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Para el instructor
Filosofía
En esta serie de Matemáticas he intentado preservar intacto mi objetivo original de compilar un
texto de cálculo que no sea sólo una colección de definiciones y teoremas, habilidades y fórmu-
las para memorizar, así como problemas para resolver, sino un material que se comunique con
sus lectores más importantes: los estudiantes. Deseo que estos cambios hagan más relevante e
interesante el texto tanto para el estudiante como para el profesor.

Características de esta obra
Secciones y ejercicios El material que se ha seleccionado para esta serie es actual. Los conjun-
tos de ejercicios se han organizado en problemas que requieren el uso de calculadora y compu-
tadora, problemas conceptuales y problemas de proyectos. En su mayoría, las aplicaciones con-
sideradas pertenecen al ámbito de la “vida real” en el sentido de que se han investigado
exhaustivamente usando fuentes originales. También se han incluido problemas relacionados con
la interpretación de gráficas. Además, se ha hecho énfasis en las funciones trigonométricas tanto
en los ejemplos como en los conjuntos de ejercicios a lo largo del texto. La serie completa (Mate-

máticas 1, Matemáticas 2 y Matemáticas 3) contiene más de 7 300 problemas.
Como ayuda en la asignación de problemas, cada conjunto de ejercicios está dividido clara-

mente en grupos de problemas identificados con títulos como Fundamentos, Aplicaciones, Mode-

los matemáticos, Proyectos, Problemas con calculadora/SAC, etcétera. Creo que la mayoría de
los títulos son autosuficientes, de modo que los problemas que aparecen bajo el encabezado Pien-

se en ello tratan aspectos conceptuales del material cubierto en esa sección y son idóneos como
tareas o para discutir en clase. En el texto no se proporciona respuesta alguna para estos proble-
mas. Algunos están identificados como Clásicos matemáticos y reflejan el hecho de que han
existido durante largo tiempo, aparecen en la mayor parte de los textos o presentan algún deta-
lle interesante, mientras que otros problemas identificados como Un poco de historia muestran
algún aspecto histórico.

Una característica sobresaliente de Matemáticas 1, Cálculo diferencial, es que se estudian
los conceptos sobre los que se construye todo el cálculo: números reales, variable, función, lími-
te y derivada, lo que permite analizar razones de cambio entre dos variables, noción de trascen-
dental importancia en las aplicaciones de la ingeniería.

Esta asignatura contiene los conceptos básicos y esenciales para cualquier área de la inge-
niería y contribuye a desarrollar en el estudiante un pensamiento formal y heurístico que le per-
mitirá modelar fenómenos y resolver problemas.

En los apéndices se proporciona material de gran utilidad para los diferentes cursos. Al final
de las secciones correspondientes aparecen esbozos biográficos de algunos matemáticos que han
impactado de manera importante el desarrollo del cálculo bajo la rúbrica de Posdata: Un poco

de historia.

Características especiales Cada unidad empieza con una introducción al material referido y
con las competencias específicas de esa unidad. En la parte final del libro el lector encontrará la
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sección Fórmulas matemáticas, que constituye una revisión compacta de conceptos básicos de
álgebra, geometría, trigonometría y cálculo: las leyes de los exponentes, fórmulas de factoriza-
ción, desarrollos binomiales, triángulo de Pascal, fórmulas de geometría, gráficas y funciones,
funciones trigonométricas, funciones exponenciales y logarítmicas, y fórmulas de diferenciación
e integración.

La sección denominada Evaluación diagnóstica consta de 56 reactivos sobre cuatro amplias
áreas de precálculo en matemáticas. Esta evaluación intenta alentar a los estudiantes a revisar por
sí mismos algunos de los temas de prerrequisito esenciales, como valores absolutos, plano carte-
siano, ecuaciones de rectas, círculos, etc., que se aplican a lo largo del texto. En la sección de res-
puestas se proporcionan las soluciones a todos estos reactivos.

Cada unidad incluye la sección Notas desde el aula. Se pretende que estas notas sean un
análisis informal dirigido directamente al estudiante. Este análisis varía desde advertencias sobre
errores algebraicos, de procedimiento y de notación comunes, pasando por la interpretación erró-
nea de teoremas y consejos, hasta preguntas que piden al estudiante pensar en el tema y ampliar
las ideas recién presentadas.

Asimismo, esta obra contiene un considerable número de notas al margen y anotaciones de
orientación en los ejemplos.

Figuras, definiciones, teoremas Debido a la gran cantidad de figuras, definiciones y teoremas
que hay en este texto, se ha adoptado un sistema de numeración doble decimal. Por ejemplo, la
interpretación de “figura 1.2.3” es

Considero que este tipo de numeración facilita encontrar, por ejemplo, un teorema o una figura
a la que se hace referencia en una sección o en una unidad posterior. Además, para relacionar
mejor una figura con el texto, la primera referencia textual a cada figura aparece con el mismo
estilo y color de letra que el número de la figura. Por ejemplo, la primera referencia a la prime-
ra figura en la sección 3.5 se proporciona como FIGURA 3.5.1, y todas las referencias subsecuentes
se escriben en el estilo tradicional de la figura 3.5.1. También, en esta obra cada figura en el texto
presenta un breve subtítulo explicatorio.

Materiales de apoyo
Esta obra cuenta con interesantes complementos para fortalecer los procesos de enseñanza-apren-
dizaje y su evaluación, y se otorgan a profesores que adoptan este texto para sus cursos. Para
obtener más información respecto de estos materiales, contacte a su representante McGraw-Hill.

Para el estudiante
Usted se ha matriculado en uno de los cursos más interesantes de matemáticas. Hace muchos
años, cuando yo era estudiante de Cálculo I, me sorprendieron el poder y la belleza del material.
Era distinto de cualquier tipo de matemáticas que hubiera estudiado hasta ese momento. Era
divertido, emocionante y constituía un desafío. Después de enseñar matemáticas universitarias
por muchos años, he conocido infinidad de tipos de estudiante, desde el genio incipiente que
inventó su propio cálculo hasta estudiantes que luchaban por dominar la mecánica más elemen-
tal del tema. A lo largo de estos años también he sido testigo de un fenómeno triste: algunos estu-
diantes fracasan en cálculo no porque encuentren que el tema es imposible, sino porque tienen
habilidades deficientes de álgebra y un conocimiento inadecuado del trabajo en trigonometría.
El cálculo construye de inmediato sobre su conocimiento y habilidades previos, donde hay
mucho terreno nuevo por cubrir. En consecuencia, hay muy poco tiempo para repasar las bases
en el planteamiento formal del aula. Así, quienes enseñamos cálculo debemos asumir que usted
puede factorizar, simplificar y resolver ecuaciones, resolver desigualdades, manejar valores
absolutos, usar una calculadora, aplicar las leyes de los exponentes, encontrar ecuaciones de rec-
tas, graficar puntos, trazar gráficas elementales y aplicar importantes identidades logarítmicas y
trigonométricas, la habilidad de hacer álgebra y trigonometría, trabajar con exponentes y loga-
ritmos, así como trazar a mano, con rapidez y precisión, gráficas básicas que son claves para
tener éxito en un curso de cálculo.

Unidad Sección de la unidad 1
T T
1.2.3 d Tercera figura de la sección 1 .2
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En las primeras páginas encontrará la sección “Evaluación diagnóstica”, que contiene 56
preguntas. Esta “prueba” es una oportunidad para que usted verifique sus conocimientos acerca
de algunos temas que se tratan en este texto. Relájese, tome su tiempo, lea y trabaje cada pre-
gunta, y luego compare sus respuestas con las que se proporcionan en las páginas finales. Sin
tomar en cuenta su “calificación”, lo alentamos a que revise material de precálculo en algún texto
acerca de la materia.

Unas palabras para los estudiantes que han cursado cálculo en preparatoria: por favor, no
asuman que pueden lograrlo con un esfuerzo mínimo porque identifican algunos de los temas en
cálculo diferencial e integral. Un sentimiento de familiaridad con el tema combinado con una
actitud de complacencia a menudo es la razón del fracaso de algunos estudiantes.

Aprender matemáticas no es como aprender a andar en bicicleta: en que una vez que se
aprende, la habilidad permanece para siempre. Las matemáticas son más como aprender otro
idioma o tocar un instrumento musical: requiere tiempo, esfuerzo y mucha práctica para desarro-
llar y mantener la habilidad. Aun los músicos experimentados continúan practicando escalas fun-
damentales. Por lo anterior, usted, el estudiante, sólo puede aprender matemáticas (es decir,
hacer “que se le pegue”) mediante el trabajo arduo de hacer matemáticas. Aunque he intentado
hacer más claros para el lector la mayoría de los detalles en la solución de un ejemplo, inevita-
blemente usted tiene que completar los pasos faltantes. No puede leer un texto de este tipo como
si fuese una novela; debe abrirse camino a lo largo de él con lápiz y papel en mano.

En conclusión, le deseo la mejor de las suertes en este curso.

PRÓLOGO A ESTA EDICIÓN
Vivimos tiempos de cambio, y la educación no es ajena a este proceso. Los planes de estudio de
las instituciones de educación superior se renuevan constantemente para estar a la altura de las
necesidades actuales, y se establecen nuevas metodologías que deben ser respaldadas con obras
editoriales de calidad.

Como una contribución a esta revolución educativa se desarrolla esta obra, dirigida a algu-
na materia del área básica, cursada en las principales escuelas de ciencias e ingeniería. 

Los libros elaborados cubren los planes de estudio más recientes que se imparten en los ins-
titutos tecnológicos.

Aunado a lo anterior, nuestros reconocidos autores siguen ofreciendo el estilo científico pre-
ciso y de fácil comprensión que ha caracterizado a cada una de las obras.

Entre las principales características de esta serie se pueden mencionar:

• Adaptación al nuevo modelo de competencias.
• Ejemplos y ejercicios renovados.
• Utilización de las tecnologías de información y comunicación (TIC).
• Notas históricas que fundamentan los conceptos básicos.
• Notación formal de fácil accesibilidad para los alumnos.
• Estructura que contribuye a desarrollar un pensamiento lógico, heurístico y algorítmico

para modelar fenómenos y resolver problemas.
• Actividades encaminadas al desarrollo de competencias genéricas, instrumentales, sisté-

micas y específicas.

Joel Ibarra Escutia
Instituto Tecnológico de Toluca

Las competencias y el cálculo diferencial
Una de las características más sobresalientes de esta edición es que ha sido organizada para con-
tribuir al desarrollo de competencias específicas, genéricas, instrumentales y sistémicas, listadas
a continuación.

Competencias específicas
UNIDAD 1 Los números reales

Comprender las propiedades de los números reales para resolver desigualdades de primero y
segundo grados con una incógnita y desigualdades con valor absoluto, representando las solu-
ciones en la recta numérica real.
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UNIDAD 2 Funciones

Comprender el concepto de función real e identificar tipos de funciones, así como aplicar sus
propiedades y operaciones.

UNIDAD 3 Límite de una función

Comprender el concepto de límite de funciones y aplicarlo para determinar de manera analítica
la continuidad de una función en un punto o en un intervalo, y mostrar gráficamente los diferen-
tes tipos de discontinuidad.

UNIDAD 4 La derivada

Comprender el concepto de derivada para aplicarlo como la herramienta que estudia y analiza la
variación de una variable con respecto a otra.

UNIDAD 5 Aplicaciones de la derivada

Aplicar el concepto de la derivada para la solución de problemas de optimización y variación de
funciones, y el de diferencial en problemas que requieren aproximaciones.

Competencias genéricas
• Procesar e interpretar datos.
• Representar e interpretar conceptos en diferentes formas: numérica, geométrica, alge-

braica, trascendente y verbal.
• Comunicarse en lenguaje matemático de manera oral y escrita.
• Modelar matemáticamente fenómenos y situaciones.
• Lograr un pensamiento lógico, algorítmico, heurístico, analítico y sintético.
• Potenciar las habilidades para el uso de tecnologías de la información.
• Resolver problemas.
• Analizar la factibilidad de las soluciones.
• Tomar decisiones.
• Reconocer conceptos o principios generales e integradores.
• Establecer generalizaciones.
• Argumentar con contundencia y precisión.
• Optimizar soluciones.

Competencias instrumentales
• Capacidad de análisis y síntesis.
• Comunicación escrita.
• Habilidades básicas de manejo de la computadora.
• Solución de problemas.

Competencias sistémicas
• Capacidad de aplicar los conocimientos en la práctica.
• Habilidades de investigación.
• Capacidad para aprender.
• Capacidad para generar nuevas ideas.
• Habilidad para trabajar en forma autónoma.
• Búsqueda de logros.
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Evaluación diagnóstica

Las respuestas de los problemas impares comienzan en la página RES-1.

Como preparación para el cálculo

Matemáticas básicas

1. (Falso/verdadero) __________

2. (Falso/verdadero) Para __________

3. (Falso/verdadero) Para __________

4. (Falso/verdadero) __________

5. (Llene el espacio en blanco) En el desarrollo de (1 - 2x)3, el coeficiente de x2 es __________.

6. Sin usar calculadora, evalúe 

7. Escriba lo siguiente como una expresión sin exponentes negativos:

.

8. Complete el trinomio cuadrado: 2x2 + 6x + 5.

9. Resuelva las ecuaciones:

a) b) c) d)

10. Factorice completamente:
a)
b)
c)
d)

Números reales

11. (Falso/verdadero) Si a 6 b, entonces __________

12. (Falso/verdadero) __________ 

13. (Falso/verdadero) Si a 6 0, entonces __________

14. (Llene el espacio en blanco) Si entonces x = __________ o x = _______.

15. (Llene el espacio en blanco) Si a – 5 es un número negativo, entonces __________.

16. ¿Cuáles de los siguientes números son racionales?
a) 0.25 b) c)

d) e) f )

g) 0 h) i)

j) k) l)

17. Relacione el intervalo dado con la desigualdad idónea.
i) (2, 4] ii) [2, 4) iii) (2, 4) iv) [2, 4]
a) b) c) d)

18. Exprese el intervalo (-2, 2) como

a) una desigualdad y b) una desigualdad que implique valores absolutos.

19. Trace la gráfica de en la recta numérica.(�q, �1]  ´  [3, q)
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20. Encuentre todos los números reales x que satisfacen la desigualdad Escriba
su solución usando notación de intervalos.

21. Resuelva la desigualdad y escriba su solución usando notación de intervalos.

22. Resuelva la desigualdad y escriba su solución usando notación de intervalos.

Plano cartesiano

23. (Llene el espacio en blanco) Si (a, b) es un punto en el tercer cuadrante, entonces (-a, b) es
un punto en el __________ cuadrante.

24. (Llene el espacio en blanco) El punto medio del segmento de recta desde P1(2, -5) hasta
P2(8, -9) es __________.

25. (Llene el espacio en blanco) Si (-2, 6) es el punto medio del segmento de recta desde P1(x1,
3) hasta P2(8, y2), entonces x1 =__________ y y2 = __________.

26. (Llene los espacios en blanco) El punto (1, 5) está en una gráfica. Proporcione las coorde-
nadas de otro punto de la gráfica si la gráfica es:
a) simétrica con respecto al eje x. __________
b) simétrica con respecto al eje y. __________
c) simétrica con respecto al origen. __________

27. (Llene los espacios en blanco) Las intersecciones x y y de la gráfica de son,
respectivamente, __________ y __________.

28. ¿En cuáles cuadrantes del plano cartesiano es negativo el cociente x�y?

29. La coordenada y de un punto es 2. Encuentre la coordenada x del punto si la distancia del
punto a (1, 3) es

30. Encuentre una ecuación del círculo para el cual (-3, -4) y (3, 4) son los puntos extremos de
un diámetro.

31. Si los puntos P1, P2 y P3 son colineales como se muestra en la FIGURA A.1, encuentre una
ecuación que relacione las distancias d(P1, P2), d(P2, P3), y d(P1, P3).

32. ¿Cuál de las siguientes ecuaciones describe mejor el círculo de la FIGURA A.2? Los símbolos
a, b, c, d y e representan constantes diferentes de cero.
a)
b)
c)
d)
e)

Rectas

33. (Falso/verdadero) Las rectas 2x + 3y = 5 y -2x + 3y = 1 son perpendiculares. __________

34. (Llene el espacio en blanco) Las rectas 6x + 2y = 1 y kx – 9y = 5 son paralelas si k =
__________.

35. (Llene el espacio en blanco) Una recta con intercepción x (-4, 0) e intersección y (0, 32)
tiene pendiente __________.

36. (Llene los espacios en blanco) La pendiente y las intersecciones x y y de la recta 2x - 3y +
18 = 0 son, respectivamente, __________, __________, y __________.

37. (Llene el espacio en blanco) Una ecuación de la recta con pendiente -5 e intersección y
(0, 3) es __________.

38. Encuentre la ecuación de la recta que pasa por (3, -8) y es paralela a la recta 2x - y = -7.

ax2
� ay2

� cx � e � 0
ax2

� ay2
� c � 0

ax2
� ay2

� cx � dy � 0
ax2

� ay2
� cx � dy � e � 0

ax2
� by2

� cx � dy � e � 0

FIGURA A.1 Gráfica para el problema 31
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39. Encuentre la ecuación de la recta que pasa por los puntos (-3, 4) y (6, 1).

40. Encuentre la ecuación de la recta que pasa por el origen y por el punto de intersección de
las gráficas de x + y = 1 y 2x - y = 7.

41. Una recta tangente a un círculo en un punto P del círculo es una recta que pasa por P y es
perpendicular a la recta que pasa por P y el centro del círculo. Encuentre la ecuación de la
recta tangente L indicada en la FIGURA A.3.

42. Relacione la ecuación dada con la gráfica idónea en la FIGURA A.4.
i) ii) iii)

iv) v) vi)

vii) viii)

a) b) c)

d) e) f )

g) h)

FIGURA A.4 Gráficas para el problema 42

Trigonometría

43. (Falso/verdadero) __________

44. (Falso/verdadero) sen(2t) = 2 sen t. __________

45. (Llene el espacio en blanco) El ángulo 240 grados es equivalente a ___________ radianes.

46. (Llene el espacio en blanco) El ángulo radianes es equivalente a ___________ grados.

47. (Llene el espacio en blanco) Si tan t = 0.23, __________.

48. Encuentre cos t si sen t = y el lado terminal del ángulo t está en el segundo cuadrante.

49. Encuentre los valores de las seis funciones trigonométricas del ángulo u dado en la FIGURA A.5.
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FIGURA A.5 Triángulo
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50. Exprese las longitudes b y c de la FIGURA A.6 en términos del ángulo u.

Logaritmos

51. Exprese el símbolo k en la declaración exponencial como un logaritmo.

52. Exprese la declaración logarítmica log64 4 = como una declaración exponencial equivalente.

53. Exprese como un logaritmo simple.

54. Use una calculadora para evaluar .

55. (Llene el espacio en blanco) __________.

56. (Falso/verdadero) __________(logb x)(logb y) � logb(ylogb
 
x).

b3logb10
�

log 10 13
log 10 3

log b 5 � 3 log b 10 � log b 40

1
3

e(0.1)k
� 5

c b

10

�

FIGURA A.6 Triángulo
para el problema 50
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Ensayo

xix

La historia del cálculo
Por Roger Cooke 
University of Vermont

Suele considerarse que el cálculo es una creación de los matemáticos europeos del siglo XVII,
cuyo trabajo más importante fue realizado por Isaac Newton (1642-1727) y Gottfried Wilhelm
Leibniz (1646-1711). Esta percepción tradicional en general es correcta. No obstante, cualquier
teoría a gran escala es un mosaico cuyas baldosas fueron colocadas a lo largo de mucho tiempo;
y en cualquier teoría viviente las baldosas continúan colocándose de manera continua. La decla-
ración más poderosa que los historiadores se arriesgan a hacer es que un patrón se hizo eviden-
te en cierto momento y lugar. Es el caso del cálculo. Podemos afirmar con cierta confianza que
los primeros trabajos del tema aparecieron en el siglo XVII y que el patrón se aclaró mucho más
gracias al trabajo de Newton y Leibniz. Sin embargo, muchos de los principios esenciales del
cálculo se descubrieron desde mucho antes, en la época de Arquímedes (287-211 a.C.), y algu-
nos de esos mismos descubrimientos se lograron de manera independiente en China y en Japón.
Además, si se escudriña con más profundidad en los problemas y métodos del cálculo, uno pron-
to se encuentra en la persecución de problemas que conducen a las áreas modernas de la teoría
de funciones analíticas, geometría diferencial y funciones de una variable real. Para cambiar la
metáfora del arte al transporte, podemos pensar que el cálculo es una gran estación de ferroca-
rril, donde los pasajeros que llegan de muchos sitios diferentes están juntos durante un tiempo
breve antes de embarcarse hacia destinos diversos. En este ensayo tratamos de mirar en ambas
direcciones desde esta estación, hacia los puntos de origen y los destinos. Empecemos con la
descripción de la estación.

¿Qué es el cálculo? El cálculo suele dividirse en dos partes, denominadas cálculo diferencial

y cálculo integral. El cálculo diferencial investiga las propiedades de las razones de cambio com-
parativas de variables que están vinculadas por medio de ecuaciones. Por ejemplo, un resultado
fundamental del cálculo diferencial es que si y = xn, entonces la razón de cambio de y con res-
pecto a x es nxn-1. Resulta que cuando se usa la intuición para pensar en ciertos fenómenos
—movimiento de los cuerpos, cambios en la temperatura, crecimiento de poblaciones y muchos
otros—, se llega a postular ciertas relaciones entre estas variables y sus razones de cambio. Estas
relaciones se escriben en una forma conocida como ecuaciones diferenciales. Así, el objetivo
principal de estudiar cálculo diferencial consiste en comprender qué son las razones de cambio
y cómo escribir ecuaciones diferenciales. El cálculo integral proporciona métodos para recupe-
rar las variables originales conociendo sus razones de cambio. La técnica para hacer esto se
denomina integración, y el objetivo fundamental del estudio del cálculo integral es aprender a
resolver las ecuaciones diferenciales proporcionadas por el cálculo diferencial.

A menudo estos objetivos están encubiertos en libros de cálculo, donde el cálculo diferen-
cial se utiliza para encontrar los valores máximo y mínimo de ciertas variables, y el cálculo inte-
gral se usa para calcular longitudes, áreas y volúmenes. Hay dos razones para recalcar estas apli-
caciones en un libro de texto. Primero, la utilización completa del cálculo usando ecuaciones
diferenciales implica una teoría más bien complicada que debe presentarse de manera gradual;
entre tanto, al estudiante debe enseñársele algún uso de las técnicas que se proponen. Segundo,

Isaac Newton

Gottfried Leibniz



estos problemas fueron la fuente de las ideas que condujeron al cálculo; los usos que ahora hace-
mos del tema sólo se presentaron después del descubrimiento de aquél.

Al describir los problemas que llevaron al cálculo y los problemas que pueden resolverse
usando cálculo, aún no se han indicado las técnicas fundamentales que hacen de esta disciplina
una herramienta de análisis mucho más poderosa que el álgebra y la geometría. Estas técnicas
implican el uso de lo que alguna vez se denominó análisis infinitesimal. Todas las construcciones
y las fórmulas de la geometría y el álgebra de preparatoria poseen un carácter finito. Por ejemplo,
para construir la tangente de un círculo o para bisecar un ángulo se realiza un número finito de
operaciones con regla y compás. Aunque Euclides sabía considerablemente más geometría que la
que se enseña en cursos actuales modernos de preparatoria, él también se autoconfinó esencial-
mente a procesos finitos. Sólo en el contexto limitado de la teoría de las proporciones permitió la
presencia de lo infinito en su geometría, y aun así está rodeado por tanto cuidado lógico que las
demostraciones implicadas son extraordinariamente pesadas y difíciles de leer. Lo mismo ocurre
en álgebra: para resolver una ecuación polinomial se lleva a cabo un número finito de operacio-
nes de suma, resta, multiplicación, división y extracción de raíz. Cuando las ecuaciones pueden
resolverse, la solución se expresa como una fórmula finita que implica coeficientes.

Sin embargo, estas técnicas finitas cuentan con un rango limitado de aplicabilidad. No es
posible encontrar las áreas de la mayoría de las figuras curvas mediante un número finito de ope-
raciones con regla y compás, y tampoco resolver ecuaciones polinomiales de grado mayor o igual
que cinco usando un número finito de operaciones algebraicas. Lo que se quería era escapar de
las limitaciones de los métodos finitos, y esto condujo a la creación del cálculo. Ahora considera-
remos algunos de los primeros intentos por desarrollar técnicas para manipular los problemas más
difíciles de la geometría, luego de lo cual trataremos de resumir el proceso mediante el que se tra-
bajó el cálculo, y finalmente exhibiremos algo de los frutos que ha producido.

Las fuentes geométricas del cálculo Uno de los problemas más antiguos en matemáticas es la
cuadratura del círculo; es decir, construir un cuadrado de área igual a la de un círculo dado.
Como se sabe, este problema no puede resolverse con regla y compás. Sin embargo, Arquímedes
descubrió que si es posible trazar una espiral, empezando en el centro de un círculo que hace
exactamente una revolución antes de llegar al círculo, entonces la tangente a esa espiral, en su
punto de intersección con el círculo, forma la hipotenusa de un triángulo rectángulo cuya área es
exactamente igual al círculo (vea la figura 1). Entonces, si es posible trazar esta espiral y su tan-
gente, también lo es cuadrar el círculo. Arquímedes, no obstante, guardó silencio sobre cómo
podría trazarse esta tangente.

Observamos que uno de los problemas clásicos en matemáticas puede resolverse sólo si es
posible trazar cierta curva y su tangente. Este problema, y otros parecidos, originaron que el pro-
blema puramente matemático de encontrar la tangente a una curva se volviera importante. Este
problema constituye la fuente más importante del cálculo diferencial. El truco “infinitesimal”
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Tangente

FIGURA 1 La espiral de Arquímedes. La tangente al final de la primera
vuelta de la espiral y los dos ejes forman un triángulo con área igual a la
del círculo centrado en el origen y que pasa por el punto de la tangente



que permite la solución del problema es considerar la tangente como la recta determinada por
dos puntos en la curva “infinitamente próximos” entre sí. Otra forma de decir lo mismo es que
una pieza “infinitamente corta” de la curva es recta. El problema es que resulta difícil ser preci-
so sobre los significados de las frases “infinitamente próximos” e “infinitamente cortos”.

Poco avance se logró en este problema hasta la invención de la geometría analítica en el
siglo XVII por Pierre de Fermat (1601-1665) y René Descartes (1596-1650). Una vez que se pudo
representar una curva por medio de una ecuación, fue posible afirmar con más confianza lo que
se entendía por puntos “infinitamente próximos”, al menos para ecuaciones polinomiales como
y = x2. Con simbolismo algebraico para representar puntos en la curva, era posible considerar
dos puntos sobre la curva con coordenadas x0 y x1, de modo que x1 – x0 es la distancia entre las
coordenadas x. Cuando la ecuación de la curva se escribía en cada uno de estos puntos y una de
las dos ecuaciones se restaba de la otra, un lado de la ecuación resultante contenía el factor x1 –
x0, que entonces podía eliminarse por división. Por lo tanto, si y entonces

y1 - y0 = x1
2 - x0

2 = (x1 - x0) = (x1 + x0), de modo que Cuando (x1 = x0),

se concluye que (y1 = y0), y la expresión carece de sentido. Sin embargo, la expresión

x1 + x0 tiene el valor perfectamente definido 2x0. Entonces, es posible considerar a 2x0 como la
razón de la diferencia infinitamente pequeña en y; es decir, y1 - y0 a la diferencia infinitamente
pequeña en x; es decir, x1 - x0, cuando el punto (x1, y1) está infinitamente cerca del punto (y1,
y0) sobre la curva y = x2. Como aprenderá al estudiar cálculo, esta razón proporciona suficiente
información para trazar la recta tangente a la curva y = x2.

Excepto por pequeños cambios en la notación, el razonamiento anterior es exactamente la
forma en que Fermat encontró la tangente a una parábola. Sin embargo, estaba abierta a una
objeción lógica: en un momento, ambos lados de la ecuación se dividen entre x1 - x0, entonces
en un paso posterior decidimos que x1 - x0 = 0. Puesto que la división entre cero es una opera-
ción ilegal, parece que estamos tratando de comernos nuestro pastel y no hacerlo; es decir, no se
pueden hacer ambas cosas. Tuvo que pasar algún tiempo para responder de manera convincente
a esta objeción.

Hemos visto que Arquímedes no pudo resolver el problema fundamental del cálculo dife-
rencial: trazar la tangente a una curva. Sin embargo, Arquímedes pudo resolver algunos de los
problemas fundamentales del cálculo integral. De hecho, encontró el volumen de una esfera
mediante un sistema extremadamente ingenioso: consideró un cilindro que contenía un cono y
una esfera e imaginó cortar esta figura en una infinidad de rebanadas delgadas. Al suponer las
áreas de estas secciones del cono, la esfera y el cilindro, pudo demostrar cómo el cilindro equi-
libraría al cono y a la esfera si las figuras se colocan en los platos opuestos de una balanza. Este
equilibrio proporcionó una relación entre las figuras, y como Arquímedes ya conocía los volú-
menes del cono y del cilindro, entonces pudo calcular el volumen de la esfera.

Este razonamiento ilustra la segunda técnica infinitesimal que se encuentra en los funda-
mentos del cálculo: un volumen puede considerarse como una pila de figuras planas, y un área
puede considerarse como una pila de segmentos de rectas, en el sentido de que si cada sección
horizontal de una región es igual a la misma sección horizontal de otra región, entonces las dos
regiones son iguales. Durante el Renacimiento europeo este principio se volvió de uso muy
común bajo el nombre de método de los indivisibles para encontrar las áreas y los volúmenes de
muchas figuras. Hoy en día se denomina principio de Cavalieri en honor de Bonaventura
Cavalieri (1598-1647), quien lo usó para demostrar muchas de las fórmulas elementales que
ahora forman parte del cálculo integral. El principio de Cavalieri también fue descubierto en
otras tierras donde jamás llegó la obra de Euclides. Por ejemplo, los matemáticos chinos del
siglo V Zu Chongzhi y su hijo Zu Geng hallaron el volumen de una esfera usando una técnica
bastante parecida al método de Arquímedes.

Así, encontramos matemáticos que anticiparon el cálculo integral usando métodos infinite-
simales para encontrar áreas y volúmenes en una etapa muy temprana de la geometría, tanto en
la Grecia como la China antiguas. Así ocurre con el método infinitesimal para trazar tangentes;
no obstante, este método para encontrar áreas y volúmenes estaba sujeto a objeciones. Por ejem-
plo, el volumen de cada sección plana de una figura es cero; ¿cómo es posible reunir una colec-
ción de ceros para obtener algo que no es cero? Además, ¿por qué el método no funciona en una
dimensión? Considere las secciones de un triángulo rectángulo paralelas a uno de sus catetos.

y1 � y0

x1 � x0

y1 � y0

x1 � x0
� x1 � x0.

y1 � x 2
1,y0 � x 2

0
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Cada sección corta a la hipotenusa y al otro cateto en figuras congruentes; a saber, en un punto
a cada uno. Sin embargo, la hipotenusa y el otro cateto no miden lo mismo. Objeciones como
ésta eran preocupantes. Los resultados obtenidos con estos métodos fueron espectaculares. No
obstante, los matemáticos prefirieron aceptarlos como un acto de fe, seguir usándolos e intentar
construir sus fundamentos más tarde, justo como en un árbol cuando la raíz y las ramas crecen
al mismo tiempo.

La invención del cálculo A mediados del siglo XVII se conocían muchas de las técnicas y
hechos elementales del cálculo, incluso métodos para encontrar las tangentes de curvas simples
y fórmulas de áreas acotadas por estas curvas. En otras palabras, muchas de las fórmulas que
usted encontrará en los primeros capítulos de cualquier libro de texto de cálculo ya eran conoci-
das antes de que Newton y Leibniz iniciaran su obra. Lo que faltaba hasta fines del siglo XVII era
tomar conciencia de que estos dos tipos de problemas están relacionados entre sí.

