.

329
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Es recomendable que lea este
parrafo varias veces.

La primera serie converge por la
prueba de la serie alternante; la
segunda converge por la prueba

de comparacién directa (la serie

es dominada por la serie p
convergente > 1/ k).

Teorema A.9.2 Integracion de una serie de potencias

Sif(x) = Eiozock(x — a)f converge sobre un intervalo (a — R, a + R) para el cual el radio de
convergencia R es positivo o co, entonces

jf(x)dx= ikﬁl(x—a)H]-i-C. 3)
k=0

El radio de convergencia R de (3) es el mismo que el de la serie original.

Puesto que la funcién f(x) = X3Zoc(x — a)f es continua, su integral definida existe y est4

definida por
B 0 B
J f(x) dx = Eck( J (x — a) dx)

o k=0
para cualesquiera nimeros a 'y Ben (a — R,a + R), R > 0, 0en (—00, 00) si R = co.

En los teoremas A.9.1 y A.9.2 se establecié que si la funcién f(x) = E,fiock(x — a)* tiene
radio de convergencia R > 0 o R = oo, entonces la serie obtenida que forma f'(x) e [f(x) dx
tiene el mismo radio de convergencia R. Esto no significa que la serie de potencias que definen
af(x), f'(x) e [f(x) dx tengan los mismos intervalos de convergencia. Esto no es tan malo como
parece. Si el radio de convergencia de la serie que define a f(x), f'(x) e [f(x) dxes R > 0, enton-
ces los intervalos de convergencia pueden diferir s6lo en los puntos extremos del intervalo.
Como regla, al diferenciar una funcién definida por serie de potencias con radio de convergen-
cia R > 0 es posible perder convergencia en un punto final del intervalo. Al integrar una fun-
cioén definida por una serie de potencias con radio de convergencia R > 0 puede ganarse con-
vergencia en un punto extremo del intervalo.

)3\ [N BN Intervalo de convergencia

0k
. . X . .
Para la funcién f definida por f(x) = E © encuentre los intervalos de convergencia de
k=1

a) f'(x) b) Jf (x) dx.

Se muestra facilmente de la prueba de las proporciones que el intervalo de conver-
gencia de la serie de potencia que define a fes [—1, 1).
a) La derivada

S dx ™
f =27 = 2 =1 +x+2 480+ ©))
mdx k k=1
se reconoce como una serie geométrica cuyo intervalo de convergencia es (—1, 1). La
serie diferenciada (4) ha perdido convergencia en el punto extremo izquierdo en el
intervalo de convergencia de f.
b) Laintegral de fes

d i g i ! C 5
f(-x) X = = k X = k=1k(k+ 1) + C. ( )
En x = —1 y x = 1, las series en (5) se convierten, respectivamente, en

§ $
“kk+1n 7 k(k + 1)

k=1
Como ambas series convergen, el intervalo de convergencia de (5) es [—1, 1]. En este

caso, la serie integrada (5) ha ganado convergencia en el punto extremo derecho del
intervalo de convergencia de f.

I Representacion de series de potencias de una funcion Con frecuencia es posible expresar
una funcién f conocida o dada (tal como e* o tan” ' x) como la suma de una serie de potencias
en algin intervalo. En este caso puede afirmarse que la serie es una representacion de f en serie
de potencias sobre el intervalo.

El siguiente ejemplo es importante debido a que conduce a muchos otros resultados.
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N/ [JXe BV A Representacion de una funcién por una serie de potencias

Encuentre una representacion en serie de potencias de centrada en 0.

1 —x
Recuerde que una serie geométrica converge a a/(1 — r)si|r] < L

a

1 =a+ar+a’r+-F+ar" "+
-r

Identificando a = 1 y r = x, observamos que

llfx:l+x+x2+x3+---+x”+--':Exk- ©
k=0

La serie converge para |x| < 1. El intervalo de convergencia es (—1, 1). En la FIGURA A.9.1 se ha
desplegado la gréificade y = 1/(1 — x) junto con las gréficas de las sumas parciales S»(x), S5(x),
Sg(x) y So(x) de la serie de potencias (6). Al inspeccionar esta figura, ponga atencién sélo en el

intervalo (—1, 1). La serie no representa la funcién fuera de este intervalo. FIGURA A9.1  Grdficas de las
sumas parciales del ejemplo 2

Al sustituir x por —x en (6), obtenemos una representacion de serie de potencias para la fun-
cién 1/(1 + x):

1
1 +x

=l—x+x2 =X 4 (D) + = D (=D 7)
k=0

La serie (7) converge para |—x| < 1 o x < 1. El intervalo de convergencia es otra vez (—1, 1).

Muchas funciones conocidas pueden representarse mediante una serie infinita a través de
cierto tipo de manipulacion de las series en (6) y en (7). Por ejemplo, podria multiplicarse la serie
por una potencia de x, reemplazar x con otra variable o quizd combinar la sustitucién de x con
otra variable con el proceso de integracion (o diferenciacion), etcétera.

N/ [N BN Representacion de una funcién por una serie de potencias

Encuentre una representacion de serie de potencias de centrada en 0.

1
1+ 3x
Al sustituir simplemente el simbolo x por 3x en (7) obtenemos

1
1+ 3x

=1-=3x+3Bx) =@+ + (-G + - = i(—l)%kxk.
k=0

. . : 11
Esta serie converge cuando |-3x| < 1 o|x| < 1. El intervalo de convergencia es (—3, }).

N1\ [JXel'8 Representacion de una funcién por una serie de potencias

Encuentre una representacion de series de potencias de 5 i T centrada en 0.
Factorizando 5 del denominador,
1 1 _1 1
5—x x) 5 .. X
s(1-3) 713

estamos en posibilidad de utilizar (6). Al reemplazar el simbolo x en (6) con x/5 obtenemos

L1 1 1), x (xY (1)5
5—x 5 _x_5[1+5+<5)+5 *

! 5
1 _lm(i)k_ 00 1 .
© 5 x 5235 ,EOSM-

La serie converge para|x /5 <1 o|x| <5. El intervalo de convergencia es (=5, 5).
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Con un poco de habilidad, las representaciones en serie de potencias en (6) y (7) muy a
menudo se utilizan para encontrar una representaciéon de serie de potencias de una funcién
centrada en un nimero a diferente de 0.

]\ [JXe A Serie de potencias centrada en 3

Determine una representacion de serie de potencia de I+ x centrada en 3.

Puesto que el centro de la potencia va a ser 3, deseamos que la serie de potencias con-
tenga s6lo potencias de x — 3. Con ese fin, sustraemos y sumamos 3 en el denominador:
1 1 _ 1
1+x 1+x—-3+3 4+ x-—3)

A partir de este punto, procedemos como en el ejemplo 4, a saber: factorizamos 4 del denomi-
nador y usamos (7) con x sustituida por (x — 3)/4:

| 1
l+x 4+ x-23)
N S
4 1+x—3

il ) )
i) - B

Esta serie converge para [(x — 3)/4] <1 o|x — 3| < 4. La solucién de la dltima desigualdad
muestra que el intervalo de convergencia es (—1, 7).

][ Xe BN Diferenciacion de una serie de potencias

La diferenciacién término por término de (7) produce una representacion en serie de potencias
de 1/(1 + x)* sobre el intervalo (—1, 1):

d 1 d d d d 2 d
dx1+x dxl ™ + dxx dxx Tt (=D dx” *
produce _72 =—1+2x—3x*+ -+ (—=1)"'nx""" 4+ .-+« semultiplican ambos
1+x) lados por —1
1 _ - _
7:1_2X+3X2++ _1n+1nxn 1+: _1k+1kxk 1.
s (=1 ;1< )

=8]5\7 Mol Integracion de una serie de potencias
Encuentre una representacion de serie de potencias de In(1 + x) sobre (—1, 1).

Primero introducimos un cambio de variable de integracién al sustituir x = ¢ en (7):

1
1+t

=l—t+P =+ + (D" +

Entonces, para cualquier x dentro del intervalo (-1, 1),

X

xl X X x2 B o .
Ll+tdt Jdt Ltdﬂrftdt +(1)J0tdt+

Y R et (m1y—L e [

]0 2[}4— } o 1)”+1t L+
x ; n+l

B _2+3_ D +1+

Pero j 1 dt =In(1 + t)] =1In(l + x) — Inl = In(1 + x)
, 1+ 0
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y asi

2 3 n+1

SN S n X _ S ED
Il +x)=x—F+T -t D) Sg = Y X @®)

Advierta que el intervalo de convergencia de la serie en (8) es ahora (—1, 1], esto es, hemos
agregado la convergencia en x = 1. Dejando x = 1 en (8), la serie en el lado derecho de la igual-
dad es la serie armonica alternante convergente; sobre el lado izquierdo se obtiene In 2. De tal
manera, hemos obtenido la suma S de la serie armonica alternante:

m2=1-Lt4Lt_ 1, ©)

2 3 4
A3\ el Aproximar un valor de In x
Aproxime In(1.2) hasta cuatro lugares decimales.

Al sustituir x = 0.2 en (8) se obtiene
0.2  (0.2)° B 0.2)* (0.2 B (0.2)° N

In(12) = 02 = =5~ + Tt s . (10)
= 0.2 — 0.02 + 0.00267 — 0.0004 + 0.000064 — 0.00001067 + ---
~ (.1823. (11)

Si la suma de la serie (10) en el ejemplo 8 se denota mediante S, entonces sabemos del teo-
rema A.7.2 que |S, — S| = a,+,. El ndmero dado en (11) es exacto hasta cuatro decimales, ya
que, para la quinta suma parcial de (10),

IS5 — S| = 0.00001067 < 0.00005.

I Aritmética de series de potencias Las dos series de potencias f(x) = S h(x — a)'y g(x) =
Sclx —a )k pueden combinarse mediante las operaciones aritméticas de adicién, multiplicacion
y divisién. Es factible que calculemos f(x) + g(x) y f(x)g(x) como en la adicién y multiplica-
cién de dos polinomios: agrupamos términos a partir de potencias similares de x — a. En cada
punto en el cual las series de potencias que definen a f'y g convergen absolutamente, las series

) + g@) = (by + co) + (by + c)(x — a) + (by + c)(x — a)* + -+ (12)
y F(0g(x) = bycy + (bocy + bico)x — a) + (bocy, + bicy + byco)x — a)* + -+ (13)

convergen absolutamente. De manera similar, para ¢, # 0 podemos calcular f(x)/g(x) mediante
divisién larga:

@ n bicy — bycy

Co ct

cotealx—a)t - )p, + bix —a) +--
b
by + (C)icl(x—a) + - (14)
0

bicy — b
0 + 10— 2% x—a)+ -

x—a)+ - < cociente

Co

La division es vélida en alguna vecindad del centro a de las dos series.

En ocasiones es posible que utilicemos las operaciones aritméticas tal como se ilustrd junto
con los resultados conocidos previamente para obtener una representacion de serie de potencias
de una funcién.

)3\ [Nl Suma de serie de potencias

. . . . 4x
Determine una representacion de serie de potencias de ﬁ centrada en 0.
X+ 2x —

Para comenzar, descomponemos la funcién en fracciones parciales

a3
+2x—3 3+x 1-x

o Desde luego, no memorice (12),
(13) y (14); sdlo aplique el
algebra como lo haria para dos
polinomios.
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Después factorizamos 3 del denominador de la primera fraccién parcial y usamos (7) con x sus-
tituida por x/3:

31 lxgx 2, EV, (s)

Esta serie converge para |x /3| < 1 o |x| < 3. El intervalo de convergencia para (15) es (-3, 3).
Ahora sabemos de (6) que

#=1+x+x2+x3+---=2xk (16)
I —x k=0

converge para |x| < 1. El intervalo de convergencia para (16) es (=1, 1). Por iltimo, la suma de
(15) y (16) produce la siguiente representacion de serie de potencias para la funcién dada:

4x _ 3 . 1 :_i _§2_§3_'“:oo (_1)k_ .
24+2x—-3 3+x 1—x 3% T oY T o7t kEl( 3 L)xs 17)

La serie (17) converge para todas las x comunes a (esto es, la interseccién de) los intervalos
(=3,3)y (-1, 1), es decir, para toda x en (—1, 1).

El resultado (17) también puede obtenerse al multiplicar dos series de potencias.

()3 [JNe B[N Repaso del ejemplo 9

Si reescribimos la funcién en el ejemplo 9 como un producto
4x 4 1

x2+2x—3:_§x x 1—x
1+§

y después usamos (15) y (16), se concluye que

4x 4 x x X >
_— 1 -+ =—-=4+ - |- Q+x+2+5+ -
x4+ 2x — 3 3 ( 3032 3 ( )

4 1 S S T
3 {1-}—1(1 3>x+<1 3+32>x+ ]

_ 4 8., 285

379 27"

[
[
\
B

[
[
\
B

{0 RE T ARWANC R | as respuestas de los problemas impares comienzan en la pagina RES-20.

tacion de serie de potencias, centrada en 0, de la funcién que
se indica. Sefale el intervalo de convergencia.

En los problemas 1-8, utilice (6) y (7) para determinar una
representacion de serie de potencias, centrada en 0, de la fun- X % 10. %
ci6n indicada. Proporcione el intervalo de convergencia. G —x I+ 2x)
I 1 m — 12, ——
L3— 2. (5 + 2x)° 4+ x°
1 1 X 1 - x2
S 550, (1 + 2% (1 + 2%
1 X En los problemas 15-20, utilice la integracién de una serie
5. 1+ 22 6. 1+ 12 apropiada de los problemas 1-8 para encontrar una represen-
: 4 tacion de serie de potencias, centrada en 0, de la funcién indi-
7. 5 8. 5 cada. Proporcione el intervalo de convergencia.
4+x 4-x 15. tan ' x 16. tan~'(x/2)
17. In(1 + x?) 18. In(5 + 2x)
En los problemas 9-14, utilice la diferenciacién de una serie 19. In(4 + ) 20. In 3+ x
apropiada de los problemas 1-8 para encontrar una represen- 3—x



En los problemas 21-28, utilice (6), (7) o resultados previos para
encontrar una representacion de serie de potencias, centrada en
0, de la funcién dada. Indique el intervalo de convergencia.

1 —x 3—x
2T 20
x2 X
23. 4+ 24, 8+ ox
25, x In(1 + x?) 26. x*tan 'x
27. J tan~! ¢ dt 28. J In(1 + %) dt
0 0

En los problemas 29-32, proceda como en el ejemplo 5 y
encuentre una representacion de serie de potencias, centrada
en el nimero dado a, de la funcién indicada. Sefale el inter-
valo de convergencia.

29 L . .- 3. L 4=
1 —x X

3. —— a=-—1 2 T2 -0
24 x Cx—1

En los problemas 33 y 34, proceda como en el ejemplo 9 y
utilice fracciones parciales para encontrar una representacion
de serie de potencias, centrada en 0, de la funcién dada.
Indique el intervalo de convergencia.

3 X 34. 3

+x—12 —-x—2

En los problemas 35 y 36, proceda como en el ejemplo 10 y
utilice multiplicacién de serie de potencias para determinar los
primeros cuatro términos distintos de cero de una representa-

cién de serie de potencias, centrada en 0, para la funcién dada.
R S 6 X
2-x01-x (1 + 201 + x?

En los problemas 37 y 38, encuentre el dominio de la funcién
dada.

35

X x2 x3 x4
3. fx) =5 — + - +
/&) 3 2.3 3.3 4.3
_ 4x> 8x?
3. fo=1+u+ S+ 57+

A.10 Serie de Taylor
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En los problemas 39-44, use la serie de potencias para apro-
ximar la cantidad dada hasta cuatro lugares decimales.

39. In(1.1) 40. tan"'(0.2)
12 3y

41. J S dx 42, J L dx
b 1 +x b 1 +x

0.3 12
43. J x tan ' x dx 44. J tan ' x? dx
0 0

45. Utilice el problema 15 para demostrar que

T 1,1 1
;o3 ts gt
46. Se sabe que la serie en el problema 45 converge muy len-
tamente. Demuestre lo anterior encontrando el entero
positivo n mds pequefio de manera que S,, aproxime /4

hasta cuatro lugares decimales.

En los problemas 47 y 48, demuestre que la funcién definida
por la serie de potencias satisface la ecuacion diferencial dada.
00 _1 k+1
47. y= > -
=k

e+ 1y +y =0

00 (_ l)k . )
48. Jy(x) = kgoizzk(kg)zx%; Xy +y +xy=0
ok
49. a) Sif(x) = E %, entonces demuestre que f'(x) = f(x)
k=0 K:
para toda x en (—0Q, 00).

b) ;Qué funcion tiene la propiedad de que su primera deri-
vada es igual a la funcién? Conjeture sobre cudl funcién
se representa mediante la serie de potencias del inciso a).

o RV
50. a) Si f(x) = ](_20 (Z(ki-:)l)!x%ﬂ’ entonces demuestre
que f"(x) = —f(x) para toda x en (—00, 00).

b) ;Qué funciones tienen la propiedad de que su segun-
da derivada es igual al negativo de la funcién?
Conjeture respecto a cudl funcién se representa
mediante la serie de potencias del inciso a). Advierta
que las potencias de x en la serie de potencias son

enteros positivos impares.

I Introduccion Suponga que X cx — a)* es una serie de potencias centrada en a y que tiene
un intervalo de convergencia con un radio de convergencia R distinto de cero. Luego, como se
vio en la seccion anterior, dentro del intervalo de convergencia una serie de potencias es una fun-
cién continua que posee derivadas de todos los érdenes. También se abord¢ la idea de usar una
serie de potencias para representar una funcién determinada (tal como 1/(1 + x)) sobre un inter-
valo. En esta seccion se va a extender de manera adicional la nocién de representar una funcién

mediante una serie de potencias. El problema bdsico es:

e Suponga que se cuenta con una funcién f que posee derivadas de todos los 6rdenes en un
intervalo abierto /. ;Es posible encontrar una serie de potencias que represente a f sobre /?

En palabras un poco diferentes: ;podemos expandir una funcién diferenciable infinitamente (tal
como f(x) = senx, f(x) = cosx o f(x) = ¢*) en una serie de potencias >,c,(x — a)* que conver-
ge al valor correcto de la funcién f(x) para toda x en algtin intervalo abierto (@ — R, a + R),

donde ResR > 0o R = o0?
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I Serie de Taylor para una funcion f Antes de responder la pregunta del tltimo parrafo, se va
a hacer simplemente la suposicion de que una funcién f infinitamente diferenciable sobre un
intervalo (a — R, a + R) puede representarse mediante una serie de potencias X,ci(x — a)¥ sobre
ese intervalo. En ese caso es relativamente facil determinar cudles deben ser los coeficientes c¢y.
La diferenciacién repetida de

fW=c+tear—a+ok—a+ax—a’+ - +ek—a +-- (1)
produce
Fix) = ¢; + 2e5(x — a) + 3c3(x — a)> + -+ 2)
F(x) = 2, + 3+ 2c5(x — a) + -+ 3)
frx) =3-2-1cz + -, @

y asi sucesivamente. Al evaluar (1), (2), (3) y (4) en x = a, encontramos que
fla) =cy, fla) = 1lc,, f"(@) =2, y f"(a) = 3lcs,
respectivamente. En general, se ve que f"(a) = nlc, o

(n)

Cn

Cuando n = 0, interpretamos la derivada 0-ésima como f(a) y 0! = 1. Al sustituir (5) en (1) se
producen los resultados resumidos en el siguiente teorema.

Teorema A.10.1 Forma de una serie de potencias

Si una funcién f posee una representacién en serie de potencias f(x) = >.c(x — a)* sobre un
intervalo (@ — R, a + R), entonces los coeficientes deben ser ¢, = f®(a)/k!.

En otras palabras, si una funcién f tiene una representacion en serie de potencias centrada
en a, entonces debe verse como lo siguiente:

. v S oo (k)
f) = fla) +]% x — a) +f2(?)(x —ay +J¥(x —ay + - = k%f k(!a)(x —a). (6)

La serie en (6) se denomina serie de Taylor de f en a, o centrada en a. La serie de Taylor cen-
tradaena = 0,

F) = O+ b . )

Y O " 0 " O 0 (k) 0
FO O 1O, 300,
k=0 &
se denomina serie de Maclaurin de f.
La pregunta planteada en la introduccion ahora puede reformularse como:

» (Es posible expandir una funcién f infinitamente diferenciable en una serie de Taylor
(6)?

Pareceria que la respuesta es afirmativa (calculando simplemente los coeficientes como lo indi-
ca la férmula (5)). Por desgracia, no es tan simple el concepto de expandir una funcién f dada
infinitamente diferenciable en una serie de Taylor. Es necesario tener en mente que (5) y (6) se
obtuvieron bajo la suposicion de que f era representada por una serie de potencias centrada en
a. Si no se conoce a priori que una funcién f infinitamente diferenciable tiene una representa-
cién en serie de potencias, entonces debe considerarse una serie de potencias obtenidas de (6) o
(7) como un resultado formal, en otras palabras, una serie de potencias que es simplemente gene-
rada por la funcién f. No se sabe si la serie generada de esta manera converge o, incluso si lo
hace, si converge a f(x).

=8]3\7 | JHe BN Serie de Taylor de In x

Encuentre la serie de Taylor de f(x) = In x centrada en a = 1. Determine su intervalo de conver-
gencia.




La funcién f, sus derivadas y sus valores en 1 son:

fx) =Inx f(H) =0
1
f@ = =1
1
') = > fray = -1
1-2
[ = — 1y = 2!
.
) = (—1)"’1('1_7"])! fO) = (=1 = 1!
X

Puesto que (n — 1)!/n! = 1/n,n = 1, (6) produce

1 , 1 R & (—H! L
C—D—x— 1P+ xx— 1P == > (x — D~ ®)
2 3 &=k
La prueba de las proporciones,
- Nawn| [ = DM n
lim |—| = Ilim . -
n— | a, n—00 n+1 (=D ' — 1)
— 7. n _ — _
=l =kl

muestra que la serie (8) converge para|x — 1] <1 o sobre el intervalo (0, 2). En los puntos extre-
mos x = 0y x = 2, las series

& (D!
y X

k=1

-3

k=1

=

son divergente y convergente, respectivamente. El intervalo de convergencia de estas series es
(0, 2]. El radio de convergencia es R = 1.

Adpvierta en el ejemplo 1 que no se escribi6 la igualdad

& (1!

Inx = E

&k

(x — D

En este punto no se ha establecido que la serie dada en (8) representa a In x sobre el intervalo
(0, 2].

I Teorema de Taylor De acuerdo con (5), es claro que para tener una serie de Taylor centrada
en a es necesario que una funcién f posea derivadas de todos los érdenes que estén definidas en
a. Asi, por ejemplo, f(x) = In x no posee una serie de Maclaurin, debido a que f(x) = In x y todas
sus derivadas no estan definidas en 0. Ademads, es importante notar que incluso si una funcién f
posee derivadas de todos los 6rdenes y genera una serie de Taylor convergente sobre algtin inter-
valo, es posible que la serie no represente a f sobre el intervalo, esto es, la serie no converge a
f(x) en toda x en el intervalo. Vea el problema 63 de los ejercicios A.10. La pregunta fundamen-
tal de si una serie de Taylor representa la funcién que la generd puede resolverse por medio del
teorema de Taylor.

Teorema A.10.2 Teorema de Taylor

Sea f una funcién tal que f*(x) existe para toda x en un intervalo que contiene al nimero
a. Entonces para toda x en el intervalo

f(x) = P,(x) + R,(x),

7 ~(n),
fl(clt)(x—a) + o +f n(!a)(x—a)” 9

(continiia)

donde P,(x) = f(a) +

A.10 Serie de Taylor
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recibe el nombre de polinomio de Taylor de f en a, de grado n-ésimo, y

f()1+ l)(c)
Existen varias formas del » R(x)=""—"F7(x— Ll)"+l (10)

|
residuo. Esta forma se debe al (n+ D!
matematico francés Joseph

se llama forma de Lagrange del residuo. El nimero ¢ yace entre a y x.
Louis Lagrange (1736-1813).

Puesto que la demostracion de este teorema desviaria la principal finalidad de esta discu-
sién, puede omitirse. La importancia del teorema A.10.2 radica en el hecho de que los polino-
mios de Taylor P,(x) son las sumas parciales de la serie de Taylor (6). El residuo se define como

R,(x) = f(x) — P,(x)  yasi  P,x) = f(x) — R,(x). (1)
Si }1_)11()1@ P,(x) = f(x), entonces la funcién f es la suma de la serie de Taylor que la genera. Sin
embargo, de (11) observamos que
lim P,(x) = f() = limR,(x)

por lo que si es posible mostrar de algiin modo que R,(x) — 0 cuando n — oo, y entonces la
sucesion de sumas parciales converge a f(x). Resumimos el resultado.

Teorema A.10.3 Convergencia de una serie de Taylor

Suponga que f es una funcién que posee derivadas de todos los 6rdenes sobre un intervalo
centrado en el nimero a. Si

h’rgoRn(x) =0

para toda x en el intervalo, entonces la serie de Taylor generada por f converge a f(x),

oo £(k)
s = ST -y

En Ia prictica, la prueba de que el residuo R, (x) tiende a cero cuando n — o0 depende

muchas veces del hecho de que
N
Ilim— = 0. (12)

n—oo 1

Este tltimo resultado sigue de aplicar el teorema A.3.2 a la serie 25:; \**/k!, 1a cual se sabe que
es absolutamente convergente para todos los niimeros reales. (Vea el ejemplo 3 en la seccién A.8.)

]\ [{Xe BN Repaso del ejemplo 1

Demuestre que la serie (8) representa a f(x) = In x sobre el intervalo (0, 2].

En la solucién para el ejemplo 1 vimos que la derivada n-ésima de f(x) = In x estd

dada por
(=)' — 1)
(n) = - @
£ e
—1)"n!
De f@*(c) = (,7711”7 obtenemos de (10)
C
_ ") wer _ | (=Dl N
|Rn(x)| - (n+ 1! X 1| - Cn+l(n + 1) S D Tn+1 c ’

donde c es algiin niimero en el intervalo (0, 2] entre 1 y x.
Si 1 =x = 2, entonces 0 < x — 1 = 1. Puesto que 1 < ¢ < x, debemos tener
0 < x—1=1 < ¢y, en consecuencia, (x — 1)/c < 1. Por consiguiente,

R, = lim R,(x) = 0.

n+1 y



Enelcasoenel que 0 < x < 1, también puede mostrarse que lim R, (x)=0. Se omite la demos-
tracion. En consecuencia,

0o (__1\k—1
]nx=(x—1)—%(x—1)2+%(x—1)3—---=2( lk) (x— D
k=1

para todos los valores de x en el intervalo (0, 2].

N]S\Y [N} Representacion de la serie de Maclaurin de cos x

Encuentre la serie de Maclaurin de f(x) = cos x. Demuestre que la serie de Maclaurin represen-
ta a cos x para toda x.

Determinamos primero la serie de Maclaurin generada por f(x) = cos x:

f(x) = cos x f0) =1
f'x) = —sen x| f'(0)=0
f"(x) = —cos x| f"(0) = —1
f"(x)=senx | f"(0) =0
y asi sucesivamente. De (7) obtenemos la serie de potencias
2 4 6 o (— 1)
TR TR TR k=0((2k))! x2k (13)

La prueba de las proporciones indica que (13) converge absolutamente para todos los valores
reales de x, en otras palabras, el intervalo de convergencia es (—00, 00). En este caso, con el fin
de demostrar que cos x es representada por la serie (13), debemos mostrar que nll_{lolo R,(x) =0.
Para este fin, advertimos que la derivada de f satisface

) = {| X npar

|cos x|,  nimpar.
En cualquier caso, | f ("“)(c)\ = 1 para todo nimero real ¢, y consecuentemente por (10),

ARG

n+ 1)

n+1
ntl — |x‘

R0 = Sm+ -

o

En vista de (12), tenemos para cualquier eleccién fija aunque arbitraria de x,
‘ x|n+1

lim———— = 0.

Pero lim |R,(x)| = 0 implica que lim R, (x) = 0. Por tanto,

x2 x4 X6 x2n

es una representacion vélida de cos x para todo ndimero real x.

)3\ [ JHe "8 Representacion de la serie de Taylor de sen x

Determine la serie de Taylor de f(x) = sen x centrada en « = 7r/3. Compruebe que la serie de
Taylor representa a sen x para toda x.

Tenemos

f(x) = sen x

~
R

w3
N—
Il

f'(x) = cos x

“h
N
wly w3

S—— ~ —
Il

f"(x) = —sen x

%
N

frr/(x) = —Cos X fm

| S E
(98]

N

w3
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y asi sucesivamente. Por consiguiente, la serie de Taylor centrada en 77/3 generada por senx es

V3 1 T V3 a\2 1 )}
2+2-1!(x_3>_2-2!<x_3)_2-3!<x_3)+"" (14)

También en este caso, de la prueba de las proporciones se sigue que (14) converge absolutamen-
te para todos los valores reales de x, esto es, su intervalo de convergencia es (—00, 00). Para
demostrar que

enx- V3, L ( m\_ N3( w1 (o wy
Ty T\ Y T3 T2\ T3 2.3\ 7 3

para todo valor real x, advertimos que, como en el ejemplo anterior, | f""(c)| = 1. Esto impli-
ca que

‘x _ 7T/3|n+l

R,(x)| = NTEEE

a partir de lo cual vemos, con la ayuda de (12), que lim R,(x)=0.

Se resumen algunas representaciones importantes de series de Maclaurin y sus intervalos de
convergencia:

Intervalos de
Series de Maclaurin convergencia
. 2 X S xF
e»=1+x+§+§+---:k§ﬁ (—00, 00) (15)
2 4 6 o (—1)k
_ X X X o ( l) 2%
cosx = 1 o + TR + = 1«20 2o (—00, 00) (16)
3 5 7 o0 — 1)k
X X X ( 1) 2k+1
< = — 4+ = — — 4 ... = _— — 1
R TR TR ,E)(zk+ D (=00, 00) 17
3 5 7 0 _1)k
SN SN SR JAURRIE S Gl A ~
tan”'x = x - T+ o - T zo%ﬂx [—1,1] (18)
x2 X4 xﬁ X2k
coshx:1+§+5+§+m: 26! (—00, 00) (19)
! ! ! = (2k)!
x3 xS X7 00 x2k+1
senhx—x+3!+5!+7!+---—k§)(2k+1)! (—00, 00) (20)
B o X XD
ln(1+x)—x*3+gfz+---—/;)kJrlx [—1,1] 1)

Se pide al lector demostrar la validez de las representaciones (15), (17), (19) y (20) como ejer-
cicio. Vea los problemas 51-54 en los ejercicios A.10.

Ademds, se le recomienda observar con cuidado las series dadas en (16)-(20) y responder
después la pregunta del problema 61 de los ejercicios A.10.

I Algunas graficas de polinomios de Taylor En el ejemplo 3 observamos que la serie de Taylor
de f(x) = cos x en a = 0 representa la funcién para toda x, ya que }1_1)1010 R, (x) = 0. Siempre es de
interés ver graficamente cdmo las sumas parciales de la serie de Taylor, las cuales son los poli-
nomios de Taylor definidos en (9), convergen a la funcién. En la FIGURA A.10.1a) las gréficas de los
polinomios de Taylor

1 1 1
P =1 P =15’ P9 = 1= 50 + g
1 1 1 1 1
y Pt =1 — Exz 4 Ex4 _ axs i §x8 — ﬁxlo

se comparan con la gréafica de f(x) = cos x.



Una comparacién de los valores numéricos se presenta en la figura A.10.10).

x Py(x) Py(x) Pyo(x) cos x
/6 0.86292 0.86605 0.86603 0.86603
n/4 0.69157 0.70743 0.70711 0.70711
nf3 | 0.45169 0.50180 0.50000 0.5
/2 —0.23370 0.01997 0.00000 0

b)

FIGURA A.10.1 Polinomios de Taylor P, P,, P4y P;, para cos x

I Aproximaciones Cuando el valor de x es cercano al centro a (x = a) de una serie de Taylor,
puede usarse el polinomio de Taylor P,(x) de una funcién f en a para aproximar el valor de la
funcién f(x). El error en esta aproximacién esta dado por

IR, = [f(x) = P,(x)].

=]\ [JXe N Aproximacion utilizando un polinomio de Taylor

Aproxime ¢~ *? mediante un polinomio de Taylor P;(x). Determine la exactitud de la aproxima-
cion.

Como el valor x = —0.2 es cercano a 0, recurrimos al polinomio de Taylor de
f(x) =e*ena=0:

Py) = f0) + 1 f?)x SO, SO

1! 3!
Se sigue de
JO) =110 =" = f"x) = ¢
J0) =f10) = f"(0) = f"(0) = 1
que Pyx) = 1+ x + o +

2 6

Este polinomio es la cuarta suma parcial de la serie dada en (15). Ahora,

Py(—02) =1+ (=02) + %(—0.2)2 + %(—0.2)3 ~ (.8187

y por ello, e %2 =~ 0.8187. (22)
Después de esto, de acuerdo con (10) es posible escribir
e e[
IRs@)| = 7 lxl* <

puesto que —0.2 < ¢ <0y ¢ < 1. La desigualdad

_ 4
IRy(—02)| < J%L < 0.0001

implica que el resultado en (22) es exacto hasta tres lugares decimales.

A.10 Serie de Taylor
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En la FIGURA A.10.2 hemos comparado las gréficas de los polinomios de Taylor f(x) = e* cen-
trados en a = O:

Px)=1+x,  Pyx) =1 +x+%x2 y  Pix)=1 +x+%x2+%x3.
Advierta en las figura A.10.2b) y A.10.2¢) que las gréficas de los polinomios de Taylor P,(x) y
P3(x) son indistinguibles de la gréifica de y = ¢* en una pequeifia vecindad de x = 0.2.

X

T t t t t t X t t t t t t X t t t t t t
—+5-1-05 [ 05 1 15 “15-1-05 | 05 1 15 “15-1-05 | 05 1 15

a) b) c)
FIGURA A.10.2  Gréficas de los polinomios de Taylor del ejemplo 5

Una integral tal como /sen x” dx, donde sen x” no posee una antiderivada en la forma de una
funcién elemental, se conoce como una integral no elemental. La serie de Taylor es de gran
ayuda cuando se trabaja con integrales no elementales. Por ejemplo, la serie de Maclaurin que
se obtiene al sustituir x por x* en (17) converge para —co < x < 00, y por ello, de acuerdo con

el teorema A.9.2,
6 10 14
Jsenxzdx = J<x2 - % + % - % + --->dx

x7 xll xlS

3
X _
=3 7T st TE (23)

=8]3\7 Mo B:N Aproximacion utilizando una serie de Taylor

Aproxime [y sen x* dx hasta tres lugares decimales.

De (23) advertimos de inmediato que
7 11 15 |

1
2, X X XX
Lse“ =Tt s o T,
_1 1 1
3T 7 T 15 (24)

Por el teorema de la cota del error para la serie alternante, teorema A.7.2, el cuarto término en
la serie (24) satisface

1

=157 0.000013 < 0.0005.

ay

Por tanto, la aproximacién

1
oo 11 I
LS"“ SR FE TR TR

~ 0.3103

es exacta hasta tres lugares decimales.

I Limites Una representacion de serie de potencias de una funcién algunas veces es titil en el
calculo de limites. Por ejemplo, en la seccién 3.4 se recurri6 a un sutil argumento geométrico
. senx . e .
para demostrar que lim - 1. Pero si usamos (17) y la divisién entre x observamos de inme-
. x—0
diato que

el limite de cada uno
de estos términos es 0

X —
x—%%—;_ 2 4
i senx:h,m : = lim 1_7+‘Xi_ =1
x—=0 X x—0 X x—0 3! 5!
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N5\ [ BWA Calculo de un limite

-1
., .. X—tan X
Evalide im——.
x—0 x3

Observe que el limite tiene la forma indeterminada 0/0. Si revisa el problema 25 en
el ejercicio 5.11, tal vez recuerde evaluar este limite mediante la regla de L’Hopital. Pero en vista
de (18), podemos escribir

.X% x5
0 X —\X— ? + ? - también vea el problema 15 en los
h’mx —tan x = lim <— ejercicios A.9 para la representacion
x—0 33 x—0 X3 de tan™ ! x en serie de potencias
x3 )CS
375
= lim « se factoriza x* del numerador
x—00 X y se cancela
im( Lo _1
x—0\ 3 5 3

I Empleo de la aritmética de una serie de potencias En la seccion A.9 se discuti la aritmé-
tica de la serie de potencias, esto es, las series de potencias pueden bdsicamente manipularse de
manera aritmética igual que los polinomios. En el caso en que las representaciones de las series
de potencia f(x) = D by(x — a)t y g(x) = Delx — a)t convergen en el mismo intervalo abierto
(@a—R,a+ R) para R> 0 o (—00,0) para R = 00, pueden obtenerse las representacio-
nes de la serie de potencias para f(x) + g(x) y f(x)g(x) a su vez, sumando las series y multipli-
céndolas. La suma y el producto convergen en el mismo intervalo. Si dividimos la serie de poten-
cias de f entre la serie de potencias de g, entonces el cociente representa a f(x)/g(x) en alguna
vecindad de a.

NS\ [N Serie de Maclaurin de tan x

Encuentre los primeros tres términos distintos de cero de la serie de Maclaurin de f(x) = tan x.

De (16) y (17) podemos escribir

-+
tany = SEnX 31 517!
COS X x2 x4 x6

BT TR

Entonces mediante divisién larga

L34 2.5 ...
x +3x + 50+

=4t = T R =
X — 3+ g — e

%XS — #5 4.

%)CS _ éx5 4o

%XS 4.

%x5 4 ...

Por consiguiente, tenemos

_ 15,2 5,
tanx—x+3x +15x+ .

Desde luego, el dltimo resultado pudo también obtenerse utilizando (7). Vea el problema 11
en los ejercicios A.10. Después de trabajar en el ejemplo 8 se le recomienda leer ii) en las Notas
desde el aula.
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P, (x) es el polinomio de grado

n definido en (9).

I Polinomios de Taylor (Redux) En la seccién 5.8 se introdujo la nocién de una aproximacion
lineal local de fen a dada por f(x) = L(x), donde

L(x) = f(a) + f(a)(x — a). (25)

Esta ecuacion representa la linea tangente a la grafica de fen x = a. Como es un polinomio li-
neal, otro simbolo apropiado para (25) es

Pi(x) = fla) + fl(@)x — a). (26)

La ecuacién se reconoce ahora como el polinomio de Taylor de primer grado de fen a. La idea
detras de (25) es que la linea tangente puede usarse para aproximar el valor de f(x) cuando x esta
en una pequeila vecindad de a. Pero, puesto que la mayorfa de las graficas tienen concavidad y
una linea tangente, no es posible esperar que un polinomio de grado superior proporcionaria una
mejor aproximacién a f(x) en el sentido de que su grafica estaria cerca de la grafica de f sobre
un intervalo mds grande que contenga a a. Advierta que (26) tiene las propiedades de P y su pri-
mera derivada concuerda con fy su primera derivada en x = a:

Pia)=fl@ 'y  Pia)=fla)
Si deseamos que una funcién polinomial cuadratica
Py(x) = ¢y + ci(x — a) + c(x — a)*
tenga las propiedades andlogas, a saber:
Pya) = fla),  Pa)=f@@ y Pia)=[f"a),
entonces, siguiendo un procedimiento similar a (1)-(5), se advierte que P, debe ser

Py(x) = f(a) + }@ x—a)+ % x — a) 27
Graficamente, esto significa que la grafica de f'y la grafica de P, tienen la misma linea tangente
y la misma concavidad en x = a. Desde luego, se reconoce (27) como el polinomio de Taylor de
segundo grado. Se afirma que f(x) = P,(x) es una aproximacion cuadratica local de f en a. Al
continuar de esta manera se construye f(x) = P,(x), que es una aproximacion local de grado
n-ésimo de f en a. Con esta discusion en mente, el lector necesita prestar mayor atencién a las
gréficas de f(x) = cos x, Py, P>, P,y Pigcercade x =0 en la figura A.10.1a) y las aproximacio-
nes en la figura A.10.1b). También debe reexaminar la figura A.10.2.

I Posdata: Un poco de historia El teorema A.10.2 recibe su nombre en honor del matemadtico
inglés Brook Taylor (1685-1731), quien publicé este resultado en 1715. Sin embargo, la férmu-
la en (6) fue descubierta por Johann Bernoulli casi 20 afios antes. La serie en (7) recibe su nom-
bre en honor al matematico escocés y estudiante de Isaac Newton, Colin Maclaurin (1698-
1746). No es claro por qué el nombre de Maclaurin se asocia con esta serie.

E NOTAS DESDE EL AULA

i) El método de la serie de Taylor para encontrar la serie de potencias de una funcién y la
prueba posterior de que la serie representa a la funcién tiene una gran y obvia desventa-
ja. La obtencidén de una expresion general para la derivada n-ésima de la mayoria de las
funciones es casi imposible. De tal modo, se presenta con frecuencia la limitaciéon de
determinar sélo algunos de los primeros coeficientes c,,.

ii) Es fécil pasar por alto la importancia de los resultados en (6) y (7). Suponga que se desea
encontrar la serie de Maclaurin para f(x) = 1/(2 — x). Es posible, desde luego, utilizar
(7), lo cual se le pide al lector en el problema 1 de los ejercicios A.10. Por otro lado, el
lector debe reconocer, de los ejemplos 3-5 de la seccién A.9, que la representacion en
serie de potencias de f puede obtenerse utilizando series geométricas. El punto es:

» La representacion es tnica. De tal modo que sobre su intervalo de convergencia,
una serie de potencias que representa a una funcion, independientemente de cémo
se obtuvo, es la serie de Taylor o de Maclaurin de esa funcién.
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{0 0E RN Las respuestas de los problemas impares comienzan en la pagina RES-20.