Para ver cómo se descubrió la relación, es necesario abundar más en las tangentes. Ya men-
cionamos que para trazar una tangente a una curva en un punto dado se requiere saber cómo
encontrar un segundo punto en la recta. En la etapa inicial de la geometría analítica este segun-
do punto solía tomarse como el punto en que la tangente corta al eje x. La proyección sobre el
eje x de la porción de la tangente entre el punto de tangencia y la intersección con el eje x se
denominaba subtangente. En el estudio de las tangentes surgió un problema muy natural: recons-

truir una curva, dada la longitud de su subtangente en cualquier punto. Por medio del estudio
de este problema fue posible percibir que las ordenadas de cualquier curva son proporcionales
al área bajo una segunda curva cuyas ordenadas son las longitudes de las subtangentes a la curva
original. El resultado es el teorema fundamental del cálculo. El honor de haber reconocido de
manera explícita esta relación pertenece a Isaac Barrow (1630-1677), quien lo indicó en un libro
denominado Lectiones Geometricae en 1670. Barrow planteó varios teoremas semejantes al teo-
rema fundamental del cálculo. Uno de ellos es el siguiente: Si se traza una curva de modo que

la razón de su ordenada a su subtangente [esta razón es precisamente lo que ahora se denomi-
na derivada] es proporcional a la ordenada de una segunda curva, entonces el área bajo la

segunda curva es proporcional a la ordenada de la primera.
Estas relaciones proporcionaron un principio unificado para el gran número de resultados

particulares sobre tangentes y áreas que se habían encontrado con el método de indivisibles a
principios del siglo XVII: para encontrar el área bajo una curva había que hallar una segunda
curva para la cual la razón de la ordenada a la subtangente sea igual a la ordenada de la curva
dada. Así, la ordenada de esa segunda curva proporciona el área bajo la primera curva.

En este punto el cálculo estaba preparado para surgir. Sólo requería de alguien que pro-
porcionara métodos sistemáticos para el cálculo de tangentes (en realidad, subtangentes) e in-
vertiera ese proceso para encontrar áreas. Es el trabajo realizado por Newton y Leibniz. Estos
dos gigantes de la creatividad matemática siguieron senderos bastante distintos en sus descubri-
mientos.

El método de Newton era algebraico y desarrolló el problema de encontrar un método efi-
ciente para extraer las raíces de un número. Aunque apenas empezó a estudiar álgebra en 1662,
ya alrededor de 1665 las reflexiones de Newton sobre el problema de extraer raíces lo conduje-
ron al descubrimiento de la serie infinita que actualmente se denomina teorema del binomio; es
decir, la relación

Al combinar el teorema del binomio con técnicas infinitesimales, Newton pudo deducir las
fórmulas básicas del cálculo diferencial e integral. Crucial en el enfoque de Newton fue el uso
de series infinitas para expresar las variables en cuestión, y el problema fundamental que Newton
no resolvió fue establecer que tales series podían manipularse justo como sumas finitas. Por
tanto, en un sentido Newton llevó al infinito desde una entrada a su madriguera sólo para encon-
trar que una cara estaba frente a la otra.

A partir de la consideración de las variables como cantidades físicas que cambian su valor
con el tiempo, Newton inventó nombres para las variables y sus razones de cambio que refleja-
ban esta intuición. Según Newton, un fluent (x) es una cantidad en movimiento o que fluye; su
fluxión (x) es su razón de flujo, lo que ahora se denomina velocidad o derivada. Newton expuso

(1 � x)r
� 1 � rx �

r(r � 1)
2

x2
�

r(r � 1)(r � 2)
1 . 2 . 3

r3
� p
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sus resultados en 1671 en un tratado denominado Fluxions escrito en latín, pero su obra no fue
publicada sino hasta que apareció una versión en inglés en 1736. (La versión original en latín
fue publicada por primera vez en 1742.)

A pesar de la notación y de sus razonamientos que parecen insuficientes y rudimentarios hoy
en día, el tremendo poder del cálculo brilla a través del método de las fluxiones de Newton en la
solución de problemas tan difíciles como encontrar la longitud de arco de una curva. Se pensa-
ba que esta “rectificación” de una curva era imposible, pero Newton demostró que era posible
encontrar un número finito de curvas cuya longitud podía expresarse en términos finitos.

El método de Newton para el cálculo era algebraico, como hemos visto, y heredó el teore-
ma fundamental de Barrow. Por otro lado, Leibniz trabajó el resultado fundamental desde 1670,
y su enfoque era diferente al de Newton. Se considera a Leibniz como el pionero de la lógica
simbólica, y su opinión acerca de la importancia de la buena notación simbólica era mucho
mejor que la de Newton. Inventó la notación dx y dy que sigue en uso. Para él, dx era una abre-
viación de “diferencia en x”, y representaba la diferencia entre dos valores infinitamente próxi-
mos de x. En otras palabras, expresaba exactamente lo que teníamos en mente hace poco cuan-
do consideramos el cambio infinitamente pequeño x1 – x0. Leibniz consideraba que dx era un
número “infinitesimal”, diferente de cero, pero tan pequeño que ninguno de sus múltiplos podía
exceder cualquier número ordinario. Al ser diferente de cero, podía servir como denominador en
una fracción, y así dy/dx era el cociente de dos cantidades infinitamente pequeñas. De esta forma
esperaba superar las objeciones al nuevo método establecido para encontrar tangentes.

Leibniz también realizó una aportación fundamental en la técnica controvertida de encon-
trar áreas al sumar secciones. En lugar de considerar el área [por ejemplo, el área bajo una curva
y = f (x)] como una colección de segmentos de recta, la consideraba como la suma de las áreas
de rectángulos “infinitamente delgados” de altura y = f (x) y base infinitesimal dx. Por tanto, la
diferencia entre el área hasta el punto x + dx y el área hasta el punto x era la diferencia infinite-
simal en área dA = f (x) dx, y el área total se encontraba sumando estas diferencias infinitesima-
les en área. Leibniz inventó la S alargada (el signo integral ) que hoy en día se usa universal-
mente para expresar este proceso de suma. Así expresaba el área bajo la curva y = f (x) como
A = dA = f (x) dx, y cada parte de este símbolo expresaba una idea geométrica simple y clara.

Con la notación de Leibniz, el teorema fundamental del cálculo de Barrow simplemente
indica que el par de ecuaciones

son equivalentes. Debido a lo que acaba de plantearse, esta equivalencia es casi evidente.
Tanto Newton como Leibniz lograron grandes avances en matemáticas, y cada uno posee

bastante crédito por ello. Resulta lamentable que la estrecha coincidencia de su obra haya con-
ducido a una enconada discusión sobre la prioridad entre sus seguidores.

Algunas partes del cálculo, que implican series infinitas, fueron inventadas en India duran-
te los siglos XIV y XV. Jyesthadeva, matemático indio de fines del siglo XV, proporcionó la serie

para la longitud de un arco de círculo, demostró este resultado y de manera explícita planteó que esta
serie converge sólo si u no es mayor que 45�. Si se escribe u = arctan x y se usa el hecho de que

= tan u = x, esta serie se convierte en la serie normal para arctan x.

De modo independiente, otras series fueron desarrolladas en Japón casi al mismo tiempo que
en Europa. El matemático japonés Katahiro Takebe (1664-1739) encontró un desarrollo en serie
equivalente a la serie para el cuadrado de la función arcsen. Él consideró el cuadrado de la mitad

de arco a la altura h en un círculo de diámetro d; esto resultó ser la función f (h) = .

Takebe carecía de notación para el término general de una serie, aunque descubrió patrones en
los coeficientes al calcular geométricamente la función en el valor particular de h = 0.000001,
d = 10 hasta un valor muy grande de cifras decimales —más de 50—, y luego al usar esta pre-
cisión extraordinaria para refinar la aproximación al sumar sucesivamente términos correctivos.

Qd
2

 arcsen 
h
d
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cos u

A � � f (x) dx,   dA � f (x) dx
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Al proceder de esta manera pudo discernir un patrón en las aproximaciones sucesivas, a partir de
lo cual, por extrapolación, pudo plantear el término general de la serie:

Después de Newton y de Leibniz quedaba el problema de dar contenido al esqueleto inven-
tado por estos dos genios. La mayor parte de su obra fue completada por matemáticos de la
Europa continental, en especial por el círculo creado por los matemáticos suizos James Bernoulli
(1655-1705) y John Bernoulli (1667-1748), así como el estudiante de este último, el marqués de
L´Hôpital (1661-1704). Éstos y otros matemáticos trabajaron las conocidas fórmulas para las
derivadas e integrales de funciones elementales que aún se encuentran en libros de texto actua-
les. Las técnicas esenciales de cálculo eran conocidas a principios del siglo XVIII, y un libro
de texto del siglo XVIII como la Introducción al análisis del infinito, de Euler (1748), en caso de
haber estado traducida al español se vería bastante como un libro de texto moderno.

El legado del cálculo Una vez que hemos abordado las fuentes del cálculo y el procedimiento
con el que fue elaborado, a continuación analizaremos brevemente los resultados que produjo.

El cálculo obtuvo una cantidad impresionante de triunfos en sus dos primeros siglos.
Resultó que docenas de fenómenos físicos previamente oscuros que implican calor, fluidez,
mecánica celeste, elasticidad, luz, electricidad y magnetismo poseían propiedades mensurables
cuyas relaciones podían describirse como ecuaciones diferenciales. La física se comprometió
para siempre en hablar el lenguaje del cálculo.

Sin embargo, de ninguna manera fueron resueltos todos los problemas surgidos de la física.
Por ejemplo, no era posible encontrar, en términos de funciones elementales conocidas, el área
bajo una curva cuya ecuación implicaba la raíz cuadrada de un polinomio cúbico. Estas integra-
les surgieron a menudo tanto en geometría como en física, y llegaron a conocerse como integra-

les elípticas porque el problema de encontrar la longitud sólo podía comprenderse cuando la
variable real x se sustituye por una variable compleja z = x + iy. El replanteamiento del cálculo
en términos de variables complejas condujo a mucho descubrimientos fascinantes, que termina-
ron por ser codificados como una nueva rama de las matemáticas denominada teoría de funcio-
nes analíticas.

La definición idónea de integración siguió siendo un problema durante algún tiempo. Como
consecuencia del uso de procesos infinitesimales para encontrar áreas y volúmenes surgieron las
integrales. ¿Debía la integral definirse como una “suma de diferencias infinitesimales” o como
la inversa de la diferenciación? ¿Qué funciones podían integrarse? En el siglo XIX se propusie-
ron muchas definiciones de la integral, y la elaboración de estas ideas llevó al tema conocido
actualmente como análisis real.

Mientras las aplicaciones del cálculo han continuado cosechando cada vez más triunfos en
un flujo interminable durante los últimos trescientos años, sus fundamentos permanecieron en un
estado insatisfactorio durante la primera mitad de este periodo. El origen de la dificultad era el
significado que había de asociarse a la dx de Leibniz. ¿Qué era esta cantidad? ¿Cómo podía no
ser positiva ni cero? De ser cero, no podía usarse como denominador; de ser positiva, entonces
las ecuaciones en que aparecía no eran realmente ecuaciones. Leibniz consideraba que los infi-
nitesimales eran entes verdaderos, que las áreas y los volúmenes podían sintetizarse al “sumar”
sus secciones, como habían hecho Zu Chongzhi, Arquímedes y otros. Newton tenía menos con-
fianza acerca de la validez de los métodos infinitesimales, e intentó justificar sus razonamientos
en formas que pudiesen cumplir las normas del rigor euclideano. En su Principia Mathematica

escribió:

Estos lemas tienen el cometido de evitar el tedio de deducir ad absurdum demostraciones implí-
citas, según el método de los geómetras de la antigüedad. Las demostraciones son más breves
según el método de indivisibles, pero debido a que la hipótesis de indivisibles parece ser algo más
dura y, en consecuencia, ese método se acepta como menos geométrico, en lugar de ello elijo
reducir las demostraciones de las siguientes proposiciones a las sumas y razones primera y últi-
ma de cantidades que desaparecen; es decir, a los límites de estas sumas y razones... En conse-
cuencia, si en lo sucesivo debo considerar que las cantidades están formadas de partículas, o debo
usar pocas líneas curvas por las [rectas] idóneas, no debe interpretarse que estoy queriendo decir
cantidades indivisibles, sino cantidades divisibles que desaparecen. . .

f (h) � dh c1 � a
q

n�1

22n�1(n!)2

(2n � 2)!
Qh
d
Rn d
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. . . En cuanto a estas últimas razones con las que desaparecen las cantidades, no son en verdad
las razones de cantidades últimas, sino límites hacia los cuales las razones de cantidades decre-
cientes sin límite siempre convergen; y a los que tienden de manera más próxima que con cual-
quier diferencia dada, aunque nunca van más allá, ni en el efecto alcanzado, hasta que las canti-
dades disminuyen in infinitum.

En este pasaje Newton afirma que la falta de rigor implicado en el uso de razonamientos
infinitesimales puede compensarse con el uso de límites. Sin embargo, su planteamiento de este
concepto en el pasaje citado no es tan claro como uno desearía. Esta falta de claridad condujo al
filósofo Berkeley a referirse desdeñosamente a los fluxiones como “fantasmas de cantidades”.
Sin embargo, los avances alcanzados en física usando cálculo fueron tan sobresalientes que
durante más de un siglo nadie se preocupó en proporcionar el rigor al que aludía Newton (¡y los
físicos siguen sin preocuparse al respecto!). Una presentación completamente rigurosa y siste-
mática del cálculo llegó sólo hasta el siglo XIX.

Según la obra de Augustin-Louis Cauchy (1789-1856) y Karl Weierstrass (1815-1896), la
percepción era que los infinitesimales eran meramente de naturaleza heurística y que los estu-
diantes estaban sujetos a un riguroso enfoque “epsilon-delta” de los límites. De manera sorpren-
dente, en el siglo XX Abraham Robinson (1918-1974) demostró que es posible desarrollar un
modelo lógicamente consistente de los números reales en el que hay infinitesimales verdaderos,
como creía Leibniz. Sin embargo, parece que este nuevo enfoque, denominado “análisis no
estándar”, no ha sustituido a la presentación tradicional actual del cálculo.

Ejercicios

1. El tipo de espiral considerada por Arquímedes ahora se denomina así en su honor. Una espi-
ral de Arquímedes es el lugar geométrico de un punto que se mueve a velocidad constante
a lo largo de un rayo que gira con velocidad angular constante alrededor de un punto fijo.
Si la velocidad lineal a lo largo del rayo (la componente radial de su velocidad) es y, el
punto está a una distancia yt del centro de rotación (suponiendo que es donde empieza) en
el instante t. Suponga que la velocidad angular de rotación del rayo es v (radianes por uni-
dad de tiempo). Dados un círculo de radio R y una velocidad radial de y, ¿cuál debe ser v
para que la espiral llegue al círculo al final de su primera vuelta? Res.

El punto tendrá una velocidad circunferencial rv = yt v. Según un principio enunciado
en la Mecánica de Aristóteles, la velocidad real de la partícula está dirigida a lo largo de la
diagonal de un paralelogramo (en este caso un rectángulo) cuyos lados son las componen-
tes. Use este principio para mostrar cómo construir la tangente a la espiral (que es la recta
que contiene a la diagonal de este rectángulo). Compruebe que los lados de este rectángulo
guardan la relación 1 : 2p. Observe la figura 1.

2. La figura 2 ilustra cómo Arquímedes encontró la relación entre los volúmenes de la esfera,
el cono y el cilindro. El diámetro AB está duplicado, haciendo BC = AB. Cuando esta figu-
ra se hace girar alrededor de esta recta, el círculo genera una esfera, el triángulo DBG gene-
ra un cono y el rectángulo DEFG genera un cilindro. Demuestre los hechos siguientes:

a) Si B se usa como fulcro, el cilindro tiene como centro de gravedad el centro K del círcu-
lo y, en consecuencia, todo puede concentrarse ahí sin cambiar la torsión alrededor de B.

b) Cada sección del cilindro perpendicular a la recta AB, permaneciendo en su posición
actual, equilibraría exactamente la misma sección del cono más la sección de la esfera
si éstos dos se desplazaran al punto C.

c) Por tanto, el cilindro concentrado en K equilibraría al cono y a la esfera que se concen-
tran en C.

d) En consecuencia, el cilindro es igual al doble de la suma del cono y la esfera.
e) Puesto que se sabe que el cono es un tercio del cilindro, se concluye que la esfera debe

ser un sexto de éste.
f ) Que el volumen del cilindro es 8pr2.
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3. El método con el que Zu Chongzhi y Zu Geng encontraron el volumen de la esfera es el
siguiente: imagine que la esfera es una pelota fuertemente adherida dentro de la intersección
de dos cilindros que forma ángulos rectos entre sí. Luego, el sólido formado por la intersec-
ción de los dos cilindros (denominado paraguas doble en chino) y que contiene la pelota se
ajusta perfectamente dentro de un cubo cuya arista es igual al diámetro de la esfera.

A partir de esta descripción, trace una sección de la esfera dentro del paraguas doble
formado por los ejes de los dos cilindros y a una distancia h debajo de este pleno. Comprue-
be los hechos siguientes:

a) Si el radio de la esfera es r, el diámetro de su sección circular es 
b) Por tanto, el área del cuadrado formado por esta sección del paraguas doble es 4(r2 – h2),

de modo que el área entre la sección del cubo y la sección del paraguas doble es

c) La sección correspondiente de una pirámide cuya base es la parte inferior de un cubo y
cuyo vértice está en el centro de la esfera (o del cubo) también tiene un área de 4h2. Por
tanto, el volumen entre el paraguas doble y el cubo es exactamente el volumen de esta
pirámide más su imagen especular arriba del plano central. Concluya que la región entre
el paraguas doble y el cubo es un tercio del cubo.

d) En consecuencia, el paraguas doble ocupa dos tercios del volumen del cubo; es decir, su
volumen es 

e) Cada sección circular de la esfera está inscrita en la sección cuadrada correspondiente
del paraguas doble. Por tanto, la sección circular es de la sección del paraguas doble.

f) En consecuencia, el volumen de la esfera es del volumen del paraguas doble; es decir,
.

4. Proporcione un razonamiento “infinitesimal” de que el área de la esfera es tres veces su
volumen dividido entre su radio, al suponer que la esfera es una colección de pirámides
“infinitamente delgadas” donde todos los vértices se encuentren adheridos al origen. [Suge-

rencia: parta del hecho de que el volumen de una pirámide es un tercio del área de su base
multiplicada por su altura. Arquímedes afirmaba que éste es el razonamiento que lo condu-
jo al descubrimiento del área de la esfera.]

4
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Los números reales

En esta unidad Una de las herramientas más poderosas de las matemáticas es el cálculo. Su
evolución ha ocurrido de manera paralela a los diferentes sistemas numéricos, desde los prime-
ros conteos hasta la era tecnológica. El cálculo fundamenta su estudio en las propiedades de los
números reales. En esta unidad estudiaremos los axiomas fundamentales, los de orden y los de
completitud como preámbulo para otras aplicaciones más complejas.

Competencia específica

Comprender las propiedades de los números reales para resolver desigualdades
de primer y segundo grado con una incógnita y desigualdades con valor absoluto,
representando las soluciones en la recta numérica real.

1

Unidad 1
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1.1 Los números reales
Hoy en día la ciencia y la tecnología han alcanzado niveles extraordinarios. El desarrollo de la
física, la química, la biología, la astronomía, la medicina, la ingeniería y muchas ramas más, fun-
damentan su progreso en la aplicación de una de las herramientas más poderosas de las matemá-
ticas: el cálculo infinitesimal.

En términos históricos el desarrollo del cálculo se produjo al buscar soluciones a problemas
de la vida real, entre los más conocidos podemos mencionar:

• Describir la velocidad de una partícula con velocidad constante.

• Determinar la ecuación de la tangente a una curva en un punto.

• Analizar la razón de cambio entre dos variables.

• Calcular el área de una superficie y el volumen de un sólido.

El cálculo sustenta su estudio en el conjunto de los números reales, por esta razón es necesario
conocer sus axiomas y sus principales propiedades.

Existen diversas maneras de iniciar el estudio del sistema de los números reales, pero una
de las más utilizadas considera los sistemas numéricos más sencillos, el primero de ellos es el
conjunto de los números naturales.

Definición del conjunto de números naturales

El conjunto de los números naturales se denota por �, y se define como

� = {1, 2, 3, 4, 5, 6, 7, 8, 9, . . .}

Una de las primeras aplicaciones de las matemáticas en la vida real ha sido el conteo y los núme-
ros naturales han sido la herramienta. Entre las propiedades más importantes de este conjunto
podemos mencionar la existencia de un orden, la existencia del 1 como primer elemento, que
todo número natural tiene otro como sucesor y que todo número natural, excepto el número 1,
tiene otro número natural como antecesor. En términos formales se tiene:

Propiedades de los números naturales

1. 1 6 n para todo n H �.

2. Si k H � se define su sucesor como k + 1 y además k + 1 H �.

3. Si k H �, k Z 1, se define su antecesor como k - 1 y además k + 1 H �.

En � se definen dos operaciones: la suma y el producto. Se verifica que ambas operaciones son
cerradas, conmutativas y asociativas, la suma distribuye respecto al producto. El número natu-
ral 1 es el neutro multiplicativo. Sin embargo, estas propiedades no son suficientes para descri-
bir algunos fenómenos físicos, por ejemplo, las temperaturas bajo cero, las altitudes por debajo
del mar o la distancia entre dos puntos iguales; en concreto, carecen de un elemento neutro adi-
tivo y de inversos aditivos.

Un conjunto “más grande” que resuelve este inconveniente se define como el conjunto de
los números enteros.

Definición del conjunto de los números enteros

Se define el conjunto de los números enteros como

� = {. . . , -2, -1, 0, 1, 2, . . .}

En � también están definidas las operaciones de suma y producto que son, de nueva cuenta,
cerradas, conmutativas y asociativas, también se verifica la propiedad distributiva de la suma,
existe el elemento neutro multiplicativo, pero además se agregan el “cero” como elemento neu-
tro aditivo y los “números negativos” como inversos aditivos. Estas propiedades permiten la defi-
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Los números naturales están
contenidos en los números
enteros � ( �

La resta de dos números es una
operación derivada de la suma,
y se define como la suma de un
número con el inverso aditivo de
otro.



nición de la resta como una operación derivada de sumar un número con el inverso aditivo de
otro, es decir x - y = x + (-y).

No obstante lo anterior, la solución a problemas elementales como repartir una naranja entre
dos personas o describir qué parte representa un minuto de una hora, o simplemente para dar el
resultado exacto de dividir 46 dulces entre 5 niños, no pueden resolverse en términos de núme-
ros naturales ni de números enteros. Se hace necesaria, entonces, la introducción de los nú-
meros fraccionarios, también conocidos como los números racionales que tienen otras propieda-
des de mayor aplicación.

Definición del conjunto de los números racionales

Se define el conjunto de los números racionales como

� =

EJEMPLO  1 Algunos números racionales

Los siguientes son ejemplos de números racionales.

1.

2. Cualquier número natural.

3. Cualquier número entero.

4. Cualquier expansión decimal finita como 0.25, 3.1, -7.05, 1.1

5. Cualquier expansión decimal infinita periódica, por ejemplo

3.4 = 3.44444444444 . . . , -52.04 = -52.040404040404 . . . .

5.123 = 5.123123123 . . . (la línea arriba de los dígitos indica que se repiten infinita-
mente).

Los números racionales históricamente se definen como cocientes de números enteros, la condi-
ción es que el denominador sea diferente de cero. Dado que todo número entero n puede expre-
sarse como el cociente , entonces se considera que todo número entero es un número racional.
Es decir � ( � ( �.

Todas las propiedades de los enteros siguen siendo válidas en �, pero además se verifica la
existencia de los inversos multiplicativos para cualquier número racional, excepto el cero. Si

H � el inverso multiplicativo se define por H � y satisface = 1. Se define la división
de dos números como el producto de uno por el inverso de otro distinto de cero, esto es

.

Dado un número racional es posible realizar la división de a entre b, para obtener como
resultado un número decimal. El teorema 1.1.1, presentado sin demostración, expresa las opcio-
nes de este resultado.
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La definición antigua  de la
unidad fundamental de longi-
tud, como la diezmillonésima
parte del meridiano terrestre a
lo largo de un cuadrante, es un
ejemplo de número racional.

La letra � se tomó original-
mente de la palabra “cociente”
en inglés.

Teorema 1.1.1 Todo número racional puede expresarse como una expansión decimal
finita o como una expansión decimal infinita periódica.

EJEMPLO  2 Una expansión decimal finita es un número racional

Demostrar que la expansión decimal 0.14 es un número racional.

Todo número entero puede
expresarse como el cociente de
él mismo y del 1, de manera
que todo entero es un número
racional.

� ( � ( �

Para todo H �, Z 0, se
define el inverso multiplicativo

H � y satisface = 1.b
a

a
b

b
a

a
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Solución

Si x = 0.14, entonces

x = 0.14 d multiplicar por 102

100x = 14 d despejar

x =

EJEMPLO  3 Otra expansión decimal finita que es un número racional

Demostrar que la expansión decimal 0.2124 es un número racional.

Solución

Si x = 0.2124, entonces

x = 0.2124 d multiplicar por 104

10 000x = 2 124 d despejar

x =

En general, dada la expansión decimal finita 0.a1a2a3 . . . an se supone

x = 0.a1a2a3 . . . an d multiplicar por 10n

10n x = a1a2a3 . . . an d despejar x

x =

EJEMPLO  4 Una expansión decimal infinita periódica es un número racional

Demostrar que la expansión decimal infinita 0.543543543543 . . . = 0.543 es un número ra-
cional.

Solución

Sea x = 0.543 = 0.543543543543 . . . , entonces

x = 0.543543543543 . . . d multiplicar por 103

103 x = 543.543543543543 . . . d restar a esta nueva expresión la anterior

103 x = 543.543543543543 . . .

x = 0.543543543543 . . . d despejar

999x = 543

x =

EJEMPLO  5 Una expansión decimal infinita periódica es un número racional

Demostrar que la expansión decimal infinita 0.1241414141 . . . = 0.1241 es un número racional.

Solución

Sea x = 0.1241 = 0.1241414141 . . . , entonces

x = 0.1241414141 . . . d multiplicar por 104 y por 102

104 x = 1 241.41414141 . . .

102 x = 12.41414141 . . . d restar estas ecuaciones

543

999

a a a an

n

1 2 3

10

…

2 124

10 000

531

2 500
=

14

100

7

50
=
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104 x = 1241.41414141 . . .

102 x = 12.41414141 . . . d despejar

9 900x = 1 229

x =

Dados dos números racionales cualesquiera, siempre es posible determinar un nuevo número
racional comprendido entre ellos, esto puede realizarse tantas veces como se desee; por ejemplo,
entre los racionales m y n se encuentra el número racional (m + n) 2. Sin embargo, los números
racionales no “llenan” toda la recta numérica.

Al intentar responder preguntas como: ¿cuál es la longitud de la arista de un cuadrado que
tiene área 2? o ¿cuál es la razón entre el perímetro de una circunferencia y su radio?, encontra-
mos que las respuestas 12 y p, respectivamente, no pueden expresarse como un número racio-
nal (vea los problemas 23 y 24 de la sección 1.4). Números de este tipo se conocen como irra-
cionales y gráficamente se “intercalan” en toda la recta numérica en los “huecos” que existen
entre los elementos del conjunto �.

Una de las primeras aplicaciones de los números racionales fue construir números irracio-
nales, esto después de un sofisticado proceso.

La necesidad de utilizar números irracionales se presentó en algunos problemas de geome-
tría en la Grecia antigua; sin embargo, fue hasta el siglo XIX que se obtuvieron avances signifi-
cativos gracias a los estudios realizados por Karl Weierstrass, George Cantor y Richard Dedekin.
La construcción total se dio a partir de los axiomas que estableció Giuseppe Peano en 1889.

Los números irracionales son todos aquellos que no pueden expresarse como el cociente
de dos enteros, o bien como aquellos números que tienen una expansión decimal infinita no

periódica. En ocasiones basta entender que los irracionales son un conjunto disjunto de los racio-
nales.

Definición del conjunto de números irracionales

Se define el conjunto de los números irracionales II como el conjunto de todos los números que
no son racionales.

II = {x 0 x es una expansión decimal infinita no periódica}

EJEMPLO  6 Algunos números irracionales

Algunos números irracionales son:

1. e

2. p

3. 12

4. 1p, con p número primo.

5. a +1p, si a es un número racional y p un número primo.

EJEMPLO  7 Otros números irracionales

Un número primo sólo es divisible por él mismo y por la unidad, los números primos son 2, 3,
5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 57, 59, 61, 67, 71, 73, 79, 83, 89, 97, . . . El
número 1p es irracional siempre que p sea un número primo.

Se deja como ejercicio al lector determinar cuáles propiedades de los racionales se satisfa-
cen para los irracionales. No todas las propiedades siguen siendo válidas; por ejemplo, podemos
mencionar que la suma no es cerrada, basta considerar que -2 + p y 7 - p son dos números irra-
cionales que sumados resultan un número entero.

>
1 229

9 900

1.1 Los números reales 5



Ya estamos en condiciones de obtener la definición de un conjunto más general, el conjun-
to de los números reales.

Definición del conjunto de números reales

Se define al conjunto de los números reales como la unión disjunta de números racionales e irra-
cionales. Es decir � = � ´ II.

Es importante observar que los racionales y los irracionales son conjuntos disjuntos, esto es,
que dado un número real o está en � o está en II pero nunca en ambos. Además se verifican las
contenciones propias

� ( � ( � ( � e II ( �

1.2 Los números reales y la recta numérica
Los números reales se pueden representar gráficamente como puntos sobre una línea recta cono-
cida como la recta real. Sobre esta recta se fijan dos puntos representados por 0 y 1. Estos dos
puntos permiten construir todos los demás, ya que para representar cualquier número real x

se toma un segmento de longitud x a la derecha del cero si x es positivo o a la izquierda si x es
negativo.

El extremo de este segmento es el punto correspondiente al número x. El cero se conoce
como origen de la recta real y el 1 como la escala. Por lo anterior, sobre la recta real se repre-
sentan los reales positivos, el cero y los reales negativos, y se verifica una regla de correspon-
dencia: cada punto de la recta corresponde a un número real y cada número real lo podemos
representar como un punto de esta recta. La recta real se muestra en la FIGURA 1.2.1.

Los números definidos a la derecha del cero se conocen como reales positivos y el conjun-
to de todos ellos se representa por �+. De manera análoga, se define �- como el conjunto de
todos los reales a la izquierda del cero.

Otra propiedad importante de los números reales es que entre dos números reales diferentes
cualesquiera, sin importar cuán cercanos estén, siempre existe otro número real y, en consecuen-
cia, entre dos números reales cualesquiera diferentes, siempre existe una infinidad de números
reales. A diferencia de � y de II los reales no contienen “huecos”. En términos matemáticos se
dice que el conjunto de los números reales es un conjunto denso.

1.3 Propiedades de los números reales
El sistema de los números reales es uno de los pilares fundamentales en el desarrollo de las mate-
máticas a cualquier nivel, existen muchos resultados que muestran su importancia histórica. No
obstante, la presente obra no realiza un estudio más profundo de este conjunto numérico y sim-
plemente se establece el conjunto de axiomas a partir de los cuales se derivan todas las propie-
dades utilizadas en un curso básico de cálculo.

Axiomas de los números reales

Dados dos números reales cualesquiera x y y se define la suma x + y H � y el producto xy H �,
que satisfacen los siguientes axiomas:

Axioma 1 Propiedad conmutativa de la suma

x + y = y + x

Axioma 2 Propiedad asociativa de la suma

x + (y + z) = (x + y) + z

6 UNIDAD 1 Los números reales

0 1

FIGURA 1.2.1 La recta real

El conjunto de los números
reales es un conjunto denso.



Axioma 3 Existencia del neutro aditivo

Existe el 0 H � tal que x + 0 = x.