En los problemas 1-10, emplee (7) para determinar la serie de
Maclaurin de la funcién dada.
1 1

l'f(x)ZZ—x 2°f(x):1+5x

3. f(x) = In(1 + x) 4. f(x) = In(1 + 2x)

5. f(x) = senx 6. f(x) =cos 2x

7. f(x) = ¢€* 8. f(x) =e¢

9. f(x) = senh x 10. f(x) =cosh x

En los problemas 11 y 12, emplee (7) para determinar los pri-
meros cuatro términos distintos de cero de la serie de Ma-
claurin para la funcién dada.

11. f(x) =tan x 12. f(x) = sen 'x

En los problemas 13-24, emplee (6) para determinar la serie de
Taylor de la funcién dada centrada en el valor indicado de a.

3. fo) =y a=4 4. fx) =V, a=1
15. f(x) = %, a=1 16. f(x) = %, a= -5
17. f(x) =senx, a=m/4 18. f(x) =senx, a= /2
19. f(x) = cosx, a=m/3 20.f(x) =cosx, a=m/6
21. fx) =€, a=1 22. f)=e >, a= %
23. fx) =Inx, a=2 24. fx)=In(x+ 1), a=2

En los problemas 25-32, utilice resultados, métodos o proble-
mas previos para determinar la serie de Maclaurin de la fun-
cion dada.

25. fx) = e~
27. f(x) = xcos x

26. f(x) = x%e ™
28. f(x) = sen x

30. f(x) = ln<} fi)
32. f(x) = In(cos x)

29. f(x) = In(1 — x)
31. f(x) = sec’x

En los problemas 33 y 34, emplee la serie de Maclaurin como
una ayuda en la evaluacion de limite indicado.

3 X
X 34. Hmw

33. lim
x—0 1 — cosx

x—0 X — sen x

En los problemas 35 y 36, use adicién de series de Maclaurin
para ¢'y e " para determinar la serie de Maclaurin de la fun-
cién dada.

35. f(x) = coshx 36. f(x) = senh x

En los problemas 37 y 38, use multiplicacién para encontrar
los primeros cinco términos distintos de cero de la serie de
Maclaurin para la funcién dada.

ex

37. fix) = 38. f(x) = ¢'senx

1 —x

En los problemas 39 y 40, utilice divisidon para encontrar los
primeros cinco términos distintos de cero de la serie de
Maclaurin de la funcién dada.

39. f(x) = C;S -

40. f(x) = sec x

En los problemas 41 y 42, establezca el valor indicado de la
integral definida dada.

1
o, L1 1
41.Le dx =1 3-1—10 42+
1
senx ., . 1 I 1
42‘L P P TR P TR Y T
En los problemas 43-46, encuentre la suma de la serie dada.
1 1 1 1 1 1 1
Bol-grg-g+ Moy gty 517
7 gt o w
45.1_27!4'47!—64'"'46.77_? §—?+

En los problemas 47-50, aproxime la cantidad indicada utili-
zando el polinomio de Taylor P,(x) para los valores sefialados
de n y a. Determine la exactitud de la aproximacién.

47. sen 46°, n=2,a= /4 [Sugerencia: Convierta 46° a
radianes.]
48. cos29°, n=2,a=w/6 49. ¢, n=4,a=0

50. senh(0.1), n=3,a=0

51. Demuestre que la serie obtenida en el problema 5 repre-
senta a sen x para todo valor real de x.

52. Demuestre que la serie obtenida en el problema 7 repre-
senta a ¢* para todo valor real de x.

53. Demuestre que la serie obtenida en el problema 9 repre-
senta a senh x para todo valor real de x.

54. Demuestre que la serie obtenida en el problema 10 repre-
senta cosh x para todo valor real de x.

55. Al nivelar una larga autopista de longitud L, debe hacer-
se una compensacidon con respecto a la curvatura de la
Tierra.

a) Demuestre que la correccién de nivelacién y indicada
en la FIGURA A.10.3 es y = R sec(L/R) — R, donde R es
el radio de la Tierra medido en millas.

b) Si P,(x) es el polinomio de Taylor de segundo grado
para f(x) = sec x en a = 0, utilice sec x = P,(x) para x
cercano a cero con el fin de demostrar que la correc-
cién aproximada del nivelado es y = LZ/ (2R).

¢) Encuentre el nimero de pulgadas de la correccién del
nivelado que se necesita para una autopista de 1 milla.
Emplee R = 4 000 mi.

d) Si se usa sec x = P4(x), entonces demuestre que la
correccion de nivelacion es

2 4

y~ L + SL '

2R 24R®
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56.

En

Repita el cdlculo en el inciso ¢) utilizando la dltima
férmula.

—

Y L

FIGURA A.10.3 La Tierra en el problema 55

Una onda de longitud L viaja de izquierda a derecha a tra-
vés de agua a una profundidad d (en pies), como se ilus-
tra en la FIGURA A.10.4. Un modelo matemaético que relacio-
na la velocidad v de la onda con Ly d es

_ &L 2md
v = 27Ttanh(L )

a) Para agua profunda demuestre que v = VgL/27r.

b) Utilice (7) para determinar los primeros tres térmi-
nos distintos de cero de la serie de Maclaurin para
f(x) = tanh x. Demuestre que cuando d/L es pequeiia,
v =~ Vgd. En otras palabras, en agua poco profunda
la velocidad de una onda es independiente de la lon-
gitud de la onda.

FIGURA A.104 Onda del problema 56

los problemas 57 y 58, encuentre dos maneras, aparte

de utilizar (7), de determinar la representacion de la serie de
Maclaurin de la funcién dada.

57.

fx) = sen” x 58. f(x) = senx cosx

59.

60.

61.

62.

2

Sin utilizar (6), encuentre la serie de Taylor para la fun-
cién f(x) = (x + 1)%" centrada en a = 1. [Sugerencia:
e’ = ex+l—l]

Discuta: ; f(x) = cot x posee una representacion en serie
de Maclaurin?

Explique por qué resulta 16gico que las series de
Maclaurin (16) y (17) para cos x y sen x contengan sélo
potencias pares de x y s6lo potencias impares de x, res-
pectivamente. Después reinspeccione la serie de Maclau-
rin en (18), (19) y (20) y comente.

Suponga que se desea calcular f!'?(0) para f(x) =
x* sen x%. Desde luego, podria utilizarse el enfoque de
fuerza bruta: recurrir a la regla del producto y cuando se
obtenga (a la larga) la décima derivada igualar x a 0.
Piense en una manera mas habil de determinar el valor de

esta derivada.

. Un clasico matematico La funcion

_ e_l/"z, x#0
fo = {0, x=0

aparece en casi todo texto de cdlculo. La funcidén fes con-
tinua y posee derivadas de todos los 6rdenes en todo
valor de x.

a) Emplee una calculadora o un SAC para obtener la gra-
fica de f.

b) Emplee (7) para determinar la serie de Maclaurin
correspondiente a f. Tendra que recurrir a la definicién
de la derivada para calcular f'(0), f"(0), ... Por ejem-
plo,

o _ 1o SO+ Ax) — f(0)
70 = fin =L

Podria ser de utilidad utilizar r = Ax y recordar la
regla de L’Hopital. Demuestre que la serie de
Maclaurin de f converge para toda x. ;La serie repre-
senta a la funcién f que la generé?

A.11 Serie del binomio

I Introduccion La mayoria de los estudiantes de matemadticas estdn familiarizados con la
expansion binomial en los dos casos:

(1 + x)?
1+ x)?°

1+ 2x + 22
1+ 3x + 322+ X

En general, si m es un entero positivo, entonces

1+x"=1+mx+ 2

o T+ X

m(m — sz A mm — 1)m —2)---(m —n + l)x"

n! ()

La expansion de (1 + x)" en (1) se denomina teorema del binomio. Utilizando la notacién de

sumatoria, (1) se escribe

1+ x"= 2(?))&',

2

k=0
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m

donde el simbolo ( X

) se define como

por conveniencia este

término se define como 1 m—k+1)=@m—(k— 1))
m\ B m\ _mm— 1)m—2)---(m—k+1)
(-1 e=0 5 (7)- ke

Estos nimeros se llaman coeficientes binomiales. Por ejemplo, cuando m = 3, los cuatro coe-
ficientes binomiales son

N (33, (3\_36G-D_ . (3_36-1DG-2) _
B)=r ()12 ()25 ()-8

Si bien (2) tiene la apariencia de una serie, es una suma finita consistente en m + 1 términos que

finalizan con x™. En esta seccién se verd que cuando (1) se extiende a potencias m que no son < Isaac Newton fue el primero
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enteros positivos, el resultado es una serie infinita. que dio en 1665 la extension del

teorema del binomio (m un

entero positivo) a la serie del

. . o binomio (m fraccionari
I Serie del binomio Suponga ahora que f(x) = (1 + x)’, donde r representa cualquier nimero nomio (m fraccionario y

real. De nimeros reales negativos).
fo) =1+’ f0) =1
f =r(l+x7" f'O) =r
S0 =rr = DA+ x)? J"0) = r(r — 1)
@) = r(r = D = 2)(1 + x)7? J70) =r(r = D(r = 2)
fP%) =rr— 1 @F—n+ DA +x)" fP2°0) =rr—1-@F—-—n+1)

advertimos que la serie de Maclaurin generada por fes

(0 -1 - D(r—2 1) (r—n+1
Efi( )xk=1+rx+r(r )x2+r(r ) )x3+---+r(r ) (o n )x”+
= k! 2! 3! n!

_ Srr—1)-(r—k+1) ,

—1+IZ A X

= 2(1:);& 3)

La serie de potencias dada en (3) se denomina serie del binomio. Advierta que (3) termina sélo
cuando r es un entero positivo; en este caso, (3) se reduce a (1). De acuerdo con la prueba de las
proporciones, la versién dada en el teorema A.7.4,

i |9t rr— 1)@ —n+ D@ — nx""! n!
IR (n + 1) Fr— 1) (r—n+
L=
B nh—{gon +1 o
L1
n
=t L =

concluimos que la serie del binomio (3) converge para x| < 1 o —1 <x < | y diverge para
|x| > 1, esto es, para x > 1 o x <—1. La convergencia en los puntos extremos x = =1 depende
del valor de r.

Desde luego no es una gran sorpresa aprender que la serie (3) representa la funcion f que la
generd. Se enuncia esto como un teorema formal.
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Teorema A.11.1 Serie del binomio

Si x| < 1, entonces para cualquier nimero real r,

(1 + 0 = i(,ﬁ)xﬁ 4)

k=0

r\ B r 7r(r—l)(r—2)~~~(r—k+l) _
()erimo y ()-rebedeeken

1A/ [Xe LN Representacion de una funcién mediante una serie del binomio

Encuentre una representacion en serie de potencias para f(x) = V1 + x.

donde

Reescribiendo f como f(x) = (1 + x)"/? identificamos r = 1. Después se deduce de
(4) que para |x| < 1,

L 1 1
V1i+x=1+ <i>x+<§>x2 +<§>x3 + o +(5)x" +
n
12k 1)

-1)E-2)
2 2\2 2
=1+§x+ 2 x>+ 30 x3-11-1 1 l

s —1)3—2)5—n+1

R (e S YRS T
— l _LZ ¥3 _ n—1135(2n_3) n
—1+2x 222!x +233!x + o+ (1) il X"+

La ultima linea se escribe utilizando la notacion de sumatoria como

& 1-3-5---(2k — 3
VIFx=1++ D= 2"/; )
k=2 .

2
Suponga que la funcién en el ejemplo 1 ha sido f(x) = V4 + x. Para obtener la represen-
tacion en serie del binomio de ftendriamos que reescribir la funcién en la forma (1 + x)" facto-
rizando el 4 fuera del radical, esto es,

/ /
fx)= V4 +x= \/Z(l + ix>l T 2(1 + ix>l 2.

Ahora es posible emplear (4) en la cual el simbolo x es sustituido por x/4. La serie resultante
convergeria entonces para |x/4| < 1o |x| < 4.

A\ [JHe NN Una formula de la fisica

En la teoria de la relatividad de Einstein, la masa de una particula que se mueve a una velocidad
v relativa a un observador estd dada por

My
m=———, )
1 —v/c
donde m es la masa en reposo y c¢ es la velocidad de la luz.

Muchos de los resultados de la fisica cldsica no se cumplen para particulas, tales como elec-
trones, los cuales se mueven a una velocidad cercana a la de la luz. La energia cinética ya no es
K = 3mg? sino

— 2 2
K = mc™ — myc”. (6)

Si identificamos r = —3 y x = —v?/c?en (5), tenemos |x| < 1, ya que ninguna particula puede
superar la velocidad de la luz. En consecuencia, (6) puede escribirse:

2
_ _IMoc 2

K = — mycC
V1 + x 0

= mocz[(l + x)71% - 1]
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m0c2{<1 - %x + %xz - %}ﬁ + > - l} < ahora se sustituye

el valor por x

1(v*\ , 3(v* 5(v°
I’)’lo6‘2|:2<z2) + 8(:“) + 16(:»6) + i| (N

En el mundo cotidiano donde v es mucho mds pequefia que ¢, son ignorables los términos mas
alld del primero en (7). Esto conduce al resultado cldsico bien conocido

2
K= mw{é(lcjz)} = %movz.

E NOTAS DESDE EL AULA

Al llegar al final de la discusion de series infinitas es probable que el lector tenga la fuerte
impresién de que las series divergentes son inttiles. Nada de eso. Los matemadticos odian
que algo se desperdicie. Las series divergentes se usan en una teorfa conocida como repre-
sentaciones asintoticas de funciones. Ocurre algo como lo siguiente; una serie divergente
de la forma

ap + a\/x + ap/x* + -+

es una representacion asintética de la funcion f si
lim x"[ f(x) — S,(0] = 0,
n—00

donde S,(x) es la suma parcial (n + 1) de la serie divergente. Algunas funciones impor-
tantes en matemadticas aplicadas se definen de esta manera.

{0 0E AR WAWE I Las respuestas de los problemas impares comienzan en la pagina RES-20.

= 14. a) Demuestre que la longitud de un cuarto de la elipse
x*/a* + y*/b* = 1 estd dada por L = aE(k), donde

En los problemas 1-10, recurra a (4) para determinar los pri-

. . . E(k) es
meros cuatro términos de una representacion en serie de poten- a2
cias de la funcién dada. Indique el radio de convergencia. E(k) = J V1 = i sen’ 6 do
1.f(x)=€/1+x 2. fx) = VI —x 0
1 kK= (a* — bz)/ a* < 1. Esta integral recibe el nom-
3. =V9 —x 4. = —F— y &
f® ! @ V1 + 5x bre de integral eliptica completa del segundo tipo.
1 X b) Demuestre que

x L=ay =3

8 16

5. fr) = —F—— 6. f(x) =
0 == W=5r== T_am, _adm,
. .

7. f(x) = 4 + x)*? 8. f(x) = —F——
o = ) 1 V(1 + x)° 15. En la FIGURA A.11.1 un cable colgante estd sostenido en los
_ X _ 20 -3 puntos A y By soporta una carga distribuida uniformemen-
9- (0 2 + x)? 10. fx) = > = x9) te (tal como el piso de un puente). Si y = (4d/I*)x* es la
En los problemas 11y 12, explique por qué el error en la apro- ecuacion del cable, demuestre que su longitud estd dada por
ximacién dada es menor que la cantidad indicada. [Sugeren- s=1+ 8;‘{2 _ 32d*
cia: Revise el teorema A.7.2.] 3l 503
1L a+0P~1+% Loisy
39
_ 203 5
. I Vo R A TS . R
12. (1 + x°) 1 ) & 16"

13. Encuentre una representacion en serie de potencias para
sen” ! x utilizando

X
. 1
sen 'x = J N dr. carga uniforme distribuida horizontalmente
0 L =1 FIGURA A11.1  Cable colgante del problema 15
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16. Aproxime las siguientes integrales hasta tres lugares 18. a) Suponga que
decimales.

02 12
a) J V1 + x%dx b) J V1 + x*dx
0 0

Jx) =1 —I—rx-l—#xz—}—m

D (r—n4+1
N r(r ) ('r n )x" N
17. Por la ley de los cosenos, el potencial en el punto A en la "
FIGURA A.11.2 debido a una carga unitaria en el punto B es para |x| < L. Determine f'(x) y xf'(x).
I/R=( — 2xr + )72, donde x = cos 6. La expresion b) Muestre que
(1 — 2xr + r») "2 se dice que es la funcién generadora rr— 1) (r —n) rr—1) - (r—n+1)
de los polinomios de Legendre P,(x), puesto que (n+1) T n P
(1 =20+ 272 = S Pt I R R
k=0 n! '
Recurra a (4) para determinar Py(x), P1(x) y P>(x). ¢) Demuestre que f'(x) + xf'(x) = rf(x).
y A d) Resuelva la ecuacién diferencial de primer orden
R (1 + 0f'@) = rf(x)

-7 sujeta a f(0) = 1.

En los problemas 19 y 20, emplee (4) para determinar la
representacion en serie de potencias en x — 1 de la funcién
x dada. [Sugerencia: 1 + x =2 + (x — 1).]

FIGURA A.11.2 Carga unitaria en el punto B del problema 17 19. fx) = V1 + x 20. f(x) = (1 + x)72



Repaso de algebra

Enteros
{...—4,-3,-2,-1,0,1,2,3,4,...}

Enteros positivos (nimeros naturales)

{1,2,3,4,5,...}

Enteros no negativos (niimeros enteros)
{0,1,2,3,4,5,...}

Nimeros racionales

Un niimero racional es un ndmero en la forma p/g, donde p
y g # 0 son enteros.

Nimeros irracionales

Un niimero irracional es un nimero que no puede escribirse
en la forma p/q, donde p y ¢ # 0 son enteros.

Nimeros reales

El conjunto R de nimeros reales es la unién de los conjun-

tos de nimeros racionales e irracionales.

Leyes de exponentes

aman — am+n, aT — m—n
a

(am)n — amn’ (ab)n = 4"

al' _d o _

<b> e l,a#0

Exponente negativo
a1

a —E,n>0

Radical

a'™ = \/a, n > 0 un entero

Exponentes racionales y radicales
am/n — (am)l/n — (al/n)m
am/n = g = (%)m

WVab = Va /b
Ja _ Va
b~ b

Formula cuadratica

Las raices de una ecuacién cuadrética ax®> + bx + ¢ = 0,

a# 0, son
—-b = Vb — dac

2a

X =

Expansiones binomiales

(a + b =d*+ 2ab + b*

(a + b =d* + 3a* + 3ab*> + b

(a + b)* = a* + 4a°b + 64°b* + 4ab® + b*

(a + by = a + 5a*b + 10a°b* + 10a°b> + Sab* + b’
Triangulo de Pascal

Los coeficientes en la expansiéon de (a + b)" siguen el
patrén:

1 3 3 1
I 4 6 4 1

Cada nimero en el interior de este arreglo es la suma de los
dos nimeros directamente arriba del mismo:

1 4 6 4 1
NN NN
1 5 10 10 5 1

El dltimo renglén son los coeficientes en la expansion de
(a + b).

Formulas de factorizacion

@ — b = (a— b)a+b)

a — b =(a—b(d®+ ab + b

@+ b= (a+ b)a*>— ab + b

a* — b* = (a — b)(a + b)(a* + b

Definicion del valor absoluto

_ a
al =47

Propiedades de desigualdades

si a es no negativo (a = 0)
si a es negativo (a < 0)

Sia > byb > c,entonces a > c.
Sia < b,entoncesa + ¢ < b + c.
Sia < b, entonces ac < bc parac > 0.
Sia < b, entonces ac > bc para c < 0.
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Formulas de geometria

FM-2

Area A, circunferencia C, volumen V, drea superficial S

RECTANGULO PARALELOGRAMO TRAPEZOIDE
a
'
l b b
A=lw, C=20+2w A=bh A=La+on
TRIANGULO RECTANGULO TRIANGULO TRIANGULO EQUILATERO
C a |
C : h a
|_|
b b
Teorema de Pitagoras: 3 3 2
P=d+ b A=%bh, C=a+b+c h=—2s,A:Ts
CIRCULO ANILLO CIRCULAR SECTOR CIRCULAR
<€)
N r
A=mr?, C=2mr A=m(R*—r?) A:%rzt‘),s:r@
ELIPSE ELIPSOIDE ESFERA
A = mab V=%7Tr3, S =d47r?




CILINDRO RECTO

Pl
R

V = Bh, B, area de la base

CILINDRO CIRCULAR RECTO

el

V=amr2h, S=2mrh (lado lateral)

Formulas matematicas FM-3

PARALELEPIPEDO
RECTANGULAR

]
b E—

V=Iwh, S=2(hl+ Ilw + hw)

V= %Bh, B, area de la base

CONO CIRCULAR RECTO

—

h

L

er]

= %Trrzh, S=mrJri+n*

FRUSTO DE UN CONO

V= %Trh(rzl +rir,+ r%)
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Graficas y funciones

Para encontrar intersecciones

Intersecciones y: sea x = 0 en la ecuacién y resolvemos

paray
Intersecciones x: sea y = 0 en la ecuacién y resolvemos
para x

Funciones de polinomios
fx) = a,x" + a, X" '+ - + ax + a,,
donde n es un entero no negativo.

Funcion lineal
f&x) =ax + b,a#0

La grafica de una funcioén lineal es una recta.

Formas de ecuaciones de rectas:
Punto pendiente: y — xo = m(x — x),
Pendiente ordenada al origen: y = mx + b,

donde m es la pendiente.
Funcion cuadratica
fx) =a’+bx+c,a#0
La grafica de una funcién cuadritica es una parabola.

Vértice (h, k) de una parabola

Complete el cuadrado en x para f(x) = ax® + bx + ¢ para
obtener f(x) = a(x — h)* + k. De manera alterna, calcule

las coordenadas
_b <_£)>
( 2a’ f 2a/))

Funciones par e impar

Par: f(—x) = f(x); simetria de la gréfica: el eje y
Impar: f(—x) = —f(x); simetria de la gréfica: el origen

FM-4

Transformaciones rigidas
La grafica de y = f(x) para ¢ > O:

y = f(x) + ¢, desplazada hacia arriba ¢ unidades

y = f(x) — ¢, desplazada hacia abajo ¢ unidades

y = f(x + ¢), desplazada hacia la izquierda ¢ unidades
y = f(x — ¢), desplazada hacia la derecha ¢ unidades
y = f(—x), reflexién sobre el eje y

y = —f(x), reflexién sobre el eje x

Funcion racional

_M_ a,x" + -+ ax + aq
fx) = g(x)  bux" + -+ bix + by

donde p(x) y g(x) son funciones polinomiales.

Asintotas

Si las funciones polinomiales p(x) y g(x) no tienen ningtin
factor en comun, entonces la grafica de la funcién racional
_px)  ax"+ -+ ax +oa
T g(x)  byx" + -+ bx + by

fx)

tiene una

asintota vertical:
x =a cuando g(a) = 0,
asintota horizontal:
y=a,/b,, cuando n=my y =0 cuando n < m,
asintota oblicua:
y=ax+bcuandon = m + 1.
La gréfica no tiene una asintota horizontal cuando n > m.
Una asintota oblicua se encuentra mediante una division.
Funcion potencia
fx) = x",

donde n es cualquier nimero real.



Revision de trigonometria

Definicion de seno y coseno de acuerdo
con el circulo unitario

y
P(x,
V% Ry y = sen 6
L /84, x=cosf
Otras funciones trigonométricas
tan0=X—Sen0, t0=§=cosé’
x cos 0 y senf
sec(9=l= I . csc0=l= 1
x cosf y senf

Formulas de conversion

T .
= ——radianes

1 grado 180

1 radidn = % grados

Definicion de seno y coseno de acuerdo
con el triangulo recto

o — opu
sen § = hip
ad
cos O = 7y
0 hip
Otras funciones trigonométricas
opu ad
tan 6 =L, cot 6 =Y
ady opu
hip hip
secld =——, cscl=—
ady opu
Signos de seno y coseno
Ny
sen §>0|sen >0
cos 6<0fcos 6>0
> X

sen 6<0 |sen <0
cos 6<0|cos #>0

Valores de seno y coseno para angulos especiales

1.3 7
(*2,7 I(Ovl) (l i)
L1y ey & gl ziil
22 e 5 2 3 20
LR S 479 5 1
-3.5) %w TR (4,1
-1,0)] 0.
h 27 (1
T iz 00
(-3,-1) @657 1764 (5.3
1 g et 4w 3y Smagi( L ]
7o) el 2 3e .
1.3 (1,2
5.5 Jo, -2z

Limites para las funciones seno y coseno

—l=senx=1 y

—1=cosx=1

Periodicidad de las funciones trigonométricas

sen(x + 277) = senx,
sec(x + 27) = sec x,

tan(x + 7r) = tan x,

Identidades de cofuncion

ko
sén|\ 5 — X)) = COS Xx

2
[

cos(z - x) = sen x
T

tan(i — x> = cot x

Identidades pitagéricas
sen’x + cos’x = 1

1 + tan’x = sec’x

1 + cot’x = csc’x
Identidades par/impar

Par
cos(—x) = cos x
sec(—x) = sec x

cos(x + 27) = cos x
csc(x + 2m) = csc x

cot(x + ) = cot x

Impar
sen(—x) = —senx
csc(—x) = —csc x
tan(—x) = —tan x
cot(—x) = —cot x

7
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FM-6 Formulas mateméticas

Formulas de suma

sen(x; + x,) = sen x; cos x, + COS X; sen x,

cos(x; + Xx,) = COS x; COS X, — Sen x; Sen x,
tan x; + tan x,

tan(x; + x,) =
(i + x2) 1 — tan x; tan x,

Formulas de diferencia

sen(x; — Xx,) = Sen x; COS X, — COS X; Sen X,

cos(x; — Xp) = COS X COS X, + sen x; sen x,
tan x; — tan x,

tan - =
(= x0) =7 tan x; tan x,

Formulas del angulo doble
sen 2x = 2 sen x cos x
cos 2x = cos’x — sen’ x
Formulas alternas del angulo doble para coseno
cos2x = 1 — 2sen’x
cos 2x = 2 cos’x — 1
Formulas del medio angulo como se usa en calculo
sen’x = 3(1 — cos 2x)
cos’x = %(1 + cos 2x)
Leyes de los senos
sena _ senf3  seny

a b c

Leyes de los cosenos
a* = b* + ¢ — 2bc cos a
b =d®+ ¢ — 2ac cos B

¢ =a*+ b* — 2ab cos y

.

a

\B yf

Funciones trigonométricas inversas

y=sen 'xsiysolosi x =seny, —w/2=y=m/2
y=cos 'xsiysélosi x =cosy, 0=y=m
y=tan 'xsiysélosi x =tany, —-m/2<y<m/2

Ciclos para seno, coseno y tangente

y
1 =4
: | : b x
™ ™ 37 2w
2 2
_1 =4
seno
y Y |
11 | |
1 1
1 1
1 1
1 1
: : x - x S VN
™ ™ 3w 2w _m bl
: 2 2f | 2
LT | |
1 1
coseno tangente



Funciones exponencial y logaritmica

El nimero e
e = 2.718281828459...

Definiciones del nimero e

e = lim<1 + l)
X

x—00

¢ 1/h
lim (1 + /)

Funcion exponencial
f)=bb>0,b+#1

Funcion exponencial natural
Jx) =e*

Funcion logaritmica
fx) =logyx, x>0
donde y = log,x es equivalente a x = b’

Funcion logaritmica natural
f(x) =log,x =Inx, x>0

donde y = Inx es equivalente a x = ¢’

Leyes de logaritmos
log,MN = log,M + log,N

long = log,M — log,N
N
log, M = clog,M

Propiedades de logaritmos
log,1 =0

plosx =

log,b =1,

log,b* = x,

Cambio de la base b a la base e

Funciones hiperholicas

senhx= &~ ¢ oshy=Cte”
2 2

senh x cosh x

tanh x = ———, cothx = ———
cosh x senh x

1

sech x = , cschx =

cosh x senh x

Funciones hiperbdlicas inversas como logaritmos

senh ' x = In(x + V> + 1)

cosh™'x = ln(x + Va2 — 1), x=1

tanh ' x = %m(} ii), x| <1
coth ' x = %m(it i) | > 1

sech™'x = In

A/1 _ 2
<%>,0<x51
1, V1I+x

L, x# 0

csch™'x = ln<f + —
x x|
Identidades par/impar

Par Impar
cosh(—x) = cosh x senh(—x) = —senh x

Identidades adicionales

cosh?x — senh?x = 1

1 — tanh?>x = sech’x

coth?x — 1 = csch®x

senh(x; *£ x,) = senh x;cosh x, = cosh x; senh x,
cosh(x; = x,) = cosh x; cosh x, = senhx; senh x,
senh 2x = 2 senh x cosh x

cosh 2x = cosh?x + senh?x

senh?x = %(—1 + cosh 2x)

cosh2x = 3(1 + cosh 2x)
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Diferenciacion

Reglas 17. Lan ' x = 5 18 Yoot ix= -1 5
L. Constant d 0 dx 1 +x dx 1 +x
. Constante: ——¢ =
dx d 1 d 1
19. —sec ' x=—F+—=20. —cs¢ x=———
dx V-1 dx Vi —1
2. Mudltiplo constante: icf(x) = cf'(x) P Vx | Vx
dx . L.
Hiperbdlicas:
d — ! !
3. Suma: E[f(x) T80l =100 ='W 21. %senhx = cosh x 22. %coshx = senh x
d j— U !
2 4. Producto: Ef (0)g(x) = fl)g'(x) + gx)f(x) 23. %tanh x = sech® x 24. d%ccoth x = —csch? x
R | e 4T S0 — fg ) )
|: dx g(x) [g(0)]> 25. asech x = —sech x tanh x
‘<L . d i
E 6. Cadena: dxf () = f(gx)g'(x) 26. %csch x = —csch x coth x
m fae i /R n—1
E 7. Potencia: ot T Hiperbdlicas inversas:
i n o— n—1_r 27i hfl =¥28i h*l — 1
E 8. Potencia: I [g(0)] nlgx)]" 'g'(x) - gpsenh T x A cosh™ ' x 5
2 Funciones 29. d%tanh*x = 1 > 3. %coth’lx = 1x2
Trigonométricas: - -
5 d d 3 Lgech = — L
E 9. g Senx = cos x 10. oS X = Tsenx Codx V1= 2
d _ 1
32. —csch™la = ——————
\g 11. d%ctanx = sec’x 12. %cotx = —csc’x dx SN F Va2 + 1
Ll T
13. d%csec x =secxtanx 14. %csc X = —csc X cot x Expo;lenmales. J
33. ae* = ¢" 34. abx = b*(In b)
Trigonométricas inversas:
d _ 1 d 1 Logaritmicas:
15. —sen 'x = ———= 16. ——cos 'x = ————
& - o Vi g dy 1 36. Liog, x = —1—
T dx X " dx OB x(In b)

FM-8




Formulas de integracion

Formas basicas Formas que implican \/ a? + u?

2
L. Judv=uv— f”d”‘ 21. J\/a2+u2du=g a2+u2+%ln|u+ Va*+u?|+C

2. f” d”_n+1 W+ Con# —1 22. Juz\/a2+u2du=g(a2+2u2)\/a2+u2
4
a N
3. fa:t Infu| + C 4. Je“du=e“+C —§1n|u+ @+l +C
(7e)
5. f “+C 6. Jsenudu=—cosu+C 23. J a®+u’—aln S
\/7 \/7 /2 -
7. fcosudu—senu-FC 8. Jseczudu=tanu+C 24. J = +hnfu+ Va*+u’|+C \E
9jcscudu——cotu+C 25. J VZ i+ 7 =Infu+ Va*+ | + C E
a* + u?
u? du IE
10. jsecutanudu—secu—f—C 26. J = Va"‘“ —fln|u+va+u|+C
a’ +u E
@+ +a
11. jcscucotudu——cseu—i—c 27. J __al‘ u +C 7p)
Ve + 12 <L
\/az—f—u2 —
12. jtanudu— —In|cos u| + C 28. 2 +C — |
(l +u au E
du u
= + 29. J = +C s
13. fcotudu In[senu| + C @+ ANE+ &L =)
14. fsec udu = In|sec u + tan u| + C Formas que implican \/a* — u* ==
2
J\/a —u du—* a* —u +%sen71£+C
15. fcsc udu = In|cscu — cotu| + C a
" 31. Juz\/az—lfdu:g(2u2—a2)\/02—u2
16. f =sen '~ + C s
Va — a +%sen71§+C
17. f du —tan*15+c s
@+ 32. J =Va*—u*—alh 7;1 “Iyc
18. f secl‘ +C
uVu' — o 33J \/a—u—senlg C
lgj du uta i C . )
34. J u au ;\/az—uz-k%sen*lg-l—c
20. f du u-al e Ve - i ’
+ a
Ny
Vat — i

FM-9
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FM-10 Férmulas mateméticas

du 1
36. = Va— >+ C
juz \/ a2 — uz azu
37. j (@ — ) du = —%(2»8 — 5V — i
4
+ ﬂsenflﬂ + C
8 a
du _ u
38. j(az ST = N +C

Formas que implican \/u? — a°
39. jmdu:g -
- %21n|u + Vi —d| +C
0. [V = - Vi - @
~ L+ Vit~ + €

2 _ 2
41. J’uuadu= Vuz—az—acos_1%+C
2 _ 2 2 _ 2
42.J —du = -1
u u
+Inju + Vi —a*| + C
du
43. j =Inju+ Vi* —a*| + C
Vit — d
2
44.j wdi_ _ /2 =
P - 2

2
+%ln|u+ Vur —d?| + C

2 _ 2
du _ u a+C

s |
VIR — 2 a‘u

du _ u
46. j(uz EpET = /2 - +C

u —a

Formas que implican a + bu

udu 1
47. ja+bu_])2

(a + bu — alnla + bu|) + C

48.

P 2b3 —[(a + bu)* — 4a(a + bu)

+ 2a’Inja + bu|] + C

du 1 u
49. ju(a+bu) aln‘a-i-bu‘ +C
50, jz de L bplatbul, ¢
(a + bu) au g
udu a
51. S = 2ln|a + bu| + C
(a + bu) b*(a+ bu)y b
du 1 1. |a+ bu
= — —In +C
j u(a + bu)> ala + bu) g u

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

|
|
N
oz
e

|
|
|

|

[z

2
udu2 ( +bhu——2 —2a1n\a+bu|>+C
(a + bu) a + bu
uVa + bu du— )3/2+C
wde 2 opNa T hu+ C
Va + bu 3b2
u? du
= 8a* + 3b** — dabu)Va + bu + C
Va + bu 15b3(a abuyVa !
a+ bu—
+C, sia>0
u\/a+b \[ \/a+bu+\f “
_ + bu .
= tan~'y [ & +C, sia<0
\/—7 - “
Va + bu J' du
Na b G NG F bu+ a | — T
u " “ nra uVa + bu
\/a+bua,= \/a+bu+bf du
u? u 2 a+ bu
2u'(a + bu)*?
2 = ——
uVa + budu b2n + 3)
_ 2na o1
b(2n+3)ju Va + budu
u" du :2u”\/a+bu_ 2na Ju”]du
Va + bu b(2n + 1) b2n + 1) | \Va + bu
du _ Va + bu
a+ bu a(n— Du*™!
_ban—s>J du
2a(n — 1) “"Va+bu

Formas trigonométricas

63.

64.

65.

a
N

N
I

N
©

3
S

|

S e SN S S—

sen’u du = lu - lsenZu +C

24Ty
cos®u d _ 1 +lsen2 +C
wdu = Ju+ u

tanudu =tanu —u + C
cofudu = —cotu —u+ C
3 1 2
sen” u du = —5(2 + sen“ u)cosu + C

cos’udu = %(2 + cos>u)senu + C

1
tan® u du = Etanzu + Injcos u| + C

1
cot? u du = —Ecotzu — Injsenu| + C

1 1
sec® u du = Ssecu tan u + SInjsec u + tan u| + C



Formulas matematicas  FM-11

1 1 Formas trigonométricas inversas
72. |cscdudu = —5Cscu cotu + §1n|csc u—cotul +C
90. Jsenludu =usen 'u+VI—uw+C
73. Jsen"udu = —;sen’“l ucos u + 11— 1Jsen”2udu
91. J du=ucos 'tu—V1i—-u*+C
74. Jcos"udu = %COS Ty senu + 21— 1Jcos"zudu |
92. Jtan udy = utan 'u — Eln(l +u)+C
75. Jtan udu = P tan Jtan w1 NI -2
93. |usen” udu—Tsen u+f+c
76, Jeoctud = Zheor = feor 21 VI
9. |ucos 'udu = 4 cos u—erc
77. Jsec"udu =— 1tan usec" ?u + Z : %Jsec"zudu 24l
95. Jutan udu = ) tan 'u — % +C
78. |csc"udu = -1 cot u csc" 2u + 1 2 esc" 2 u du
n—1 n—1 1 wl 1
96. |u"sen 'udu = S| Y osen u
79 b d — sen(a — b)u  sen(a + b)u t e
. | senau senbudu = 2a — b) 2a + b) £ du (Jp)
S A <
sen(a — b)yu  sen(a + bu 1 —u? (&)
80. | cos au cos bu du = + + C —
2(a — b) 2(a + b) - 1 ol
97. |u'cos  udu = 1 cos ' u e
81 bus dog = cos(a —b)u cos(a + bu e ‘<
. | senau cos bu du = 2a—1b) ER) J» A du } L E
LLd
82. Jusenudu=senu—ucosu+c =
98. Ju"tanl udu = {u”“ tan ' u <g
+ 1 E
83. Jucosudu=cosu+usenu+€ iy
- f” ”;] n# —l )
1 +u <
84. Ju” senudu = —u"cos u + nJu”lcos udu |
Formas exponenciales y logaritmicas -
85. Ju” cosudu = u"senu — nju”lsenudu 1 E
99. |ue™ du = 7(au — De™ + C o
., ” _ sen" 'u cos™"! Nen)
86. Jsen u cos™udu = n+m 100. naudu_i neau_ZJunleaudu Ll
n— 1 J n—1 m
sen”” " u cos" u du au
n+m 101. | e™senbudu = — ~(a senbu — b cos bu) + C
n+1 m—1 a +b
_sen" u cos" u
ntm 102. |e*™cos budu—#(a cos bu + b sen bu) + C
m= 1 Jsen”u cos” 2 u du “
n+m

_ 1 (z %)
87. Jl—senau_atan4+2 +c
104.

du = Inlnu| + C

|
Je
Je
J
|
J

1 T au ulnu
88. Jl%—senau_ a (4 2>+C e
105. |u"Inudu=-———[(n+ Dnu—1] +C
89. =Etan<z+%) (n + 17
l—senau a 4 2 "
106 u" 1In" Mdu_fl
+£1n sen(i—%> + C
az 4 2 n m n—1
—m+1Ju In" " ‘wudu, m+ —1




FM-12 Férmulas mateméticas

2 _ _ a2
107. |In(*+d® du=uln(*+ a* —2u+2a tanflgi— C 121. Ju\/Zau —wdu = w\/%m —u?

J :
@&  _fa-—u
108. jln|u2—a2|du=uln|u2—a2|—2u +aln Ziz +C + 5 cos 1( a >+ c
A\/ _ 2 _
100, |2 =% Ly per) 1 c 122. Jz‘l"”du =V2au—u*+a cos_l(u) +C
a + be a a u a
Formas hiperhélicas 123 J V 2au —u? gy — 2V 2au —u’ —cos“(a - u) e
) u> u a
110. Jsenh udu = coshu + C p
124. Ju = cos_1<a — u) +C
N/ — 2 a
111. Jcosh udu =senhu + C Zau —u
125. Judu =—\V2au—u*+a cos_1<u> +C
2au — u? a
112. Jtanh udu = In(cosh u) + C 24 w + 3a)
126. J\/ufuz = \ 2au — u?
113. Jcoth udu = In|senhu| + C 2au = u >
» o () + €
114. Jsech udu = tan '(senhu) + C
s ( ) du — N2au — u?
— 127. T == - ” +C
| -l 115. Jcsch udu = In|tanhj u| + C v st
\< Algunas integrales definidas
E 116. Jsech2 udu=tanhu + C s 72
E 128. J sen x dx = J cos? x dx
0 )
g 117. jcschzudu=—cothu+C w135en)
= n=
2 2:4:6---2 ’ T
(7o 118. Jsech utanh udu = —sechu + C /2 /2
< 129. J sen”lxdx = J cos” ! x dx
— 0 0
E 119. Jcschucothudu=—cschu+C 246 s
S 1-3-5--@2n+1y " 77
[a=Jl Formas que implican \/2au — u*
‘Q
| .

120. J\/2au — u’du Zu\/%m— u?

2

2 _
+ afcos"(a u) +C
2 a




Respuestas a la evaluacion diagnostica

Evaluacion diagnostica, pagina xv 31. d(Py, P,) + d(P,, P3) = d(P,, P3)
1. falso 2. verdadero 32. ) 33. falso <L
3. falso 4. verdadero 34. 27 35. 8 (]
I
5. 12 6. —243 36. %; (=9, 0); (0, 6) 3. y=-5x+3 -
3% + 8x 3\ 1 m
7. —F/— 8. 2(x +35) + 3
Ve 14 (v +32F +2 38. y = 2x— 14 39.y=—%x+3 (=
9. a) 0,7 b) -1+ V6, —1 - V6 S =
o1 d) 1 40. y = —3x 4. x—V3y+4V3—7=0 =
10. @) (5x + 1H(2x — 3) b) X(x + 3)x — 5) . g ity s i) s iv) @ ) B i <<
_ 2y a4 . " " . 1) g);ii)e);iii) h); iv) a); v) b); vi) f);
¢) x—3)HP+3x+9) d) (x — 2)(x + 2)(x* + 4) vity dy: viii ) €) [
1. falso 12. falso 43. falso 44. falso =
13. verdadero 14. 6; — 6 45. 4m)3 46. 15 o
15. —a + 5 G
16. @), b),d), ), 2), h), i), D 47. 023 48, cost— —2V2
17. i)d); ii)c), iii)a); iv)b) : <
' ' ' ' 49. senf =12 cos® =% tanh =3; cotf =% sech =3 -
18. @) —2<x<2; b) |x| <2 3 el
csch =3 <
19. bt 20. (—00, =2)U(§, o0) 50. b=10tan 6,c=10sec 51 k=101In5 ~
-1 3 52. 4 = 64'7 53. log, 125 LLl
21. (=00, —=5]1U[3, 00) 22, (—oo, =2)U [0, 1] 54. aproximadamente 2.3347  55. 1000 <
23. cuarto 24. 5.-7) 56. verdadero el
25. —12;9 <
26. a) (1,-5) b (—=15 ¢ ((1,-5 (7p)
27. (=2,0), (0, —4),(0,4) 28. segundo y cuarto <
29. x=6 o x=-4 30. 2%+ 32 =25 IV_J
Lid
— |
o.
70
Ll
(o'=
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Respuestas de los
problemas impares

Pr

5S.