Axioma 4 Existencia de inversos aditivos

Para todo número real x existe -x H �, tal que x + (-x) = 0.

Axioma 5 Propiedad conmutativa del producto

xy = yx

Axioma 6 Propiedad asociativa del producto

x(yz) = (xy)z

Axioma 7 Existencia del neutro multiplicativo

Existe el 1 H � tal que x . 1 = x.

Axioma 8 Existencia de inversos aditivos

Para todo número real distinto de cero x existe x-1 H �, tal que x . x-1 = 1.

Axioma 9 Propiedad distributiva

x(y + z) = xy + xz

Todas las propiedades conocidas de los números reales pueden demostrarse a partir de los axiomas
anteriores, por esta razón se dice que la teoría de los números reales es una teoría axiomática.

1.3 Propiedades de los números reales 7

NOTAS DESDE EL AULA

Si existiera la división entre 0 . . .

¿En dónde está el error del siguiente desarrollo?

Supongamos que es un número real distinto de cero.

Entonces sea x = y Z 0

Multiplicar la ecuación por x x2 = xy

Restar y2 en ambos lados x2 - y2 = xy - y2

Factorizar (x + y)(x - y) = y(x - y)

Despejar = y

Cancelar = y

x + y = y

Y como inicialmente x = y y + y = y

Se tiene 2y = y 1 2 = = 1 ?

¿Qué ocurrió?

y

y

( )( )

( )

x y x y

x y

+ −

−

( )( )

( )

x y x y

x y

+ −

−

d
dx

La teoría de los números reales
es una teoría axiomática.



Los axiomas de los números reales permiten definir operaciones complementarias como la
diferencia de dos números y el cociente de dos números.

Definición de resta y división de números reales

Se define la resta y la división de números reales como sigue:

a) x - y = x + (-y)

b) = xy-1, siempre que y Z 0

Propiedades de orden de los números reales

En los números reales se define una relación de orden 6, que satisface los siguientes axiomas:

Axiomas de orden en �

Sean x, y H �

Axioma 10 Ley de tricotomía

Se cumple una y sólo una de las siguientes condiciones: x 6 y, x = y, x 7 y.

Nota: x 7 y significa y 6 x

Axioma 11 Si y 6 x, entonces y + z 6 x + z para cualquier z H �

Axioma 12 Si 0 6 y y 0 6 x, entonces 0 6 xy

Axioma 13 Propiedad de transitividad

Si x 6 y y y 6 z, entonces x 6 z

Definición de los símbolos de desigualdad estricta 6 y 7

Los símbolos 6 y 7 se conocen como símbolos de desigualdad estricta y se leen “menor que” y
“mayor que”.

Definición de los símbolos de desigualdad no estricta � y �

Los símbolos � y � se conocen como símbolos de desigualdad no estricta y se leen “menor o
igual que” y “mayor o igual que”.

La expresión y � x abrevia los casos y 6 x o y = x.

La expresión y � x abrevia los casos y 7 x o y = x.

En el teorema 1.3.1 se muestran otras propiedades de orden.

x

y

8 UNIDAD 1 Los números reales

Ley de tricotomía:
Dados dos números reales cua-
lesquiera uno es mayor que otro
o son  iguales.

Teorema 1.3.1 Otras propiedades de orden

1. Si y 6 x y 0 6 z, entonces yz 6 xz

2. Si y 6 x y z 6 0, entonces yz 7 xz

3. Si 0 6 x y 0 6 y, entonces 0 6 x + y

4. Si 0 6 y 6 x y 0 6 w 6 z, entonces y + w 6 x + z

5. Si 0 6 y 6 x y 0 6 w 6 z, entonces yw 6 xz



DEMOSTRACIÓN 1 Si y 6 x, entonces por el axioma 11 y - y 6 x - y, es decir, 0 6 x - y, y si
0 6 z por el axioma 12 se cumple 0 6 (x - y)z, luego 0 6 xz - yz. De nueva cuenta por el axio-
ma 11 tenemos yz 6 xz - yz + yz, donde finalmente yz 6 xz.

DEMOSTRACIÓN 2 Si y 6 x y z 6 0, entonces 0 6 x - y y 0 6 -z, por el axioma 12 se cumple
0 6 (x - y)(-z), luego 0 6 -xz + yz. De nueva cuenta por el axioma 11 tenemos xz 6 yz.

DEMOSTRACIÓN 3 Si 0 6 x y 0 6 y, entonces por el axioma 11 si 0 6 x y 0 + x 6 x + y,

por tricotomía (axioma 10) se tiene 0 6 x + y.

DEMOSTRACIÓN 4 Si 0 6 y 6 x y 0 6 w 6 z, entonces 0 6 x - y y 0 6 z - w, por el inciso 3 de
este teorema se tiene 0 6 (x - y) + (z - w) luego 0 6 x + z - (y + w). Por último y + w 6 x + z.

DEMOSTRACIÓN 5 Si 0 6 y 6 x y 0 6 w 6 z, entonces yw 6 xw y wx 6 xz. Por tricotomía se
concluye la demostración.

El conjunto de los números reales es un conjunto ordenado

Los axiomas de orden inducen de manera natural un orden en el conjunto de los números reales,
y se tiene la siguiente convención:

1. y 6 x si y sólo si 0 6 x - y

2. y = x si y sólo si 0 = x - y

3. y � x si y sólo si 0 � x - y

En la recta real la desigualdad y 6 x se representa como un número y a la izquierda de un núme-
ro x (FIGURA 1.3.1).

En otras palabras, se dice que un número x es mayor que otro número y si y sólo si la dife-
rencia x - y es un número real positivo. De la misma manera se dice que un número x es menor
que otro número y si y sólo si la diferencia x - y es un número real negativo. Se dice que los
números son iguales si la diferencia x - y es cero.

Lo anterior define un orden de manera natural en el conjunto de los números reales, porque
para saber cuál es la ubicación correcta de un número basta compararlo con el cero.

Ínfimo y supremo
Introducimos las siguientes cuatro definiciones antes de presentar un último axioma de los
números reales que estudiaremos en esta sección:

Definición de cota superior Sea A ( �, si existe x H � tal que a 6 x para todo a H A, enton-
ces x se llama una cota superior de A y se dice que el conjunto A está acotado por arriba o que
A está acotado superiormente.

Definición de cota inferior Si existe x H � tal que x 6 a para todo a H A, entonces x se llama
una cota inferior de A y se dice que el conjunto A está acotado por abajo o que A está acotado
inferiormente.

Definición de supremo de un conjunto Sea A ( � un conjunto acotado por arriba y supon-
gamos que existe x H � que satisface las siguientes dos condiciones:

• x es una cota superior de A.

• Si y H � es una cota superior de A, entonces x � y.

Entonces x se dice el supremo de A y tiene la propiedad de ser “la menor de todas las cotas supe-
riores”.

1.3 Propiedades de los números reales 9
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Definición de ínfimo de un conjunto Sea A ( � acotado por abajo y supongamos que exis-
te x H � que satisface las siguientes dos condiciones:

• x es una cota inferior de A.

• Si y H � es una cota inferior de A, entonces y � x.

Entonces x se dice el ínfimo de A y tiene la propiedad de ser “la mayor de todas las cotas infe-
riores”.

Ya se tienen las condiciones para poder enunciar un último axioma de los números reales,
conocido como el axioma de complitud o de completitud:

Axioma de completitud

Axioma 14 Axioma de completitud

1. Todo conjunto no vacío de números reales acotado por arriba tiene un supremo.

2. Todo conjunto no vacío de números reales acotado por abajo tiene un ínfimo.

Como un conjunto de números reales puede constar de un solo número real, se verifica por el
axioma 14 que los reales son densos.

1.4 Intervalos en �
Al utilizar una variable en cualquier problema de aplicación es necesario definir el subconjunto
de números reales que le corresponde como conjunto de sustitución. Sin lugar a dudas, unos de
los subconjuntos más importantes en � son los intervalos y son definidos a continuación:

Definición de intervalo en �

Se definen los siguientes subconjuntos de números reales, conocidos como intervalos reales:

1. Intervalo abierto (a, b) = {x 0 a 6 x 6 b}

2. Intervalo cerrado [a, b] = {x 0 a � x � b}

3. Intervalos mixtos (a, b] = {x 0 a 6 x � b}

[a, b) = {x 0 a � x 6 b}

4. Intervalos infinitos (-q, b) = {x 0 x 6 b}

(-q, b) = {x 0 x � b}

[a, q) = {x 0 a 6 x}

[a, q) = {x 0 a � x}

5. Los números reales (-q, q) = �

En la FIGURA 1.4.1 se pueden observar las representaciones gráficas de los diferentes tipos de inter-
valos. Algunos autores denotan los extremos de un intervalo abierto con puntos “huecos” y los
extremos de un intervalo cerrado con puntos “sólidos”.

EJEMPLO  8 Operaciones con intervalos

Determine el conjunto de números reales definido por (-2, 16] ¨ [12, 20) y por (-2, 16] ´
[12, 20).

10 UNIDAD 1 Los números reales
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Solución Los intervalos son conjuntos, de manera que al utilizar operaciones de conjuntos, se
tiene:

(-2, 16] ¨ [12, 20) = {x 0 -2 6 x � 16} ¨ {x 0 12 � x 6 20} = {x 0 12 � x � 16} = [12, 16]

(-2, 16] ´ [12, 20) = {x 0 -2 6 x � 16} ´ {x 0 12 � x 6 20} = {x 0 -2 6 x 6 20} = (-2, 20)

Los resultados gráficos se observan en la FIGURA 1.4.2.

1.4 Intervalos en � 11

FIGURA 1.4.2

FIGURA 1.4.1 Intervalos reales

-2 12 16 20

1.4 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-2.

1. Demuestre que la división entre cero no existe.

En los ejercicios 2 a 9 exprese los racionales dados en forma
decimal.

2. 3.

4. 5.

6. 7.

8. 9.

En los ejercicios 10 a 21 escriba los números decimales
dados, si es posible, en forma de fracción.

10. 0.123321123321 . . . 11. 3.141615

12. 0.12121212121 . . . 13. 0.25555555 . . .

14. 2.213213 15. 5.71715

16. 0.0144444 . . . 17. 0.0134134134 . . .

18. 1.3132313231 . . . 19. 0.123123123123 . . .

20. 0.123456789123456 . . . 21. 4.022022022 . . .

22. Determine el menor natural, el menor entero positivo, el
menor racional positivo y el menor irracional positivo.

23. Demuestre que p es irracional.

24. Demuestre que 12 es irracional.

25. Demuestre que la raíz cuadrada de un número primo es
irracional.

26. Determine un racional que aproxime a p.

27. Demuestre que si x, y H �, entonces x + y H �.

28. Justificar si la suma de dos irracionales es un irracional.

29. Demuestre que si x, z H �, x 6 z, entonces existe y H �

tal que x 6 y 6 z.

30. Demuestre que si x, z H II, x 6 z, entonces existe y H II
tal que x 6 y 6 z.

31. Demuestre que si x, z H �, x 6 z, entonces existe y H �

tal que x 6 y 6 z.

32. Dados x, y H �, si x 6 y ordenar los números x, y, ,
.

En los ejercicios 33 a 38 determine si el resultado es un
número racional o irracional.

33. A13 + 1B2 34. A15 + 4B A 15 - 4B
35. 1p 36. A1p + pB2
37. p2 38. A1 + 15B4
39. Demuestre que si x y y son dos números pares, enton-

ces xy es otro número par.

40. Demuestre que si x y y son dos números impares, enton-
ces xy es otro número impar.

41. Demuestre que el cuadrado de un número par es otro
número par.

42. Demuestre que el cuadrado de un número impar es otro
número impar.

43. Demuestre que si x H � y y H II, entonces xy H II.

x y+

2

xy

1
20

32
41

123
100

11
14

− 4
17

14
3

21
4

5
6

(a, b) (a, b] [a, b)

[a, b] [a, q) (a, q)

(-q, b) (-q, b]

a b a b a b

a b a a

b b



En los ejercicios 44 a 51 determine si existen el ínfimo y el
supremo para cada uno de los conjuntos dados.

44. A = {2, 4, 6, 8, 10}

45. A = {0, 4, 0, 49, 0.499, . . .}

46. A = {1, , , , . . .}

47. A = {1, 1 - , 1 - , 1 - , . . .}

48. A = {1, 1.1, 1.11, 1.111, . . .}

49. A = {2, 4, 6, 8, 10, . . .}

50. A = {x 0 x = (-1)n, n H �}

51. A = {x 0 x = , n H �}

En los ejercicios 52 a 59 represente gráficamente cada uno
de los intervalos dados.

52. (3, 8) 53. (-10, -2]

54. [1, 6.5] 55. [-2, 14)

56. (-q, -1) 57. (-q, 0]

58. (1, q) 59. [-9, q)

En los ejercicios 60 a 72, realice las operaciones con inter-
valos indicadas.

60. (2, 12] ´ (-7, 8) 61. (-q, 2] ´ (-4, 10)

62. (-q, 5] ´ (2, q) 63. (-9, 9] ¨ (-3, 3)

64. [[0, 2] ¨ (-2, 1]]c 65. (-q, 1) ¨ (-4, 10]

66. A(1, 9] ´ (-2, 4)B ¨ [0, 2)

67. A(1, 3] ¨ (-4, 0)Bc 68. [-5, q] - (4, 12)

69. � - A(1, 5] ´ (-1, 8)B 70. � - (-q, 3)

71. A(0, 4] ´ (-3, 3)B - [2, 5)

72. A(-8, 4] ´ (-3, 1)B ¨ [2, 6)

1
n

1
4

1
3

1
2

1
4

1
3

1
2
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1.5 Desigualdades y valor absoluto
En esta sección estudiaremos dos conceptos fundamentales en el cálculo infinitesimal, el con-
cepto de desigualdad (o inecuación) y el concepto de valor absoluto.

Definición de desigualdad en una variable

Una desigualdad en una variable es una expresión de la forma f (x) ¢ 0, donde ¢ es alguna de las
relaciones de orden 6, 7, �, �.

Por resolver una desigualdad se entiende determinar el intervalo o combinación de interva-
los (de números reales) cuyos elementos satisfacen la desigualdad.

Para resolver una desigualdad se utilizan los axiomas de los números reales como se ilustra
en los siguientes ejemplos.

EJEMPLO  1 Resuelva la desigualdad 2x + 4 6 6x + 1

Solución

2x + 4 6 6x + 1 Por el axioma 11, restar 1

2x + 4 - 1 6 6x + 1 - 1 Simplificar

2x + 3 6 6x Por el axioma 11, restar 2x

2x - 2x + 3 6 6x - 2x Simplificar

3 6 4x Por el inciso 1 del teorema 1.3.1, multiplicar porA B3 6 4A Bx Simplificar

6 x De manera equivalente

x H A , qB
EJEMPLO  2 Resuelva la desigualdad -6x + 3 � -8x - 7

Solución

-6x + 3 � -8x - 7 Por el axioma 11, sumar 7

-6x + 3 + 7 � -8x - 7 + 7 Simplificar

3
4

3
4

1
4

1
4

1
4



-6x + 10 � -8x Por el axioma 11, sumar 6x

-6x + 6x + 10 � -8x + 6x Simplificar

10 � -2x Por el inciso 2 del teorema 1.3.1, multiplicar por -A- B10 � -2A- Bx Simplificar

-5 � x De manera equivalente

x H (-q, -5]

EJEMPLO  3 Resuelva la desigualdad 3 6 (5x - 7)�2 � 10

Solución

3 6 � 10 Por el inciso 1 del teorema 1.3.1, multiplicar por 2

6 6 5x - 7 � 20 Por el axioma 11, sumar 7

6 + 7 6 5x - 7 + 7 � 20 + 7 Simplificar

13 6 5x � 27 Por el inciso 1 del teorema 1.3.1, multiplicar por

13A B 6 5A Bx � 27A B Simplificar

6 x � De manera equivalente

x H A , ]

EJEMPLO  4 Resuelva la desigualdad -2 6 (6 - 2x )�4 � 5

Solución

-2 6 � 5 Por el inciso 1 del teorema 1.3.1, multiplicar por 4

-8 6 6 - 2x � 20 Por el axioma 11, restar 6

-8 - 6 6 6 - 6 - 2x � 20 - 6 Simplificar

-14 6 -2x � 14 Por el inciso 2 del teorema 1.3.1, multiplicar por -

-14A- B 7 -2A- Bx � 14A- B Simplificar

7 7 x � -7 De manera equivalente

-7 � x 6 7 En forma de intervalo

x H [-7, 7)

EJEMPLO  5 Resolver la desigualdad x2 7 3x - 2

Solución Al reescribir la desigualdad en la forma x2 - 3x + 2 7 0, tenemos (x - 1)(x - 2) 7 0.

Si consideramos la parte izquierda de la desigualdad como el producto de dos factores, este pro-
ducto es positivo, lo cual implica que los factores son del mismo signo.

Se tienen los siguientes casos.

Caso 1 Si (x - 1)(x - 2) 7 0

entonces x - 1 7 0 y x - 2 7 0

De donde x 7 1 y x 7 2

1
2

1
2

1
2

1
2

6 2

4

− x

27
5

13
5

27
5

13
5

1
5

1
5

1
5

1
5

5 7

2

x−

1
2

1
2

1
2
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El conjunto solución de este par de desigualdades es (1, q) ¨ (2, q) = (2, q). Vea la FIGURA

1.5.1a).

Caso 2 Si (x - 1)(x - 2) 7 0

entonces x - 1 6 0 y x - 2 6 0.

De donde x 6 1 y x 6 2

El conjunto solución de este par de desigualdades es (-q, 1) ¨ (-q, 2) = (-q, 1). Vea la FIGU-

RA 1.5.1b).
De manera que la solución de la desigualdad se obtiene al unir las soluciones obtenidas en

los casos 1 y 2. Es decir, la solución es el conjunto x H (-q, 1) ´ (2, q). Vea la FIGURA 1.5.1c).

EJEMPLO  6 Resolver la desigualdad x2 - 2x - 8 � 0

Solución Al considerar la desigualdad x2 - 2x - 8 � 0, tenemos (x - 4)(x + 2) � 0

Si consideramos la parte izquierda de la desigualdad como el producto de dos factores, este pro-
ducto es menor o igual a cero, lo cual ocurre cuando los factores son de signos diferentes o cero.

Se tienen los siguientes casos.

Caso 1 Si (x - 4)(x + 2) � 0

entonces x - 4 � 0 y x + 2 � 0.

De donde x � 4 y x � -2.

El conjunto solución de este par de desigualdades es (-q, 4] ¨ [-2, q) = [-2, 4]. Vea la FIGU-

RA 1.5.2.

Caso 2 Si (x - 4)(x + 2) � 0,

entonces x - 4 � 0 y x + 2 � 0.

De donde x � 4 y x � -2.

El conjunto solución de este par de desigualdades es (-q, -2] ¨ [4, q) = .

La solución de la desigualdad se obtiene al unir las soluciones obtenidas en los casos 1 y 2. En
este caso la solución es el conjunto x H [-2, 4] ´ = [-2, 4]. Vea la figura 1.5.2.

EJEMPLO  7 Resuelva la desigualdad (x - 8)�(x + 4) � 5

Solución Al considerar la desigualdad � 5 se tienen los siguientes dos casos, depen-
diendo del signo del denominador.

Caso 1 Si x + 4 7 0 (observe que no se puede dar el caso x + 4 � 0),

entonces x - 8 � 5(x + 4) con x 7 -4.

De manera que -4x � 28 y x 7 -4

Al dividir entre -4, tenemos x � -7 y x 7 -4.

Es decir x H (-q, -7] ¨ [-4, q) = .

Caso 2 Si x + 4 6 0 (observe que no se puede dar el caso x + 4 � 0),

entonces x - 8 � 5(x + 4) con x 6 -4.

De manera que -4x � 28 y x 6 -4.

∅

x

x

−

+

8

4

∅

∅
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FIGURA 1.5.1

FIGURA 1.5.2

-2 4

c)

b)

a)

1 2

1 2

1 2



Al dividir entre -4, tenemos x � -7 y x 6 -4.

Es decir, x H [-7, q) ¨ (-q, -4) = [-7, -4).

Por último, la solución es la unión de los intervalos solución obtenidos en los dos casos, es decir,
x H [-7, -4) ´ = [-7, -4).

Otra manera de resolver una desigualdad es a través de un análisis gráfico.
Para esto, es necesario recordar que dada una función y = f (x) los puntos de intersección

entre su gráfica y el eje x se determinan al resolver la ecuación f (x) = 0. Y que, por otra parte, si
f (x) 7 0, entonces la gráfica está por “arriba” del eje x y si f (x) 6 0, entonces la gráfica está por
“abajo” del eje x. Vea la FIGURA 1.5.3.

EJEMPLO  8 Resolver la desigualdad x2 + 2x - 8 � 0

Solución Los puntos de corte de la gráfica de f (x) = x2 + 2x - 8 = (x - 2)(x + 4) y el eje x son
x = 2 y x = -4.

La gráfica de la función puede observarse en la FIGURA 1.5.4.

Se verifica que f (x) = (x - 2)(x + 4) � 0 en el intervalo [-4, 2].

(También puede observarse que f (x) = (x - 2)(x + 4) 7 0 en (-q, -4) ´ (2, q).

Valor absoluto de un número real

Hemos visto que a cada número real se le asocia un único punto de la recta numérica, conside-
rando la distancia entre el origen (el cero) y el número dado. Esta distancia también se define
como el valor absoluto o como la magnitud del número. Formalmente se tiene la siguiente defi-
nición.

Definición de valor absoluto de un número real

Si x es un número real, se define el valor absoluto de x como0x 0 =
EJEMPLO  9 Algunos ejemplos de valores absolutos

1. 02 0 = 2

2. 00 0 = 0

3. 0-13 0 = 13

4. 0x 0 + x = =

5. = =

6. 0x - 2 0 + x = =

Definición de distancia entre dos números

Si x, y H �, se define su distancia como 0x - y 0 .

2 2

2 2

x

x

−

<

⎧
⎨
⎪⎪

⎩⎪⎪ si

x x

x x x

− +

− − + − <

⎧
⎨
⎪⎪

⎩⎪⎪

2

2 2 0( ) si

1

1 0− <

⎧
⎨
⎪⎪

⎩⎪⎪ si x

x
x

x
x x− <

⎧
⎨
⎪⎪

⎩
⎪⎪ si 0

x

x

2

0 0

x

xsi <

⎧
⎨
⎪⎪

⎩⎪⎪

x x

x x x

+

− + <

⎧
⎨
⎪⎪

⎩⎪⎪ si 0

x

x x− <

⎧
⎨
⎪⎪

⎩⎪⎪ si 0

∅
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FIGURA 1.5.3

y

x

f (x) 7 0 f (x) 7 0

f (x) 6 0f (x) 6 0

FIGURA 1.5.4

y

x

10

�10

0�2 2 4�4

si x � 0

si x � 0 si x � 0

si x � 0 si x � 0

si x � 2si x - 2 � 0



Propiedades del valor absoluto

En el siguiente teorema se enuncian las propiedades más importantes del valor absoluto. La
demostración se deja como ejercicio al lector (basta aplicar la definición de valor absoluto).
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Teorema 1.5.1 Propiedades del valor absoluto

1. 0x 0 � 0

2. 0x 0 = 0 si y sólo si x = 0

3. 0x 0 = 0-x 0
4. 0xy 0 = 0x 0 0y 0
5. = , 0y 0 Z 0

x

y

x

y

Desigualdades y valor absoluto

En el siguiente teorema se presentan las propiedades del valor absoluto aplicadas a las desigual-
dades.

Teorema 1.5.2 Propiedades del valor absoluto

1. 0x 0 6 a si y sólo si -a 6 x 6 a

2. 0x 0 7 a si y sólo si x 6 -a o x 7 a

3. 0x + y 0 � 0x 0 + 0y 0 Desigualdad del triángulo

4. x � 0x 0 y -x � 0x 0
5. Si y � 0, entonces 0x 0 = y si y sólo si 

x y

x y x

=

− = <

⎧
⎨
⎪⎪

⎩⎪⎪ si 0

DEMOSTRACIÓN 1 Por definición, si 0x 0 6 a, entonces se tienen los siguientes casos:

Multiplicar la segunda rama por -1

Aplicar transitividad a ambas ramas

-a 6 x 6 a Para toda x H �

DEMOSTRACIÓN 2 Por definición, si 0x 0 7 a, entonces se tienen los siguientes casos:

Multiplicar la segunda rama por -1

Aplicar transitividad a ambas ramas

Es decir, x 6 -a o x 7 a Para toda x H �

La demostración de las propiedades 3, 4 y 5 se proponen como ejercicio.

Las propiedades anteriores siguen siendo válidas al cambiar los símbolos de desigualdad
estrictos 6 y 7 por los no estrictos � y �.

x a

x a x

>

<− <

⎧
⎨
⎪⎪

⎩⎪⎪ si 0

x a

x a x

>

− > <

⎧
⎨
⎪⎪

⎩⎪⎪ si 0

x a

x a x

<

>− <

⎧
⎨
⎪⎪

⎩⎪⎪ si 0

x a

x a x

<

− < <

⎧
⎨
⎪⎪

⎩⎪⎪ si 0
Las propiedades anteriores
siguen siendo válidas al cam-
biar los símbolos de desigualdad
estrictos 6 y 7 por los no estric-
tos � y �.

si x � 0

si x � 0

si x � 0

si x � 0

si x � 0



EJEMPLO  10 Resuelva la desigualdad 0x - 4 0 6 30

Solución0x - 4 0 6 30 Por el inciso 1, teorema 1.5.2

-30 6 x - 4 6 30 Por el axioma 11, sumar 4 a cada rama

-30 + 4 6 x - 4 + 4 6 30 + 4 Simplificar

-26 6 x 6 34 En forma de intervalo

x H (-26, 34)

Unas de las desigualdades más utilizadas en el cálculo de límites son mostradas a continuación
en los ejemplos 11 y 12.

EJEMPLO  11 Resuelva la desigualdad 0 f (x) - L 0 6 e
Solución0 f (x) - L 0 6 e Por el inciso 1, teorema 1.5.2

-e 6 f (x) - L 6 e Por el axioma 11, sumar L a cada rama

L - e 6 f (x) - L + L 6 L + e Simplificar

L - e 6 f (x) 6 L + e En forma de intervalo

f (x) H (L - e, L + e)

EJEMPLO  12 Resuelva la desigualdad 0x - a 0 6 d
Solución0x - a 0 6 d Por el inciso 1, teorema 1.5.2

-d 6 x - a 6 d Por el axioma 11, sumar a y simplificar

a - d 6 x 6 a + d En forma de intervalo

x H (a - d, a + d)

EJEMPLO  13 Resuelva la desigualdad 0-5x + 8 0 � 10

Solución0-5x + 8 0 � 10 Por el inciso 1, teorema 1.5.2

-10 � -5x + 8 � 10 Por el axioma 11, restar 8 a cada rama

-10 - 8 � -5x + 8 - 8 � 10 - 8 Simplificar

-18 � -5x � 2 Por el inciso 2 del teorema 1.3.1, dividir entre -5

� � Simplificar y reordenar

- � x � En forma de intervalo

x H [- , ]18
5

2
5

18

5

2

5

2

5−

−

−

5

5

x−

−

18

5
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EJEMPLO  14 Resuelva la desigualdad 03x + 5 0 7 20

Solución03x + 5 0 7 20 Por el inciso 2, teorema 1.5.2, se tienen los dos casos

3x + 5 7 20, 3x + 5 6 -20 Resolver las desigualdades simultáneamente

3x 7 15, 3x 6 -25 Simplificar

x 7 5, x 6 - En forma de intervalo

x H A-q, - B ´ (5, q)

EJEMPLO  15 Resuelva la desigualdad 0-2x + 1 7 0 � 10

Solución0-2x + 17 0 � 10 Por el inciso 2, teorema 1.5.2, se tienen los dos casos

-2x + 17 � 10, -2x + 17 � -10 Resolver estas desigualdades simultáneamente

-2x � 7, -2x � -27

x � , x � En forma de intervalo

x H A-q, ] ´ [ , qB
EJEMPLO  16 Resuelva la desigualdad 04x + 7 0 � x + 4

Solución04x + 7 0 � x + 4 Por el inciso 2, teorema 1.5.2, se tienen los siguientes dos casos

4x + 7 � x + 4, 4x + 7 � -(x + 4) Resolver estas desigualdades simultáneamente

3x � -3, 5x � -11

x � -1, x � - En forma de intervalo

x H A-q, - ] ´ (-1, q)11
5

11

5

27
2

7
2

27

2

7

2

25
3

25

3

1. Demostrar los incisos 3, 4 y 5 del teorema 1.5.2.

En los ejercicios 2 a 29, resolver la desigualdad indicada, dar
la solución en términos de intervalos y representarla en la
recta real.

2. 2x 6 4 - 10x 3. 14x - 6 6 24 - 4x

4. 5x + 14 7 40 - 8x 5. 3(2x + 2) 7 4x - 10

6. -(2x - 3) � 4 - (2x + 4)

7. x - 2 � 3x - 8. x + 8 � 3A1 - xB
9. -4 6 6x + 8 6 8 10. 40 6 20 - 10x � 100

11. -5 � 4 - 9x 6 -2 12. -2 � 12 - 3x � 5

13. -2x - 10 6 8 + 8x 14. (x + 4)(x - 6) 6 0

15. 4(x - 1)(x - 5) 7 0 16. (x - 2)(x + 5) � 0

17. (x + 4)(x - 9) � 0 18. x2 + 5x + 6 � 0

19. 2x2 + x - 1 � 0 20. x2 7 x + 2

21. x2 + 2x - 3 � 0 22. 2x2 + 5x 6 0

23. x2 + 6x 6 0 24. x2 6 16

25. (x + 1)(x + 2)(x + 3) 6 0

26. x2(x - 4) � 0 27. 2x2 + 5x 6 -x2 + 1

28. x3 7 (x - 2)2 29. sen x 6 cos x

En los ejercicios 30 a 51, resolver la desigualdad mostrada,
dar la solución en términos de intervalos y representarla en
la recta real.

30. 7 0 31. 6 0
x

x

−

−

6

9

x

x

−

+

3

5

1
3

4
3

3
2

1
2

1.5 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-2.



32. � 0 33. 7 10

34. � 8 35. � - 1

36. � x 37. � x -1

38. 7 3x 39. �

40. � 41. �

42. � - 43. 2x2 - 9x + 4 7 0

44. � 45. 6 0

46. 1 � 47. 3x2 - 7x + 14 � 10

48. � 49. 6

50. 3x - 2 6 x2 51. + 4 7 0

En los ejercicios 52 a 66, resolver la desigualdad mostrada,
dar la solución en términos de intervalos y representarla en
la recta real.

52. 03x + 15 0 � 10 53. 10 6 0x + 5 0
54. 02x + 3 0 6 100x 0 55. 7 1

56. 02 + x 0 � 10 57. 0x + 5 0 � 2x

58. 0 (x + 2)(x - 2) 0 6 2(2 - x)

59. � 1 60. � 1

61. � 1 62. 1 �

63. 1 6 64. 02x - 8 0 � 3

65. 0- 4x - 3 0 � 8 66. 7 10

67 Demuestre que el cuadrado de cualquier real no cero es
positivo.

68. Demuestre que si 0x 0 � 1, entonces x2
� x.

69. Demuestre que si 0x 0 � 1, entonces x2
� x.

70. Suponga que 0 6 a 6 b 6 c, resuelva para x la siguiente
desigualdad:

� 0

71. Si a, b, c, d 7 0 son números reales tales que 6
demuestre que

6 6
c

d

a c

b d

+

+

a

b

c

d

a

b

x a b x ab

x c
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+
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+
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Funciones

En esta unidad ¿Ha escuchado frases como “el éxito está en función del trabajo arduo” y “la
demanda está en función del precio”? La palabra función se usa a menudo para sugerir una
relación o una dependencia de una cantidad con respecto a otra. Como tal vez sepa, en
matemáticas el concepto de una función posee una interpretación similar pero ligeramente
más especializada.