57.

59.

61
65
69

Pr
1
5
9

13

oblemas 1.4
. Demostracién 3. 525
—0.2352941176470588 7. 1.23
0.05 11. 3141615/10°
. 23/90 15. 571715/10°
134/9 990 19. 123/999
. 4018/999 23. Demostracion.
. Demostracion. 27. Demostracion.
. Demostracion. 31. Demostracion.
. Irracional. 35. Irracional.
. Irracional. 39. Demostracion.
. Demostracién. 43. Demostracion.
. Si A C R, entonces no hay un infimo y .5 es el supremo.

. Si A C Q, entonces no hay infimo ni supremo.
. Considerando que A C Z, el infimo es 1 y no hay supremo.
. Si A C Z entonces el infimo es el 0 y el supremo 2.
14 u|
\ J
—10 —2
C A
L J
-2 14
|
i
0
r
L
-9
. (=09, 10] 63. (—3,3)
.41 67. R
. (00, —1] U [8, 00) 71. (-3,2)
oblemas 1.5
. Demostracion. 3. (—oo, 3)
. (=8,00) 7. [—1,00)
. (2,0 1. (% 1]
. (—3,00) 15. (=00, 1) U (5, o0)

17. (—o0, —4]1 U [9, c0) 19. (—00,—1]1U[4, 00)

21. (—o0, —3] U [1, c0) 23. (=6, 0)

25. (—00,—3)U (=2,-1) 27. (-3 T3

29. [0, 3) U (3,28 31. (6,9

33, (— 48, —12) 35 [3.3)

37. [L— S,0)U[L+ 5, 00) 39, (0, 41U (2,00

41. (oo, —4) U [5— 65, 0)U[5+ /65, 0)

43. (o0, 1)U (4, o0) 45. (—1,4)

47. (-0, ) U [ %, o)

49. 4—J7,2)U[3,4+J7 ) 51 (=00, —1)U (- 2%, 00)

53, (—0o,—5) U (15, >0) 55. (—oo,—1)U (-1, 0)

57. (=09, 5] 59. (o0, HU (%, D)

61. (—o0,—2)U (1, c0) 63. (0o, — 1)

65. [—1, 3] 67. Demostracion.

69. Demostracion. 71. Demostracion.

Problemas 2.1

1. 24; 2; 8 35, 3.0 1; 25 V6

5. —%; 0; %; V2

7. —2x* + 3x; —8a*+ 6a; —2a* + 3a* —50x* — 15x;
—8a*> —2a + 1; —2x* — 4xh — 2h* + 3x + 3h

9. —2,2 11. [3, )

13. (—o0, 1) 15. {x|x # 0, x # 3}

17. {x|x # 5} 19. (—00, c0)

21. [-5,5] 23. (—00,0] U [5, )

25. (—2,3] 27. no es una funcion

29. funcién

31. dominio: [—4,4]; rango: [0, 5]

33. dominio: [1,9]; rango: [1,6]

35. (8,0),(0, —4) 37. (3,0).(3,0), (0, 15)

39. (—1,0),(2,0),(0,0) 41. (0, —%)

43. (—2,0),(2,0),(0,3)



45. 0; —34; 03; 2; 3.8, 29; (0,2
47. 3.6; 2; 3.3; 4.1; 2; —4.1; (—3.2,0),(2.3,0),(3.8,0)
49. filx) = Vx +5,6(x) = =Vx + 5, [—5 00)
51. a) 2; 6; 120; 5040 c) 5 42
d) (n+ )(n + 2)(n + 3)
Problemas 2.2
_ . 2 g2 _ . 2x+S5
1. —2x + 13; 6x — 3; 8x 4x + 40; —4x+8’x¢2
XHx+1l P-x-—-1 1 X
3. xx+ 1D xx+1)° x+1 x+1’x;&0’x;&_1
5. 23+ 5x—7, —x+1; *+52—x—17x + 12;
x+3
x+4,x¢ 1,x # —4
7. elintervalo [ 1, 2] 9. el intervalo [1,2)
11. 3x + 16; 3x + 4 13. 2%+ 2x° + x% K0+t
3x+3 3
15. T 34 x 17. (—o0, =11 U [1, 00)
19. [-V53, V3] 21. 128x%; 0
X
23. 36x% — 36x + 15 25. —2x+ 9
27. f(x) = 2x* — x, g(x) = x* 29. (—2,3),(3, —2)
31. (—=8,1),(—3, -4 33. (—6,2),(—1,=3)
35. (2,1),(—3,-4)
37. a) yi b) y
i x
X
c) y} d) y
R e Y
- X 4
e) y D YA
—t+—t X :
> x
39. a) y b) y¢
T +— | —+—> X
° =+ ° :I:
1 [ ] °
—t—— —t—+ X
c) d)
y y
e - x , o X

41.

43.
47.

51.

53.
5S.

Respuestas de los problemas impares RES-3
e) h
y* yT
et et v
T t t I t t T X
1
a) y b) yT
]t i i ! > X
-1 _T o a
1- 2 J 2
[ -
—t —t X [
—-mT _T oy m
2 2
) y d
1 p‘,
i i | ! X . ; X
—2m 3w FT = 7 ‘ T T 37
2 2 2 2 2
e y h y
1 1}[
/ " " > x ——x
-7z T ™ o _777 j» 777 7
2 2
-1
-1
2) y h) y
A 11[
1 2
1 : | | > x
1 -m -z ‘L oy T
— —>x 2 1 2
-m T T T 2
2 2

y=(x—l)3+5

§

45. y = —(x + 7)4
49. 10,8, —1,2,0

X
|
y
3 i
1
2 —
1
I
1 :—0—0—0—>x
-1 1234
y=2-3Ux—2)+ Ux — 3)
y
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RES-4 Respuestas de los problemas impares

Problemas 2.3

_2. .4
1. y= 3¥ + 3
5. y=-—x+3
3
7. 4 (=40),(0,3);
y
11. y=—2x+7
15. y = —4x + 11
19. y=x+3
21. a) (0,0),(—5,0)
c) (—%, —Zf), =-3

e) [-%. )

23. a) (—1,0),(3,0),(0,3)

c) (1,4); x=1

e) (—00,4]
25. a) (1,0),(2,0),(0,2)

o (-1 x=3

e) [~ )

27.

3. y=2 29
2.
9. 3+ G 0), (0, —3); 31

La grafica se desplazé de manera horizontal 10 unidades a la
derecha

. La grifica se comprime de manera vertical, luego hay una

reflexion sobre el eje x, después un desplazamiento horizontal
de 4 unidades hacia la izquierda y finalmente un desplazamien-
to vertical de 9 unidades hacia arriba

La grafica se desplazé de manera horizontal 6 unidades a la
izquierda, después hay un desplazamiento vertical de 4 unida-
des hacia abajo

33. y 3s. y
I 1 I
— : > x i
1 |
13. y= -3x—2 T .‘.1 ———> X
+ rl
11 I
17. f(x) = X + ) 1 1
37. 39
by y=(c+3f - % yi YA
d) ¥ i +
X
— x I
j 0 I
I 41. y 43. f)
1--
h [_%, °°)§ (_OO’ _%] 4t —t>x
1
b) y=—(x—-17>+4 T
d) y i
1 45. e) 47. b)
L | L . 49. asintotas: x = —3,y = 2; intersecciones: (3, 0), (0, —3);
! Y
I p
' |
H (=011 [1,00) '
_________ Y I
by y=@-3F -3
e e x
-2 2
d) y- 752__
- |
| 51. asintotas: x = 1,y = 0; intersecciones: (0, 1);
y
: : X ]
hH oo (03] ]
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53. asintotas: x = —1,x = 1,y = 0; intersecciones: (0, 0); 69. t1=0yt=6;
y N
1 T 1
1 1
1 - 1
- 100
1 1
1 1
1 T 1
1 1 t
+—t i i +—t X
[ 1
! ! Problemas 2.4
1 1 1
. Ly 3.y
i i 3 3
i 34
55. asintotas: x = 0,y = —1; intersecciones: (—1, 0), (1, 0); } 2
2 1
y } > x
1 lj' T 2 I } > X
1 2 T 2m
1 5. y 7. amplitud: 4; periodo: 2;
! it :
—— ——+—>x ‘ > 4T
____________________ -2 ™ 27 24
1 -4 } X
6 ) 1 2
57. asintotas: x = 0,y = x; intersecciones: (—3, 0), (3, 0); -1
74--

9. amplitud: 3; periodo: 1; 11. amplitud: 4; periodo: 27;

N
(o=
<
=
=
—
7]
Lid
<
o
=
7]
<
=
(T8
—d
2]
Q
o
o.
72
(=]
—l
(TR
(e
<
-
(7]
b
—
o
7]
Lid
oc

// y y
// 3_. 6 u
24 4t
“HHHHHH R ) L 51
t t X , , X
Al -1+ % 1 ) T 2w
/// 72 +
73 <4
59. asintotas: x = —2,y = x — 2; intersecciones: (0, 0); 13. amplitud: 1; periodo: 3; 15. y = —3 senx
y
2
1
I s_w 3
2
17. y=1—3 cos x 19. y = 3 sen 2x
21. y = %cos TX 23. y = —sen mx
61. asintotas: x=1,y=x—1; 25. amplitud: 1; periodo: 27r; desfasamiento: 7/6;
intersecciones: (—1, 0), (3, 0), (0, 3); y
y 1
] . + } X
s 137
6 6

27. amplitud: 1; periodo: 27r; desfasamiento: 7/4;

1
|
|
|
! 4
L,
"z
+ s
..... A
lllll,‘lllllx
11 -1
I
1
1
|
|
|
|

llll\.l
+——+—+

y

63. —1 estd dentro del rango de f, pero 2 no estd en el rango de f

5 7

65. TF = gTC + 32 } ' X
67. 1680; 35.3 aflos aproximadamente l
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29. amplitud: 4; periodo: 7; desfasamiento: 37/4; 49. periodo: 27; intersecciones x: (/2 + 2nr, 0), donde n es
y un entero; asintotas: x = 377/2 + 2nar, donde n es un entero;
4T y
21 it
t > X :3“ E
3T T '
-24 e e 21 s
e
———X
_g T 3w
31. amplitud: 3; periodo: 47; desfasamiento: 27/3; :21 2 ,2
y -3
3 , |
2 2’77 1’4 X 51. periodo: 1; intersecciones x: (ﬁ + n, O), donde n es un ente-
7%1 3 T7T ro; asintotas: x = n, donde n es un entero;
33. amplitud: 4; periodo: 6; desfasamiento: 1; i .
y 34 i
4 b !
2 14 i
: > X 4 >x
1

1 7 10
_zi —1v3 3
—4 =27

35. y = SSen<77x - %)

37. (m/2,0); (/2 + 2n, 0), donde n es un entero

P N

53. periodo: 2; asintotas: x = n, donde n es un entero;

N
Q
<
=
=
-
7]
kLl
<
Q.
=
72]
<L
=
L
e
[aa)
Q
(==
o.
72
(=]
[ |
Ld
(e
<
-
(7]
Lid
|
o.
7]
kLl
oo

y
39. (n, 0), donde n es un entero . .
41. ((2n + 1), 0), donde n es un entero ;‘ : :
43. (/4 + nr, 0), donde n es un entero 24 ;
45. periodo: 1; intersecciones x: (n, 0), donde n es un entero; It : : .
R I S B
asintotas: x = 3(2n + 1), donde 7 es un entero; L1132
y =27 ? E : E
4t ST
! -4+ :
3 o
21 /) . ) o
14 ! 55. periodo: 27r/3; asintotas: x = nr/3, donde n es un entero;
s
1T 0oL
—It B 1 ] .
I N
B ol i
- T 1 T
177
——t——t—>x
47. periodo: g; intersecciones x: (i 2n + ), O), donde n es un —1t % g sz
entero; asintotas: x = nr/2, donde n es un entero; _g" : :
y -4t b
47 :
34 ' 57. a4
51 ! 20
Ly : 15
— 1
14 7 10%
21 E 5%
-3+ ' '
al : Y
g 5 10 15 20 25
59. a) 978.0309 cm/s’ b) 983.21642 cm/s

¢) 980.61796 cm/s’
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Problemas 2.5 17. y 19. z
14
1. porque f(0)=1yf(5)=1 3. no es uno a uno 3
5. uno a uno 7. uno a uno 1 1 . %
_ fx — 7 2—x T
9. f ') =,/T . fleo ==, Ll 3 7
15. dominio: [0, 0); rango: [—2, 00) 31
17. dominio: (—00, 0) U (0, 00); rango: (—00, —3) U (=3, o0)
19. (20,2) 21 x =12 y S |
21. o T o 23. > 10g42
2. N : S [ L2 N
y (3’0) a
X _1 <
0,1)
©.-1) 25. 4 = log;, 10 000 27. 27 =128 E
| x 29. (V3)F =81 31. f(x) = log; x =
3. e 35. 36 —
27. =65 -2hx=3 ) =505 Vax =
f) =( XX =55 f ) = 5( X) 37, % (7,
29, f)=x*+2x+4x=—-1; f'W=—-1+Vx—3 LLd
33. 3m/4 35. w/4 3. (yO, 00) (1,0): x=0; n<:
37. 3w/4 39. —7/3 o
4l % 43. 2 ! —
 — i —
45. 4\/2/9 47. V32 + V10)/9 ! 17
49. m 51. 1+ 2 41. (—1,00); (0,0); x= —1; 43. elintervalo (—3,3) g
_ - _ 1 _ ! Y
57. cost = \@/S,tant— 2,cott = > sec t = V5, ! T
csct = —V5/2 ! ol
63. a) /4 b) 0.942 radianes ~ 53.97° i x g
45. (—1,0),(1,0); x=0; 47. In(x* — 2) o=
Problemas 2.6 .
1. (0, 1);y=0; 3.0, 1)y =0; (7p)
y y ()
4 ! X w—
3 -4 -2 2 W
2
i -2 49. 0 —
X -3 1 1 w
—4-2 2 4 4 51. 10 Inx + Eln(xz +35) — gln(8x3 +2) <
=
5. (0, —4);y = —5; 7. =6
0. =y J& 53. 5GP —3) +8IG* + 32+ 1) — 2lnx —9In(Tx +5) L)
y 2 LLl
24 1
55. log, 51 = li‘ 561 ~ 2.1944 57. -5+ % ~ 1.8301 E
1 t>x n n
-4 -2 2 1+1n2 «»
1l 59, — = =~ 27782 61. 3 Ll
—1+In5 o
—4 63. a) P(t) = Pye®* b)) 5.66P, «¢) 8.64h
N 65. a) 82 b) 8.53 das
9. fx) = e 11. x> 4 ) 2000 d P
c
3. x <2 5., _ 2000
31 £ 1500
£ 1000
=
27T Z 500
I+ 5 10 15 20
(dias)
—+—T]—+>X
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Problemas 2.7 M.a)V=6° b V= %ws ¢) V= %h3
50
L S =x+-"75 (0,%) 33. V(0) = 360 + 7T5cot 0
3. S(X) — 3X2 — 4y + 2, [O, 1] 35. A(d)) = 100 cos ¢ + 50 sen Zd) 37. V(X) = 2V§(1 - .Xz)
_ -
5. A(x) = 100x — x5 [0, 100] Problemas 3.1
1
7. A(x) = 2x — Exz; [0, 4] 1. 8 3. no existe
9. dx) = V2x* + 8; (—00, 00) 5.2 7. no existe
™ B P(A) = 4VA; (0, 0) 9. 0 11. 3
Q 13. d(C) = C/m; (0, 0) 13. 0
<L - L o 5.1 b -1 ¢2  d noexiste
0 VU 7.2 b-1 o-1 d-I
= 1, 19. correcto 21. im V1 —x=0
17. A(x) = 15 (0, 00) ; =1
- 23. 111})1+ [x] =0 25. correcto
~ 3200 “
(TP 19 Co) = 8x + == (0,00 27. Im V9 —x*=0
m x—3
o 21. S(w) = 3w? + 13‘)&; (0, 00) 29.a) -1 b0 ¢) -3 d -2 e 0 pHIl
. 1
E 23. d(r) =20V 137 + 8t + 4; (0, 0) 35. no existe 37. a1
1201° 0=h<5
. = ’ ; 39. -2 41. -3
E 25. Vi {1200h—3000, 5=h=8’ [0, 8] .
(%) 27. h() = 300 tan 0; (0, 7/2) 43. 0 45. 3
< 29. L(B) =3 csc O + 4 sec 0; (0, 7/2) 1
_ - 47. — 49. 5
E 31. 6(x) = tan~'(1/x) — tan"'(1/2x); (0, 00) * 4 .
Lil
El Competencia final de la unidad 2 Problemas 3.2
(=) A. 1. falso 3. verdadero L 15 3. -12
oc 5. falso 7. verdadero 5. 4 7. 4
Q. 9. falso 11. verdadero 9. _g 11. 14
(7o 13. verdadero 15. verdadero 5
. verdadero . verdadero . .-
(@ B 17. verdad 19. verdad 13 98 15. -1
- |
L B. 1. [—2,0) U (0, 00) 3. (—8,6) 17. V7 19. no existe
(=l 5. (1,0); (0,0),(5,0) 7. (0, %) 21. —10 23. 3
9. 6 11. 0 25. 60 27. 14
2 13. (3,5) 15. log: 5 = 122 1 1
h . (O, . 1083 In 3 29. 5 31. )
cI.InJ 17. % 19. y=1Inx 33. 3 35. no existe
128
E C.Lay3 B0 ¢ -2 do0 e?25 3.2 .5
7 2 gl h) 0 i) 3 J) 4 41. -2 43. * — 2ab + b*
Ll 3. 1y 8 estan en el rango; 5 no estd en el rango 45. 16 47. -1/
a2 _ _2 _
o 5. =3x"+4x —3xh — h* +2h — 1 " 1 5 1
7. ) 9. d) ) °5
11. 13.
k) 3. ) 53. 32 55. 1
31 —3 2
15. ) 17. h 57. no existe 59. 8a
19. a) ab b) b/a ¢) 1/b
s Problemas 3.3
21. =5 —iIn 5)x =5 —0.2682x 23. =5+ 1
55 I{(x) ¢ ¢ . /@ (2)x 1. ninguno 3.3y6
-0 - ) 5. nm/2,n=0,%1, %2, ... 7.2