El cálculo trata, en esencia, sobre funciones. Así, resulta conveniente empezar su estudio con
una unidad dedicada a un repaso de este importante concepto.

21

Unidad 2

ƒ(x1)
ƒ(x2)

ƒ(x3)

(x2, ƒ(x2))

(x1, ƒ(x1))
(x3, ƒ(x3))

x

y

x3x2x1

Competencia específica

Comprender el concepto de función real e identificar tipos de funciones, así como
aplicar sus propiedades y operaciones.



2.1 Funciones y gráficas
Introducción Al usar los objetos e interactuar con las personas que nos rodean, resulta fácil

establecer una regla de correspondencia que asocie, o apareje, a los miembros o elementos de un
conjunto con los elementos de otro conjunto. Por ejemplo, para cada número de seguridad social
hay una persona; para cada libro corresponde por lo menos un autor; para cada estado hay un
gobernador, etcétera. En matemáticas estamos interesados en un tipo especial de corresponden-
cia: una correspondencia con valor único denominada función.

Terminología Una función suele denotarse por una letra como f, g o h. Entonces podemos
representar una función f de un conjunto X en un conjunto Y por medio de la notación
El conjunto X se llama dominio de f. El conjunto de elementos correspondientes y en el conjun-
to Y se denomina rango de la función. El único elemento y en el rango que corresponde a un ele-
mento x selecto en el dominio X se denomina valor de la función en x, o imagen de x, y se escri-
be f(x). Esta expresión se lee “f de x” o “f en x”, y se escribe y � f(x). Algunas veces también
conviene denotar una función por y � y(x). Observe en la FIGURA 2.1.1 que el rango de f no nece-
sariamente debe ser todo el conjunto Y. A muchos profesores les agrada llamar a un elemento x
en el dominio entrada de la función, y al elemento correspondiente f(x) en el rango salida de la
función. Puesto que el valor de y depende de la elección de x, y se denomina variable depen-
diente; x se denomina variable independiente. A partir de este momento consideraremos que
los conjuntos X y Y constan de números reales; así, la función f se denomina función con valor
real de una sola variable real.

En todos los análisis y ejercicios de este texto, las funciones se representan de varias formas:

• analítica, es decir, por medio de una fórmula como f(x) � x2;
• verbal, es decir, mediante una descripción con palabras;
• numérica, es decir, mediante una tabla de valores numéricos, y
• visual, es decir, con una gráfica.

EJEMPLO  1 Función elevar al cuadrado

La regla para elevar al cuadrado un número real está dada por la ecuación f(x) � x2 o y � x2.
Los valores de f en x � �5 y se obtienen al sustituir x, a la vez, por los números

5 y .

y

EJEMPLO  2 Correspondencia estudiante y escritorio

Una correspondencia natural ocurre entre un conjunto de 20 estudiantes y un conjunto de, por
ejemplo, 25 escritorios en un salón de clases cuando cada estudiante escoge y se sienta en un
escritorio diferente. Si el conjunto de 20 estudiantes es el conjunto X y el conjunto de 25 escri-
torios es el conjunto Y, entonces esta correspondencia es una función del conjunto X al con-
junto Y, en el supuesto de que ningún estudiante se sienta en dos escritorios al mismo tiempo.
El conjunto de 20 escritorios ocupados realmente por los estudiantes constituye el rango de la
función.

Algunas veces, para destacar el argumento, escribiremos una función representada por una
fórmula usando paréntesis en lugar del símbolo x. Por ejemplo, al escribir la función elevar al
cuadrado f(x) � x2 como

. (1)

Entonces, para evaluar (1) en, por ejemplo, 3 � h, donde h representa un número real, escri-
bimos 3 � h entre paréntesis y realizamos las operaciones algebraicas correspondientes:

f (       ) � (       )2

f (17) � (17)2
� 7.f (�5) � (�5)2

� 25

17�

x � 17

f : X S Y.

Definición 2.1.1 Función

Una función de un conjunto X en un conjunto Y es una regla de correspondencia que asigna
a cada elemento x en X exactamente un elemento y en Y.
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FIGURA 2.1.1 Dominio y rango
de una función f

Correspondencia estudiante/escri-
torio

Consulte la sección Páginas de

recursos, al final del libro, para
tener un repaso del desarrollo
del binomio.

x

ƒX

Dominio Rango

Y

ƒ(x)

f (3 h) (3 h)2 9 6h h2.



Si una función f está definida por medio de una fórmula o ecuación, entonces por lo regu-
lar el dominio de y � f(x) no se plantea explícitamente. Por lo general es posible deducir el
dominio de y � f(x) ya sea a partir de la estructura de la ecuación o del contexto del pro-
blema.

EJEMPLO  3 Dominio y rango

En el ejemplo 1, puesto que cualquier número real x puede elevarse al cuadrado y el resultado
x2 es otro número real, f(x) � x2 es una función de R en R; es decir, En otras pala-
bras, el dominio de f es el conjunto R de números reales. Al usar notación de intervalos, el
dominio también puede escribirse como (�q, q). Debido a que para todo número real
x, es fácil ver que el rango de f es el conjunto de números reales no negativos o [0, q).

Dominio de una función Como ya se mencionó, el dominio de una función y � f(x) que está
definido por una fórmula no suele especificarse. A menos que se indique o implique lo contra-
rio, se entiende que

• El dominio de una función f es el mayor subconjunto del conjunto de números reales
para los que f(x) es un número real.

Este conjunto a veces se refiere como dominio implícito o dominio natural de la función.
Por ejemplo, no es posible calcular f(0) para la función recíproca f(x) � 1�x puesto que 1�0
no es un número real. En este caso se dice que f está indefinida en x � 0. Puesto que todo
número real diferente de cero tiene un recíproco, el dominio de f(x) � 1�x es el conjunto
de números reales excepto cero. Por el mismo razonamiento, la función g(x) � 1�(x2

� 4) no
está definida en x � �2 ni en x � 2, de modo que su dominio es el conjunto de números rea-
les sin los números �2 y 2. La función raíz cuadrada no está definida en x = -1
porque no es un número real. Para que esté definida en el sistema de núme-
ros reales, debe pedirse que el radicando, en este caso simplemente x, sea no negativo. A par-
tir de la desigualdad observamos que el dominio de la función h es el intervalo [0, q).
El dominio de la función constante f(x) � �1 es el conjunto de números reales (�q, q) y
su rango es el conjunto que consta sólo del número �1.

EJEMPLO  4 Dominio y rango

Determine el dominio y el rango de 

Solución El radicando x – 3 debe ser no negativo. Al resolver la desigualdad se
obtiene de modo que el dominio de f es [3, q). Luego, como el símbolo denota
la raíz cuadrada no negativa de un número, para y en consecuencia

El menor valor de f(x) ocurre en x � 3 y es Además,
debido a que x – 3 y aumentan cuando x crece, se concluye que Por consi-
guiente, el rango de f es [4, q).

EJEMPLO  5 Dominios de dos funciones

Determine el dominio de

a) b) .

Solución
a) Como en el ejemplo 4, la expresión dentro del radical —el radicando— debe ser no

negativa; es decir, el dominio de f es el conjunto de números reales x para los cuales
o El conjunto solución de la desigualdad

es también el dominio de f.
b) Una función que está dada por una expresión fraccionaria no está definida en los valo-

res x para los cuales el denominador es igual a 0. Puesto que el denominador de g(x)
se factoriza como vemos que 
para y Éstos son los únicos números para los cuales g no está defi-
nida. Por tanto, el dominio de la función g es el conjunto de números reales, a excep-
ción de x = -1 y x � 4.

x � 4.x � �1
(x � 1)(x � 4) � 0(x � 1)(x � 4),x2

� 3x � 4 �

(�q, �5] ´ [3, q)
 (x � 3)(x � 5) � 0.x2

� 2x � 15 � 0 

g(x) �
5x

x2
� 3x � 4

f (x) � 2x2
� 2x � 15

y � 4.1x � 3
f (3) � 4 � 10 � 4.4 � 1x � 3 � 4.

x � 31x � 3 � 0
1  x � 3,

x � 3 � 0

f (x) � 4 � 1x � 3.

x � 0

h(x) � 1x1�1
h(x) � 1x

x2
� 0

f : R S R.
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En precálculo se suelen resolver
desigualdades cuadráticas como
(x � 3)(x � 5) � 0 utilizando
una tabla de signos.



Al usar notación de intervalos, el dominio de g en el inciso b) del ejemplo 5 puede escri-
birse como Como alternativa para esta desgarbada unión de
intervalos ajenos, este dominio también puede escribirse usando notación de construcción
de conjuntos {x 0 x � �1 y x � 4}.

Gráficas En campos como ciencia, ingeniería y negocios, a menudo se usa una función para
describir los fenómenos. A fin de interpretar y utilizar datos, es útil representar estos datos en
forma de gráfica. En el sistema de coordenadas cartesianas o rectangulares, la gráfica de una
función f es la gráfica del conjunto de pares ordenados (x, f(x)), donde x está en el dominio de f.
En el plano xy, un par ordenado (x, f(x)) es un punto, de modo que la gráfica de una función es
un conjunto de puntos. Si una función se define por medio de una ecuación y � f(x), entonces
la gráfica de f es la gráfica de la ecuación. Para obtener los puntos sobre la gráfica de una ecua-
ción y � f(x), escogemos prudentemente números x1, x2, x3, . . . en su dominio, calculamos

trazamos los puntos correspondientes ,
y luego unimos estos puntos con una curva suave (en caso de ser posible). Vea la FIGURA 2.1.2. No
olvide que

• un valor de x es una distancia dirigida desde el eje y, y
• un valor funcional f(x) es una distancia dirigida desde el eje x.

A continuación se hacen algunos comentarios sobre las figuras en este texto. Con pocas
excepciones, suele ser imposible representar la gráfica completa de una función, por lo que a
menudo sólo se muestran las características más importantes de la gráfica. En la FIGURA 2.1.3a)

observe que la gráfica se dirige hacia abajo en sus lados izquierdo y derecho. A menos que se
indique lo contrario, puede asumirse que no hay sorpresas mayores más allá de lo que se ha
mostrado y que la gráfica continúa simplemente de la manera indicada. La gráfica en la figura
2.1.3a) indica el denominado comportamiento extremo o comportamiento global de la fun-
ción. Si una gráfica termina ya sea en su extremo derecho o izquierdo, este hecho se indica
por medio de un punto cuando es necesario. Para representar el hecho de que el punto extremo
está incluido en la gráfica se usa un punto sólido, y para indicar que el punto extremo no está
incluido en la gráfica se usa un punto vacío.

Prueba de la recta vertical A partir de la definición de una función se sabe que para toda x
en el dominio de f corresponde un solo valor f(x) en el rango. Esto significa que una recta verti-
cal que corta la gráfica de una función y � f(x) (esto equivale a escoger una x) puede cortar a la
gráfica de una función en cuanto mucho un punto. A la inversa, si toda recta vertical que corte
la gráfica de una ecuación lo hace en cuanto mucho un punto, entonces la gráfica es la gráfica
de una función. La última declaración se denomina prueba de la recta vertical para una fun-
ción. Por otra parte, si alguna recta vertical corta la gráfica de una ecuación más de una vez,
entonces la gráfica no es la gráfica de una función. Vea las figuras 2.1.3a)-c). Cuando una recta
vertical corta una gráfica en varios puntos, el mismo número x corresponde a diferentes valores
de y, en contradicción con la definición de función.

(x3, f (x3)), . . .(x1, f (x1)), (x2, f (x2)),f (x1),  f (x2),  f (x3), . . . ,

(�q, �1) ´ (�1, 4) ´ (4, q).
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x

y

d
y � ƒ(x)

c

a b

Rango
de ƒ

Dominio
de ƒ

FIGURA 2.1.4 Dominio y rango
interpretados gráficamente

FIGURA 2.1.2 Puntos sobre la
gráfica de una ecuación y � f (x)

ƒ(x1)
ƒ(x2)

ƒ(x3)

(x2, ƒ(x2))

(x1, ƒ(x1))
(x3, ƒ(x3))

x

y

x3x2x1

x

y

a) Función

x

y

b) No es una función

x

y

c) No es una función

FIGURA 2.1.3 Prueba de la recta vertical

Si se cuenta con una gráfica exacta de una función y � f(x), a menudo es posible ver el
dominio y el rango de f. En la FIGURA 2.1.4 suponga que la curva mostrada es la gráfica entera,
o completa, de alguna función f. Así, el dominio de f es el intervalo [a, b] sobre el eje x, y el
rango es el intervalo [c, d] sobre el eje y.



EJEMPLO  6 Otra perspectiva del ejemplo 4

A partir de la gráfica de dada en la FIGURA 2.1.5, podemos ver que el domi-
nio y el rango de f son, respectivamente, [3, q) y [4, q). Esto concuerda con los resultados
del ejemplo 4.

Intersecciones Para graficar una función definida por una ecuación y � f(x), una buena idea
suele ser determinar primero si la gráfica de f tiene intersecciones. Recuerde que todos los pun-
tos sobre el eje y son de la forma (0, y). Entonces, si 0 es el dominio de una función f, la inter-
sección y es el punto sobre el eje y cuya coordenada y es f(0); en otras palabras, (0, f(0)). Vea la
FIGURA 2.1.6a). De manera semejante, todos los puntos sobre el eje x tienen la forma (x, 0). Esto
significa que para encontrar las intersecciones x de la gráfica de y� f(x), se determinan los valo-
res de x que hacen y � 0. Es decir, es necesario resolver la ecuación f(x) � 0 para x. Un núme-
ro c para el que f(c) � 0 se denomina cero de la función f o raíz (o solución) de la ecuación
f(x) � 0. Los ceros reales de una función f son las coordenadas x de las intersecciones x de la
gráfica de f. En la figura 2.1.6b) se ha ilustrado una función que tiene tres ceros x1, x2 y x3 por-
que f(x1) � 0, f(x2) � 0 y Las tres intersecciones x correspondientes son los puntos
(x1, 0), (x2, 0) y (x3, 0). Por supuesto, la gráfica de la función puede no tener intersecciones. Este
hecho se ilustra en la figura 2.1.5.

f (x3) � 0.

f (x) � 4 � 1x � 3
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FIGURA 2.1.5 Gráfica de la fun-
ción f en el ejemplo 6

El dominio de
ƒ es [3, �) 

El rango
de ƒ

es [4, �) 

y

x

(3, 4)

y � 4 �   x � 3

Una gráfica no necesariamente tiene que cruzar un eje de coordenadas en una intersec-
ción; una gráfica puede simplemente tocar, o ser tangente, a un eje. En la figura 2.1.6c), la
gráfica de y � f(x) es tangente al eje x en (x1, 0).

EJEMPLO  7 Intersecciones

Encuentre, de ser posible, las intersecciones x y y de la función dada.

a) b)

Solución
a) Puesto que 0 está en el dominio de f, f(0) � �2 y así la intersección y es el punto

(0, �2). Para obtener las intersecciones x, es necesario determinar si f tiene ceros rea-
les, es decir, soluciones reales de la ecuación f(x) � 0. Puesto que el miembro
izquierdo de la ecuación no tiene factores evidentes, se usa la fór-
mula general para polinomios cuadráticos para obtener Las intersec-
ciones x son los puntos y (�1 � , 0).

b) Debido a que 0 no está en el dominio de f, la gráfica de f no posee intersección y.
Ahora, puesto que f es una expresión fraccionaria, la única forma en que es posible
que f(x) � 0 es que el numerador sea igual a cero y el denominador sea diferente de
cero al evaluar la función en el mismo número. Al factorizar el miembro izquierdo
de x2

� 2x � 3 � 0 se obtiene (x � 1)(x � 3) � 0. En consecuencia, los ceros de
f son los números �1 y 3. Las intersecciones x son los puntos (�1, 0) y (3, 0).

Funciones definidas por partes Una función f puede implicar dos o más expresiones o
fórmulas, cada una definida en partes distintas sobre el dominio de f. Una función definida de
esta manera se denomina función definida por partes. Por ejemplo,

f (x) � e x2,
x � 1,

x 6 0
x � 0

13(�1 �13, 0)
x � �1 �13.

x2
� 2x � 2 � 0

f (x) �
x2

� 2x � 3
x

f (x) � x2
� 2x � 2

y � ƒ(x)

(0, ƒ(0))

y

x

a) Intersección y

(x1, 0) (x2, 0) (x3, 0)
x

y � ƒ(x)
y

b) Tres intersecciones x c) Una intersección y, dos intersecciones x

(x1, 0) (x2, 0)

(0, ƒ(0))
x

y � ƒ(x)

y

FIGURA 2.1.6 Intersecciones de la gráfica de una función f



no son dos funciones, sino una sola función donde la regla de correspondencia está dada en
dos partes. En este caso, una parte se usa para los números reales negativos (x < 0) y la otra
parte para los números reales no negativos ( ); el dominio de f es la unión de los inter-
valos Por ejemplo, puesto que -4 < 0, la regla indica que se
eleve al cuadrado el número: f(-4) = (-4)2 = 16; por otra parte, puesto que se suma 1
al número: f(6) = 6 + 1 = 7.

EJEMPLO  8 Gráfica de una función definida por partes

Considere la función definida por partes

(2)

Aunque el dominio de f consta de todos los números reales (-q, q), cada parte de la fun-
ción está definida sobre una parte diferente de su dominio. Se grafican

• la recta horizontal y � �1 para x < 0,
• el punto (0, 0) para x � 0 y
• la recta y � x � 1 para x � 0.

La gráfica se proporciona en la FIGURA 2.1.7.

Semicírculos Como se muestra en la figura 2.1.3b), un círculo no es la gráfica de una fun-
ción. En realidad, una ecuación como define (por lo menos) dos funciones de x. Si
esta ecuación se resuelve para y en términos de x, se obtiene Debido a la con-
vención del valor único del signo , ambas ecuaciones y defi-
nen funciones. La primera ecuación define un semicírculo superior, y la segunda un semi-
círculo inferior. Con base en las gráficas mostradas en la FIGURA 2.1.8, el dominio de 
es [-3, 3] y el rango es [0, 3]; el dominio y el rango de son [-3, 3] y [-3, 0],
respectivamente.

y � �29 � x2
y � 29 � x2

y � �29 � x2y � 29 � x21  
y � �29 � x2.

x2
� y2

� 9

f (x) � •�1, x 6 0
0, x � 0
x � 1, x 7 0.

6 � 0
(�q, q).(�q, 0) ´ [0, q) �

x � 0
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FIGURA 2.1.7 Gráfica de una
función definida por partes en el
ejemplo 8

y � x � 1,  x � 0

x

y

y � 0,  x � 0

y ��1,  x � 0

y � �x,  x � 0 y � x,  x � 0

y � x

y

x

Esta porción de y � x

se refleja en el eje x

y

x

a)

b)

FIGURA 2.1.9 Función valor
absoluto (3)

Función valor absoluto La función , denominada función valor absoluto, aparece
a menudo en el análisis de unidades ulteriores. El dominio de f es el conjunto de todos los núme-
ros reales (�q, q) y su rango es [0, q). En otras palabras, para cualquier número real x, los
valores de la función f(x) son no negativos. Por ejemplo,

Por definición del valor absoluto de x, observamos que f es una función definida por partes o
pedazos, que consta de dos partes

(3)

Su gráfica, mostrada en la FIGURA 2.1.9a), consta de dos semirrectas perpendiculares. Puesto que
para toda x, otra forma de graficar (3) consiste en simplemente trazar la recta y � x

y luego reflejar en el eje x esa porción de la recta que está abajo del eje x. Vea la figura
2.1.9b).

f (x) � 0

f (3) � 03 0 � 3, f (0) � 00 0 � 0, f a�1
2
b � ` �1

2
` � �a�1

2
b �

1
2
.

f (x) � �x �

FIGURA 2.1.8 Estos semicírculos son gráficas de funciones

a) Semicírculo superior

y

x

y �   9 � x2

b) Semicírculo inferior

y

x

y � �  9 � x2

.f (x) 0 x 0 e x, si x 6 0
x,     si x 0



Función entero mayor A continuación se considerará una función f definida por partes deno-
minada función entero mayor. Esta función, que tiene muchas notaciones, se denotará aquí por

y está definida por la regla

(4)

La expresión (4), traducida a lenguaje coloquial, significa lo siguiente:

• El valor funcional f(x) es el entero mayor n que es menor o igual a x.

Por ejemplo,

y así en lo sucesivo. El dominio de f es el conjunto de números reales y consta de la unión
de una infinidad de intervalos ajenos; en otras palabras, es una función definida por
partes dada por

(5)

El rango de f es el conjunto de enteros. La porción de la gráfica de f sobre el intervalo cerrado
[�2, 5] se proporciona en la FIGURA 2.1.10.

En informática la función entero mayor se conoce como función redondeo hacia el ente-
ro inferior anterior. Una función relacionada denominada función redondeo hacia el entero
superior siguiente* se define como el menor entero n que es mayor o igual a x. Vea
los problemas 57 a 59 en la sección “Desarrolle su competencia 2.1”.

Un modelo matemático A menudo resulta aconsejable describir el comportamiento de algún
sistema o fenómeno de la vida real, ya sea físico, sociológico e incluso económico, en términos
matemáticos. La descripción matemática de un sistema o fenómeno se denomina modelo mate-
mático y puede ser tan complicada como cientos de ecuaciones simultáneas o tan sencilla como
una sola función. Esta sección concluye con una ilustración del mundo real de una función defi-
nida por partes denominada función timbre postal. Esta función es semejante a en el
sentido de que ambos son ejemplos de funciones escalón; cada función es constante sobre un
intervalo y luego salta a otro valor constante al siguiente intervalo colindante.

Al momento de escribir esto, la tarifa de primera clase del Servicio Postal de Estados Unidos
de América para el porte de una carta en un sobre de tamaño normal dependía de su peso en
onzas:

(6)

La regla en (6) es una función de P que consta de 14 partes (las cartas que pesan más de 13
onzas se envían como correo prioritario). Un valor de la función P(w) es una de 14 constan-
tes; la constante cambia dependiendo del peso w (en onzas) de la carta.† Por ejemplo,

El dominio de la función P es la unión de los intervalos:

(0, 1]  ´ (1, 2]  ´ (2, 3]  ´ . . . ´ (12, 13] � (0, 13] .

f (x) � :x ;

g(x) � <x=

f (x) � :x ; � f o
�2, �2 � x 6 �1
�1, �1 � x 6 0

0, 0 � x 6 1
1, 1 � x 6 2
2, 2 � x 6 3
o

f (x) � :x ;

f (x) � :x ;
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FIGURA 2.1.10 Función entero
mayor

La función entero mayor también
se escribe como f(x) = [x].

y �   x
y

x

4

3

2

1

1 2 3 4 5�1�2

* Las funciones redondeo hacia el entero inferior anterior y redondeo hacia el entero superior siguiente y sus notaciones
se deben al renombrado científico canadiense Kenneth E. Iverson (1920-2004).

† En (6) no se muestra que el porte de una carta cuyo peso se encuentra en el intervalo (3, 4] es determinado por si su
peso está en (3, 3.5] o en (3.5, 4]. Éste es el único intervalo dividido de esta manera.

P(0.5) $0.42, P(1.7) $0.59, P(2.2) $0.76, P(2.9) $0.76 y P(12.1) $2.87.

Porte µ $0.42, 0 6 peso 1 onza
$0.59, 1 6 peso 2 onzas
$0.76, 2 6 peso 3 onzas
     o
$2.87, 12 6 peso 13 onzas.

f ( 1.5) 2, f (0.4) 0, f (p) 3,  f (5) 5,

:x ; n, donde n es un entero que satisface n x 6 n 1.



2.1 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-2.
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f(x) NOTAS DESDE EL AULA

Cuando se traza la gráfica de una función, nunca se debe acudir a graficar muchos puntos
manualmente. Esto es algo que una calculadora gráfica o un sistema de álgebra computacio-
nal (SAC) hacen bien. Por otra parte, usted no debe volverse dependiente de una calculadora
para obtener una gráfica. Lo crea o no, hay muchos profesores de cálculo que no permiten el
uso de calculadoras gráficas al aplicar cuestionarios o exámenes. Por lo general, no hay obje-
ción para que usted use calculadoras o computadoras como ayuda para comprobar algunos
problemas de tarea, pero en el salón de clases los maestros desean ver el producto de su pro-
pio esfuerzo, es decir, su capacidad de analizar. Así, está usted fuertemente motivado a des-
arrollar sus habilidades para graficar hasta el punto en que pueda trazar a mano rápidamente
la gráfica de una función a partir de alguna propiedad conocida de tipos de funciones y trazar
un mínimo de puntos bien escogidos.

Fundamentos

En los problemas 1-6, encuentre los valores funcionales indi-
cados.

En los problemas 7 y 8, encuentre

para la función dada f y simplifique lo más que pueda.

7.
8.
9. ¿Para qué valores de x es igual a 23?

10. ¿Para qué valores de x es igual a 4?

En los problemas 11-26, encuentre el dominio de la función

f dada.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. f (x) � A5 � x
x

f (x) � A3 � x
x � 2

f (x) � 2x2
� 3x � 10f (x) � 2x2

� 5x

f (x) � 2x(4 � x)f (x) � 225 � x2

f (x) �
x2

� 9

x2
� 2x � 1

f (x) �
x

x2
� x � 1

f (x) �
x � 1

x2
� 4x � 12

f (x) �
1

x2
� 10x � 25

f (x) �
x

x2
� 1

f (x) �
2x � 5

x(x � 3)

f (x) �
2x

13x � 1
f (x) �

10
11 � x

f (x) � 115 � 5xf (x) � 14x � 2

f (x) � 1x � 4
f (x) � 6x2

� 1
f (  ) � (  )3

� 2(  )2
� 20

f (  ) � �2(  )2
� 3(  )

f (x), f (2a), f (a2), f (�5x), f (2a � 1), f (x � h)

En los problemas 27-30, determine si la gráfica en la figura

es la gráfica de una función.

27. 28.

29. 30.

En los problemas 31-34, use el rango de la función f dada

en la figura para encontrar su dominio y rango.

31. 32.

33.

x

y

FIGURA 2.1.11 Gráfica

para el problema 27

x

y

FIGURA 2.1.12 Gráfica

para el problema 28

x

y

FIGURA 2.1.13 Gráfica

para el problema 29

x

y

FIGURA 2.1.14 Gráfica

para el problema 30

x

y

FIGURA 2.1.15 Gráfica para el

problema 31

x

1�1

y

2

�

2

�
�

FIGURA 2.1.16 Gráfica

para el problema 32

x

y

FIGURA 2.1.17 Gráfica para el

problema 33

1.  y  iS

2.  y  iS

3.  y  , iS

4.  y iS

5.  y , iS

6.  y  iS f  A12Bf (0)f (x)
x2

x3 2
; f ( 12), f ( 1),

f (12)f (1)f (0)f (x)
3x

x2 1
;  f ( 1),

f (4)f (x) 12x 4; f  A 1
2B, f  A12B, f A 52 B f (5)f (3)f (0)f (x) 1x 1; f ( 1),

f (7)f (2)f (x) 2x2 x; f ( 5), f  A 1
2B, f (6)f (3)f (x) x2 1; f ( 5), f ( 13),



34.

FIGURA 2.1.18 Gráfica para el problema 34

En los problemas 35-44, encuentre las intersecciones x y y
de la gráfica de la función dada f, en caso de haberlas. No
grafique.

35. 36.

37.

38.

39. 40.

41. 42.

43. 44.

En los problemas 45 y 46, use la gráfica de la función f dada
en la figura para estimar los valores 
f (1), f (2) y f(3). Calcule la intersección y.

45.

FIGURA 2.1.19 Gráfica para el problema 45

46.

FIGURA 2.1.20 Gráfica para el problema 46

En los problemas 47 y 48, use la gráfica de la función f dada
en la figura para estimar los valores f (0.5),
f (1), f (2) y f(3.2). Calcule las intersecciones x.

47.

FIGURA 2.1.21 Gráfica para el problema 47

48.

FIGURA 2.1.22 Gráfica para el problema 48

En los problemas 49 y 50, encuentre dos funciones y � f1(x)
y y � f2(x) definidas por la ecuación dada. Encuentre el
dominio de las funciones f1 y f2.

49. 50.

51. Algunas de las funciones que encontrará después en este
texto tienen como dominio el conjunto de enteros posi-
tivos n. La función factorial f(n) � n! se define como
el producto de los n primeros enteros positivos; es decir,

f (n) � n! � 1 . 2 . 3 . . . (n � 1) . n.

a) Evalúe f (2), f (3), f (5) y f (7).
b) Demuestre que 
c) Simplifique f (4) y f (7) f (5).
d) Simplifique 

52. Otra función de un entero positivo n proporciona la
suma de los n primeros enteros positivos al cuadrado:

a) Encuentre el valor de la suma

b) Encuentre n tal que [Sugeren-

cia: Use calculadora.]
300 6 S(n) 6 400.

12
� 22

� . . . � 992
� 1002.

S(n) �
1
6
 n(n � 1)(2n � 1).

f (n � 3)>f (n).
>f (5)>f (n � 1) � f (n) 	 (n � 1).

x2
� 4y2

� 16x � y2
� 5

42�2�4

�2

�4

2

4

x

y

42�2�4

�2

�4

2

4

x

y

f (�2), f (�1.5),

42�2�4

�2

�4

2

4

x

y

42�2�4

�2

�4

2

4

x

y

f (�3), f (�2), f (�1),

f (x) �
1
2
2x2

� 2x � 3f (x) �
3
2
24 � x2

f (x) �
x (x � 1)(x � 6)

x � 8
f (x) �

x2
� 4

x2
� 16

f (x) � x 
4

� 1f (x) � x3
� x2

� 2x

f (x) � (2x � 3)(x2
� 8x � 16)

f (x) � 4(x � 2)2
� 1

f (x) � x2
� 6x � 5f (x) �

1
2

 x � 4

x

y
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Piense en ello

53. Determine una ecuación de una función y � f(x) cuyo
dominio es
a) b)

54. Determine una ecuación de una función y � f(x) cuyo
rango es
a) b)

55. Con base en la gráfica de dada en
la FIGURA 2.1.23, determine el rango y dominio de la fun-
ción Explique su razonamiento en una o
dos frases.

FIGURA 2.1.23 Gráfica para el problema 55

56. Sea P cualquier punto (x, f(x)) sobre la gráfica de una
función f. Suponga que los segmentos de recta PT y PS

son perpendiculares a los ejes x y y. Sean M1, M2 y M3,
respectivamente, los puntos medios de PT, PS y ST

como se muestra en la FIGURA 2.1.24. Encuentre una fun-
ción que describa la ruta de los puntos M1. Repita lo
anterior para los puntos M2 y M3.

FIGURA 2.1.24 Gráfica para el problema 56

57. Anteriormente se vio que la función redondeo hacia el
entero superior siguiente se define como el
menor entero n que es mayor o igual a x. Llene los espa-
cios en blanco.

58. Grafique la función redondeo hacia el entero superior
siguiente definida en el problema 57.

59. La función definida por partes

se denomina función entero. Grafique int(x).

60. Analice cómo graficar la función .
Lleve a cabo sus ideas.

En los problemas 61 y 62, describa con palabras cómo difie-
ren las gráficas de las funciones dadas.

61.

,

62.

, h(x) � • x4
� 1

x2
� 1

,

2,

x 
 1

x � 1
g(x) � • x4

� 1
x � 1

,

0,

x 
 1

x � 1

f (x) �
x4

� 1
x2

� 1
,

h(x) � • x2
� 9

x � 3
,

6,

x 
 3

x � 3
g(x) � • x2

� 9
x � 3

,

4,

x 
 3

x � 3

f (x) �
x2

� 9
x � 3

,

f (x) � 0  x 0 � 0  x � 3 0
int(x) � e :x ; , x � 0<x = , x 6 0

g(x) � <x =

g(x) � <x = � g o
_______,
_______,
_______,
_______,
_______,
_______,

o

�3 6 x � �2
�2 6 x � �1
�1 6 x � 0   
   0 6 x � 1
   1 6 x � 2   
   2 6 x � 3   

g(x) � <x =

y

x

y � ƒ (x)

M2

T

S P

M1M3

x

y

�1

1

1 2 3

2

33

4

g(x) � 1f (x).

f (x) � �x2
� 2x � 3

(3, q).[3, q)

(3, q).[3, q)
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2.2 Combinación de funciones
Introducción Dos funciones f y g pueden combinarse en varias formas para obtener nuevas

funciones. En esta sección se analizarán dos formas en que es posible combinar funciones:
mediante operaciones aritméticas y a través de la operación de composición de funciones.