29. ¢)
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9. ninguno 11. 672 17. i 19. 0
13. a) continua b) continua V2
15. a) continua b) continua 21 1 23. —7/6
. . )
17. a) no continua b) no continua 25. —4;4 27, =
. . V3 V3
19. a) continua b) no continua
. . 29, —1;1 31. —1;1
21. a) no continua b) no continua 3. AV: i Al 0
23. a) no continua b) continua ) - fHnguna, R
y
25. m=4 27. m=1;n=23 I o
29. discontinua en n/2, donde n es un entero; | Q
t t X
y ' =
35. AV:x = —1; AH: ninguna; —
T y =
I
14 | —
| -
: > x T ¢
1 —0!——0—>x LLJ
_ | o
|
- l s
|
_ V3 [ E
31. definaf(9) = 6 33. - —
37. AV.x=0,x=2; AH:y=0; w
35. 0 37. 1 <
y .
39. 1 41. —m/6 i E
43. (-3, 0) 45. c =4 i T
47. ¢ =0,c = £\V2 55. —1.22, —-0.64,1.34 + | —l
57. 221 59. 078 T x [aa]
| (=)
Problemas 3.4 i o=
3 | o.
1. = 3.0 (%)
2 39. AV:x=1; AH:y=1;
D1 7.4 ()
0 11. 36 i =
' ' | LLl
13. % 15. no existe i Q
_____ _'_____
7. 3 19 3 i i ettt 7]
| E | <
2. 0 23. —4 41. AV:ninguna; AH:y= —1,y = 1; Iv_,
1 y L
25. 4 27. 5 Ji( =
l —t——t—t Py m
29. 5 31. s } _______ (7)
33. 8 35 V2 1 g
3. % 43.3 43. a) 2 by —0 0 d)?2
45. a) —o0 b) —1 c)© d)o0
Problemas 3.5 51. 3
L. —eo 3. 00 Problemas 3.6
5. ®© 7. co
1. elijad = ¢ 3. ¢elijad =¢
1
L 11. 5 5. clijad = ¢ 7. elijad = /3
1 5 9. elijad = 2¢ 11. elijad = ¢
13—y 155 13. clijad = &/8 15. clifa 6 = Ve
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17. clijad = &%/5 19. clija 6 = &/2 13. my = — % - %x —1
21. elijad = min{1, &/7) 23. elijad = Ve
25. elijad = Vae 31. elija N = 7/(4e) 15, may =2,y =2+ 1
33. clijaN = —30/¢ 17. my, = i; y = %x + 1
Competencia final de la unidad 3 19. my, = ?; y = ?x _ 713277 %
A. L. verdadero 3. falso 21. no una recta tangente 23. y=x—2; (0,-2)
< 5. falso 7. verdadero 25. my, = —2x+ 6. (3, 10)
o 9. falso 11. falso 27 my, =3¢ — 3 (—1,2). (1, —2)
< 13. verdadero 15. verdadero 29. 58 mi/h 31. 38h
(=) 17. falso 19. verdadero 33. —14
— 21 falso 35. a) —49m/s  b) Ss  ¢) —49m/s
o | B. 1. 4 3. —é 37. a) 448 pies; 960 pies; 1 008 pies; 960 pies
- 5 0 7 o b) 144 pies/s d) 16 e) —32t + 256
(7,) ' J) —256 pies/s g) 1024 pies
Ll . 11. 37
(o=l 13, —00 15. -2 Problemas 4.2
E 17. 10 19. continua L0 3. -3
E 21. 9 5. 6x 7. —2x + 4
= C. 5. a),e), f), h) 7. ¢), h) 9. 2x + 2 11. 3> + 1
(7 9. b),¢),d), e),f) 13. —3x* +30x — 1 15. —2/(x + 1)
< 11. y ; continua en todas partes 17. 5/(x + 4y 19. —1/2x"?)
— 2. y=—x—4 23. y=2c—2
IiIJ 25. (—4,—6) 27. (1, —2),(—1,2)
) > 29. x;(3,9) 31 -3x% (2, —4),(—2,12)
(=) 33. f1(2) = 2pero f.(2) = =1  35. 20a
(=gl 13. (=00, =1), (=1, 0), (0, ), (1, 0) 37. 34® — 8a 39. 4/(3 — ay
(=« 15. (—o0, —V/5), (V5, 0) 1 3 , 1
1. y=_x+3;  f(=3) =5 [f(=3)=5
(75 1 2 2 2
17. —
c 6 43. f 45. £
—d 1 L —— 1 o—
Problemas 4.1 ! !
L > — i >
o 1. —4.5; A 3. 7; A 1 —6—1~I
2 \ B 47. flr 49. e)
- I I L s
72 T T 1
i Eo I .
=) I |
B B T +
3': > / I 51. b) 53. a)
g I Problemas 4.3
— 8
5. m; 7. my, =6; y=06x—15 1.0 3. 9x
™ 5. 14x — 4 7. 27V 4 4y
Y 9. x* — 122 + 18x 11, 20x* — 206° — 1847
13. 6x° + 40x° + 50x 15. 16 + 4/\/;6
PP N 17. 192 19.
l —1/r? =2/ =3/ — 4/r
9 my, = —1; y=—-x—1 2. y=6x+3 23.y=%x+5

11. my, = —23; y = —23x + 32 25. (4, —11) 27. 3, =25), (=1,7)




29.

33.
37.
41.
45.
51.

55.

y = % — % 31. x=4

-2 35. 32

60/x* 39. 1440x% + 120x
(—4, 00), (—00, —4) 43. (—4,48)

(1, 00), (—00, 1) 49. (2,8)

(& —6) 53.y=—Tx

S = 4mr? 57. —I5N

Problemas 4.4

1.

5.

9.
13.
17.
19.
21.
25.
27.
31.

35.

39.
43.
45.
47.

49.

5xt — 9x® + 4x — 28 3. 8x77 — 4xTY0 4 1212
—20x/(x* + 1) 7. —17/(5 — 2x)*

72x — 12 11, (2%° + x> — 40x — 12)/x*
0%+ 20/ + x + 1)? 15, 188 + 22x + 6

(6x* + 8x — 3)/(3x + 2)°
(2x + 8x* — 6x — 8)/(x + 3)?
y=—4x + 1 23. y=Tx — 1
0,24), (V3, =1, (=V5, -1
0,0),61,3).(1.2)

(_47 0)7 (_6, 2) 33. k= —21
11

—28 37. 3

-30 41. %

C2f" () = 2" (x) + 2f(x))/x

f(x) > 0en(—00,0)U (0, 1); f'(x) <O0en(l,2) U (2,00
f'(x) > 0en(—00,3); f'(x) <O0en(} c0)
RT 2a

—16 kmym, 51. —m + F

Problemas 4.5

1. 2x + senx 3. 7cos x — sec’ x
5. x cos x + senx 7. (x> — 2)sec® x + 3x% tan x
9. x*sec x tan x + 2x sec x + sec’x
11. 0 13. cos x
15 —x csc? x — csc? x — cot x 17 —2x sec® x + 4x tan x + 2x
’ (x+1)? ' (1 + 2 tan x)>
1
19. 1+ cos x
21. x* sen x sec® x + x* sen x + 4x° sen x tan x
V3 1 V3w 2 2 T
.y = +5+ Ly=Sx+—-=
23. y IR 6 25. y 3¥ V3 9
27. w/6,5m/6 29. /2
3.y =2 —%—8{ B.y=x—2m
35. 2(cos®x — sen’x) =2 cos 2x 37. 2cos x — x sen x
2 _
39, X senx 2x cos x+2 sen x
X
41. csc x cot’x + cscx
45. —'% cuando el angulo de elevacién aumenta, la longitud s de

la sombra decrece

Respuestas de los problemas impares RES-11
53. no diferenciable en 0, =, *2,...

14(0.2 cos 6 — sen 0)
55. b)

(0.2 sen 6 + cos 6)?
d) 13.7281 aproximadamente
e) el esfuerzo minimo requerido para jalar el trineo es alre-

dedor de 13.73 Ib cuando 0 es aproximadamente 0.1974
radidan u 11.31°.

¢) 0.1974 radian

Problemas 4.6
1. —150(—3x)% 3. 20002x% + ) P@x + 1)
5. =4 =232 + 7)73Gx% — 2x)
7. —2(3x — 1’(—2x + 9*27x — 59)
cos V2x 1 2x
V2x VR D1+ 1)

13, 10(1 + 6x(2 — 4D)(x + (2 — 4)))°

1, 2 E O 13T 17. 7 cos(mx + 1)
o +x+ 1y

19. 15 sen? 5x cos Sx

23. 10(2 + x sen 3x)°(3x cos 3x + sen 3x)

25. —x %sec’(1/x)

27. —3 sen 2x sen 3x + 2 cos 2x cos 3x

29. 5(sec 4x + tan 2x)*(4 sec 4x tan 4x + 2 sec’ 2x)

31. 2 cos 2x cos(sen 2x)

33. —(2x + 5) cos V2x + 5 sen(sen’V2x + 5)

35, 24x sen®(dx* — 1)cos(4x* — 1)

37. 360241 + (1 + (1 + DN + (1 + (1 + D))

21. —3x° sen x°> + 3x% cos x°

39. —54 41. —7
43, y= -8 —3 45.y=6x—1—3777
T o

4 7@2V2+3V6) 2

49. —7 cos mx 51. —125x cos 5x — 75 sen 5x
53. (V/3/3,3V3/16), (—V3/3, —=3V/3/16); no
1
55. 18
57. Si0 = 6 < 7, entonces 6 = w/40 6 = 37/4.
59. dr/dt = 5/(8) pulg/min

Problemas 4.7

d d
1. 4x2y3l + 2xy* 3. —2y sen yzl
dx dx
2 2
5. 1 7. u
2y — 2 2xy
4x — 3x%?
9. 27)(: 11‘ 37)}
3 —seny 2xy — 2y
13 X = dx(x* + y?) 15 2yt + 3y10 — 6x%y
T+ A+ YY) ) 6xy’ — 3x'0
1 —x 3
17. 19. ———
y+4 2y(x + 2)%
cos(x +y) —y
21. X~ costr 1) 23. cos y coty
25, C0820 27, -2
r 5
1 2 8 22
29. 3 ) 31. y = )c-i-3

S
(o=
<
=
=
—
7]
Lid
<
o
=
7]
<
=
(T8
—d
2]
Q
o
o.
72
(=]
—l
(TR
(e
<
-
(7]
b
—
o
7]
Lid
oc
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Boy= 14T 35. (1,2), (1, -2) ) TR 4 1)
2 2 4 2 x X X
21. sec” e’ — e *tan ¢’ 23, —————
37. (—V5,2V5), (V5, —2V5) Vi + 1
y3 - 2x? 25. 2xe’rzee\l 27. y=4x + 4
39. (8,4) 41. 7y5 29. (In3.3)
— —sen 31. x=m/4 + ,n=20,%1,2, ...
3. =2 45— x = m/4+ nmn
y (1 — cosy) YA
-2 2x — 1 2x — 1
47. 49.
=g (y—x’ 2V —x 2V —x
2 51 23 53.y=1-Vx-2 >
X
(=] 55 _{\/4—2, —2=x<0
= =Y -V4—-x 0=x<2 o .
= dy e 33. 4" (2x + 3x) 35, 4e* cos e — 4e* sen e
57. — = —— X+ e xy
- Y S o e
— X XYy sen X
[7e W 59 0) y= —x+3 b) (V2. V) N reene
g‘:J 65. b 1220 = 6V7 ~ 1587 pi s L
< I V@it el O FT OV IS ples 2y + xe”
o >0
[« Problemas 4.8 47. a) ¥ b) flx) = {e_e,x §< 0
E 1. f'(x) > 0 para toda x muestra que f es creciente en (—00, 00).
Asi fes uno a uno.
2 3. f(0) = 0, f(1) = 0 implica que f no es uno a uno
X
2 “1y
= KB 7 (7)) = —1/( - 27 ) o
T c 1 no
=l 9. 5.3) y=%x+% 1. 8, 1); yZ%x-i-%
(aa)]
(e N 13. S R 15. 782
o 1—(5x— 1) 4t+x — T
Q. R tan 'V 0 2(cos™' 2x + sen”! 2x)
7l T Va T V1 - 4d(cos ! 202
o - -
S 21, % 23. _2ox + cos 'x
(1 + x*)(tan™ ' x%)? 2
W I —x 9. b)) P=0,P=2¢ PA__ dt=0
>
2 -1X 27 , T
a2 P B(x — 9 tan 3) (2x o+ xz) 61. f'(0) =0 |
L 27 1 —4 sen 4x [ !
E A+ " |sen 4x| Problemas 4.10
(Jp) 2x sec*(sen ! x?) 2x(1 + ¥%) 1 10 3 1
Ll 31, ————— 3B —— - "
- V1= 1 =2y —2y PR
+
o 35. sen”'x + cos”' x = constante 37. V/3/3 5. ﬁ 7. 3x + 6x Inx
) ENEEN. 41. (57/6,4), (77/6, 6) 1= Inx 1
LLl 4 2 9, —— 1. ———
¥ x(x + 1)
oc
Problemas 4.9 -
N 13. tanx 15. (In 2’
. e x(In x
1. —¢™ 3.
2Vx 17 1+ 1Inx 19 1
5. 5%(21n5) 7. X¢"(3 + 4x) T oxlnx " 4eVInVx
—e X2x + 1) 5 2 2t 1 1 1
R _ —5x\—1/2 ,—5x = _
9, > 1. =51+ e 2. T B o r i 2 a3
X2 _ ,—x/2 ) 25. =x—1 27. 4
13. —ﬁ 15. 8™ ye .
(" + %) 29. -8 31. (e,e )
17. 3¢ 19. %)672/36)‘”3 + %e"/S 33. . 35. sec x




5 2 — 2 Iy
37. 5 39, ——
x X
—x
o 2 5 22
2xy” — x 2xy° + x
2x — Xy — y°
47. 1727)’ 49, xsenx{w + (cos x)In x:|
X+ xy — 2y X
51, x(x — 1)*[ 1 +In(x — 1)}
i V@D 1) 3/2 4
: 4x + 3 2x+1 3x+2 T 4x+3
s o — D’ + 3x3)4[ L 160 + 362 63 }
. (Tx + 57 P +33  Tx+5
57. y=3x—-2
59. (¢ e, y
1 4
0.8 +
0.6 T
04 +
0.2+
} ! ! ! > x

0.2 0.4 0.6 0.8 1

65. b) un intervalo es (7, 27) 67. 4 —41In4 = —1.55

Problemas 4.11

1. cosh x = V/5/2, tanh x = —V/5/5, coth x = —V/5,
sech x = 2V/5/5, csch x = =2

3. 10 senh 10x 5. %)Fm sech’>Vx

7. —6(3x — 1)sech(3x — 1)*tanh(3x — 1)?
9. —3 senh 3x csch?(cosh 3x)
11. 3 senh 2x senh 3x + 2 cosh 2x cosh 3x

13. 2x% senh x> + cosh x? 15. 3 senh’x cosh x
17. %(x — cosh x)"'*(1 — senh x) 19. 4 tanh 4x

21. ﬁ 23. &M cosh ¢
cosn x

cos ¢t + cos t senh 2t — 2 sen t cosh 2¢

25.
(1 + senh 27
27. y = 3x
29. (0, —2),(—2,2 cosh 2 — 4 senh 2), (2,2 cosh 2 — 4 senh 2)
31. —2 sech®x tanh x 35, 3
9x* + 1
37— = 39, sec x
1—-0—x)
3x° 1 sech™
41. ——— + senh '¥® 43. —
VX + 1 V1 - x
45. ! 47. 3

xV1 — x*sech ' x
49. (b) v, = Vmg/k

Veosh 1 6xV/36x2 — 1
¢) 56 m/s

Respuestas de los problemas impares RES-13

Competencia final de la unidad 4

A. 1. falso 3. falso
5. verdadero 7. verdadero
9. verdadero 11. verdadero
13. falso 15. verdadero
17. falso 19. verdadero
1
B.1.0 3. 1
-5 3 _
5. y= Ry 7. =3
9. 23
11. —16F'(sen 4x)sen 4x + 16F"(sen 4x)cos’ x
13. a=6; b=-9 15. (1,5)
1 .
17. 19.
<(In 10) 9. catenaria
C. 1.0.08x %
3. 100+ VA + 1D’ + 1+ D)7
5. 20+ 16)403 + 8) 7 + B0t + 16)7M(E + 8)1°
7 16x sen 4x + 4 sen 4x + 4 cos 4x
) (4x + 1)?
9. 10x° sen 5x cos 5x + 3x% sen? 5x
11 _73 %
TV =9 " (cot T X1 + 1)
42
T — 17. —xe™
1—x°
6 X, Tx l 2
19. 7x° + T*(In 7) + 7Te 21'x+4x—1
1
23.
Visen 'x? + 1V1 — 2
1 xz
25, ¢Feoh x| ———— 4 xcosh 'x + 1
=1
3 s 405
27. 3x%" cosh e* 29, ————
me cosne $V1 + 3x
31. 5 33. 4¢°"#(cos?2x — sen 2x)
5, 4 .3 10 2
x+5 2—-—x x+8 6x+4
x 2
1 e —y
37. 1 39. 2y + e
o2 1 .2 by — 0 v = —6r —
41. y = ¥ T oY = 3¥ + 27 43. y=6x — 9,y 6x — 9
45. (4,2 47. 0,2m/3, m, 47/3, 27
53. a) (2,0),(2,—1),(2,1) b) 4,-2,-2
55. y= V?x—?,y= —\Ex%—?

5.

1, Problemas 5.1

1.
3.

—-1,19; —2,18; 2,18; 8,8
18,6; —23,1; 23,1; 18, -6
—17?,0 17,2; 17,2; —128, -2
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RES-14 Respuestas de los problemas impares

7. 1’%; l—m 1 7m—1.1 0 Problemas 5.2
9. a)—6,6 b —88 1. a) mz/ix. abs. f(2) = -2, ,ml’n. abs. f(—1) = =5
11. @) —6V2, 6\2 b) 15 ¢) —4.8 b) max. abs. f(7) = 3, min. abs. f(3) = —1
¢) no extrema
13. reduccion de velocidad en los intervalos de tiempo d) miax. abs. f(4) = 0, min. abs. f(1) = —3
(=00, —3), (0, 3); aumento de velocidad en los intervalos de 3 3
tiempo (—3, 0), (3, 00) 3. a) m:ilx. abs. f(4) = 0, min. abs.f(,Z) = —4
15. v(r) = 2t, a(t) = 2; reduccién de velocidad en el intervalo de i’)) rrrrll?r): :E:}c((zl)) ; {(i) = =3, min. abs. f(2) = —4
tiempo (—1, 0); aumento de velocidad en el intervalo de tiem- d) méx. abs. f(5) = 5
po (0, 3);
> > 5. a) no extrema
L’ ) s b) max. abs. f(7/4) = 1, min. abs. f(—7/4) = —1
o 10 ¢) mix. abs. f(7r/3) = V3, min. abs. f(0) = 0

d) no extrema

17. v(t) = 2t — 4, a(t) = 2; reduccién de velocidad en el interva-
lo de tiempo (—1, 2); aumento de velocidad en el intervalo de 7, 3 9. —1,6
tiempo (2, 5); 2
—— . 4
11. 3 2 13. 1
—+——+——+—+—+—+—+> "
-6 o3 15. % 17. -2, —2. 1
19. v() = 672 — 12, a(r) = 12t — 12; reduccién de velocidad en
19. 2nr, n un entero 21. 2

los intervalos de tiempo (—2, 0), (1, 2); aumento de velocidad
en los intervalos de tiempo (0, 1), (2, 3); 23.
25.
27.
29.

31.

max. abs. f(3) = 9, min. abs. f(1) = 5

max. abs. f(8) = 4, min. abs. f(0) = 0

max. abs. f(0) = 2, min. abs. f(—3) = =79
max. abs. f(3) = 8, min. abs. f(—4) = —125
max. abs. f(2) = 16, min. abs. f(0) = f(1) =0

—40 0 10
21.

C—n 33. mdx. abs. f(7/6) = f(57/6) = f(Tm/6) = f(11m/6) = 3,
R min. abs. f(7/2) = f37/2) = =3
20 0 30 35. mix. abs. f(/8) = f(3m/8) = f(57/8) = f(Tm/8) = 5.
23, vt = 1 — 202 a(e) = 12 min. abs. f(0) = f(m/4) = f(w/2) = f(3m/4) = f(m) = 3
C: 37. punto extremo mdx. abs. f(3) = 3, mdx. rel. f(0) = 0,
; min. abs. f(—1) = f(1) = —1
—4 0 39. a) ¢y, ¢, 4 Cop
T w ¥ b) ¢, cs, g, ¢, Cs, C

25. v() = D COsH L a(t) = _<§) sens 4 c) rfu’n? abﬁs. f7(c7§, p?mto extremo max. abs. f(b)

d) mix. rel. f(c3), f(¢s), f(co), min. rel. f(co), f(ca), f(e7), fci0)
a) s(t) =0sbélopara0 =+t =20 b) s(10) = 1600

b) 0, /3, m, 57/3, 27
¢) mdx. abs. f(7) = 3, min. abs. f(7/3) = f(57/3) = -3

41.
53.

t t t s
-1 0 1

v(n) = e (=1 + 3, a(t) = e '(t* — 61° + 61); Problemas 5.3

D L

27.
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c=0 3. f(=3) = 0 pero f(=2) # f(=3)
2
—+> = = = —
0 | 5 ¢ 3 7. ¢ /2, w/2, 037/2
29, positiva | negativa f.renéndose en los intervalos de 9. fno es diferenciable sobre el intervalo
tiempo (a, b), (d, ), (f, g); aumen- 11, f(a) # 0y f(b) = 0, asi, f(a) # f(b)
cero cero . .
_ —_ tando la velocidad en los intervalos 13, ¢ =3 15. ¢ = VI3

positiva | positiva | de tiempo (c, d), (e, f) : )

positiva | negativa 17. fno es continua sobre el intervalo

negativa | negativa 19. ¢ = 2 21. c=1—- V6

negativa | positiva 4

23. fno es continua sobre [a, b]

31. @) v>0en 0, 3),v <0en (3,56 + Va2)
b) 42 pies
64\/2 pies/s; 16 pies/s’

-8V pies/s; la coordenada y es decreciente

25.
27.
29.
31.

fcreciente en [0, 00); f decreciente en (—00, 0]

fcreciente en [ —3, 00); f decreciente en (—00, —3]
33.

35.

fcreciente en (—00, 0] y [2, 00); f decreciente en [0, 2]

fcreciente en [3, 00); fdecreciente en (—09, 0] y [0, 3]




Respuestas de los problemas impares RES-15
. i —00, , 00
33. f decreciente en (=0, 0] y [0, ©0) 17, mix.rel f(—3) = —6, 19, max. relf(V3) = 2Y3,
35. fcreciente en (—00, —1] y [1, 00); f decreciente en min. rel. £(1) = 2; 9 V3
(=1, 01y [0, 1] min. rel. f(—V3) = —2973;
37. fcreciente en [ —2, 2]; f decreciente en [—2V2, 2] y
[2,2V2] )
39. fcreciente en (—00, 0]; f decreciente en [0, 00)
41. fcreciente en (—00, 1]y [3, 00); fdecreciente en [1,3]
t T T t t X

43. f creciente en [—m/2 + 2nw, w/2 + 2n]; f decreciente en

[7/2 + 2nm,37/2 + 2n7], donde n es un entero

45. fcreciente en [0, 00); fdecreciente en (—00, 0]

47. fes creciente en (—00, 00)

49. si el motociclista viaja a la velocidad limite, no habrd recorri-

do mds de 65 mi
61. ¢ = 0.3451 radianes

Problemas 5.4
1. maéx. rel. f(1) = 2;

1
s

5. mix. rel. f(3) = 3,

min. rel. f(2) = 0;
yi
—F——o—» X

9. min. rel. f(—1) = —3;
y

13. max. rel. f(0) = f(3) = 0,
min. rel.f(%) = —%;

y

3. max. rel. f(—1) = 2,
min. rel. f(1) = —2;

%m

7. sin extremos;
y

11. min. rel. f(0) = 0;
y

—0—0—0—|—0—>x

15. max. rel. f(0) = 0,
min. rel. f(1) = —1;

y

>

21. méx. rel. f(0) = 10;

23. max. rel. f(0) = V16,
min. rel. f(—2) = f(2) = 0;

bt f——+—>x
bt ff f——+—+> X
25. max. rel. f(32) = &, 27. mix. rel. f(—8) = 16,
min. rel‘f(—Tz) - L min. rel. f(8) = —16;
y
y 1
+10
— —>» X + + + + X
10
29. min. rel. f(2) = — 8.64;
y
50 A
| : : } > x
31. min. rel. f(—3) = 0, max. rel. f(—1) = 4e;
<
I e S S I Y
33. 35.
y y
t I i x
a b
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RES-16 Respuestas de los problemas impares

37. y 43. min. rel. f'(—2) = —13 y

I
I
I
I
i
b ! 4
A __
i
! ——t f——t> X
I
|
45. a) (nm,w/2 + nw), (/2 + na, 7w + nw), n un entero 1
b) nm/2, nun entero; max. rel. es f(—m/2)=f(m/2)="-- 1, T
min. rel. es f(0) = f(m) = ---0 1
c) y
! 33. mix. rel. f(V2) = ? min. rel. f(—V?2) = —%
__7:7 I E 7T 3_7T * puntos de inflexién: (0, 0), (— V6, —%), (\/6, %);
2 2 2

<
I —
=

Problemas 5.5

1. céncava hacia abajo en (—00, 00) Jr

3 coéncava hacia arriba en (—00,2); coéncava hacia abajo en 35. mdx. rel. f(0) = 3;
(2, 00)

5. concava hacia arriba en (—09, 2) y (4, 00); cdncava hacia
abajoen (2,4)

7. coéncava hacia arriba en (—00,0); cdncava hacia abajo en
(0, )

9. coéncava hacia arriba en (0, 00); coéncava hacia abajo en . .
(—0,0) 37. min. rel. f(—5) = —3/43;

; s 4/3y.

11. céncava hacia arriba en (—00, —1) y (1, 00); céncava hacia puntos de inflexién: (0, 0), (1/2,3/2*7);

abajoen (—1,1) y

13. respuestas aproximadas: f’ creciente en (—2,2); f’ decre- T
ciente en (—00, —2) y (2, 00) T

15. respuestas aproximadas: f’ creciente en (—00, —1) y (3, 00); 1
f" decreciente en (—1, 3)

19. (—V2,-21 — V2),(V2, —21 + V2)

21. (nir, 0), n un entero

39. max. rel. f2m/3) = f(4w/3) = 1,

. min. rel. f(7/3) = f(r) = f(57/3) = —1;

25. (2,242 puntos de inflexién: (/6, 0), (/2. 0), (57/6, 0), (77/6, 0),
27. max. rel. f(3) = 0; 29. punto de inflexién: (— 1, 0); (97/6,0), (117/6, 0);

yT yi yI

23. (nr, nr), n un entero
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41. max. rel. f(m/4) = V2, méx. rel. f(5mw/4) = —V/2;

puntos de inflexién: (37/4, 0), (77/4, 0);
31. max. rel. f(—1) = 4, min. rel. f(1) = —4; puntos de inflexion:

0.0), (3272, (3, 1) #

t t X
i 2




Respuestas de los problemas impares RES-17

43. max. rel. f(e) = ¢; 37. volar al punto 17.75 km desde el nido
. 4
y 39. costo minimo cuando x = —=
V3

41. r=V9h=2V0
43. longitud minima cuando x = 6.375 pulg

45. cuadrado con longitud de lado (a + b)/ V2
45. max. rel. f(m/4) = % 47. min. rel. f(7) = 0 47

. longitud de la seccién transversal \@d/ 3, ancho de la seccion
transversal V6d/3

Problemas 5.6 49. 2% m del foco con iluminancia /; O
A Y. 3. 83 cm¥h 1 (am]
dt dt 53. =3 <
5. % pulg/h 7. B cos 0% 1 sen 0% 5. a) wolt/384EI (am ]
-+ 3P08 " dt dt da = 0 —
9. =606 11 icmth P - Z
. . l L =)
13. a) 1 pie/s b) 4 pies/s Y cn‘
15, — 1 piesfmin 19. 17 nudos 65. Debe nadar del punto A al pl’mto B alrededor de 3.1? mlllgs LLl
V2 desde el punto en la playa mds cercano a A, y después seguir ['a'es
5 directamente a C. <
21. 4 pies/s 23. 15 rad/h 67. a) L=x+2V4 + (4 — 2 o
. 8 . 2
25. —360 mi/h 27. — km/min ¢) x=4 -3
9 3 —
29. a) 5003 mi/h b) 500 mi/h d L=x+V1+@-x+Va+@—x? (7o)
31, =3 m/min P x~3.1955 <L
327 E
33. a) —-= pie/mi B) —-1— pie/mi (T8
- @) —,_pie/min 125, Pie/min Problemas 5.8 —
¢) aproximadamente —0.0124 pie/min - 1. - ( _ E)
g s L L) =3+ (=9 3L =1 +2(x = g
35. a) — pie/mi =~ 71.45 min; 0.035 pie/mi
a) 1o Pie/min c) n min; pie/min 5. L) =x— 1 7. L) =2 + %(x ~ 3 o
a.
39. f% pulg¥min 41. 668.7 pies/min 17. 0.98 19. 11.6 N
“ R _ REdR, R dR 21. 0.7 23. 0.96 o
" R4 R 25. 16 27. 0.325 —
45. a) aumenta b) aproximadamente 2.8% por dia 29. 04 31. % + % =~ (0.5453 g
47. a) 24 000 kg km/h*  b) 2 023 100 kg km/h? 33 L0y =4+ 2x — 1) 408
Problemas 5.7 35. Ay =2vAx + (A% dy = 2vdx I<_t
1. 30y30 3. 1 37. Ay = 2(x + DAx + (Axys dy = 2(x + 1) dx ¥
2 Ax 1 LLl
12 V3 39. Ay=——— dy=——d
5.3Y3 7. (2,2V3),(2,—2V3); (0,0) YT Tt A T T -
9. (%, —%) 11. base %, altura 1 41. Ay = cos x sen Ax + sen x (cos Ax — 1); dy = cos x dx cnn-
13. (4,0)y (0, 8) 15. 750 pies por 750 pies 43. | x | Ax Ay dy | Ay — dy LLl
19. el jardin debe ser rectangular con 40 pies de largo y 20 pies de
2| 05 11.25 10 1.25
ancho
21. base 40 cm por 40 cm, altura 20 cm 2101 2.05 2 0.05
23. base £ cm por £ cm, altura & cm; méx. vol. Z¥ cm? 21 0.01 | 0.2005 | 0.2 | 0.0005
25. altura % cm, ancho 15 cm
27. 10 pi 1 1 11 h
0 pies del poste de la bandera al lado derecho 45. a) 111 b) —2.9 47. ) 9mem®  b) 8w em?

29. radio de la porcién circular 10/(4 + ) m, ancho 20/(4 + ) m,
altura de la porcién rectangular 10/(4 + 77) m
31. L = 20.81 pies 33. radios 16/3, altura 4

51. =6cm’* *+0.06; *6% 55. 2048 pies; 160 pi
35, radios \3/@, altura 2\V/16/7 cm ’ o pies; pies

49. el volumen exacto es AV = 27(3r% + 371> + 1%); el volumen
aproximado es dV = 4mr’t, donde t = Ar; (0.1024)7 pulg®
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RES-18 Respuestas de los problemas impares

57. a) minimo en el ecuador (f = 0°);
(6@ = 90°N)
b) 981.9169 cm/s’

59. 0.0102 s

maximo en el polo norte

¢) 0.07856 cm/s’

Problemas 5.9

1. 0 3.2
2
5. 3 7. 10
1
9. -6 11. 2
7 1
13. 5 15. 6
17. no existe 19. %
21. 2¢* 23. 0
25. % 27. o0
29. -2 31 1
. S
33. -1 35. no existe
1
37. 9 39. 3
4]1. o0 — o0 —% 43. 0-00; 1
45. 0% 1 47. co —o0; 0
1 1
49, oo — oo; 2 51. 0-o0; 1
53. o0% 1 55. 1%, ¢°
57. 0% 1 59. El denominador
es 0 - 00; i
61 00— oo; 1 63. 0-00; 0
65. 0-00; 1 67. 0-00; 5
69. co — co; no existe 1. 1%, 3
1
0. L
73. 0% 1 75. 2
79. 0
1
7 — 5 sen 20 50
81. a) A®0) = 25 — 50 o3
83. b) pv; In(vy/v))
Competencia final de la unidad 5
A. 1. falso 3. falso
5. verdadero 7. falso
9. verdadero 11. verdadero
13. verdadero 15. falso
17. verdadero 19. falso
B. 1. la funcién velocidad 3. y=tan 'x
5.0 7. 2

9. 2xAx — Ax + (Ax)?

C. 1. méx. abs. f(—3) = 348, min. abs. f(4) = —86
3. max. abs. f(3) = 2, min. abs. f(0) = 0

7. vel. mdx. v(2) = 12, rapidez méx. [v(=1)| = |v(5)| = 15;

9. b) a,b,(a + b)/2

11. max. rel. f(—3) =81,
min. rel. f(2) =—44;

13. max. rel. f(0) =2,
min. rel. f(1)=0;

g

——t—t———t—t—++—1>x

y

15. min. rel. f(0) =0, puntos de inflexion: (—3, 27), (—1, 11)
17. punto de inflexién: (3, 10) 19. ¢),d)

21. ¢),d), e) 23. ¢)

25. (a+ b+ ¢c)3 27. 32 pulg®/min

31. y= 5h; la distancia maxima es /

33. x = 195 pies, y = 390 pies; 57 037.5 pies’

39. 8V3m/9 41. -2
43. 1 45, ¢!
47. —o0
Problemas A.1
1111 1 11
1. 3,3,7,6, 3. 1,5, g,z,...
5. 10, 100, 1 000, 10 000, . .. . 2,4,12,48, ...

7
1o 1,1, 1. 1.1
3

2 T2 T2 4

15. 0 17. 0

19. % 21. la sucesion diverge

23. la sucesion diverge 25. 0

27. 0 29. la sucesion diverge
5

31. 0 33. 7

35. 1 37. 6

39. 1 41. 1

43. 1n% 45. 0

2n
47. {Zn 1 }, converge a 1

49. {(—1)""'(2n + 1)}, diverge

51. { 2 },convergeaO

3n*1
1111 11
8. p Ty e 5.3 L33
5
57. 8 59 Ay = e @ =3



Respuestas de los problemas impares RES-19

61. converge a 0 63. converge a 0 13. converge 15. diverge
6. 40 pie: 1 5(2) pies 17. converge 19. converge
9 3 21. converge 23. converge
69. 15,18, 18.6, 18.72, 18.744, 18.7488, ... 25. diverge 27. converge
71. 32 29. diverge 31. diverge
Probl A2 33. converge 35. diverge
robiemas A. 37. converge 39. diverge
1. creciente 3. no mondtona
. . L
5. creciente 7. no creciente Problemas A.6 ()
9. creciente 11. no mondtona ) —
] ) 1. converge 3. diverge (]
13. acotada y creciente 15. acotada y creciente .
) ) 5. converge 7. diverge Z
17. acotada y decreciente 19. acotada y decreciente T
. . 9. converge 11. converge
21. acotada y creciente 23. acotada y decreciente . .
13. converge 15. diverge
25. 10 27. 7 <L
17. converge 19. diverge -
Problemas A.3 21. converge 23. converge ‘a
’ 3+§+1+ +2+... 3 l_l_,_i_i_,_._. 25. diverge 27. converge o=
' 2 3 4 2 6 12 20 29. diverge 31. converge <
5.1+2+%+%+_” 7.24_%_’_1576_’_%_’_.” 33. converge paraQ = p < 1 Q.
35. converge para todos los valores reales de p E
11 1 1 . . —
T I . utilice 1 1
9. 5 + 011 + 13 11. 1 39. utilice la prueba del cociente o
13. % 15. % Problemas A7 g
. 2 1 1. converge 3. diverge T
7. 5 . di
3 fverge 5. converge 7. converge —
21. 9000 23. diverge 9. converge 11. converge g
2 6l 13. diverge 15. condicionalmente conver-
25. 27. oc
9 99 gente o
2. 1939193 31, % 17. absolutamente convergente  19. absolutamente convergente 7
21. absolutamente convergente  23. divergente o
43, 2 <x<2 45. 2 <x <0 . .
N 25. condicionalmente convergente 27. divergente —d
47. 75 pies 49. 1 _Os; 1 000 29. condicionalmente convergente 31. absolutamente convergente LLd
51. 18.75 mg 33. divergente 35. 0.84147 Q
37. 5 39. 0.9492 72
Problemas A.4 41. menor que 157 = 0.009901 E
1. converge 3. converge 43. la serie contiene signos algebraicos mixtos pero los signos no (¥ ]
5. diverge 7. converge se alternan;  converge Ll
9. converge 11. converge 45. los signos algebraicos no se alternan; converge — |
13. diverge 15. converge 47. a;., = a; no se satisface para k suficientemente grande. La %
. sucesion de las sumas parciales {S,,} es la misma que la suce-
17. converge 19. diverge o ! ) . . LLl
) sion de las sumas parciales para la serie arménica. Lo anterior o
21. converge 23. diverge implica que la serie diverge.
25. converge 27. converge 49. diverge 51. converge
29. converge 31. diverge
33. converge Problemas A.8
35. converge para p > 1, diverge parap = 1
L (-1 1 353 3
Problemas A5 5. [2,4]; 1 7. (=5,15); 10
1. converge 3. diverge 9. {0}; 0 11. [0’ z]§ 3
5. diverge 7. diverge 13. [-1L,1D; 1 15. (=16,2); 9

75 75\, 15 2.4]. 1
9. converge 11. converge 17. (_i, ﬁ), Ep) 19. [3’3 >3




RES-20 Respuestas de los problemas impares

21. (—00,00); 00 23. (—=3,N); 3 (= o
15 _9). 3 5. Eixﬁﬂ 7. EL
25. (—00,00); ©0 27. (=9, -3 3 =2k + 1)! “ k!
29. 4 3l. x>1lox<-—1 R
33.x< -3 35, 2<x<2 % 2(2k+1)'
37.x<0
* 11.x+lx3+lx +£7+~~~
39. 0=x < 7/3,27/3 < x < 4x/3,57)3 < x = 2m 3 15 315
_ 00 _1 k 00
41. a) (=0, 00) 3. Y ( H? (x — 4 15. D (—Dix — D
m k=0 5 k=0
E Problemas A.9 . ﬁJrﬁ a2 x—Ez— N ; 713+.,.
=¥ ixk (=3.3) 22 4) 2.2 4) 23! 4
Z Pk ’
oo 1 V3 1 2 V3 3
E 30> (RN (<L) 19. E_T(x_%)_ 2~2!("_7§T) * 2~3!(x_%)+'“
k=0
< & & (=D 21 D S - 1)
- IEIG G N) 7. 3 (22 e D
k=0 k=0
‘I.ﬁ &k 3. m2+ 3 1)H](x—z)k 25 i(_])kx”
: 9. 23k+1xk_l; (_3,3) ) k=1 k2" ) k=0 k!
k=1
<L & (—1f S -1,
= (= Dk(k — 123 27. > K2t 29. > —x
% Sy () & b =
— 0 R PR N =R R LAV I PR
. 13. 2( D 1 (=1, 1) 3 45
<L % (—1) D
E 15 E2(k +)1x2kﬂ; [—1.1] =0 (2h)!
k=0
L < (— 1) 37.1+2x+§x +§x*+%x“+---
= [FUABDE=EC T
[a'n ) i—ok+1 ) 1
. 39. 1+t at+ xSt e
o S D 3
1. 2(k+1)4k“x ; (—4,4] .
k=0 43. 45, —
m 00 4
3N vk (—L L
(7] 2L 1+ 2](:21( D@05 (-22) 47. 0.71934; cuatro lugares decimales
(e = . . 49. 1.34983; cuatro lugares decimales
: 23. 5;2( Dk = s (=1,1) 55. ¢) y=792pulg  d)y=7.92000021 pulg
(=1 s, i( bf K3 =1, 1]
N SEhk+1 ’ ’ Problemas A.11
< B i DY, [—11] Loyl 12, 1255
— R N ’ A CRD TR SR TR ’
w k+1
< (=1) 3 31 2_ 3-1-3 5 . 9
g B 2 g o0 D S R LTI TR
o S 1o, 13 . 1:3:5, -
o E —1 422 (=D + DL (=2,0) S gt Y Ty T
k=0 :
Ll K
= [(=D 8-3 ., 831 » 831 5. .4
: 33. 1(:21|: 4 _§:|xk; (-3,3) 7. 8+2 4 +22.2!.42x 23.3[.43x +
1 2 2-3 2-3-4
1,3 7 15 9. —x — —=x* X = s 2
35. S+ x+ oxt+ xP+ - 37 (=3,3] 47 4.2 4-21-22 4-31.2°
24778 16 : :
39. 0.0953 41. 0.4854 1. S, — 8| < a5 = é)ﬂ
43. 0.0088 N i 1:3:5:@k= 1)
YT AT ek + 1)
Problemas A.10
1
0 (_l)k 17. PO(X) = 17 P](X) =X, Pz(x) = *(3)62 — 1)
2 Kt 3. ,;k-i—lxkﬂ ; \fz+ﬁ e NG R V2-1- e
. Py (x . 2‘( )+ 2531 ( )




INDICE ANALITICO

A

Amplitud, 52
Aproximacién
cuadratica local de fen a, 344
lineal, 263
local, 261, 344
local de grado n-ésimo de fen a, 344
por diferenciales, 263-264
Arbitrariamente préximo, 124
Arcseno de x, 61
Ascenso vertical. Véase Cambio en y
Asintota
horizontal, 46, 69, 117
inclinada, 46
vertical, 46, 71, 116
Axioma de completitud. Véase Completitud

B

Base, 68
cambio de, 73
férmula general de, 73
Bernoulli, Johann, 272, 344
Biseccion
método de, 106

C

Calculo
diferencial, 134
infinitesimal, 2
integral, 134
Cambio
enx, 41
eny, 41
Cantor, George, 5
Capacidad de transporte, 290
Capacitancia, 209
Catenaria, 198-199, 205
Catenoide, 205
Cauchy, Augustin-Louis, 129
Cercania arbitrariamente préxima, 124
Cero
de multiplicidad m. Véase Cero repetido
repetido, 45
simple, 45
Ciclo, 50, 52
Cociente, 292
de derivadas, 273
diferencial, 134