Funciones potencia Una función de la forma

f(x) � xn (1)

se denomina función potencia. En esta sección consideraremos que n es un número racional.
El dominio de la función potencia depende de la potencia n. Por ejemplo, para n � 2, n �

y n � �1, respectivamente,

• el dominio de f(x) � x2 es el conjunto R de números reales o (�q, q),
• el dominio de es [0, q),

• el dominio de es el conjunto R de números reales excepto x � 0.f (x) � x�1
�

1
x

f (x) � x1�2
� 1x

1
2



Las funciones potencia simples, o versiones modificadas de estas funciones, ocurren tan a
menudo en problemas en cálculo que no es conveniente desperdiciar tiempo valioso trazando
sus gráficas. Se sugiere conocer (memorizar) el breve catálogo de gráficas de funciones poten-
cia que se proporciona en la FIGURA 2.2.1. Usted debe reconocer la gráfica en el inciso a) de la
figura 2.2.1 como una recta y la gráfica en el inciso b) como una parábola.

2.2 Combinación de funciones 31

Combinaciones aritméticas Dos funciones pueden combinarse por medio de las cuatro
conocidas operaciones aritméticas de suma, resta, multiplicación y división.

x

y

a) n � 1,  ƒ(x) � x

x

y

b) n � 2,  ƒ(x) � x2

x

y

c) n � 3,  ƒ(x) � x3

x

y

e) n� �1,  ƒ(x) � x�1
� x

1

x

y

d) n � 4,  ƒ(x) � x4

x

y

f ) n � �2,  ƒ(x) � x�2
�  

x2
1

x

y

g) n�   , ƒ(x) � x1/2
�     x 

2
1

x

y

h) n�   ,  ƒ(x) � x1/3
�    

3
x

3
1

x

y

2
3

i) n�   ,  ƒ(x) � x2/3
�   

3
x2

FIGURA 2.2.1 Breve catálogo de gráficas de funciones potencia

Definición 2.2.1 Combinaciones aritméticas

Si f y g son dos funciones, entonces la suma f � g, la diferencia f – g, el producto fg y el
cociente f�g se definen como sigue:

(2)

(3)

(4)

(5)

Dominio de una combinación aritmética Al combinar dos funciones aritméticamente es
necesario que ambas f y g estén definidas en el mismo número x. Por tanto, el dominio de las
funciones f � g, f – g y fg es el conjunto de números reales que son comunes a ambos dominios;
es decir, el dominio es la intersección del dominio de f con el dominio de g. En el caso del
cociente f�g, el dominio también es la intersección de los dos dominios, pero también es nece-
sario excluir cualquier valor de x para el que el denominador g(x) sea cero. En otras palabras, si
el dominio de f es el conjunto X1 y el dominio de g es el conjunto X2, entonces el dominio de
f � g, f – g y fg es , y el dominio de f�g es .5x �x � X1 � X2,   g(x) 
 06X1 ¨ X2

a f

g
b (x)

f (x)
g(x)

,   da g(x) 0.

( fg)(x) f (x)g(x),

( f g)(x) f (x) g(x),

( f g)(x) f (x) g(x),
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EJEMPLO  1 Suma de dos funciones potencia

Ya se ha visto que el dominio de f(x) � x2 es el conjunto R de números reales, o (�q, q),
y el dominio de es [0, q). En consecuencia, el dominio de la suma

es la intersección de los dos dominios: 

Funciones polinomiales Muchas de las funciones con las que se trabaja en cálculo se cons-
truyen al realizar operaciones aritméticas sobre funciones potencia. De especial interés son las
funciones potencia (1) donde n es un entero no negativo. Para n � 0, 1, 2, 3, . . . , la función
f(x) � xn se denomina función polinomial de un solo término. Al usar las operaciones aritmé-
ticas de suma, resta y multiplicación es posible construir funciones polinomiales con muchos tér-
minos. Por ejemplo, si y entonces

En general, una función polinomial y � f(x) es una función de la forma

(6)

donde n es un entero no negativo y los coeficientes ai, i � 0, 1, . . . , n son números reales.
El dominio de cualquier función polinomial f es el conjunto de todos los números reales
(�q, q). Las siguientes funciones no son polinomiales:

no es un entero no negativo no es un entero no negativo
T T

y

EJEMPLO  2 Suma, diferencias, producto y cociente

Considere las funciones polinomiales f(x) � x2
� 4x y g(x) � x2 – 9.

a) Con base en los numerales (2)-(4) de la definición 2.2.1 es posible producir tres nue-
vas funciones polinomiales:

b) Finalmente, con base en el numeral (5) de la definición 2.2.1,

Observe en el ejemplo 2, puesto que g(�3) � 0 y g(3) � 0, que el dominio del cociente
(f�g)(x) es (�q, q) con x � 3 y x � �3 excluidos; en otras palabras, el dominio de (f�g)(x)
es la unión de tres intervalos: 

Funciones racionales La función en el inciso b) del ejemplo 2 es un caso de funciones racio-
nales. En general, una función racional y � f(x) es una función de la forma

(7)

donde p y q son funciones polinomiales. Por ejemplo, las funciones

polinomio
T

c
polinomio

y �
1
x
,y �

x3
� x � 7
x � 3

,y �
x

x2
� 5

,

(�q, �3) ´ (�3, 3) ´ (3, q).

y � 2x1>2
� 4.y � 5x2

� 3x�1

f1(x) � f2(x) � f3(x) � f4(x) � x3
� x2

� x � 1.

f4(x) � 1,f3(x) � xf2(x) � x2,f1(x) � x3,

(�q, q) � [ 0, q) � [0, q).

f (x) � g(x) � x2
� 1x

g(x) � 1x

Las funciones polinomiales y
racionales se analizarán con más
detalle en la sección 2.3.

f (x) anx n an 1x
n 1 p a2x2 a1x a0,

 ( fg)(x) f (x)g(x) (x2 4x)(x2 9) x4 4x3 9x2 36x.

 ( f g)(x) f (x) g(x) (x2 4x) (x2 9) 4x 9,

 ( f g)(x) f (x) g(x) (x2 4x) (x2 9) 2x2 4x 9,

a f

g
b (x)

f (x)
g(x)

x2 4x

x2 9
.

f (x)
p(x)
q(x)

,



son funciones racionales. La función

no es una función racional.

Composición de funciones Otro método para combinar las funciones f y g se denomina com-
posición de funciones. Para ilustrar la idea, se supondrá que para una x dada en el dominio de
g el valor funcional g(x) es un número en el dominio de la función f. Esto significa que es posi-
ble evaluar f en g(x); en otras palabras, f(g(x)). Por ejemplo, suponga f(x) � x2 y g(x) � x � 2.
Entonces, para x � 1, g(1) � 3, y como 3 es el dominio de f, es posible escribir f(g(1))� f(3) �
32

� 9. En efecto, para estas dos funciones particulares resulta que es posible evaluar f en cual-
quier valor funcional g(x); es decir,

A continuación se define la función resultante, denominada composición de f y g.

f (g(x)) � f (x � 2) � (x � 2)2.

2.2 Combinación de funciones 33

EJEMPLO  3 Dos composiciones

Si y , encuentre

a) y b)

Solución
a) Para hacer énfasis se sustituye x por el conjunto de paréntesis ( ) y f se escribe en la

forma Entonces, para evaluar , cada conjunto de parén-
tesis se llena con g(x). Se encuentra

b) En este caso, g se escribe en la forma Así,

Los incisos a) y b) del ejemplo 3 ilustran que la composición de funciones no es conmu-
tativa. Es decir, en general

EJEMPLO  4 Escritura de una función como una composición

Exprese como la composición de dos funciones f y g.

Solución Si f y g se definen como , entoncesf(x) 1x  y g(x) 6x3 8

F(x) � 26x3
� 8

g(x) � 2(  )2
� 1.

( f � g)(x)f (x) � (      )2
  � 3(      ).

(g � f )(x).( f � g)(x)

g(x) � 2x2
� 1f (x) � x2

� 3x

Definición 2.2.2 Composición de funciones

Si f y g son dos funciones, la composición de f y g, denotada por es la función definida
por

(8)

La composición de g y f, denotada por es la función definida por

(9)

g � f,

f � g,

dno es un polinomio
y

1x

x2 1

( f g)(x) f (g(x)).

(g f )(x) g( f (x)).

 4x4 10x2 4.

 4x4 4x2 1 3 . 2x2 3 . 1

 (2x2 1)2 3(2x2 1)

 (f g)(x) f (g(x)) f (2x2 1)

 2x4 12x3 18x2 1.

 2(x4 6x3 9x2) 1

 2(x2 3x)2 1

 (g f )(x) g( f (x)) g(x2 3x)

f g g f.

F(x) ( f g)(x) f (g(x)) f (6x3 8) 26x3 8.
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Hay otras dos soluciones para el ejemplo 4. Por ejemplo, si las funciones f y g se defi-

nen por y g(x) � x3, observe entonces que 

Dominio de una composición Para evaluar la composición el número
g(x) debe estar en el dominio de f. Por ejemplo, el dominio de es [0, q) y el domi-
nio de g(x) = x - 2 es el conjunto de números reales (-q, q). Observe que no es posible
evaluar f(g(1)) porque g(1) � �1 y �1 no está en el dominio de f. Para poder sustituir g(x)

en f(x), g(x) debe satisfacer la desigualdad que define al dominio de f, a saber: . Esta
última desigualdad es la misma que o El dominio de la composición

es [2, q), que sólo es una porción del dominio original (�q, q)
de g. En general, el dominio de la composición es el conjunto de números x en el domi-
nio de g tales que g(x) está en el dominio de f.

Para una constante c � 0, las funciones definidas por y � f(x) � c y y � f(x) – c son la
suma y la diferencia de la función f(x) y la función constante g(x) � c. La función y � cf(x)
es el producto de f(x) y la función constante g(x) � c. Las funciones definidas por y � f(x � c),
y � f(x � c) y y � f(cx) son las composiciones de f(x) con las funciones polinomiales
g(x) � x � c, g(x) � x � c y g(x) � cx, respectivamente. Como veremos dentro de poco, la
gráfica de cada una de éstas no es una transformación rígida ni una transformación no
rígida de la gráfica de y � f(x).

Transformaciones rígidas Una transformación rígida de una gráfica es una transformación
que cambia sólo la posición de la gráfica en el plano xy, pero no su forma. Para la gráfica de una
función y � f(x) se analizan cuatro tipos de desplazamientos o traslaciones.

f � g
f (g(x)) �1g(x) � 1x � 2

x � 2.x � 2 � 0
g(x) � 0

f (x) � 1x

( f � g)(x) � f (g(x))

( f � g)(x) � f (x3) � 26x3
� 8.f (x) � 16x � 8

Traslaciones

Suponga que es una función y c es una constante positiva. Entonces la
gráfica de

• es la gráfica de f desplazada verticalmente hacia arriba c unidades,
• es la gráfica de f desplazada verticalmente hacia abajo c unidades,
• es la gráfica de f desplazada horizontalmente hacia la izquierda c

unidades,
• es la gráfica de f desplazada horizontalmente hacia la derecha c

unidades.
y � f (x � c)

y � f (x � c)
y � f (x) � c
y � f (x) � c

y � f (x)

Considere la gráfica de una función y � f(x) dada en la FIGURA 2.2.2. Desplazamientos ver-
tical y horizontal de esta gráfica son las gráficas mostradas en los incisos a)-d) de la FIGURA

2.2.3. Si (x, y) es un punto sobre la gráfica de y � f(x) y la gráfica de f está desplazada, por
ejemplo, hacia arriba por c > 0 unidades, entonces (x, y � c) es un punto sobre la nueva grá-
fica. En general, las coordenadas x no cambian como resultado de un desplazamiento vertical.
Vea las figuras 2.2.3a) y 2.2.3b). En forma semejante, en un desplazamiento horizontal las
coordenadas y de puntos sobre la gráfica desplazada son las mismas que sobre la gráfica ori-
ginal. Vea las figuras 2.2.3c) y 2.2.3d).

EJEMPLO  5 Gráficas desplazadas

Las gráficas de y = x2 + 1, y = x2 - 1, y = (x + 1)2 y se obtienen a partir de la
gráfica de en la FIGURA 2.2.4a) al desplazar esta gráfica, a la vez, 1 unidad hacia arriba
(figura 2.2.4b)), 1 unidad hacia abajo (figura 2.2.4c)), 1 unidad hacia la izquierda (figura
2.2.4d)) y 1 unidad hacia la derecha (figura 2.2.4e)).

f (x) � x2
y � (x � 1)2

x

y

y �ƒ(x)

FIGURA 2.2.2 Gráfica de y � f (x)

c

(x, y � c)

a) Desplazamiento vertical hacia arriba

y �ƒ(x) � c

y �ƒ(x)

y

(x, y)

x

c

(x, y � c)y �ƒ(x) � c

y �ƒ(x)

y (x, y)

b) Desplazamiento vertical hacia abajo

x
(x �c, y)

y �ƒ(x � c) y �ƒ(x)

y

(x, y)
x

c

c) Desplazamiento horizontal
 hacia la izquierda

(x �c, y)

y �ƒ(x�c)y �ƒ(x)

y

(x, y)

x

c

d) Desplazamiento horizontal
 hacia la derecha

FIGURA 2.2.3 Desplazamientos
vertical y horizontal de y � f(x)
por una cantidad c � 0



Combinación de desplazamientos En general, la gráfica de una función

(10)

donde c1 y c2 son constantes positivas, combina un desplazamiento horizontal (a la izquierda
o a la derecha) con un desplazamiento vertical (hacia arriba o hacia abajo). Por ejemplo, la
gráfica es la gráfica de f(x) � x2 desplazada 1 unidad hacia la izquierda
seguida por un desplazamiento vertical 1 unidad hacia abajo. La gráfica se proporciona en la
FIGURA 2.2.5.

Otra forma de transformar rígidamente la gráfica de una función es por medio de una
reflexión en un eje de coordenadas.

y � (x � 1)2
� 1
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a) Punto inicial

y

x

y � x2

x

y y � x2
�1

b) Desplazamiento hacia arriba

x

y

y � x2
�1

c) Desplazamiento hacia abajo

x

y

y � (x �1)2

d) Desplazamiento hacia la izquierda

x

y
y � (x �1)2

e) Desplazamiento hacia la derecha

FIGURA 2.2.4 Gráficas desplazadas en el ejemplo 5

El orden en que se hacen los
desplazamientos es irrelevante.

FIGURA 2.2.5 Gráfica obtenida
por desplazamientos horizontal y
vertical

y � (x �1)2
�1

x

y

Reflexión o imagen especular

Reflexiones

Suponga que es una función. Entonces la gráfica de

• es la gráfica de f reflejada en el eje x,
• es la gráfica de f reflejada en el eje y.y � f (�x)

y � �f (x)

y � f (x)

En la FIGURA 2.2.6a) se ha reproducido la gráfica de una función y � f(x) dada en la figura
2.2.2. Las reflexiones de esta gráfica en los ejes x y y se ilustran en las figuras 2.2.6b) y 2.2.6c).
Cada una de estas reflexiones es una imagen especular de la gráfica de y � f(x) en el eje
coordenado respectivo.

EJEMPLO  6 Reflexiones

Grafique

a) b)

Solución El punto inicial es la gráfica de dada en la FIGURA 2.2.7a).
a) La gráfica de es la reflexión de la gráfica de en el eje x. Observe

en la figura 2.2.7b) que como (1, 1) está en la gráfica de f, el punto está en
la gráfica de .

b) La gráfica de es la reflexión de la gráfica de en el eje y. Observe
en la figura 2.2.7c) que como (1, 1) está en la gráfica de f, el punto ( 1, 1) está en
la gráfica de La función parece algo extraña, pero no olvide
que su dominio está determinado por el requerimiento de que , o, de manera
equivalente, , y así la gráfica reflejada está definida en el intervalo  (�q,  0].x � 0

�x � 0
y � 1�xy � 1�x.

�

f (x) � 1xy � 1�x
y � �1x

(1,  �1)
f (x) � 1xy � �1x

f (x) � 1x

y � 1�x.y � �1x

x

y
y �ƒ(x)

a) Punto inicial

x

y

y � �ƒ(x)

b) Reflexión en el eje x

x

y

y �ƒ(�x)

c) Reflexión en el eje y
FIGURA 2.2.6 Reflexiones con respecto a los ejes coordenados

y f (x c1)  c2,
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Transformaciones no rígidas Si una función f se multiplica por una constante c � 0, la forma
de la gráfica cambia pero retiene, aproximadamente, su forma original. La gráfica de 
es la gráfica de distorsionada verticalmente; la gráfica de f se estira (o elonga) vertical-
mente o se comprime (o aplana) verticalmente, dependiendo del valor de c. En otros términos,
un estiramiento vertical es un estiramiento de la gráfica de alejándose del eje x, mien-
tras que una compresión vertical es una compresión de la gráfica de hacia el eje x. La
gráfica de la función está distorsionada horizontalmente, ya sea por un estiramiento de
la gráfica de alejándose del eje y o por una compresión de la gráfica de hacia
el eje y. El estiramiento o la compresión de una gráfica constituyen ejemplos de transformacio-
nes no rígidas.

y � f (x)y � f (x)
y � f (cx)

y � f (x)
y � f (x)

y � f (x)
y � cf (x)

x

y

(1, 1)

a) Punto inicial

y �    x 

x

y

b) Reflexión en el eje x

(1, �1)

y � �     x 

x

y

c) Reflexión en el eje y

(�1, 1)

y �   �x

FIGURA 2.2.7 Gráficas en el ejemplo 6

Estiramientos y compresiones

Suponga que es una función y que c es una constante positiva. Entonces
la gráfica de

• es la gráfica de f estirada verticalmente por un factor de c si c 7 1,
• es la gráfica de f comprimida verticalmente por un factor de 1 c si

0 6 c < 1,
• es la gráfica de f estirada horizontalmente por un factor de 1 c si

0 6 c 6 1,
• es la gráfica de f comprimida horizontalmente por un factor de c si

c 7 1.
y � f (cx)

>y � f (cx)

>y � cf (x)
y � cf (x)

y � f (x)

1

2

a) y �ƒ(x)

(1, 0)

(2, 2)(�1, 2)

�1

2
y

x

b) y �   ƒ(x)

1

2(1, 0)

(�1, 1) (2, 1)

�1

2
y

x

2
1

��  , 2� (1, 2)

1

2

c) y �ƒ(2x)

1�1

2
y

x

2
1

�  , 0�2
1

FIGURA 2.2.8 Gráficas de las funciones en el ejemplo 7

EJEMPLO  7 Dos compresiones

Dada f (x) = x2 - x, compare las gráficas de

a) y b)

Solución La gráfica de la función polinomial dada f se muestra en la FIGURA 2.2.8.
a) Con la identificación la gráfica de es la gráfica de f comprimida ver-

ticalmente por un factor de 2. De los tres puntos mostrados sobre la gráfica de la
figura 2.2.8a), observe en la figura 2.2.8b) que las coordenadas y de los tres puntos
correspondientes miden la mitad. La gráfica original está girada hacia el eje x.

b) Con la identificación c � 2, la gráfica de es la gráfica de f comprimida
horizontalmente por un factor de 2. De los tres puntos mostrados sobre la gráfica de
la figura 2.2.8a), en la figura 2.2.8c) las coordenadas x de los tres puntos correspon-
dientes están divididos entre 2. La gráfica original está girada hacia el eje y.

y � f (2x)

y �
1
2 f (x)c �

1
2,

y � f (2x).y �
1
2 f (x)



El siguiente ejemplo ilustra el desplazamiento, la reflexión y el estiramiento de una gráfica.

EJEMPLO  8 Combinación de transformaciones

Grafique .

Solución Usted debe reconocer que la función dada consta de cuatro transformaciones de la
función básica 

desplazamiento vertical hacia arriba desplazamiento horizontal hacia la derecha
T T

c c
reflexión en el eje x estiramiento vertical

Empezaremos con la gráfica de en la FIGURA 2.2.9a). Las cuatro transformaciones se
ilustran en las figuras 2.2.9b)-e).

f (x) � 1x

y � 2 � 21x � 3.

f (x) � 1x:

y � 2 � 21x � 3

2.2 Combinación de funciones 37

(0, 0)

a) Punto inicial

x

y

y �    x 

(0, 0)

b) Estiramiento vertical

x

y

y � 2   x 

(0, 0)

c) Reflexión en el eje x

x

y

y � �2   x 
(3, 0)

d) Desplazamiento hacia la derecha

y

x

y � �2   x �3 

x

(3, 2)

e) Desplazamiento hacia arriba

y

y � 2 � 2   x �3 

FIGURA 2.2.9 Gráfica de la función en el ejemplo 8

Pruebas para simetría de la gráfica de una función

La gráfica de una función f con dominio X es simétrica con respecto al

• eje y si f(�x) � f(x) para toda x en X, o bien, (11)
• origen si f(�x) � �f(x) para toda x en X. (12)

ƒ(�x) ƒ(x)
x

x

y

�x

x

y

ƒ(�x)

ƒ(x)�x

x

FIGURA 2.2.10 Función par; la
gráfica tiene simetría con respecto
al eje y

FIGURA 2.2.11 Función impar; la
gráfica tiene simetría con respecto
al origen

En la FIGURA 2.2.10, observe que si f es una función par y

f (x) f (-x)
T T

es un punto en su gráfica, entonces necesariamente 

también es un punto sobre su gráfica. De manera semejante, en la FIGURA 2.2.11 se observa que
si f es una función impar y

f (x) f (-x) = -f (x)
T T

es un punto en su gráfica, entonces necesariamente 

es un punto sobre su gráfica.

EJEMPLO  9 Funciones pares e impares

a) es una función impar, ya que por (12),

Una inspección de la figura 2.1.2c) muestra que la gráfica de f es simétrica con respec-
to al origen. Por ejemplo, puesto que f(1) � 1, (1, 1) es un punto sobre la gráfica de
y � x3. Debido a que f es una función impar, implica que (�1, �1)
está sobre la misma gráfica.

f (�1) � �f (1)

f (�x) � (�x)3
� (�1)3 x3

� �x3
� �f (x).

f (x) � x3

(�x, �y)(x, y)

(�x, y)(x, y)

Simetría Si la gráfica de una función es simétrica con respecto al eje y, decimos que f es
una función par. Se dice que una función cuya gráfica es simétrica con respecto al origen es una
función impar. Contamos con las siguientes pruebas para simetría.
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b) es una función par, ya que por (11) y las leyes de los exponentes,

la raíz cúbica de �1 es �1
T

.

En la figura 2.2.1i) observamos que la gráfica de f es simétrica con respecto al eje y.

Por ejemplo, (8, 4) y (�8, 4) son puntos sobre la gráfica de 

c) no es par ni impar. Con base en

se observa que f (�x) Z f (x) y 

Las gráficas en la figura 2.2.1, con el inciso g) como única excepción, presenta simetría

con respecto al eje y o al origen. Las funciones en las figuras 2.2.1b), d), f ) e i) son pares,

mientras que las funciones en las figuras 2.2.1a), c), e) y h) son impares.

f (�x) � �f (x).

f (�x) � (�x)3
� 1 � �x3

� 1

f (x) � x3
� 1

y � x2>3.
f (�x) � (�x)2>3

� (�1)2>3x2>3
� (13 �1)2 x2>3

� (�1)2x2>3
� x2>3

� f (x)

f (x) � x2>3

2.2 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-3.

Fundamentos

En los problemas 1-6, encuentre f + g, f - g, fg y 

1.

2.

3.

4.

5.

6.

En los problemas 7-10, sean y g(x) =
. Encuentre el dominio de la función dada.

7. 8. 9. 10.

En los problemas 11-16, encuentre y 

11.

12.

13.

14.

15.

16.

En los problemas 17 y 18, sean y g(x) =
x2 + 2. Encuentre el dominio de la función dada.

17. 18.

En los problemas 19 y 20, sean y g(x) = 2 -
. Encuentre el dominio de la función dada.

19. 20.

En los problemas 21 y 22, encuentre y 

21. 22.

La composición de tres funciones f, g y h es la función

En los problemas 23 y 24, encuentre .

23.

24.

En los problemas 25 y 26, encuentre una función de g.

25.

26.

En los problemas 27 y 28, exprese la función F como una

composición de dos funciones f y g.

27. 28.

En los problemas 29-36, los puntos (�2, 1) y (3, �4) están

sobre la gráfica de la función y � f(x). Encuentre los pun-

tos correspondientes sobre la gráfica, obtenidos por las trans-

formaciones dadas.

29. La gráfica de f desplazada 2 unidades hacia arriba.

30. La gráfica de f desplazada 5 unidades hacia abajo.

31. La gráfica de f desplazada 6 unidades hacia la izquierda.

32. La gráfica de f desplazada 1 unidad hacia la derecha.

33. La gráfica de f desplazada 1 unidad hacia arriba y 4 uni-

dades hacia la izquierda.

34. La gráfica de f desplazada 3 unidades hacia abajo y 5

unidades hacia la derecha.

35. La gráfica de f reflejada en el eje y.

36. La gráfica de f reflejada en el eje x.

F(x) �
1

x2
� 9

F(x) � 2x4
� x2

f � g

f (x) � 12x � 6, ( f � g)(x) � 4x2

f (x) � 2x � 5, ( f � g)(x) � �4x � 13

f (x) � 1x � 5, g(x) � x2
� 2, h(x) � 12x � 1

f (x) � x2
� 6, g(x) � 2x � 1, h(x) � 3x � 2

f � g � h

( f � g � h)(x) � f (g(h(x))).

f (x) �
1

x � 1
f (x) � 2x3

f � (1>f ).f � (2f )

f � gg � f

1x

f (x) � 5 � x2

g � ff � g

f (x) � 1x � 3

f (x) � x2
� 1x, g(x) � x2

f (x) �
3
x
, g(x) �

x
x � 1

f (x) � 2x � 4, g(x) �
1

2x � 4

f (x) � x2, g(x) � x3
� x2

f (x) � 4x � 1, g(x) � x2

f (x) � 3x � 2, g(x) � x � 6

g � f.f � g

g>ff>gfgf � g

12 x

f (x) � 1x � 1

f (x) � x2, g(x) � 1x

f (x) � x2
� 2x � 3, g(x) � x2

� 3x � 4

f (x) �
2x � 1
x � 3

, g(x) �
x � 3

4x � 2

f (x) �
x

x � 1
, g(x) �

1
x

f (x) � 5x2, g(x) � 7x � 9

f (x) � 2x � 5, g(x) � �4x � 8

f>g.



En los problemas 37-40, use la gráfica de la función 
dada en la figura para graficar las siguientes funciones:

a) b)
c) d)
e) f )

37. 38.

39. 40.

En los problemas 41 y 42, use la gráfica de la función y � f (x)
dada en la figura para graficar las siguientes funciones:

a) b)
c) d)
e) f )

g) h)

41. 42.

En los problemas 43-46, encuentre la ecuación de la gráfica
final después que las transformaciones dadas se aplican a la
gráfica de y � f(x).

43. La gráfica de f(x) � x3 desplazada 5 unidades hacia
arriba y 1 unidad a la derecha.

44. La gráfica de estirada verticalmente por un
factor de 3 unidades y luego desplazada 2 unidades a la
derecha.

45. La gráfica de f(x) � x4 reflejada en el eje x y luego des-
plazada 7 unidades hacia la izquierda.

46. La gráfica de reflejada en el eje y, luego des-

plazada 5 unidades hacia la izquierda y 10 unidades
hacia abajo.

En los problemas 47 y 48, complete la gráfica de la función
dada y � f(x) si

a) f es una función par y b) f es una función impar.

47. 48.

49. Complete la tabla, donde f es una función par.

50. Complete la tabla, donde g es una función impar.

Un clásico matemático En el análisis matemático de cir-
cuitos o señales, resulta conveniente definir una función espe-
cial que es 0 (apagado) hasta cierto número y luego es 1
(encendido) después de lo anterior. La función de Heaviside

,

recibe su nombre en honor al brillante y controvertido inge-
niero eléctrico y matemático inglés Oliver Heaviside (1850-
1925). La función U también se denomina función escalón
unitario.

En los problemas 51 y 52, trace la función dada. La función
en el problema 52 algunas veces se denomina función vagón
o ventana.

51.

52.

53. Encuentre la ecuación para la función f ilustrada en la
FIGURA 2.2.20 en términos de 

54. La función de Heaviside suele combinarse con
otras funciones por adición y multiplicación. Dado que

compare las gráficas de y
y � f (x � 3)U(x � 3).

y � f (x � 3)f (x) � x2,

U(x � a)

U(x � a).

y � U Ax �
1
2B � U Ax �

1
2By � 2 U(x � 1) � U(x � 2)

U(x � a) � e0,
1,

x 6 a
x � a

f (x) �
1
x

f (x) � x2>3

y � �
1
2

f (x)y � 3f (x)

y � f (�x)y � �f (x)
y � f (x � p>2)y � f (x � p)
y � f (x) � 1y � f (x) � 1

y � f (�x)y � �f (x)
y � f (x � 5)y � f (x � 2)
y � f (x) � 2y � f (x) � 2

y � f (x)

2.2 Combinación de funciones 39

x

y

x

y

FIGURA 2.2.12 Gráfica
para el problema 37

FIGURA 2.2.13 Gráfica para
el problema 38

y

x
x

y

FIGURA 2.2.14 Gráfica
para el problema 39

FIGURA 2.2.15 Gráfica
para el problema 40

1

x

y

�1

�� �
�

2
�

2
�

x

y

1

�� �

�1
2
�

�
2
�

FIGURA 2.2.16 Gráfica para
el problema 41

FIGURA 2.2.17 Gráfica para
el problema 42

x

y

x

y

FIGURA 2.2.18 Gráfica
para el problema 47

FIGURA 2.2.19 Gráfica
para el problema 48

x

y �ƒ(x)

y

FIGURA 2.2.20 Gráfica para
el problema 53

x 0 1 2 3 4

f (x) �1 2 10 8 0

g(x) 2 �3 0 1 �4

( f � g)(x)

x 0 1 2 3 4

f (x) �2 �3 0 �1 �4

g(x) 9 7 �6 �5 13

(g � f )(x)
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En los problemas 55 y 56, trace la función dada.

55. 56.

Piense en ello

57. Determine si es falsa o ver-
dadera.

58. Suponga que es el dominio de f(x) � x2. ¿Cuál
es el dominio de 

59. Explique por qué la gráfica de una función no puede ser
simétrica con respecto al eje x.

60. ¿Cuáles puntos, en caso de haber, sobre la gráfica de
y � f(x) permanecen fijos; es decir, los mismos sobre la
gráfica resultante después de un estiramiento o compre-
sión vertical? ¿Después de una reflexión en el eje x?
¿Después de una reflexión en el eje y?

61. Suponga que el dominio de f es ¿Cuál es la
relación entre la gráfica de y = f(x) y

62. Revise las gráficas de y = x y y = 1 x en la figura 2.2.1.
Luego analice cómo obtener la gráfica de y = 1 f(x) a
partir de la gráfica de y = f(x). Trace la gráfica de y =
1 f(x) para la función f cuya gráfica se proporciona en
la figura 2.2.15.

63. Suponga que f(x) � x y es la función redon-
deo hacia el entero inferior anterior. La diferencia de f

y g es la función denominada parte
fraccionaria de x. Explique el nombre y luego grafique
frac(x).