Coeficiente principal, 40
Coeficientes, 40
binomiales, 347
Combinacién
de desplazamientos, 35
de funciones, 30-40
Combinaciones aritméticas, 31
cociente, 31
diferencia, 31
dominio de, 31
producto, 31
suma, 31
Comparacién de impedancia, 278
Completitud, 10
axioma de, 10
propiedad de, 294
Comportamiento
extremo, 24
final, 44, 118
global, 24
Composicién
defyg, 13
de funciones, 33
degyf 13
dominio de una, 34
Composiciones, 34
Compresiones, 36
grafica comprimida horizontalmente, 36
gréfica comprimida verticalmente, 36
Concavidad, 234-235
prueba para, 235
y la segunda derivada, 235
Conjunto
de los ntimeros
enteros, 2
irracionales, 5
naturales, 2
racionales, 3
reales, 6
denso, 6
infimo de un, 10
ordenado, 9
supremo de un, 9
Constante
de Euler, 290, 296
Continuidad, 101-108
def', 182
de una funcién compuesta, 105
de una funcién inversa, 104, 182
de una suma, un producto y un cociente, 103
en a, 101

r

(=
=
=
—
<T
=
<
L
=
(o=
=

7

iND-1




iND-2 indice analitica

en un numero, 101 de productos y cocientes, 158-164
sobre un intervalo, 102 de un polinomio, 153
abierto, 102 de una funcioén, 142, 144
cerrado, 102 exponencial, 188
uso de la, 108-109 natural, 188-189
Convergencia, 301 inversa, 183
absoluta, 321 notacion, 144
implica convergencia, 321 del cociente, 273
condicién necesaria para, 301 implicita, 176-182
condicién suficiente para la, 293-294 n-ésima, 155
condicionada, 321 valor de la, 155
de la serie p, 309 por la derecha, 145
de una serie de potencias, 326 por la izquierda, 145
de una serie de Taylor, 338 primera, 155
intervalo(s) de, 326, 340 criterio de la, 228-233
radio de, 326 prueba de la, 229-233
Correspondencia con valor tnico. Véase Funcién segunda, 155
Cosecante, 51 criterio de la, 234-239
hiperbdlica, 199 tercera, 155
Coseno hiperbdlico, 199 valor de una, 144
Cota Derivadas
inferior, 9 de funciones
superior, 9 exponenciales, 189
o Cotangente, 51 hiperbdlicas, 200-202
U hiperbdlica, 199 inversas, 203-204
il Crecimiento logaritmicas, 193
|— exponencial, 74 trigonométricas, 167, 173
\:l logistico, 75 inversas, 184
< Criterio de orden superior, 155, 179
Z de la primera derivada, 228-233 del seno y coseno, 164
de la segunda derivada, 234-239 por la derecha, 145
< Curva por la izquierda, 145
LLl del copo de nieve de Koch, 290 reglas generales para obtener las, 150
(] logistica, 191 Desigualdad en una variable, 12-15
= Clspide, 155 Desigualdades
n y valor absoluto, 16
\E D Desintegracion exponencial, 74
Desplazamiento de fase, 54
Dedekin, Richard, 5 Diferencia, 292
Definicion Diferenciabilidad, 145
de limite, 124 implica continuidad, 146
00-00 de limite, 124 Diferenciacion, 144
Demostracion, 123 implicita, 177-179
Derivada, 134-210 directrices para, 178
aplicaciones de la, 211-280 logaritmica, 195
cuarta, 155 directrices para, 195-196
de fix) =b", 189 operadores, 144-145
de fix) =log; x, 192, 196 Diferencial, 263
de funciones de la variable dependiente, 263
exponenciales, 187-192 de la variable independiente, 263
hiperbdlicas, 198-206 Diferenciales, 262-264
inversas, 182-190 reglas para, 264
logaritmicas, 192-198 Directrices
trigonométricas, 164-167 para diferenciacién implicita, 178
de la funcion para resolver problemas relacionados,
exponencial natural, 188-189 240-243
interna, 172 Discontinuidad,
inversa, 183 de tipo salto, 104
logaritmo natural, 192 finita, 104
potencia, 150 infinita, 104

de potencias y sumas, 150-156 removible, 104




Distancia entre dos nimeros, 15
Divergencia

prueba del término n-ésimo para, 302
Dominio, 22, 32, 68, 70

de la funcién constante, 23

de una funcién exponencial, 68

entrada de la funcién, 22

implicito, 23

natural, 23

restringido, 60-61

E

Ecuacion
de estado de Van der Waals, 163
de la lente, 163
lineal, 42
logistica discreta, 290
pendiente-intercepto, 41
punto pendiente, 41
Efecto Stiles-Crawford, 274
En el infinito, 115
Error, 320
porcentual, 261
relativo, 261
Estiramientos, 36-37
gréfica estirada horizontalmente, 36
grafica estirada verticalmente, 36
Euler, Leonhard, 296
Existencia, 89-90
implica unicidad, 99
no, 89-90
Expansion decimal infinita no periddica, 5
Exponente, 68, 70
Exponentes, 68
leyes de los, 68
Extremos, 216
absolutos, 217
determinacion de, 220
de funciones, 220-221
definidos sobre un intervalo cerrado, 220
de un punto frontera, 217
globales. Véase Extremos absolutos
locales. Véase Extremos relativos
relativos, 218-219
ocurren en nameros criticos, 220
f continua por la
derecha en a, 102
izquierda en b, 102

F

Factorial, 287
Fibonacci, Leonardo, 291
Fluxion, 147
Forma indeterminada, 91-92
0°, 271
0/0, 91-92, 267
0-00,271
1%, 271
o, 271

indice analitico iIND-3

00/00, 267
00— 00, 271
Formas geométricas concavas
hacia abajo, 234
hacia arriba, 234
Férmula de recursion, 287
Férmulas
de suma y diferencia, 55
del dangulo doble, 111
para el doble de un dngulo, 55
para la mitad de un dngulo, 55
Fractales, 290
Funcion, 22, 147, 292
aceleracion, 212
arcoseno, 63
arcseno, 62
arctangente, 64
cambio en la, 262
cero de la, 25
con valor real de una sola variable real, 22
constante, 23, 40, 225
continua, 103
coseno inverso, 63
creciente, 42, 182, 225
cuadratica, 40
cubica, 40
de Bessel
de orden 0, 328
de primer tipo de orden v, 328
de Dirichlet, 108
de Heaviside, 39
decreciente, 42, 182, 225
definida por partes, 25-26
grafica de una, 26
derivada, 142
diferenciable
en todas partes, 145
sobre el intervalo abierto, 145
sobre un intervalo cerrado, 145
dominio de una, 23-24
implicito, 23
natural, 23
entero, 30
mayor, 27, 90
entrada de la, 22
escalon unitario. Véase Funcion de Heaviside
explicita, 177
exponencial, 68
inversa de la, 70
natural, 70
propiedades de una, 69
externa, 172
factorial, 29
forma
analitica, 22
numérica, 22
verbal, 22
visual, 22
hiperbdlica, 205
impar, 37-38
implicita, 177

r

(=
=
=
—
<T
=
<
L
=
(o=
=

7




r

o
=
=
=
<L
=
<
L
=
[am ]
=

r

iND-4 indice analitica

indefinida, 23
interna, 172
inversa, 58
continuidad de la, 182
derivada de una, 183
diferenciabilidad de una, 183
directrices para encontrar la, 59
existencia de una, 182
propiedades de la, 59
limite de una, 87-132
lineal, 40
logaritmica, 70
dominio de una, 70
propiedades de la, 71
objetivo, 248
par, 37-38
polinomial, 32, 40
de un solo término, 32
posicién, 212
potencia, 30
derivada de la, 150-153
pruebas para simetria de la grafica de una, 37
racional, 32, 40
raiz, 25
raiz cuadrada, 23
reciproca, 23
rango de la, 22
redondeo
hacia el entero inferior anterior, 27. Véase también Funcion
entero mayor
hacia el entero superior siguiente, 27, 30
representacion
asintética de la, 349
de series de potencias de una, 330-333
salida de la, 22
seno inverso, 61-62
tangente inversa, 64
terminologia, 22-23
timbre postal, 27
U, 37. Véase también Funcion escalon unitario
uno a uno, 58
inversa de una, 58
vagén, 39
valor
absoluto, 26
valor de la, 22
velocidad, 212
ventana. Véase Funcién vagén
volver a escribir una, 153-154

Funciones, 21-86

algebraicas, 46, 50
circulares, 205
combinacion de, 30-40
composicién de, 33-34
compuestas, 121
continuas

en todas partes, 103
cuadraticas, 43
de las palabras a las, 75-81
escaldn, 27
exponenciales, 187-192
exponencial y logaritmica, 68-75

extremos de, 216-222
hiperbélicas, 198-206
derivadas de, 200-202
gréficas de, 199-200
inversas, 202-204
como logaritmos, 203
derivadas de, 203-204
inversas, 57-67
derivadas de, 182-187
logaritmicas, 192-197
polinomiales, 30-35, 40
de orden superior, 43-44
intersecciones de las, 44-45
simetria de las, 44
potencia, 30-31, 150
simples, 31
racionales, 22-23, 46-47
gréficas de, 46-47
representacion de las
analitica, 22
numérica, 22
verbal, 22
visual, 22
trascendentes, 47, 50-57
trigonométricas, 51, 163-168,
172-173
inversas, 61, 65, 184
derivadas de, 184-186
propiedades de las, 64-65
y graficas, 22-30

G

Gosper, William, 317
Grado, 40
n, 40
Gréfica
con un hueco, 47
Grificas, 24, 52, 68-69, 71
céncavas hacia abajo, 234
concavas hacia arriba, 234
defyf,59-60
del seno y coseno, 50
ortogonales, 158
simétricas, 59
transformacion y, 52-55

Guias para demostrar la monotonia, 292

H

Hermite, Charles, 190
Hipocicloide, 210
Hoja de Descartes, 177
Hueco, 47

gréfica con un, 47

Identidades
hiperbdlicas, 200
logaritmicas, 203
pitagdricas, 55



Imagen, 22
especular, 35
Incrementos, 262
Indice de a,, 282
Induccién matematica, 294
Inecuacién. Véase Desigualdad
fnﬁmo, 9
de un conjunto, 10
Infinito
enel, 115
simbolos de, 114
Integral
eliptica completa del segundo tipo, 349
impropia, 306
prueba de la, 307-310
Interseccion, 25, 31
v, 25
Intersecciones, 25, 44-46, 51
de las funciones polinomiales, 44-45
x, 45
de polinomios, 45
Intervalo
en R, 10-11
abierto, 10
cerrado, 10
directrices para encontrar extremos en un, 220
Intervalos
infinitos, 10
mixtos, 10
Inversa, 58
de una funcién uno a uno, 58
funcioén, 58
Inversas
propiedades de las, 64-65
Iverson, Kenneth E., 27

K

Kepler, Johannes, 147
Koch, Helge von, 290
Kowalewski, Sonja, 129

L

Lagrange, Joseph Louis, 338
Leibniz, Gottfried Wilhelm, 147
Lemniscata, 181
Ley
de enfriamiento de Newton, 75, 453
de Poiseulle, 257-258
de Snell, 257
de tricotomia, 8
Leyes de los exponentes, 68
L’Hopital, Guillaume Frangois Antoine de, 268, 272
Limite, 88
de f(x) cuando x tiende a a, 89
de funciones polinomiales, 96-97
de una funcién
compuesta, 104-105
multiplicada por una constante, 94
de una raiz, 98-99
definicién de, 124-125

indice analitico iND-5

desde ambos lados, 88
en el infinito, 117, 127-128
existencia, 89
infinito, 115, 127
no existencia, 89
por la derecha, 88
de f(x) cuando x tiende a a, 89
por la izquierda, 88
de f(x) cuando x tiende a a, 89
por los dos lados, 89
prueba de comparacion del, 312
que no existe, 114, 117-118
trigonométrico, 110
Limites, 342-343
de una potencia, 95-96
de una suma, un producto y un cociente, 95
en el infinito, 117, 128
infinitos, 114-115, 118, 127
en el infinito, 118
laterales, 88-89, 127
por dos lados, 89
por la derecha, 127
por la izquierda, 127
que implican el infinito, 114-123, 127
teoremas sobre, 95-100
trigonométricos, 108-114
un enfoque formal, 123-129
Lindemann, Ferdinand, 190
Linealizacion, 260-262
cambio en la, 262
Logaritmo, 70
natural, 71
Logaritmos
comunes, 71
leyes de los, 72-73
naturales, 71
Longitud
de una trayectoria
en zigzag, 306
poligonal, 306
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M

Maclaurin, Colin, 344
Maximo

absoluto, 217

relativo, 218
Media aritmética, 234, 352
Método

de biseccion, 106

de fluxiones, 147

de la tabla de signos, 226

para encontrar £, 59
Minimo

absoluto, 217

relativo, 218
Modelo matematico, 27

de Jenss, 191

Moédulo de elasticidad de Young, 258
Movimiento

cantidad de, 247

rectilineo, 139, 212-222




iND-6 Indice analitica

N Polinomios
de Legendre

funcién generadora de los, 350
de Taylor, 340-341, 344

n-ésima derivada, 155
Newton, Isaac, 147, 344

Notacién . B aproximaciones utilizando, 341-342
de la derivada de una funcién, 144 gréficas de, 340-341
ﬂ}fspeck, 147 (Redux), 344
prima, 147 Posicién de equilibrio, 176
Nurn/e.ro Potencia entera no negativa, 40
critico, 219-220 P i
otencias
2 69.-70,1190 ] reglas de, 150, 162, 180
1rracllona , 68, 190 Principio de Fermat, 257, 279
00, 190 Producto
}rascendente, 190 de dos niimeros, 75-76
Numeros. de la derivada de la funcién externa, 172
armonicos, 303
regla del, 159
enteros,.Z' ) ' Promedio. Véase Media aritmética
definicion del conjunto de los, 2-3
_ : Prueba
1rrac1on.al.es, 190 . de comparacion, 310-314
definicién del conjunto de los, 5 del limite. 312-313
naturale.s,.? . directa, 310-311, 313-314
deﬁn.1c10n del conjunto de los, 2 de la derivada para creciente/decreciente, 226
.propledades de los, 2 de la raiz, 316, 323
primos, 306 de la recta horizontal, 58
racwnal.es:‘ ) . de la recta vertical, 24
definicién del conjunto de los, 3 de la serie alternante. 318-319
reales, 1-19 :

de las proporciones, 315-316, 322

del dnico nimero critico, 233

para crecimiento/decrecimiento, 225-227
para una serie divergente, 301
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axiomas de los, 6-8

conjunto ordenado, 9

definicién del conjunto de los, 6
definicién de suma y resta de, 8

A g Punto
ley d.e tricotomia, 8 critico, 219, 462
propiedades de los, 6-10 de inflexion, 235-236
propiedades de orden de los, 8 frontera
teoria ax1ométlc'f1, 7 extremo de un, 217
y la recta numérica, 6 Puntos
. trascendentes, 190 de inflexion, 239
“huecos”, 10
0 “sélidos”, 10
Operadores diferenciacion, 144-145
Optimizacin, 247-252 R
directrices para resolver problemas de, 248-249 Radicando, 23
Radio de convergencia
p R=0, 326
R =00, 326-327
Parabola, 31 R>0, 327
eje de la, 43 Raiz, 25
forma normal, 43 Ramanujan, Srinivasa, 317
vértice de la, 43 Rango, 22
Paradoja de Zendn, 306 salida de la funcion, 22
Parte Rapidez, 212
entera, 90 media. Véase Velocidad media
fraccionaria de x, 40 Razon
Pendiente, 41 aurea, 291
de la curva, 135 comun, 298
de rectas secantes, 134 de cambio media, 138
Periodo, 50, 52 de la funcién, 138
Pisano, Leonardo. Véase Leonardo Fibonacci instantanea de la funcion, 138-139, 148
Polinomio Razones de cambio, 239-247
cero, 40 Rearreglo de términos, 323

de Taylor de f'en a, 338 Recorrido horizontal. Véase Cambio en x




Recta, 31
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prueba de la, 58
indefinida, 41
normal, 154
paralela, 42
perpendicular, 42
real, 6
tangente, 134
a una grafica, 134
con pendiente, 134
vertical, 137
Rectas, 40-41
ecuaciones de, 41-42
paralelas, 42-43
perpendiculares, 42-43
Reflexion, 35
Reflexiones, 35-36, 59, 182
Regla
de la cadena, 169-176
de la funcion constante, 151
de la multiplicacién por constante, 152
de L’Hopital, 267-273, 285
de potencias, 151, 162, 197
para funciones, 169-170, 180, 240
demostracion de la, 172
del cociente, 160-161
del producto, 159-161
Reglas de suma y diferencia, 152
Residuo, 310
forma de Lagrange del, 338
Resistencia, 246
Resonancia pura, 274
Restriccion, 76, 248, 250
problemas con, 250
Rolle, Michel, 227
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Secante, 51
hiperbdlica, 199
inversa, 185
Semicirculo
inferior, 26
superior, 26
Seno
hiperbélico, 199
inverso de x, 61
Serie, 296
absolutamente convergente, 321
alternante, 318-320
aproximacién de la suma de una, 320
cota de error para una, 320
prueba de la, 318
armonica, 301
alternante, 318
convergente, 298
de Maclaurin de f, 336, 344
de potencias
centrada en a, 325
centro a. Véase Serie de potencias centrada en a
diferenciacién de una, 329
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en x, 325
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de fen a, 336
para una funcioén f, 336
del binomio, 346-348
divergente, 298
prueba para una, 301
geométrica, 298
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de Maclaurin, 340, 346
intervalos de convergencia de las, 340
de potencias, 329-332
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acotada, 293
por abajo, 293
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convergente, 282-284
de constantes, 284
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definida recursivamente, 287
diverge, 283
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negativo, 284
por oscilacion, 284
finita, 282
infinita, 282
limite de la, 283, 285-286
mondétona
creciente, 292
decreciente, 292
no creciente, 292
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no acotada, 293
términos de la, 282
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Sucesiones, 282-296 general, 282, 296
de la forma n-ésimo, 282
{r'}, 286 primer, 282
{r"}, 286 segundo, 282
mondtonas, 291-296 Términos positivos, 307
propiedades de, 285-286 Tractriz, 206
Suficientemente préximo, 124 Transformacion,
Suma no rigida, 34, 36
de una serie convergente y una divergente, 302 rigida, 34
de una serie geométrica, 299 y graficas, 52-55
parcial n-ésima, 297 Traslaciones
Supremo, 9 hacia abajo, 34
Sustitucién, 112 hacia arriba, 34
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T Trayectorias ortogonales, 181
Tricotomia
Tangente, 51, 134 ley de, 8
hiperbdlica, 199
horizontal, 146 Vv
inversa, 185
que puede no existir, 137 Variable
vertical, 146 dependiente, 22
() Tangentes independiente, 22
U horizontales, 145 Velocidad
= verticales, 137, 146 instantanea, 139
el Taylor, Brook, 344 media, 138-139, 192
\:| Teorema terminal, 206
< de compresion, 109, 287 Valor, 22
Z de Rolle, 223-227 absoluto, 12
de Taylor, 337-338 de un numero real, 15
< del binomio, 346-347 propiedades del, 16
L del emparedado. Véase Teorema de compresion Velocidad
(] del juego de compresion. Véase Teorema de compresion media, 212
— del pellizco. Véase Teorema de compresion
n del valor extremo, 217 W
\E del valor intermedio, 105
del valor medio, 223-228 Weiertrass, Karl, 5, 129, 148
ampliado, 268 Whewell, William, 129
para derivadas, 223-225
los dos soldados, 109 7
Término

constante, 40 Zenoén de Elea, 306




	Matemáticas 1: cálculo diferencial
	Página legal
	Contenido
	Prefacio
	Evaluación diagnóstica
	Ensayo: La historia del cálculo
	1. Los números reales
	1.1 Los números reales
	1.2 Los números reales y la recta numérica
	1.3 Propiedades de los números reales
	1.4 Intervalos en R
	1.5 Desigualdades y valor absoluto

	2. Funciones
	2.1 Funciones y gráficas
	2.2 Combinación de funciones
	2.3 Funciones polinomiales y racionales
	2.4 Funciones trascendentes
	2.5 Funciones inversas
	2.6 Funciones exponencial y logarítmica
	2.7 De las palabras a las funciones
	Competencia final de la unidad 2

	3. Límite de una función
	3.1 Límites: un enfoque informal
	3.2 Teoremas sobre límites
	3.3 Continuidad
	3.4 Límites trigonométricos
	3.5 Límites que involucran el infinito
	3.6 Límites: un enfoque formal
	Competencia final de la unidad 3

	4. La derivada
	4.1 El problema de la recta tangente
	4.2 La derivada
	4.3 Derivada de potencias y sumas
	4.4 Derivada de productos y cocientes
	4.5 Derivada de funciones trigonométricas
	4.6 La regla de la cadena
	4.7 La derivada implícita
	4.8 Derivada de funciones inversas
	4.9 Derivada de funciones exponenciales
	4.10 Derivada de funciones logarítmicas
	4.11 Derivada de funciones hiperbólicas
	Competencia final de la unidad 4

	5. Aplicaciones de la derivada
	5.1 Movimiento rectilíneo
	5.2 Extremos de funciones
	5.3 El teorema del valor medio
	5.4 Criterio de la primera derivada
	5.5 Criterio de la segunda derivada
	5.6 Razones de cambio
	5.7 Optimización
	5.8 Linealización y diferenciales
	5.9 La regla de L’Hôpital
	Competencia final de la unidad 5

	Apéndice. Sucesiones y series
	A.1 Sucesiones
	A.2 Sucesiones monótonas
	A.3 Series
	A.4 Prueba de la integral
	A.5 Pruebas de comparación
	A.6 Pruebas de las proporciones y de la raíz
	A.7 Series alternantes
	A.8 Series de potencias
	A.9 Representación de funciones mediante series de potencias
	A.10 Serie de Taylor
	A.11 Serie del binomio

	Fórmulas matemáticas
	Repaso de álgebra
	Fórmulas de geometría
	Gráficas y funciones
	Revisión de trigonometría
	Funciones exponencial y logarítmica
	Diferenciación
	Fórmulas de integración

	Respuestas a la evaluación diagnóstica
	Respuestas de los problemas impares
	Índice analítico