64. Use la notación de la reflexión de una gráfica en un eje
para expresar la función redondeo hacia el entero supe-
rior siguiente en términos de la función
redondeo hacia el entero inferior anterior .f (x) � :x ;g(x) � <x =

frac(x) � x �  :x ;g(x) � :x ;
> >> y � f ( 0 x 0 )?(�q, q).

y � f (x � 2)?
[�1, 1]

f � (g � h) � f � g � f � h

y � x  � x U(x � 3)y � (2x � 5)U(x � 1)

2.3 Funciones polinomiales y racionales
Introducción En esta sección continúa el repaso de las funciones polinomiales y de las fun-

ciones racionales. Funciones como y = 5x2 - 2x + 4 y y � x3, donde la variable x
se eleva a una potencia entera no negativa, son ejemplos de funciones polinomiales. En la sec-
ción precedente se vio que una función polinomial general y � f(x) tiene la forma

(1)

donde n es un entero no negativo. Una función racional es el cociente

(2)

donde p y q son funciones polinomiales.

Funciones polinomiales Las constantes en (1) se denominan coeficien-
tes; el número an se llama coeficiente principal y a0 se denomina término constante del poli-
nomio. Se dice que la mayor potencia de x en un polinomio es el grado de éste. De modo que si

entonces se dice que f(x) en (1) es de grado n. Por ejemplo,

es una función polinomial de grado 5.
Los polinomios de grados n � 0, n � 1, n � 2 y n � 3 son, respectivamente,

La función constante f(x) � 0 se denomina polinomio cero.

Rectas Sin duda, usted está familiarizado con el hecho de que las gráficas de una función
constante y una función lineal son rectas. Puesto que el concepto de recta juega un papel impor-
tante en el estudio del cálculo diferencial, resulta conveniente revisar las ecuaciones de las rec-
tas. En el plano xy hay tres tipos de rectas: rectas horizontales, rectas verticales y rectas inclina-
das u oblicuas.

an 
 0,

an,  an�1, p  , a1,  a0

y � 2x � 1,

f (x) an xn an 1 xn 1 p a2 x2 a1 x a0,

f(x)
p(x)
q(x)

,

grado 5

coeficiente principal término constante
cc

f (x) 3x5 4x3 3x 8
T

función constante,

función lineal,

función cuadrática,

función cúbica.f(x) ax3 bx2 cx d,

f(x) ax2 bx c,

f(x) a x b,

f(x) a,



Pendiente Se empezará con la recolección de geometría plana de que por dos puntos distin-
tos (x1, y1) y (x2, y2) en el plano pasa una sola recta L. Si , entonces el número

(3) 

se denomina pendiente de la recta determinada por estos dos puntos. Suele acostumbrarse
denotar el cambio en y o ascenso vertical de la recta por y el cambio en x o¢y � y2 � y1

x1 
 x2

2.3 Funciones polinomiales y racionales 41

x

y

recorrido
horizontal

x1

	 x � x2 � x1

	 y � y2 � y1

(x2
,
  y2)

x2

(x1
,
  y1)

ascenso vertical

FIGURA 2.3.1 Pendiente de una
recta

recorrido horizontal x2 � x1

recorrido horizontal
x4 � x3

x

y

ascenso
vertical y2 � y1

ascenso
vertical y4 � y3

(x2,  y2)
(x3,  y3)

(x4,  y4)

(x1,  y1)

FIGURA 2.3.2 Triángulos seme-
jantes

x

y

	y �0

	 x � 0

(x1, y1)

a) m� 0

(x2, y2)

FIGURA 2.3.3 Rectas con pendiente a)-c); recta sin pendiente d)
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Ecuaciones de rectas Para encontrar la ecuación de una recta L con pendiente m, se supone
que (x1, y1) está sobre la recta. Si (x, y) representa cualquier otro punto sobre L, entonces (3) pro-
porciona

Al multiplicar ambos miembros de la última igualdad por x � x1 se obtiene una ecuación impor-
tante. La ecuación punto-pendiente de la recta que pasa por (x1, y1) con pendiente m es

y � y1 � m(x � x1). (4)

Cualquier recta que no sea vertical debe cruzar el eje y. Si la intersección y es (0, b), enton-
ces con , (4) proporciona La última ecuación se reduce a la
ecuación pendiente-intercepto de la recta

y � mx � b. (5)

EJEMPLO  1 Ecuación de una recta dadas su pendiente y su ordenada en el origen

Encuentre una ecuación de la recta que pasa por los puntos (4, 3) y (�2, 5).

Solución Primero se calcula la pendiente de la recta que pasa por los puntos. Con base en (3),

Luego, la ecuación (4) de una recta dadas su pendiente y su ordenada en el origen proporciona
y 3 1

3(x 4) o y 1
3 x 13

3 .

m �
5 � 3

�2 � 4
�

2
�6

� �
1
3
.

y � b � m(x � 0).x1 � 0,  y1 � b

y � y1

x � x1
� m.

m
y2 y1

x2 x1

recorrido horizontal de la recta por de modo que (3) se escribe m = ¢y�¢x.
Vea la FIGURA 2.3.1. Como se indica en la FIGURA 2.3.2, cualquier par de puntos distintos sobre una
recta con pendiente, por ejemplo, por (x1, y1), (x2, y2) y determina la misma
pendiente. En otras palabras, la pendiente de una recta es independiente de la elección de los
puntos sobre la recta.

En la FIGURA 2.3.3 se comparan las gráficas de rectas con pendientes positiva, negativa, cero
e indefinida. En la figura 2.3.3a) vemos, al leer la gráfica de izquierda a derecha, que una recta
con pendiente positiva (m > 0) asciende cuando x crece. La figura 2.3.3b) muestra que una
recta con pendiente negativa (m < 0) cae cuando x crece. Si (x1, y1) y (x2, y2) son puntos sobre
una recta horizontal, entonces y1 � y2 y así su ascenso vertical es �y � y2 � y1 � 0. Por
tanto, con base en (3) la pendiente es cero (m � 0). Vea la figura 2.3.3c). Si (x1, y1) y (x2, y2)
son puntos sobre una recta vertical, entonces x1 � x2 y así su recorrido horizontal es

En este caso se dice que la pendiente de la recta está indefinida o que la
recta no tiene pendiente. Vea la figura 2.3.3d). Sólo rectas con pendiente son gráficas de fun-
ciones.

¢x � x2 � x1 � 0.

(x3, y3),  (x4, y4),

¢x � x2 � x1,
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Una ecuación de cualquier recta en el plano es un caso especial de la ecuación lineal
general

Ax � By � C � 0, (6)

donde A, B y C son constantes reales. La característica que proporciona a (6) su nombre lineal

es que las variables x y y sólo aparecen a la primera potencia. Los casos de interés especial son

da (7)

da (8)

da (9)

De estas ecuaciones, la primera y la tercera definen funciones. Al volver a identificar a -C B

en (7) como a se obtiene una función constante y = a. Al reidentificar a -A B y -C B en (9)
como a y b, respectivamente, se obtiene la forma de una función lineal f(x) = ax + b que,
excepto por algunos símbolos, es la misma que (5). Al volver a identificar -C A en (8) como
a se obtiene la ecuación de una recta vertical x = a, que no es una función.

Funciones crecientes-decrecientes Recién acabamos de ver en las figuras 2.3.3a) y 2.3.3b)
que si a � 0 (lo cual, desempeña la parte de m), los valores de una función lineal 
crecen cuando x crece, mientras que para a 6 0, los valores de f(x) disminuyen cuando x crece.
Los conceptos creciente y decreciente pueden extenderse a cualquier función. Se dice que una
función f es

• creciente sobre un intervalo si y (10)
• decreciente sobre un intervalo si . (11)

En la FIGURA 2.3.4a) la función f es creciente sobre el intervalo [a, b], mientras f es decreciente
sobre el intervalo [a, b] en la figura 2.3.4b). Una función lineal crece sobre el
intervalo para a 0 y decrece sobre el intervalo para a 0.�(�q,  q)�(�q, q)

f (x) � ax � b

f (x1) 7 f (x2)
f (x1) 6 f (x2),

f (x) � ax � b

> >> >y � �
A
B

x �
C
B

.A 
 0, B 
 0,

x � �
C
A

,A 
 0, B � 0,

y � �
C
B

,A � 0, B 
 0,

Esta suposición significa que L1

y L2 son rectas no verticales.

y

x

y � �3x � 2 y � �3x �
15
2

FIGURA 2.3.5 Rectas paralelas en
el ejemplo 2

Rectas paralelas y perpendiculares Si L1 y L2 son dos rectas distintas con pendiente, enton-
ces necesariamente L1 y L2 son paralelas o se cortan. Si las rectas se cortan formando un ángu-
lo recto, se dice que son perpendiculares. Es posible determinar si dos rectas son paralelas o per-
pendiculares al examinar sus pendientes.

EJEMPLO  2 Rectas paralelas

Las ecuaciones lineales y pueden volver a escribirse en las formas
de la ecuación de la recta dadas su pendiente y su ordenada en el origen y = -3x + 2 y

, respectivamente. Como se destaca en color, la pendiente de cada recta es -3.
En consecuencia, las rectas son paralelas. Las gráficas de estas ecuaciones se muestran en la
FIGURA 2.3.5.

y 3x 15
2

6x � 2y � 153x � y � 2

a) ƒ(x1) � ƒ(x2)

x

y

ƒ(x2)

ƒ(x1)

x1 x2 ba

x

y

ƒ(x1)

ƒ(x2)

x1 x2 ba

b) ƒ(x1) � ƒ(x2)

FIGURA 2.3.4 Función creciente en a); función decreciente en b)

Rectas paralelas y perpendiculares

Suponga que L1 y L2 son rectas con pendientes m1 y m2, respectivamente. Entonces

• L1 es paralela a L2 si y sólo si m1 � m2, y
• L1 es perpendicular a L2 si y sólo si m1m2 � �1.



requerida, por (5) se concluye que su ecuación es . La gráfica de la última ecua-
ción es la recta por (0, -3) en la figura 2.3.6.

Funciones cuadráticas La función elevar al cuadrado que se abordó en las secciones
2.1 y 2.2 es un elemento de una familia de funciones denominadas funciones cuadráticas; es
decir, funciones polinomiales de la forma donde b y c son constan-
tes. Las gráficas de funciones cuadráticas, denominadas parábolas, simplemente son transfor-
maciones rígidas y no rígidas de la gráfica de y � x2 mostrada en la FIGURA 2.3.7.

Vértice y eje Si la gráfica de una función cuadrática se abre hacia arriba a > 0 (o hacia abajo
a < 0), el punto más bajo (más alto) (h, k) sobre la parábola se denomina vértice. Todas las pa-
rábolas son simétricas con respecto a una recta vertical que pasa por el vértice (h, k). La recta

x � h se denomina eje de la parábola. Vea la FIGURA 2.3.8. 

Forma normal El vértice (h, k) de una parábola puede determinarse al volver a plantear la

ecuación en forma normal

(12) 

La forma (12) se obtiene a partir de al completar el cuadrado en x. Con

la ayuda del cálculo diferencial es posible encontrar el vértice de la parábola sin completar el

cuadrado.

Como se muestra con el siguiente ejemplo, al trazar las intersecciones y el vértice puede

obtenerse un bosquejo razonable de la parábola. La forma en (12) indica que su gráfica es la

gráfica de y � ax2 desplazada horizontalmente 0h 0 unidades y desplazada verticalmente 0k 0 uni-

dades.

EJEMPLO  4 Gráfica usando las intersecciones y el vértice

Grafique 

Solución Puesto que a � 1 > 0, se sabe que la parábola se abre hacia arriba. A partir de

f(0) � �3 obtenemos la intersección (0, �3). Para averiguar si hay alguna intersección x,

resolvemos la ecuación por factorización o aplicando la fórmula cuadrática.

Con base en encontramos las soluciones x 1 y x 3. Las interseccio-

nes x son ( 1, 0) y (3, 0). Para localizar el vértice, se completa el cuadrado:

Así, la forma estándar es . Al comparar la última ecuación con (12) se

identifica h 1 y k 4. Podemos concluir que el vértice se encuentra en el punto (1, 4).

Al usar esta información se traza una parábola que pasa por estos cuatro puntos como se mues-

tra en la FIGURA 2.3.9.

Al encontrar el vértice de una parábola, de manera automática se determina el rango de

la función cuadrática. Como se muestra claramente en la figura 2.3.9, el rango de f es el inter-

valo sobre el eje y. En la figura 2.3.9 también se muestra que f es decreciente sobre

el intervalo , pero creciente sobre

Funciones polinomiales de orden superior La gráfica de toda función lineal f(x) � ax � b

es una recta y la gráfica de toda función cuadrática es una parábola. Estas

declaraciones descriptivas definitivas no pueden hacerse con respecto a la gráfica de una función

polinomial de orden superior. ¿Cuál es la forma de la gráfica de una función polinomial de quin-

to grado? Resulta que la gráfica de una función polinomial de grado puede tener varias

formas posibles. En general, graficar una función polinomial f de grado demanda el uson � 3
n � 3

f (x) � ax2
� bx � c

[1,  q).(�q,  1]
[�4,  q)

����

f(x) (x 1)2 4

�

���(x � 1)(x � 3) � 0
x2

� 2x � 3 � 0

f (x) � x2
� 2x � 3.

f (x) � ax2
� bx � c

f (x) � ax2
� bx � c

a � 0,f (x) � ax2
� bx � c,

y � x2

y 3
4x 3
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FIGURA 2.3.7 Gráfica de la

parábola más simple
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FIGURA 2.3.8 Vértice y eje de

una parábola
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4
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x � 2
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FIGURA 2.3.6 Rectas perpendicu-

lares en el ejemplo 3

EJEMPLO  3 Rectas perpendiculares

Encuentre una ecuación de la recta que pasa por (0, �3) y es perpendicular a la gráfica de

Solución Al despejar y, la ecuación lineal dada produce la forma de la ecuación de la recta

dadas su pendiente y su ordenada en el origen Esta recta, cuya gráfica se propor-

ciona en la FIGURA 2.3.6, tiene pendiente La pendiente de cualquier recta perpendicular a ésta

es el recíproco negativo de , a saber: . Puesto que (0, 3) es la intersección y de la recta��
3
4

4
3

4
3.

y �
4
3 x � 2.

4x � 3y � 6 � 0.

f(x) a (x h)2 k.

f(x) (x2 2x 1) 1 3 (x2 2x 1) 4.
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de un instrumento de cálculo o graficado. No obstante, al tener en cuenta el desplazamiento, el
comportamiento extremo, las intersecciones y la simetría, es posible en muchos casos trazar rápi-
damente una gráfica razonable de una función polinomial de orden superior a la vez que el tra-
zado de puntos se mantiene en un mínimo.

Comportamiento final En términos aproximados, el comportamiento final de cualquier

función f es simplemente la forma en que f se comporta para valores muy grandes de 0x 0 . En el
caso de una función polinomial f de grado n, su gráfica semeja la gráfica de para valo-
res grandes de 0x 0 . Para ver por qué la gráfica de una función polinomial como f (x) = -2x3 +
4x2 + 5 se parece a la gráfica de la función polinomial con un solo término cuando 0x 0
es grande, se factorizará la potencia más alta de x; es decir, x3:

. (13)

Al dejar que 0x 0 crezca sin límite, tanto 4 x como 5 x3 pueden aproximarse a cero tanto como
se quiera. Así, cuando 0x 0 es grande, los valores de la función f en (13) son muy bien aproxi-
mados por los valores de En general, sólo puede haber cuatro tipos de comporta-
miento extremo para funciones polinomiales. Para interpretar las flechas en la FIGURA 2.3.10 se
analizarán las flechas en, por ejemplo, la figura 2.3.10c), donde se supone que n es impar y
que an � 0. La posición y la dirección de la flecha izquierda (la flecha izquierda apunta hacia
abajo) indica que cuando x se vuelve no acotada en la dirección negativa, los valores de f(x)
son decrecientes. Planteado en otros términos, la gráfica está apuntando hacia abajo. En forma
semejante, la posición y la dirección de la flecha derecha (la flecha derecha apunta hacia arriba)
indica que cuando x se vuelve no acotada en la dirección positiva, los valores de f(x) son cre-
cientes (la gráfica apunta hacia arriba). El comportamiento extremo ilustrado en las figuras
2.3.10a) y 2.3.10c) puede verse en las gráficas que se muestran en la FIGURA 2.3.11 y FIGURA

2.3.12, respectivamente. Las gráficas de las funciones . . . ,
y = -x8 son las gráficas en las figuras 2.3.11 y 2.3.12 reflejadas en el eje x, de modo que su
comportamiento extremo es como se muestra en las figuras 2.3.10b) y 2.3.10d).

y � �x3,y � �x2, y � �x,

y � �2x3.

>>f (x) � x3a�2 �
4
x

�
5
x3
b

y � �2x3

y � anxn

x

y

FIGURA 2.3.11 Gráficas de
y = x2, y = x4 y y = x6, y = x8

x

y

FIGURA 2.3.12 Gráficas de y = x,
y = x3 y y = x5, y = x7

y � x2
� 2x � 3

(0, �3)

(1, �4)

(�1, 0) (3, 0)
x

y

El rango de ƒ
es [�4, �)

FIGURA 2.3.9 Parábola en el
ejemplo 4

Simetría de las funciones polinomiales Resulta fácil identificar por inspección las funcio-
nes polinomiales cuyas gráficas poseen simetría con respecto al eje y o al origen. La palabras
par e impar tienen un significado especial para las funciones polinomiales. Las condiciones
f(�x) � f(x) y f(�x) � �f(x) se cumplen para funciones polinomiales donde todas las poten-
cias de x son enteros pares y enteros impares, respectivamente. Por ejemplo,

función par función impar ni par ni impar

Una función como es una función par porque todas las potencias son
enteros pares; el término constante 6 es en realidad 6x0, y 0 es un entero no negativo par.

Intersecciones de las funciones polinomiales La gráfica de toda función polinomial f pasa
por el eje y puesto que x � 0 está en el dominio de la función. La intersección y es el punto

f (x) � 3x6
� x4

� 6

f (x) � �3x7
� 2x4

� x3
� 2f (x) � 10x5

� 7x3
� 4xf (x) � 5x4

� 7x2

FIGURA 2.3.10 El comportamiento extremo de una función polinomial f depende de su grado n y el signo de su
coeficiente principal
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x
an � 0

estos dos términos se vuelven
despreciables cuando 0x 0 es grande
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Los ceros reales de una función polinomial son las coordenadas x de las interseccio-
nes x de su gráfica. Un número c es un cero de una función polinomial f de grado n si y sólo si
x – c es un factor de f; es decir, donde q(x) es un polinomio de grado n – 1.
Si es un factor de f, donde m 1 es un entero positivo, y no es un factor de
f, entonces se dice que c es un cero repetido o cero de multiplicidad m. Cuando m 1, c se
denomina cero simple. Por ejemplo, y son ceros simples de puesto que
f puede escribirse como , mientras que 5 es un cero repetido o un cero de
multiplicidad 2 para El comportamiento de la gráfica de f en
una intersección x (c, 0) depende de si c es un cero simple o un cero de multiplicidad m > 1,
donde m es un entero impar o par. Vea la FIGURA 2.3.13.

En el caso en que c es un cero simple o un cero de multiplicidad impar, f(x) cambia de
signo en (c, 0), mientras que si c es un cero de multiplicidad par, f(x) no cambia de signo en
(c, 0). Observamos que dependiendo del signo del coeficiente principal del polinomio, las grá-
ficas en la figura 2.3.13 pueden estar reflejadas en el eje x.

EJEMPLO  5 Gráficas de funciones polinomiales

Grafique

a) b) c)

Solución
a) Al ignorar todos los términos menos el primero observamos que la gráfica de f semeja

la gráfica de para 0x 0 grande. Este comportamiento final de f se muestra en la
figura 2.3.10c). Puesto que todas las potencias son enteros impares, f es una función
impar y su gráfica es simétrica con respecto al origen. Al hacer f(x) = 0, a partir de

notamos que los ceros de f son x � 0 y Puesto que estos números son ceros
simples, la gráfica pasa directamente por las intersecciones x en (0, 0), (-3, 0) y
(3, 0) como se muestra en la FIGURA 2.3.14.

b) Al distribuir la multiplicación de los factores, g es la misma que g(x) = -x3 - x2 +
x + 1 de modo que se observa que la gráfica de g semeja la gráfica de para0x 0 grande, justo lo opuesto del comportamiento final de la función en el inciso a).
Debido a que hay potencias pares e impares de x, g no es par ni impar; su gráfica no
posee simetría con respecto al eje y o al origen. En virtud de que �1 es un cero de
multiplicidad 2, la gráfica es tangente al eje x en (�1, 0). Puesto que 1 es un cero
simple, la gráfica pasa directamente por el eje x en (1, 0). Vea la FIGURA 2.3.15.

c) Al inspeccionar h se observa que su gráfica semeja la gráfica de para 0x 0
grande. Este comportamiento final de h se muestra en la figura 2.3.10b). La función
h no es par ni impar. A partir de la forma factorizada de h(x), se ve que �4 es un
cero simple y así la gráfica de h pasa directamente por el eje x en (�4, 0). Puesto
que 2 es un cero de multiplicidad 3, su gráfica se achata cuando pasa por la intersec-
ción x (2, 0). Vea la FIGURA 2.3.16.

y � �x4

y � �x3

x � �3.

y � x3

h(x) � �(x � 4)(x � 2)3.g(x) � (1 � x)(x � 1)2f (x) � x3
� 9x

Intersecciones x de polinomios

• Si c es un cero simple, entonces la gráfica de f pasa directamente por el eje x en
(c, 0). Vea la figura 2.3.13a).

• Si c es un cero de multiplicidad impar m � 3, 5, . . . , entonces la gráfica de f
pasa directamente por el eje x pero se achata en (c, 0). Vea la figura 2.3.13b).

• Si c es un cero de multiplicidad par m � 2, 4, . . . , entonces la gráfica de f no
pasa por el eje x, sino que es tangente a éste, o lo toca, el eje x en (c, 0). Vea la
figura 2.3.13c).

f (x) � x2
� 10x � 25 � (x � 5)2.

f (x) � 6 Ax �
1
3B Ax �

1
2B f (x) � 6x2

� x � 11
2�

1
3

�

(x � c)m�1
�(x � c)m

f (x) � (x � c)q(x),

(0,  f (0)).
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5

FIGURA 2.3.14 Gráfica de la fun-
ción en el ejemplo 5a)

y � (1� x)( x �1)2
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(1, 0)(�1, 0)
x
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FIGURA 2.3.15 Gráfica de la fun-
ción en el ejemplo 5b)

(0, 32)

(2, 0)(�4, 0)
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y
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FIGURA 2.3.16 Gráfica de la fun-
ción en el ejemplo 5c)
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Funciones racionales Graficar una función racional es un poco más com-
plicado que graficar una función polinomial porque además de estar atento a las intersecciones,
simetría y desplazamiento/reflexión/estiramiento de gráficas conocidas, también es necesario
prestar atención al dominio de f y los grados de p(x) y q(x). Estas dos últimas cuestiones son
importantes para determinar si la gráfica de una función racional posee asíntotas.

Intersecciones de funciones racionales La intersección y de la gráfica de 
es el punto (0, f(0)) en el supuesto de que 0 está en el dominio de f. Por ejemplo, la gráfica de la
función racional no cruza el eje y puesto que f(0) no está definido. Si los poli-
nomios p(x) y q(x) no tienen factores comunes, entonces las intersecciones x de la gráfica de la
función racional son los puntos cuyas coordenadas x son los ceros reales del
numerador p(x). En otras palabras, la única forma en que es posible que es
cuando p(x) 0. Así, para se obtiene x 1 y entonces (1, 0) es una
intersección x de la gráfica de f.

Asíntotas La gráfica de una función racional puede tener asíntotas. Para los
objetivos de este libro, las asíntotas pueden ser una recta horizontal, una recta vertical o una recta
inclinada. En un nivel práctico, las asíntotas vertical y horizontal de la gráfica de una función
racional f pueden determinarse por inspección. Así, por el bien del análisis se supondrá que

(14)

representa una función racional general. El grado de p(x) es n y el grado de q(x) es m.

Con base en la lista anterior observamos que las asíntotas horizontal e inclinada son mutua-
mente excluyentes. En otras palabras, la gráfica de una función racional f no puede tener una
asíntota inclinada y una asíntota horizontal.

EJEMPLO  6 Gráficas de funciones racionales

Grafique

a) b)

Solución
a) Se empieza con la observación de que el numerador p(x) � x y el denominador q(x)

= 1 - x2 no tienen factores comunes. También, puesto que f (�x) = �f (x), la función
f es impar. En consecuencia, su gráfica es simétrica con respecto al origen. Debido a
que f(0) = 0, la intersección y es (0, 0). Además, p(x) = x = 0 implica x = 0, de
modo que la única intersección es (0, 0). Los ceros del denominador
son Así, las rectas x = 1 y x = 1 son asíntotas verticales. Puesto que el grado
del numerador x es 1 y el grado del denominador es 2 (y 1 < 2), se concluye
que y = 0 es una asíntota horizontal para la gráfica de f. La gráfica consta de tres
ramas distintas: una a la izquierda de la recta x = -1, una entre las rectas x = -1 y
x = 1 y una a la derecha de la recta x = 1. Vea la FIGURA 2.3.17.

1 � x2
��1.

q(x) � 1 � x2

g(x) �
x2

� x � 6
x � 5

.f (x) �
x

1 � x2

Asíntotas de gráficas de funciones racionales

Suponga que las funciones polinomiales p(x) y q(x) en (14) no tienen factores

comunes.

• Si a es un cero real de q(x), entonces x � a es una asíntota vertical para la
gráfica de f.

• Si n � m, entonces y � an�bm (el cociente de los coeficientes principales) es una
asíntota horizontal para la gráfica de f.

• Si n < m, entonces y � 0 es una asíntota horizontal para la gráfica de f.
• Si n > m, entonces la gráfica de f no tiene asíntota horizontal.
• Si n � m � 1, entonces el cociente y � mx � b de p(x) y q(x) es una asíntota

inclinada para la gráfica de f.

f (x) �
p(x)

q(x)
�

anx n
� an�1x

n�1
�   

p � a1x � a0

bmxm
� bm�1xm�1

�   
p

  � b1x � b0

,   an 
 0,   bm 
 0,

f (x) � p(x)>q(x)

�1 � x � 0f (x) � (1 � x)>x,�

f (x) � p(x)>q(x) � 0
f (x) � p(x)>q(x)

f (x) � (1 � x)>x f (x) � p(x)>q(x)

f (x) � p(x)>q(x)

y

x

y �
1� x2

x

x � �1

x � 1

FIGURA 2.3.17 Gráfica de la fun-
ción en el ejemplo 6a)



b) De nuevo, observe que el numerador y el denominador q(x) =
x - 5 de g no tienen factores comunes. Asimismo, f no es impar ni par. A partir de

se obtiene la intersección y Con base en o
observamos que -2 y 3 son ceros de p(x). Las intersecciones x

son (-2, 0) y (3, 0). Resulta evidente que el cero de q(x) = x - 5 es 5, de modo que
la recta x = 5 es una asíntota vertical. Por último, a partir del hecho de que el grado
de (que es 2) es exactamente mayor por uno que el grado de q(x)
= x - 5 (que es 1), la gráfica de f(x) tiene una asíntota inclinada. Para encontrarla,
p(x) se divide entre q(x). Ya sea por división larga o división sintética, el resultado

muestra que la asíntota inclinada es y � x � 4. La gráfica consta de dos ramas: una
a la izquierda de la recta x � 5 y otra a la derecha de la recta x � 5. Vea la
FIGURA 2.3.18.

Posdata: Gráfica con un hueco En todo el análisis de las asíntotas se supuso que las funcio-
nes polinomiales p(x) y q(x) en (14) no tenían factores comunes. Se sabe que si q(a) � 0 y p(x)
y q(x) no tienen factores comunes, entonces la recta x � a necesariamente es una asíntota verti-
cal para la gráfica de f. Sin embargo, cuando p(a) � 0 y q(a) � 0, entonces x � a puede no ser

una asíntota; en la gráfica puede haber simplemente un hueco.

EJEMPLO  7 Gráfica con un hueco

Grafique la función 

Solución Aunque los ceros de son sólo x � 1 es una asíntota vertical.
Observe que el numerador p(x) y el denominador q(x) tienen el factor común x 1, que puede
cancelarse en el supuesto de que :

(15)

Graficamos al observar que la intersección y es (0, 3), una intersección x

es (3, 0), una asíntota vertical es x 1 y una asíntota horizontal es y 1. Aunque x 1
no es una asíntota vertical, el hecho de que f no está definida en ese número se representa al
dibujar un círculo o hueco abierto en la gráfica en el punto correspondiente a (�1, 2). Vea la
FIGURA 2.3.19.

����

x 
 �1,y �
x � 3
x � 1

,

x 
 �1
�

�1,x2
� 1 � 0

f (x) �
x2

� 2x � 3
x2

� 1
.

p(x) � x2
� x � 6

(x � 2)(x � 3) � 0
p(x) � x2

� x � 6 � 0A0,  
6
5B.f (0) �

6
5

p(x) � x2
� x � 6
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f(x) NOTAS DESDE EL AULA

En las dos últimas secciones hemos trabajado principalmente con funciones polinomiales.
Las funciones polinomiales constituyen los objetos fundamentales de una clase conocida como
funciones algebraicas. En esta sección vimos que una función racional es el cociente de
dos funciones polinomiales. En general, una función algebraica implica un número finito
de sumas, restas, multiplicaciones, divisiones y raíces cuadradas de funciones polinomiales. Así,

son funciones algebraicas. Empezando con la siguiente sección consideraremos funciones
que pertenecen a una clase diferente conocida como funciones trascendentes. Una función
trascendente f se define como una función que no es algebraica. Las seis funciones
trigonométricas y las funciones exponencial y logarítmica son ejemplos de funciones trascen-
dentes.

x � 1

y � 1

y

x

(�1, 2)

ƒ(x) �
x � 3
x �1

, x 
�1

FIGURA 2.3.19 Gráfica de la fun-
ción en el ejemplo 7

La coordenada y del hueco es el
valor de la fracción reducida
(15) en x = �1.

Si p(a) = 0 y q(a) = 0, entonces
por el teorema de factorización
del álgebra, x – a es un factor
tanto de p como de q.

y �
x2

� x �6
x �5

y � x � 4

x � 5

y

x

FIGURA 2.3.18 Gráfica de la fun-
ción en el ejemplo 6b)

x2 x 6
x 5

x 4
14

x 5

y x 4 es la asíntota inclinada
g

.f (x)
(x 1)(x 3)
(x 1)(x 1)

x 3
x 1

la igualdad se cumple para x 1
g

y 2x2 5x, y 23 x2, y x4 2x2 5 y y
1x

x3 2x2 7
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Fundamentos

En los problemas 1-6, encuentre una ecuación de la recta que
pasa por (1, 2) con la pendiente indicada.

1. 2.

3. 0 4. �2

5. �1 6. indefinida

En los problemas 7-10, encuentre la pendiente y las intersec-
ciones x y y de la recta dada. Grafique la recta.

7. 3x � 4y � 12 � 0 8.

9. 10.

En los problemas 11-16, encuentre una ecuación de la recta
que satisface las condiciones dadas.

11. Pasa por (2, 3) y (6, �5)

12. Pasa por (5, �6) y (4, 0)

13. Pasa por (�2, 4) y es paralela a 3x � y � 5 � 0

14. Pasa por (5, �7) y es paralela al eje y.

15. Pasa por (2, 3) y es perpendicular a x � 4y � 1 � 0

16. Pasa por (�5, �4) y es perpendicular a la recta que pasa
por (1, 1) y (3, 11).

En los problemas 17 y 18, encuentre una función lineal
que cumpla las dos condiciones dadas.

17. f (�1) � 5, f (1) � 6

18.

En los problemas 19 y 20, encuentre una ecuación de la recta
L que se muestra en la figura dada.

19. 20.

FIGURA 2.3.20 Gráfica
FIGURA 2.3.21 Gráfica para el problema 19
para el problema 20

En los problemas 21-26, considere la función cuadrática f.

a) Encuentre todas las intersecciones de la gráfica de f.
b) Exprese la función f en forma normal.
c) Encuentre el vértice y el eje de simetría.

d) Trace la gráfica de f.

e) ¿Cuál es el rango de f ?

f ) ¿En qué intervalo es creciente f ? ¿Y decreciente?

21. 22.

23. 24.

25. 26.

En los problemas 27-32, describa con palabras la forma en

que es posible obtener la gráfica de la función dada a partir

de y � x2 por medio de transformaciones rígidas o no rígidas.

27. 28.

29. 30.

31. 32.

En los problemas 33-42, proceda como en el ejemplo 5 y

trace la gráfica de la función polinomial dada f.

33. 34.

35. 36.

37.

38.

39. 40.

41. 42.

En los problemas 43-48, relacione la gráfica dada con una

de las funciones polinomiales en a)-f ).

a) b)
c) d)
e) f )

43. 44.

FIGURA 2.3.22 Gráfica 
FIGURA 2.3.23 Gráfica 

para el problema 43
para el problema 44

45. 46.

FIGURA 2.3.24 Gráfica 
FIGURA 2.3.25 Gráfica

para el problema 45
para el problema 46

47. 48.

FIGURA 2.3.26 Gráfica
FIGURA 2.3.27 Gráfica 

para el problema 47
para el problema 48

y

x

y

x

y

x

y

x

y

x

y

x

f (x) � x3(x � 1)2f (x) � �x2(x � 1)
f (x) � �x(x � 1)3f (x) � x3(x � 1)3
f (x) � �x3(x � 1)f (x) � x2(x � 1)2

f (x) � x5
� 4x3f (x) � �x4

� 2x2
� 1

f (x) � x2(x � 2)2f (x) � x4
� 4x3

� 3x2

f (x) � (2 � x)(x � 2)(x � 1)

f (x) � (x � 1)(x � 2)(x � 4)

f (x) � x3
� 7x2

� 12xf (x) � �x3
� x2

� 6x

f (x) � 9x � x3f (x) � x3
� 4x

f (x) � �(1 � x)2
� 1f (x) � (�x � 6)2

� 4

f (x) � 10(x � 2)2
� 1f (x) � �

1
3

(x � 4)2
� 9

f (x) � (x � 6)2f (x) � (x � 10)2

f (x) � �x2
� 6x � 5f (x) � x2

� 3x � 2

f (x) � (x � 2)(x � 6)f (x) � (3 � x)(x � 1)

f (x) � �x2
� 4xf (x) � x(x � 5)

y

P

L

x
3

y �1� x2

y

x
2�1

L

f (�1) � 1 � f (2),   f (3) � 4 f (1)

f (x) � ax � b

�4x � 2y � 6 � 02x � 3y � 9

1
2

 x � 3y � 3

1
10

2
3

2.3 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-4.



En los problemas 49-62, encuentre todas las asíntotas para
la gráfica de la función racional dada. Encuentre las inter-
secciones x y y de la gráfica. Trace la gráfica de f.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63. Determine si los números �1 y 2 están en el rango de

la función racional 

64. Determine los puntos donde la gráfica de 
corta su asíntota horizontal.

Modelos matemáticos
65. Temperaturas relacionadas La relación funcional

entre grados Celsius TC y grados Fahrenheit TF es lineal.
Exprese TF como una función de TC si (0 �C, 32 �F) y
(60 �C, 140 �F) están en la gráfica de TF. Muestre que
100 �C es equivalente al punto de ebullición Fahrenheit
212 �F. Vea la FIGURA 2.3.28.

66. Temperaturas relacionadas La relación funcional
entre grados Celsius TC y unidades kelvin TK es lineal.
Exprese TK como una función de TC dado que (0 �C,
273 K) y (27 �C, 300 K) están en la gráfica de TK.
Exprese el punto de ebullición 100 �C en unidades kel-
vin. El cero absoluto se define como 0 K. ¿A qué es

igual esto en grados Celsius? Exprese TK como una fun-

ción lineal de TF. ¿A qué es igual 0 K en grados

Fahrenheit? Vea la figura 2.3.28.

FIGURA 2.3.28 Termómetros para los problemas 65 y 66

67. Interés simple En interés simple la cantidad A deven-

gada con el paso del tiempo es la función lineal A � P

� Prt, donde P es el capital, t se mide en años y r es

la tasa de interés anual (expresada como un decimal).

Calcule A al cabo de 20 años si el capital es P � 1 000

y la tasa de interés anual es 3.4%. ¿En qué instante se

cumple que A � 2 200?

68. Depreciación lineal La depreciación de línea recta, o

depreciación lineal, consta de un artículo que pierde toda

su utilidad inicial de A dólares a lo largo de un periodo

de n años por una cantidad A/n anual. Si un artículo que

cuesta $20 000 cuando está nuevo se deprecia lineal-

mente a lo largo de 25 años, determine la función lineal

que proporciona el valor V después de x años, donde

. ¿Cuál es el valor del artículo al cabo de 10

años?

69. Una pelota se lanza hacia arriba desde el nivel del piso

con una velocidad inicial de 96 pies/s. La altura que

alcanza la pelota con respecto al suelo está dada por la

función cuadrática ¿En qué instante

la pelota está en el suelo? Grafique s sobre el intervalo

de tiempo para el cual

70. En el problema 69, ¿en qué instante la pelota está a 80

pies por arriba del piso? ¿Cuán alto asciende la pelota?

Piense en ello

71. Considere la función lineal . Si x se cam-

bia por 1 unidad, ¿cuántas unidades cambia y? ¿Si x se

cambia por 2 unidades? ¿Si x se cambia por n unidades

(n un entero positivo)?

72. Considere el intervalo y la función lineal

, Demuestre que

e interprete este resultado geométricamente para a > 0.

73. ¿Cómo encontraría una ecuación de la recta que es per-

pendicular a la bisectriz del segmento de recta que pasa

por 

74. Usando sólo los conceptos presentados en esta sección,

¿cómo demostraría o refutaría que el triángulo con vér-

tices (2, 3), (�1, �3) y (4, 2) es rectángulo?

A12,  10B  y A32,  4B?
f ax1 � x2

2
b �

f (x1) � f (x2)
2

,

a � 0.f (x) � ax � b
[x1,  x2 ]

f (x) �
5
2x � 4

s(t) � 0.

s(t) � �16t 2
� 96t.

0 � x � 25

Agua Hierve

Agua
Se

congela

212°

Fahrenheit (F) Celsius (C) Kelvin (K)

100°

32° 273

0

0°

f (x) �
(x � 3)2

x2
� 5x

f (x) �
2x � 1
x � 4

.

f (x) �
�(x � 1)2

x � 2

f (x) �
x2

� 2x � 3
x � 1

f (x) �
x2

� 2x
x � 2

f (x) �
x2

x � 2

f (x) �
x2

� 3x � 10
x

f (x) �
x2

� 9
x

f (x) �
x(x � 5)

x2
� 9

f (x) �
1 � x2

x2

f (x) �
x2

x2
� 4

f (x) �
x

x2
� 1

f (x) �
4

(x � 2)3

f (x) �
1

(x � 1)2

f (x) �
2x � 4
x � 2

f (x) �
4x � 9
2x � 3
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2.4 Funciones trascendentes
Introducción En las dos primeras secciones de esta unidad analizamos varias propiedades y

gráficas de funciones algebraicas. En las tres secciones siguientes estudiaremos las funciones
trascendentes. Básicamente, una función trascendente f es una función que no es algebraica.
Una función trascendente puede ser tan simple como la función potencia y � xn, donde la poten-
cia es un número irracional, pero las conocidas funciones trascendentes de precálculo en mate-
máticas son las funciones trigonométricas, las funciones trigonométricas inversas y las funcio-
nes exponencial y logarítmica. En esta sección se analizan las seis funciones trigonométricas y
sus gráficas. En la sección 2.5 se considerarán las funciones trigonométricas inversas y en la sec-
ción 2.6, las funciones exponencial y logarítmica.

Gráficas del seno y coseno Recuerde de precálculo en matemáticas que las funciones trigo-
nométricas seno y coseno tienen periodo

sen(x + 2p) = sen x y cos(x + 2p) = cos x. (1)

Se dice que la gráfica de cualquier función periódica sobre un intervalo de longitud igual a
su periodo es un ciclo de su gráfica. La gráfica de una función periódica se obtiene fácilmente
al trazar de manera repetida un ciclo de su gráfica. En la FIGURA 2.4.1 se muestra un ciclo de la
gráfica de f(x) = sen x; la gráfica de f sobre, por ejemplo, el intervalo y 
es exactamente la misma que la gráfica sobre Debido a que f (-x) = sen (-x) =
-sen x = -f(x), la función seno es una función impar y su gráfica es simétrica con respecto
al origen.

[0, 2p ] .
[2p, 4p ][�2p, 0]

2p:
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y

y � sen x

x

�1

1

Un ciclo

2��2� 3� 4�3� �� �
�

2
3�

2
5�

2
7�

2

�
�

2
�

2

FIGURA 2.4.1 Gráfica de y = sen x

y � cos x

x

�1

y

1

Un ciclo

2��2� 3� 4�3� �� �

2
3�

2
5�

2
7�

2

�
�

2
�

2�

FIGURA 2.4.2 Gráfica de y = cos x

Para un repaso de las bases de la
circunferencia unitaria y trigono-
metría de triángulos rectángulos,
vea las Páginas de recursos al
final del texto.

La FIGURA 2.4.2 muestra un ciclo de g(x) � cos x sobre junto con la extensión de ese
ciclo hacia los intervalos adyacentes y En contraste con la gráfica de
f(x) sen x donde para la función coseno se tiene La
función coseno es una función par: g( x) cos ( x) cos x g(x), de modo que en la figura
2.4.2 puede verse que su gráfica es simétrica con respecto al eje y.

�����

g(0) � g(2p) � 1.f (0) � f  (2p) � 0,�

[2p, 4p ] .[�2p, 0]
[0, 2p ]

Las funciones seno y coseno están definidas para todos los números reales x. También,
resulta evidente en las figuras 2.4.1 y 2.4.2 que

(2)

o bien, de manera equivalente, En otras palabras,

• el dominio de sen x y cos x es y el rango de sen x y cos x es [�1, 1] .(�q, q),

0sen  x 0 1 y 0cos x 0 1.

1 sen  x 1 y 1  cos x 1,



Intersecciones En este curso y en cursos subsecuentes de matemáticas es importante cono-
cer las coordenadas x de las intersecciones x de las gráficas seno y coseno; en otras palabras, los
ceros de f(x) = sen x y g(x) = cos x. A partir de la gráfica seno de la figura 2.4.1 observamos
que los ceros de la función seno, o los números para los cuales sen x = 0, son x = 0, �p, �2p,
�3p, . . . Estos números son múltiplos enteros de A partir de la gráfica coseno de la figura
2.4.2 notamos que cos x = 0 cuando x = p 2, 3p 2, 5p 2, . . . Estos números son múlti-
plos enteros impares de 

Si n representa un entero, entonces 2n 1 es un entero impar. En consecuencia, los ceros
de f(x) = sen x y g(x) = cos x pueden escribirse en forma breve como:

• sen x � 0 para x = np, n un entero, (3)

• (4)

Valores numéricos adicionales importantes de las funciones seno y coseno sobre el inter-

valo se proporcionan en la tabla siguiente.[0, p ]

�

p>2.
>>> p.
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Usted debe poder discernir los valores sen x y cos x sobre a partir de esta tabla usando

el concepto de circunferencia unitaria y un ángulo de referencia. Por supuesto, fuera del inter-

valo es posible determinar valores funcionales correspondientes usando periodicidad.

Otras funciones trigonométricas Cuatro funciones trigonométricas adicionales se definen en

términos de cocientes o recíprocos de las funciones seno y coseno. La tangente, cotangente,

secante y cosecante se definen, respectivamente, por

(6)

(7)

El dominio de cada función en (6) y (7) es el conjunto de números reales excepto aquellos

números para los cuales el denominador es cero. A partir de (4) se observa que

• el dominio de tan x y de sec x es .

De manera semejante, a partir de (3) se concluye que

• el dominio de cot x y de csc x es 

Además, a partir de (2),

(8)

y

(9)

Recuerde que una desigualdad con valor absoluto como (8) significa sec x � 1 o sec x � -1.

Por tanto, el rango de las funciones secante y cosecante es Las funcio-

nes tangente y cotangente tienen el mismo rango: Al usar (5) pueden determinarse

algunos valores numéricos de tan x, cot x, sec x y csc x. Por ejemplo,

(�q,  q).
(�q,  �1] ´ [1,  q).

5x � x � np, n � 0, �1, �2, p 6 .

5x 0  x � (2n � 1)p>2, n � 0,  �1, �2, p 6

[0, 2 p ]

[p, 2 p ]

cos x 0 para x (2n 1)
p

2
, n un entero.

sec x
1

cos x
,  csc x

1
sen x

.

tan x
sen x
cos x

,  cot x
cos x
sen x

,

.0 csc x ` 1
sen x

` 10 sen x 0 1

0 sec x ` 1
cos x

` 10 cos x 0 1

 tan 
2p
3

sen(2p>3)
cos(2p>3)

13>2
1>2 13.

x 0

sen x 0 1 0

cos x 1 0 �1�
13
2

�
12
2

�
1
2

1
2

12
2

13
2

1
2

12
2
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2

13
2

12
2

1
2

p
5p
6

3p
4
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3

p

2
p

3
p

4
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Gráficas Los números que hacen cero los denominadores de tan x, cot x, sec x y csc x corres-
ponden a asíntotas verticales de sus gráficas. En virtud de (4), las asíntotas verticales de las grá-
ficas de y � tan x y y � sec x son x = �p�2, �3p�2, �5p�2, . . . Por otra parte, a partir de (3),
las asíntotas verticales de las gráficas de y = cot x y y = csc x son x = 0, �p, �2p, �3p, . . .
Estas asíntotas son las rectas discontinuas en las FIGURAS 2.4.3-2.4.6.
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Porque las funciones seno y coseno son periódicas con periodo 2p, sec x y csc x también son

periódicas con periodo 2p. Pero a partir de las figuras 2.4.3 y 2.4.4 debe resultar evidente que

el periodo de las funciones tangente y cotangente es :

tan(x � p) � tan x y cot(x � p) � cot x. (10)

También, tan x, cot x y csc x son funciones impares; sec x es una función par.

Transformación y gráficas Es posible obtener variaciones de las gráficas de las funciones tri-

gonométricas por medio de transformaciones rígidas y no rígidas. Gráficas de funciones de la

forma

y � D � A sen(Bx � C) o bien, y � D � A cos(Bx � C), (11)

donde A, B � 0, C y D son constantes reales, representan desplazamientos, compresiones y

estiramientos de las gráficas seno y coseno básicas. Por ejemplo,

y � D � A sen(Bx � C).

El número 0A 0 se denomina amplitud de las funciones o de sus gráficas. La amplitud de las

funciones básicas y � sen x y y � cos x es 0A 0 � 1. El periodo de cada función en (11) es

2p�B, B � 0, y la porción de la gráfica de cada función en (11) sobre el intervalo 

se denomina un ciclo.

[0,  2p>B ]

p

y y � tan x

�
3�

2
3�

2
�

�

2
�

2

x
1

FIGURA 2.4.3 Gráfica de y = tan x

y � cot x

�� 2�

y

x
1

�

FIGURA 2.4.4 Gráfica de y = cot x

y � sec xy

x
1

�1�
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2
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2
�
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2
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���2� 2��

FIGURA 2.4.5 Gráfica de y = sec x FIGURA 2.4.6 Gráfica de y = csc x
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escribir la función como � (el seno es una función impar). Ahora,
el periodo es , y por consiguiente un ciclo de la gráfica se completa en el
intervalo 

EJEMPLO  2 Gráficas de transformaciones verticales

Grafique

a) y � � cos x b) y � 1 � 2 sen x.

Solución
a) La gráfica de y = - cos x es la gráfica de y � cos x comprimida verticalmente por

un factor de 2, y el signo menos indica que luego la gráfica es reflejada en el eje x.
Con la identificación se observa que la amplitud de la función es

La gráfica de y = - cos x sobre el intervalo se muestra en
la FIGURA 2.4.7.

b) La gráfica de y � 2 sen x es la gráfica de y = sen x estirada verticalmente por un fac-
tor de 2. La amplitud de la gráfica es La gráfica de y = 1 + 2 sen x es
la gráfica de y = 2 sen x desplazada una unidad hacia arriba. Vea la FIGURA 2.4.8.

EJEMPLO  3 Gráfica coseno comprimida horizontalmente

Encuentre el periodo de y � cos 4x y grafique la función.

Solución Con la identificación de que B = 4, se ve que el periodo de y = cos 4x es 
. Se concluye que la gráfica de y = cos 4x es la gráfica de y = cos x comprimida horizontalmente.
Para graficar la función, se traza un ciclo de la gráfica coseno con amplitud 1 sobre el intervalo

y luego se usa la periodicidad para extender la gráfica. La FIGURA 2.4.9 muestra cuatro
ciclos completos de y = cos 4x (el ciclo básico y la gráfica extendida) y un ciclo de y = cos x
sobre Observe que y = cos 4x alcanza su mínimo en puesto que
cos 4(p 4) = cos p = -1 y su máximo en puesto que  

Por la sección 2.2 se sabe que la gráfica de es la gráfica coseno básica
desplazada hacia la derecha. En la FIGURA 2.4.10 la gráfica de sobre el inter-
valo es un ciclo de y cos x sobre el intervalo desplazada horizontal-
mente unidades a la derecha. En forma semejante, las gráficas de y = sen(x + ) y y =
sen(x - ) son las gráficas seno básicas desplazadas horizontalmente unidades a la
izquierda y a la derecha, respectivamente. Vea la FIGURA 2.4.11 y la FIGURA 2.4.12.

p>2p>2 p>2p>2 [�p>2,  3p>2]�[0, 2p]
y � cos (x � p>2)

y � cos (x � p>2)

cos 4(p>2) �  cos 2p � 1.x � p>2> x � p>4[0, 2p ] .

[0, p>2 ]

2p>4 � p>2

0A 0 � 02 0 � 2.

[0, 2p ]1
20A 0 � 0�1

2 0 � 1
2.

A � �
1
2

1
2

1
2

[0, 4p ] .
2p>12 � 4p

sen  A12 xBsen  A 1
2 xB
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Al comparar las gráficas en las figuras 2.4.10-2.4.12 con las gráficas en las figuras 2.4.1
y 2.4.2 se observa que

• la gráfica coseno desplazada unidades a la derecha es la gráfica seno,
• la gráfica seno desplazada unidades a la izquierda es la gráfica coseno, y
• la gráfica seno desplazada unidades a la derecha es la gráfica coseno reflejada en

el eje x.
p>2p>2p>2

y

x

�
3� 2�

2

� �

2

1

�1

1
2

1
2

1
2

y � �   cos x

y � cos x

FIGURA 2.4.7 Gráfica de la fun-
ción en el ejemplo 2a)
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FIGURA 2.4.8 Gráfica de la fun-
ción en el ejemplo 2b)
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FIGURA 2.4.9 Gráfica de la fun-
ción en el ejemplo 3
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FIGURA 2.4.10 Gráfica coseno
desplazada horizontalmente
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FIGURA 2.4.11 Gráfica seno desplazada
horizontalmente
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FIGURA 2.4.12 Gráfica seno desplazada
horizontalmente

EJEMPLO  1 Periodos

a) El periodo de y � sen 2x es y en consecuencia un ciclo de la gráfica se
completa en el intervalo [0,  p ] .

2p>2 � p,

b) Antes de determinar el periodo de primero es necesario que volvamos asen  A 1
2 xB



En otras palabras, se han comprobado gráficamente las siguientes identidades

(12)

Suponga que f(x) = A sen Bx. Entonces

(13)

El resultado en (13) muestra que la gráfica de y = A sen(Bx + C) puede obtenerse al desplazar
la gráfica de f(x) = A sen Bx horizontalmente una distancia Si C 0, el desplazamiento
es hacia la derecha, mientras que si C 0, el desplazamiento es hacia la izquierda. El número

se denomina desplazamiento de fase de las gráficas de las funciones en (3).

EJEMPLO  4 Gráfica coseno desplazada horizontalmente

La gráfica de y = 10 cos 4x está desplazada unidades a la derecha. Encuentre su ecua-
ción.

Solución Al escribir f(x) = 10 cos 4x y usar (13) encontramos

En la última ecuación se identifica El desplazamiento de fase es 

Nota: Como cuestión práctica, el desplazamiento de fase para y = A sen(Bx + C) o
y = A cos(Bx + C) puede obtenerse al factorizar el número B a partir de Bx + C. Por ejemplo,

EJEMPLO  5 Gráficas desplazadas horizontalmente

Grafique

a) y = 3 sen(2x - p/3) b)

Solución
a) Para efectos de comparación, primero graficaremos y = 3 sen 2x. La amplitud de y = 3

sen 2x es y su periodo es Así, un ciclo de y = 3 sen 2x se com-
pleta sobre el intervalo Luego, extendemos esta gráfica hacia al intervalo adya-
cente como se muestra en la FIGURA 2.4.13. A continuación, volvemos a escri-
bir y = 3 sen(2x - p 3) al factorizar 2 de 

A partir de la forma de la última expresión vemos que el desplazamiento de fase es
La gráfica de la función dada, mostrada en la figura 2.4.13, se obtiene al des-

plazar la gráfica de y = 3 sen 2x unidades a la derecha.
b) La amplitud de y = 2 cos px es 0A 0 = 2 y el periodo es Así, un ciclo de

y = 2 cos px se completa sobre el intervalo [0, 2]. En la FIGURA 2.4.14 se muestran dos
ciclos de la gráfica de y = 2 cos px. Las intersecciones x de esta gráfica correspon-
den a los valores de x para los que cos px = 0. Por (4), esto implica 

o x = (2n + 1) 2, con n un entero. En otras palabras, para n = 0, -1,
1, -2, 2, -3, . . . obtenemos y así sucesivamente. Luego, al volver
a escribir la función dada como

y = 2 cos p(x + 1)

observamos que el desplazamiento de fase es 1. La gráfica de y = 2 cos(px + p) mos-
trada en la figura 2.4.14 se obtiene al desplazar 1 unidad a la izquierda la gráfica de
y = 2 cos px. Esto significa que las intersecciones x son las mismas para ambas grá-
ficas.

x � �
1
2,  �3

2,  �5
2,

>(2n � 1)p>2 px �

2p>p � 2.
p>6p>6.

2x � p>3:>[p, 2p ]
[0,  p ] .

2p>2 � p.0A 0 � 3

y � 2 cos(px � p).

p>12.C � �p>3.

p>12

0C 0 >B �

�0C 0 >B.
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FIGURA 2.4.13 Gráfica de la fun-
ción en el ejemplo 5a)
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FIGURA 2.4.14 Gráfica de la fun-
ción en el ejemplo 5b)
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Fundamentos

En los problemas 1-6, use técnicas de desplazamiento, esti-

ramiento, compresión y reflexión para dibujar por lo menos

un ciclo de la gráfica de la función dada.

En los problemas 7-14, encuentre la amplitud y el periodo

de la función dada. Trace por lo menos un ciclo de la grá-

fica.
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En matemáticas aplicadas, las funciones trigonométricas sirven como modelos matemáti-

cos para muchos fenómenos periódicos.

EJEMPLO  6 Corriente alterna

Un modelo matemático para la corriente I (en amperes) en un alambre de un circuito de

corriente alterna está dado por I(t) � 30 sen 120pt, donde t es el tiempo medido en segun-

dos. Trace un ciclo de la gráfica. ¿Cuál es el valor máximo de la corriente?

Solución La gráfica tiene una amplitud 30 y periodo En consecuencia, tra-

zamos un ciclo de la curva seno básica sobre el intervalo como se muestra en la FIGURA

2.4.15. A partir de la figura, resulta evidente que el valor máximo de la corriente es I 30 ampe-

res y ocurre en el intervalo en puesto que

Para referencia futura Las identidades trigonométricas se usan en todo el cálculo, especial-

mente en el estudio del cálculo integral. Para facilitar las referencias, a continuación se enume-

ran algunas identidades que revisten particular importancia.

Identidades pitagóricas

(14)

(15)

(16)

Fórmulas de suma y diferencia

(17)

(18)

Fórmulas para el doble de un ángulo

(19)

(20)

Fórmulas para la mitad de un ángulo

(21)

(22)

Identidades adicionales pueden encontrarse en las Páginas de recursos al final de este texto.

t �
1

240[0, 1
60]

�

[0, 1
60],

2p>120p �
1
60.

I
30

�30

t
1

240
1

120
1
60

I(t) � 30 sen 120� t

FIGURA 2.4.15 La gráfica de la

corriente en el ejemplo 6, muestra

que hay 60 ciclos en un segundo

2.4 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-5.

I Q 1
240
R 30  sen  Q120p . 1

240
R 30 sen 

p

2
30.

1 cot2
 x csc2

 x

1 tan2
 x sec2

 x

sen2
 x cos2

 x 1

cos(x1 x2) cos x1 cos x2 sen  x1 sen  x2

sen(x1 x2) sen  x1 cos x2 cos x1 sen  x2

cos  2x cos2
 x sen2

 x

sen  2x 2 sen  x cos x

cos2 
x
2

1
2

 (1 cos x)

sen2 
x
2

1
2

 (1 cos x)

.2.1

.4.3

.6.5 y 1 2 sen  xy 2 4 cos x

y 3 3 sen  xy 2  sen  x

y 1  cos xy
1
2

cos x

.8.7

.01.9

.21.11

.41.31 y 1  sen  

px
2

y 1  cos 

2x
3

y 2 2 sen  pxy 2 4 sen  x

y
5
2

 cos 4xy 3 cos 2px

y 5 sen  

x
2

y 4 sen  px



En los problemas 15-18, la figura dada muestra un ciclo de
una gráfica seno o coseno. A partir de la figura, determine
A y D y escriba una ecuación de la forma y � D � A sen x
o y � D � A cos x para la gráfica.

15.

FIGURA 2.4.16 Gráfica para el problema 15

16.

FIGURA 2.4.17 Gráfica para el problema 16

17.

FIGURA 2.4.18 Gráfica para el problema 17

18.

FIGURA 2.4.19 Gráfica para el problema 18

En los problemas 19-24, la figura dada muestra un ciclo de
una gráfica seno o coseno. A partir de la figura, determine
A y B y escriba una ecuación de la forma y � A sen Bx o
y � A cos Bx para la gráfica.

19. 20.

FIGURA 2.4.20 Gráfica para
FIGURA 2.4.21 Gráfica para

el problema 19
el problema 20

21. 22.

FIGURA 2.4.22 Gráfica para
FIGURA 2.4.23 Gráfica parael problema 21
el problema 22

23. 24.

FIGURA 2.4.24 Gráfica para

FIGURA 2.4.25 Gráfica para

el problema 23

el problema 24

En los problemas 25-34, encuentre la amplitud, el periodo y
el desplazamiento de fase de la función dada. Trace por lo
menos un ciclo de la gráfica.

En los problemas 35 y 36, escriba una ecuación de la fun-
ción cuya gráfica se describe con palabras.

35. La gráfica de y � sen px está estirada verticalmente
hacia arriba por un factor de 5 y está desplazada uni-
dad hacia la derecha.

36. La gráfica de y � 4 cos está desplazada 8 unidades hacia

abajo y está desplazada unidades hacia la izquierda.

En los problemas 37 y 38, encuentre las intersecciones x de la
gráfica de la función dada sobre el intervalo Luego,
use periodicidad para encontrar todas las intersecciones.

37. y � �1 � sen x 38. y � 1 � 2 cos x

En los problemas 39-44, encuentre las intersecciones x de la
gráfica de la función dada. No grafique.

En los problemas 45-52, encuentre el periodo, las intersec-
ciones x y las asíntotas verticales de la función dada. Trace
por lo menos un ciclo de la gráfica.

45. y � tan px 46.

47. y � cot 2x 48.

49. 50.

51. y � �1 � cot px 52. y �  tan Qx �
5p
6
Ry �

1
4
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En los problemas 53-56, encuentre el periodo y las asíntotas
verticales de la función dada. Trace por lo menos un ciclo
de la gráfica.

Modelos matemáticos
57. Profundidad del agua La profundidad del agua d a la

entrada de un puerto pequeño en el instante t es mode-
lada por una función de la forma

donde A es la mitad de la diferencia entre las profundi-
dades de la marea alta y la marea baja, 2p B, B 7 0 es
el periodo de mareas y D es la profundidad media.
Suponga que el periodo de mareas es 12 horas, la pro-
fundidad media en la marea alta es 18 pies y que la
profundidad en la marea baja es 6 pies. Dibuje dos ciclos
de la gráfica de d.

58. Temperatura Fahrenheit Suponga que

es un modelo matemático de la temperatura Fahrenheit
a las t horas después de medianoche durante un cierto
día de la semana.

a) ¿Cuál es la temperatura a las 8 a.m.?
b) ¿A qué hora(s) se cumple T(t) = 60?
c) Trace la gráfica de T.
d) Encuentre las temperaturas máxima y mínima, así

como las horas a que ocurren.

Problemas con calculadora/SAC
59. Aceleración debida a la gravedad Debido al movi-

miento de rotación de la Tierra, la forma de ésta no es
esférica, sino que se elonga en el ecuador y se achata en
los polos. Como resultado, la aceleración debida a la
gravedad no es la constante 980 cm/s2, sino que varía
con la latitud u. Estudios satelitales han sugerido que la
aceleración debida a la gravedad g es aproximada por el
modelo matemático

Encuentre g

a) en el ecuador (u � 0
),
b) en el polo norte y
c) a 45
 latitud norte.

60. Lanzamiento de bala El alcance de una bala soltada
desde una altura h por arriba del nivel del piso con una
velocidad inicial y0 a un ángulo f con respecto a la hori-
zontal puede aproximarse por el modelo matemático

donde g es la aceleración debida a la gravedad. Vea la
FIGURA 2.4.26.

a) Si y0 = 13.7 m/s, f = 40
 y g = 9.8 m/s2, compare
los alcances que se obtienen para las alturas h = 2.0 m
y h = 2.4 m.

b) Explique por qué un incremento en h produce un
incremento en el alcance R si los otros parámetros se
mantienen fijos.

c) ¿Qué implica lo anterior respecto a la ventaja que la
altura otorga a un lanzador de bala?

Piense en ello
61. La función f (x) = sen x + sen 2x es periódica. ¿Cuál es

el periodo de f ? 

62. Analice y luego dibuje las gráficas de y = 0 sen x 0
y y = 0cos x 0 .

63. Analice y luego dibuje las gráficas de y = 0 sec x 0
y y = 0csc x 0 .

64. ¿Es posible que la solución de la ecuación dada sea un
número real?

a) 9 csc x = 1 b) 7 + 10 sec x = 0
c) sec x = -10.5

En los problemas 65 y 66, use las gráficas de y � tan x y
y � sec x para encontrar números A y C para los que se cum-
pla la igualdad dada.

65. cot x = A tan(x + C) 66. csc x = A sec(x + C)

1
2

>
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FIGURA 2.4.26 Proyectil en el problema 60

h

x

y

R

y0

f

2.5 Funciones inversas
Introducción En la sección 2.1 vimos que una función f es una regla de correspondencia que

a cada valor x en su dominio X asigna un solo valor o un valor único y en su rango. Esta regla no
excluye el hecho de que el mismo número y se asocie con varios valores diferentes de x. Por ejem-
plo, para el valor y 4 en el rango de f ocurre en x 0 o en x 2 en el���f (x) � �x2

� 2x � 4,

d(t) D A sen BQt p

2
R ,

0 t 24T(t) 50 10 sen
p

12
(t 8),

g 978.0309 5.18552 sen2 u 0.00570 sen2 2u.

R
y0 cos f

g
[y0 senf 2y2

0 sen2 f 2gh],
.45.35

.65.55 y csc(4x p)y secQ3x
p

2
R y 2 csc

x
3

y 3 csc px



dominio de f. Por otra parte, para la función f(x) = 2x 3, el valor y = 4 sólo ocurre en En
efecto, para cada valor y en el rango de f(x) = 2x 3, corresponde sólo un valor de x en el domi-
nio. A las funciones de este último tipo se ha asignado el nombre especial de uno a uno.

�

x �
1
2.�
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Definición 2.5.1 Función uno a uno

Se dice que una función es uno a uno si cada número en el rango de f se asocia con exacta-
mente un número en su dominio X.

Prueba de la recta horizontal Cuando la definición 2.5.1 se interpreta geométricamente, sig-
nifica que una recta horizontal (y � constante) puede cortar la gráfica de una función uno a uno
en cuanto mucho un punto. Además, si toda recta horizontal que corta la gráfica de una función
lo hace en cuanto mucho un punto, entonces la función necesariamente es uno a uno. Una fun-
ción no es uno a uno si alguna recta horizontal corta su gráfica más de una vez.

EJEMPLO  1 Prueba de la recta horizontal

a) En la FIGURA 2.5.1a) se muestra la gráfica de la función y una recta hori-
zontal y = c que corta la gráfica. La figura indica claramente que hay dos números
x1 y x2 en el dominio de f para los cuales Por tanto, la función f

no es uno a uno.
b) Al analizar la figura 2.5.1b) se encuentra que para toda recta horizontal y = c que corta

la gráfica de sólo hay un número x1 en el dominio de f tal que f(x1) = c.
La función f es uno a uno.

Inversa de una función uno a uno Suponga que f es una función uno a uno con dominio X y
rango Y. Puesto que todo número y en Y corresponde a precisamente un número x en X, la fun-
ción f debe realmente determinar una función “reversa” g cuyo dominio es Y y cuyo rango es X.
Como se muestra en la FIGURA 2.5.2, f y g deben satisfacer

(1)

Las ecuaciones en (1) son en realidad composiciones de las funciones f y g:

(2)

La función g se denomina inversa de f o función inversa de f. Al seguir la convención de que
cada elemento del dominio se denota por el símbolo x, la primera ecuación en (2) vuelve a
escribirse como f(g(x)) = x. A continuación se resumen los resultados proporcionados en (2).

f (x) � x3,

f (x1) � f (x2) � c.

f (x) � x2
� 1

Definición 2.5.2 Función inversa

Sea f una función uno a uno con dominio X y rango Y. La inversa de f es la función g con
dominio Y y rango X para la cual

(3)
y

(4)

Por supuesto, si una función no es uno a uno, entonces no tiene función inversa.

Notación La inversa de una función f suele escribirse como f�1 y se lee “f inversa”. Esta últi-
ma notación, aunque es estándar, es algo desafortunada. De inmediato se señala que en el sím-
bolo f�1(x) el “�1” no es un exponente. En términos de la nueva notación, (3) y (4) se vuelven,
respectivamente,

(5)

y

x

a) No es uno a uno

y � x2 � 1

x1 x2

y � c

y

b) Uno a uno

y � x3 

x1
x

y � c

FIGURA 2.5.1 Dos tipos de fun-
ciones en el ejemplo 1

yx

ƒ

g
X Y

Rango de g

Rango de ƒDominio de ƒ

Dominio de g

FIGURA 2.5.2 Una función f y su
función inversa g

En (3) y (4), el símbolo g de-
sempeña la parte del símbolo
f -1.

f (x) y y g(y) x.

f (g(y)) y y g( f (x)) x.

f ( f 
1(x)) x y f 1( f (x)) x.

para toda x en Y

para toda x en X.g(  f (x)) x

f (g(x)) x



Propiedades Antes de analizar un método para encontrar la inversa de una función uno a uno
f, se enumeran algunas propiedades importantes sobre f y su inversa f�1.
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Teorema 2.5.1 Propiedades de la función inversa

i) Dominio de f�1
� rango de f.

ii) Rango de f�1
� dominio de f.

iii) Una función inversa f �1 es uno a uno.
iv) La inversa de f�1 es f.
v) La inversa de f es única.

y � x3
� x � 3

20

10

�10

�20

�2 �1 1 2

y

x

FIGURA 2.5.3 La gráfica sugiere
que f es uno a uno

Método para encontrar f �1 Si f�1 es la inversa de una función uno a uno y � f(x), entonces
por (1), Por tanto, basta hacer las dos cosas siguientes para encontrar f�1.x � f �1(y).

Nota: Algunas veces resulta conveniente intercambiar los pasos en las directrices anteriores:

• Volver a etiquetar x y y en la ecuación y � f(x) y despejar (de ser posible) x � f(y)
para y. Así se obtiene 

EJEMPLO  2 Inversa de una función

Encuentre la inversa de f (x) � x3.

Solución En el ejemplo 1 se vio que esta función es uno a uno. Para empezar, la función
se vuelve a escribir como y = x3. Al despejar x se obtiene Luego las variables vuel-
ven a etiquetarse para obtener . Así o, de manera equivalente,

.

Encontrar la inversa de una función uno a uno y = f (x) algunas veces es difícil y otras
imposible. Por ejemplo, la FIGURA 2.5.3 sugiere (y es posible demostrar) que la función

es uno a uno, por lo que tiene una inversa f�1. Pero al despejar x en la
ecuación es difícil para todo mundo (incluyendo su profesor). Puesto que f es
una función polinomial, su dominio es y, debido a que su comportamiento extremo
es el de y = x3, el rango de f es . En consecuencia, el dominio y el rango de f�1 son

. Aun cuando f�1 no se conoce explícitamente, tiene perfecto sentido hablar sobre
los valores como f�1(3) y f�1(5). En el caso de , observe que f(0) = 3. Esto significa
que ¿Puede imaginar el valor de f�1(5)?

Gráficas de f y f�1 Suponga que (a, b) representa cualquier punto sobre la gráfica de una
función uno a uno f. Entonces f(a) � b y

implica que (b, a) es un punto sobre la gráfica de f�1. Como se muestra en la FIGURA 2.5.4a),
los puntos (a, b) y (b, a) son reflexiones uno del otro en la recta y � x. Esto significa que la
recta y � x es la bisectriz perpendicular del segmento de recta que va de (a, b) a (b, a). Debido
a que cada punto sobre una gráfica es la reflexión de un punto correspondiente sobre la otra
gráfica, en la figura 2.5.4b) se observa que las gráficas de f�1 y f son reflexiones entre sí con
respecto a la recta y � x. Además se dice que las gráficas de f�1 y f son simétricas con res-
pecto a la recta y � x.

f �1(b) � f �1( f (a)) � a

f �1(3) � 0.
f �1(3)

(�q,  q)
(�q,  q)

(�q,  q)
y � x3

� x � 3
f (x) � x3

� x � 3

f �1(x) � 13 x
f �1(x) � x1>3y � x1>3 x � y1>3.

y � f �1(x).

Directrices para encontrar la función inversa

Suponga que y � f(x) es una función uno a uno. Entonces para encontrar f�1:

• Se resuelve y � f(x) para el símbolo x en términos de y (en caso de ser posible).
Así se obtiene .

• La variable x vuelve a etiquetarse como y y la variable y como x. Así se obtiene
y � f �1(x).

x � f �1(y)



EJEMPLO  3 Gráficas de f y f �1

En el ejemplo 2 vimos que la inversa de y � x3 es En las FIGURAS 2.5.5a) y 2.5.5b) se
muestran las gráficas de estas funciones; en la figura 2.5.5c), las gráficas están superpuestas
en el mismo sistema de coordenadas para ilustrar que las gráficas son reflexiones entre sí en
la recta y � x.

y � x1>3.
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y � x3y

a)

x

FIGURA 2.5.5 Gráficas de f y f�1 en el ejemplo 3

y � x1�3

b)

x

y
y � x3 y � x

y � x1�3

c)

x

y

y

ƒ
�1

x

y � xƒ

FIGURA 2.5.6 Gráficas de f y f�1

en el ejemplo 4

y

x

b
(a, b)

(b, a)

a)

a

a b

y � x

FIGURA 2.5.4 Las gráficas de f y f�1 son reflexiones en la recta y = x

y

x

(a, b)

(b, a)

b)

y �ƒ(x)

y �ƒ�1(x)

y � x

Toda función lineal es uno a uno.

EJEMPLO  4 Inversa de una función

Encuentre la inversa de la función lineal 

Solución Puesto que la gráfica de es una recta no horizontal, por la prueba de
la recta horizontal se concluye que f es una función uno a uno. Para encontrar f�1, x se des-
peja en :

Al reetiquetar las variables en la última ecuación se obtiene En consecuen-

cia, Las gráficas de f y f�1 se comparan en la FIGURA 2.5.6.

Ninguna función cuadrática no es uno a uno.

Dominios restringidos Para una función f que no es uno a uno, puede ser posible restringir
su dominio de modo que la nueva función que consta de f definida sobre este dominio restringi-
do sea uno a uno y así tenga una inversa. En la mayor parte de los casos es aconsejable restrin-
gir el dominio de modo que la nueva función retenga su rango original. El siguiente ejemplo ilus-
tra este concepto.

EJEMPLO  5 Dominio restringido

En el ejemplo 1 se demostró gráficamente que la función cuadrática no es uno
a uno. El dominio de f es y como se observa en la FIGURA 2.5.7a), el rango de f es

Luego, al definir sólo en el intervalo vemos dos cosas en la
figura 2.5.7b): el rango de f se preserva y confinada al dominio pasa la
prueba de la recta horizontal; en otras palabras, es uno a uno. La inversa de esta nueva fun-
ción uno a uno se obtiene como de costumbre. Al despejar x de y volviendo a eti-
quetar las variables se obtiene

y � x2
� 1

[0,  q)f (x) � x2
� 1

[0,  q),f (x) � x2
� 1[1,  q).

(�q,  q),
f (x) � x2

� 1

f (x) � ax2
� bx � c,   a � 0,

f 1(x) 1
5 x 7

5.

y �
1
5 x �

7
5.

y � 5x � 7

y � 5x � 7

f (x) � 5x � 7.

f (x) � ax � b,   a � 0,

5x y 7  implica  x
1
5

y
7
5
.

x 1y 1 y así y 1x 1 .



El signo algebraico idóneo en la última ecuación se determina a partir del hecho de que el
dominio y rango de f �1 son y respectivamente. Esto obliga a escoger

como la inversa de f. Vea la figura 2.5.7c).f 1(x) 1x 1

[0,  q),[1,  q)
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x

y

1

a) No es una función uno a uno

�1
�

y � sen x
sobre (��, �)

�

2
�

2

FIGURA 2.5.8 Restricción del dominio de y = sen x para obtener una función uno a uno

�

y

b) Función uno a uno

1

�1

y � sen x
sobre [�� � 2, � � 2]

�

2
�

2

y

a)

x

y � x

�1

�1

1

1 y � sen x

y � sen�1 x

�

�

2

2

�

2
�

�

2
�

FIGURA 2.5.9 Gráfica de la función seno inverso

�

y

b)

x
�1 1

y � sen�1 x
�

2

�

2

y

x

a) No es una función uno a uno

y � x2
� 1

sobre (��, �)

FIGURA 2.5.7 Función inversa en el ejemplo 5

b) Función uno a uno

y

x

y � x2 � 1
sobre [0, �)

c) Inversa de la función en el inciso b)

y

x

y �   x � 1
sobre [1, �)

El sistema algebraico compu-
tacional Mathematica usa la
notación arcsin.

Funciones trigonométricas inversas Aunque ninguna de las funciones trigonométricas es uno

a uno, al restringir convenientemente cada uno de sus dominios es posible definir seis funciones

trigonométricas inversas.

Función seno inverso A partir de la FIGURA 2.5.8a) se observa que la función y � sen x sobre

el intervalo cerrado asume todos los valores en su rango Observe que cual-

quier recta horizontal trazada para cortar la porción entre -p 2 y p 2 de la gráfica puede hacer-

lo a lo sumo una vez. Por tanto, la función seno sobre este dominio restringido es uno a uno y

tiene una inversa. Entre los matemáticos hay dos notaciones de uso común para denotar la inver-

sa de la función que se muestra en la figura 2.5.8b):

sen�1 x o arcsen x,

que se leen seno inverso de x y arcseno de x, respectivamente.

>> [�1,  1] .[�p>2,  p>2]

En la FIGURA 2.5.9a) se ha reflejado la porción de la gráfica de y = sen x sobre el intervalo

(figura 2.5.8b) en la recta y = x para obtener la gráfica de y = sen-1 x. Por razo-

nes de claridad, esta gráfica se ha reproducido en la figura 2.5.9b). Como se muestra en esta

gráfica, el dominio de la función seno inverso es [-1, 1] y el rango es [�p>2,  p>2].

[�p>2,  p>2]



En palabras:

• El seno inverso del número x es el número y (o ángulo medido en radianes) entre
-p�2 y p�2 cuyo seno es x.

Los símbolos y = arcsen x y y = sen�1 x son sinónimos en matemáticas y sus aplicacio-
nes, de modo que se alternará su uso para que usted se sienta cómodo con ambas notaciones.

EJEMPLO  6 Evaluación de la función seno inverso

Encuentre

Solución
a) Si se hace y = arcsen , entonces por (6) es necesario encontrar el número y (o ángulo

medido en radianes) que satisface sen y = y Puesto que sen(p 6)
= y satisface la desigualdad , se concluye que

b) Si se hace y = sen-1(- ), entonces sen y = - . Puesto que es necesario escoger y tal
que encontramos que 

c) Al hacer y = sen-1(-1), tenemos que sen y = -1 y -p 2 y p 2. Por tanto,

En los incisos b) y c) del ejemplo 6 se tuvo cuidado para escoger y de modo que
Por ejemplo, un error común suele ser pensar que como sen(3p 2) = -1,

entonces necesariamente sen-1(-1) puede tomarse como Recuerde: si y = sen−1 x, enton-
ces y está sujeto a la restricción y no satisface esta desigualdad.

EJEMPLO  7 Evaluación de una composición

Sin usar calculadora, encuentre tanAsen-1 B.
Solución Es necesario encontrar la tangente del ángulo de t radianes con seno igual a es
decir, tan t donde t = sen-1 El ángulo t se muestra en la FIGURA 2.5.10. Puesto que

queremos determinar el valor de cos t. A partir de la figura 2.5.10 y la identidad pitagórica
sen2 t + cos2 t = 1, vemos que

Por tanto,

y así

El procedimiento que se ilustra en el ejemplo 10 constituye un método alterno para resol-
ver el ejemplo 7.

1
4.

1
4,

1
4

3 p>2�p>2 � y � p>2,
3 p>2.

>�p>2 � y � p>2.

y � �p>2.
>��>y � �p>6.�p>2 � y � p>2,

1
2

1
2

y �
p

6
.

�p>2 � y � p>2p>61
2

>�p>2 � y � p>2.1
2

1
2
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Definición 2.5.3 Función seno inverso

La función seno inverso, o función arcseno, se define por

(6)

donde

1 1
4t

cos t

FIGURA 2.5.10 Ángulo
t = sen�1 en el ejemplo 71

4

Lea este párrafo varias veces.

y sen 1  x si y sólo si x sen  y,

1 x 1  y   p>2  y   p>2.

a) y c) .sen 1 ( 1)sen 1Q 1
2
Rarcsen   

1
2

b)

tan  t
sen  t
cos  t

1>4
cos t

 ,

tan Qsen 1 
1
4
R tan  t

115
15

 .

tan t
1>4
115>4 1

115
115
15

 ,

a1
4
b2

cos2
 t 1    o bien,    cos t

115
4

 .



Función coseno inverso Si el dominio de la función coseno se restringe al intervalo cerrado
la función resultante es uno a uno y entonces tiene una inversa. Esta inversa se denota

por

lo cual proporciona la siguiente definición.

[0, p ] ,
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Al reflejar la gráfica de la función uno a uno en la figura 2.5.11b) en la recta y = x se obtiene
la gráfica de y = cos�1 x mostrada en la FIGURA 2.5.12. La figura muestra con toda claridad que
el dominio y el rango de y = cos�1 x son y respectivamente.

EJEMPLO  8 Evaluación de la función coseno inverso

Evalúe 

Solución Si entonces cos y = - 2. El único número en para
el cual se cumple esto es Es decir,

EJEMPLO  9 Evaluación de composición de funciones

Escriba sen(cos�1 x) como una expresión algebraica en x.

Solución En la FIGURA 2.5.13 se ha construido un ángulo de t radianes cuyo coseno es igual a
x. Así, t = cos-1 x, o x = cos t, donde 0 � t � p. Luego, para encontrar sen(cos�1 x) = sen t,
usamos la identidad sen2 t + cos2 t = 1. Así

Se usa la raíz cuadrada positiva de 1 – x2, puesto que el rango de cos�1 x es y el seno
del ángulo t en los cuadrantes primero o segundo es positivo.

[0, p ] ,

arccos Q�13
2
R �

5p
6

.

y � 5p>6.
[0, p ]>13y � arccos (�13>2),

arccos (�13>2).

[0, p ] ,[�1, 1]

Definición 2.5.4 Función coseno inverso

La función coseno inverso, o función arccoseno, se define por

(7)

donde

y

x

y � cos x
sobre (��, �)

1

�1

0 �

a) No es una función uno a uno

�

2

y � cos x
sobre [0, �]

y

1

�1

x
�

b) Función uno a uno

�

2

FIGURA 2.5.11 Restricción del dominio de y = cos x para obtener una función uno a uno

y � cos�1 x

�

y

x
�1 1

�

2

FIGURA 2.5.12 Gráfica de
la función coseno inverso

1
t

x � cos t

sen t

FIGURA 2.5.13 Ángulo
t = cos�1 x en el ejemplo 9

La gráfica mostrada en la FIGURA 2.5.11 ilustra la forma en que la función y � cos x res-
tringida al intervalo se vuelve una función uno a uno.[0,  p ]

cos 1
 x    o bien,    arccos x,

y cos 1
 x    si y sólo si    x cos y,

1 x 1 y 0 y p.

. sen  (cos 1 x) 21 x 2 

 sen t 21 x2

 sen2  t 1 x2

nes 2  t x2 1



Función tangente inversa Si el dominio de tan x se restringe al intervalo abierto
entonces la función resultante es uno a uno y, por tanto, tiene una inversa. Ésta se

denota por
(�p>2,  p>2),
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Definición 2.5.5 Función arctangente

La función tangente inversa, o función arctangente, se define por

(8)

donde

Las gráficas mostradas en la FIGURA 2.5.14 ilustran cómo la función y = tan x restringida al
intervalo abierto se vuelve una función uno a uno. Al reflejar la gráfica de la
función uno a uno en la figura 2.5.14b) en la recta y = x se obtiene la gráfica de y = tan-1 x

mostrada en la FIGURA 2.5.15. En la figura se observa que el dominio y el rango de y = tan-1 x

son, respectivamente, los intervalos y Por ejemplo, y = tan-1(-1) =
-p 4 puesto que es el único número en el intervalo para el cual
tan (�p>4) � �1.

(�p>2,  p>2)�p>4> (�p>2,  p>2).(�q,  q)

(�p>2, p>2)

Teorema 2.5.2 Propiedades de las funciones trigonométricas inversas

x

yy � tan x

�

a) No es una función uno a uno

�

2
�

2

y � tan x
sobre (�� / 2, � / 2)

y

b) Función uno a uno

�
�

2
�

2

FIGURA 2.5.14 Restricción del dominio de y = tan x para obtener una función uno a uno

�

y � tan�1 x
x

y
�

2

�

2
FIGURA 2.5.15 Gráfica de la
función tangente inversa

y

3

2
13

FIGURA 2.5.16 Triángulo en el
ejemplo 10

EJEMPLO  10 Evaluación de composiciones de funciones

Sin usar calculadora, encuentre 

Solución Si se hace y = arctan , entonces tan y = . Al usar el triángulo rectángulo en la
FIGURA 2.5.16 como ayuda, se ve que

Propiedades de las inversas Recuerde por (5) que y se cum-
plen para cualquier función f y su inversa si hay restricciones idóneas sobre x. Por tanto, para las
funciones trigonométricas inversas tenemos las siguientes propiedades.

f (  f �1(x)) � xf �1( f (x)) � x

2
3

2
3

cos Aarctan 
2
3B.

i)
ii)

iii)
iv)
v)

vi) tan(tan 1 x) tan(arctan x) x si q 6 x 6 q
tan 1(tan x) arctan(tan x) x si p>2 6 x 6 p>2cos(cos 1 x) cos(arccos x) x si 1 x 1
cos 1(cos x) arccos(cos x) x si 0 x p

sen(sen 1 x) sen (arcsen  x) x si 1 x 1
sen 1(sen  x) arcsen (sen  x) x si p>2 x p>2

q 6 x 6 q y p>2 6 y 6 p>2.

y tan 1 x  si y sólo si x tan y,

 tan 1 x  o bien, arctan x.

.cosQarctan
2
3
R cos y

3
113



EJEMPLO  11 Aplicación de las propiedades inversas

Sin usar calculadora, evalúe

a) b)

Solución
a) Por el teorema 2.5.2iv), 
b) En este caso no es posible aplicar la propiedad v), puesto que no está en el

intervalo Si primero se evalúa , entonces se tiene

Inversas de otras funciones trigonométricas Con los dominios restringidos de manera con-
veniente, las funciones trigonométricas restantes y � cot x, y � sec x y y � csc x también tie-
nen inversas.

tan�1 Qtan 

3p
4
R � tan�1(�1) � �

p

4
.

tan(3 p>4) � �1(�p>2, p>2).
3 p>4cosAcos�1

 
1
3B � 1

3.

tan�1 Qtan 

3p
4
R.cos Qcos�1

 

1
3
R
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Definición 2.5.6 Otras funciones trigonométricas inversas

�2 �1 1

a) y � cot�1x
 dominio: (��, �)
 rango: (0, �)

2
x

y

y � cot�1x

�

�

2

�2 �1 1 2
x

y

�

y � sec�1x

b) y � sec�1x
 dominio: (��, �1] �[1, �)
 rango: [0, �/2) �(�/2, �]

�

2

y

y � csc�1x

�

�2 �1 1 2
x

c) y � csc�1x
 dominio: (��, �1] �[1, �)
 rango: [��/2, 0) �(0, �/2]

�

2

�

2

FIGURA 2.5.17 Gráficas de las funciones cotangente inversa, secante inversa y cosecante inversa

Las gráficas de y = cot-1 x, y = sec-1 x y y = csc-1 x, así como sus dominios y rangos,
se resumen en la FIGURA 2.5.17.

i)
ii)

iii) y csc 1 x si y sólo si x csc  y, 0 x 0 1 y p>2 y p>2, y 0
y sec 1 x si y sólo si x sec  y, 0 x 0 1̌̌ y 0 y p, y p>2y cot 1 x  si y sólo si  x cot  y,    q 6 x 6 q y 0 6 y 6 p

f(x) NOTAS DESDE EL AULA

Los rangos especificados en las definiciones 2.5.3, 2.5.4, 2.5.5 y 2.5.6i) son reconocidos inter-
nacionalmente y surgieron de la limitación más lógica y conveniente de la función original.
Así, cuando vemos arccos x o tan�1 x en cualquier contexto, sabemos que 0 � arccos x � p

y -p 2 6 tan-1 x 6 p 2. Estas convenciones son las mismas que las usadas en calcu-
ladoras cuando se usan las teclas sen-1, cos-1 y tan-1. Sin embargo, no existe ningún acuer-
do universal sobre los rangos de y = sec-1 x o y = csc-1 x. Los rangos especificados en ii) y
iii) en la definición 2.5.6 son cada vez más populares porque se trata de los rangos emplea-
dos en sistemas algebraicos computacionales como Mathematica y Maple. Sin embargo, es
necesario tener en cuenta que hay textos conocidos de cálculo que definen el dominio y el
rango de y � sec�1 x como

dominio: rango: 

y el dominio y el rango de y � csc�1 x como

dominio: rango: (0, p>2] ´ (p, 3p>2].(�q, �1] ´ [1, q),

[0, p>2) ´ [p, 3p>2),(�q, �1] ´ [1, q),

>>



Fundamentos

En los problemas 1 y 2, vuelva a leer la introducción de esta
sección. Luego explique por qué la función f dada no es uno

a uno.

1. 2.

En los problemas 3-8, determine si la función dada es uno a

uno al analizar su gráfica.

3. 4.

5. 6.

7. 8.

En los problemas 9-12, la función f dada es uno a uno.

Encuentre f�1.

9.

10.

11.

12.

En los problemas 13 y 14, compruebe que y

.

13.

14.

En los problemas 15-18, la función f dada es uno a uno. Sin

determinar la inversa, encuentre el dominio y el rango de f�1.

15.

16.

17.

18.

En los problemas 19 y 20, la función f dada es uno a uno.

Sin determinar la inversa, encuentre el punto sobre la gráfica

de f�1 correspondiente al valor indicado de x en el domi-

nio de f.

19.

20.

En los problemas 21 y 22, la función f dada es uno a uno.

Sin determinar la inversa, encuentre x en el dominio de f�1

que satisface la ecuación indicada.

21.

22.

En los problemas 23 y 24, trace la gráfica de f�1 a partir de

la gráfica de f.

23. 24.

En los problemas 25 y 26, trace la gráfica de f a partir de la

gráfica de f�1.

25. 26.

En los problemas 27-30, encuentre una función inversa f�1

cuyo rango sea el mismo que el de la función dada al res-

tringir de manera conveniente el dominio de f.

27. 28.

29. 30.

31. Si las funciones f y g tienen inversas, puede demostrarse

que

Compruebe esto para f(x) � x3 y g(x) � 4x � 5.

32. La ecuación define una función uno a

uno y f(x). Encuentre f�1(x).

En los problemas 33-44, obtenga el valor exacto de la expre-

sión dada. No use calculadora.

�

y � 23 x � 23 y

( f � g)�1
� g�1

� f 
�1.

f (x) � �x2
� 8xf (x) � x2

� 2x � 4

f (x) � 3x2
� 9f (x) � (5 � 2x)2

f (x) �
4x

x � 1
; f 

�1(x) �
1
2

f (x) � x � 1x;  f 
�1(x) � 9

f (x) � 8x � 3; x � 5

f (x) � 2x3
� 2x; x � 2

f (x) �
x � 1
x � 4

f (x) �
1

x � 3

f (x) � 3 � 12x � 1

f (x) � 1x � 2

f (x) �
1

x � 1
,   f �1(x) �

1 � x
x

f (x) � 5x � 10,   f 
�1(x) �

1
5

x � 2

f 
�1( f (x)) � x

f (  f �1(x)) � x

f (x) � 5 �
2
x

f (x) �
2 � x
1 � x

f (x) � 23 2x � 4

f (x) � 3x3
� 7

f (x) � x3
� 3xf (x) � x3

� 8

f (x) � 0 x � 1 0f (x) �
1
3

x � 3

f (x) � 6x � 9f (x) � 5

f (x) � x4
� 2x2f (x) � 1 � x(x � 5)
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2.5 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-7.

x
(�1, 0)

y

y � ƒ �1(x) 

0,   
3
2�      �

x

(0, �1)

y

y � ƒ �1(x) 

(1, 0)

FIGURA 2.5.20 Gráfica

para el problema 25

FIGURA 2.5.21 Gráfica

para el problema 26

x
(1, 0)

y
y � ƒ(x) 

x

(0, �4)

y

y � ƒ(x) 

FIGURA 2.5.18 Gráfica para

el problema 23

FIGURA 2.5.19 Gráfica para

el problema 24

.43.33

.63.53

.83.73

.04.93

.24.14

.44.34 cscQtan 1 2
3
RtanQcot 1 1

2
R cosQsen 1 2

5
Rsen Qarctan

4
3
R arccot ( 13)arcsen Q 13

2
R sec 1( 1)cot 1( 1)

tan 113arctan(1)

cos 1 1
2

arccosQ 12
2
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En los problemas 45-48, evalúe la expresión dada por medio
de una identidad trigonométrica idónea.

45. 46.

47. 48. cos(tan-1 4 - tan-1 3)

En los problemas 49-52, escriba la expresión dada como una

cantidad algebraica en x.

En los problemas 53 y 54, compruebe gráficamente las iden-

tidades por una reflexión y un desplazamiento vertical.

57. Si t = sen-1(-2 ), encuentre los valores exactos de

cos t, tan t, cot t, sec t y csc t.

58. Si , encuentre los valores exactos de sen u,

cos u, cot u, sec u y csc u.

Problemas con calculadora/SAC

La mayoría de las calculadoras carece de teclas para csc�1 x

y sec�1 x. En los problemas 59 y 60, use una calculadora y

las identidades en los problemas 55 y 56 para calcular la can-

tidad dada.

59. a) b) csc-1 2

60. a) b)

61. Use una calculadora para comprobar:

a) tan(tan�1 1.3) = 1.3 y tan�1(tan 1.3) = 1.3

b) tan(tan�1 5) = 5 y tan�1(tan 5) = -1.2832

Explique por qué tan�1(tan 5) Z 5.

62. Sea x � 1.7 radianes. Compare, de ser posible, los valores

de sen�1(sen x) y sen(sen�1 x). Explique las diferencias.

Aplicaciones

63. Considere una escalera de longitud L apoyada en un

muro con una carga en el punto P como se muestra en

la FIGURA 2.5.22. El ángulo b‚ al que la escalera está al

borde de deslizarse, está definido por

donde c es el coeficiente de fricción entre la escalera y

el piso.

a) Encuentre b cuando c � 1 y la carga está en la parte

superior de la escalera.

b) Encuentre b cuando c = 0.5 y la carga está a de la

longitud de la escalera empezando desde el piso.

64. Un avión se desplaza hacia el oeste a velocidad cons-

tante y1 cuando sopla viento desde el norte a velocidad

constante y2. El rumbo del avión al sur del oeste está

dado por u = tan�1(y2�y1). Vea la FIGURA 2.5.23. Encuentre

el rumbo de un avión que se desplaza hacia el oeste a

300 km/h si sopla viento desde el norte a 60 km/h.

Piense en ello

En los problemas 65 y 66, use calculadora o un sistema alge-

braico computacional para obtener la gráfica de la función

dada donde x es cualquier número real. Explique por qué las

gráficas no violan los teoremas 2.5.2i) y 2.5.2iii).

65. f(x) � sen�1(sen x) 66. f(x) � cos�1(cos x)

67. Analice: ¿es posible que una función uno a uno sea perió-

dica?

68. ¿Cómo están relacionadas las funciones uno a uno y �

f(x) en las FIGURAS 2.5.24a) y 2.5.24b) con las funciones

inversas y � f�1(x)? Encuentre por lo menos tres fun-

ciones explícitas con esta propiedad.

�

y1

y2

FIGURA 2.5.23 Avión en el problema 64

P

�

Escalera

L
x

FIGURA 2.5.22 Escalera en el problema 63

3
4

csc�1(�1.25)sec�1(3.5)

sec�1(�12)

u � arctan 
1
2

15>

cos Q2cos�1
 

3
4
R
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x

y

y � ƒ(x) 

y � x

(0, a)

(a, 0)

a)

x

b)

y

y � ƒ(x) 

y � x

FIGURA 2.5.24 Gráfica para el problema 68

.54

47. sen Qarcsen
13
3

arccos
2
3
Rsen Q2sen 11

3
R

.05.94

.25.15 sen(sec 1 x), x 1sec(tan 1 x)

tan(sen 1 x)cos(sen 1 x)

53.

54.

55. Demuestre que

56. Demuestre que csc 1 x sen 1(1>x) para 0 x 0 1.

sec 1 x cos 1(1>x) para 0 x 0 1.

arccot x arctan x
p

2

sen 1 x cos 1 x
p

2

,
x
L

c
1 c2 (c tan b)



2.6 Funciones exponencial y logarítmica
Introducción En las secciones precedentes se consideraron funciones como f(x) � x2; es

decir, una función con una base variable x y una potencia o exponente constante 2. A continua-
ción abordaremos funciones como f(x) � 2x con una base constante 2 y exponente variable x.
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El dominio de una función exponencial f definida en (1) es el conjunto de números rea-
les 

Exponentes Debido a que el dominio de una función exponencial (1) es el conjunto de
números reales, el exponente x puede ser un número racional o irracional. Por ejemplo, si la base
b = 3 y el exponente x es un número racional, y entonces

y .

La función (1) también está definida para todo número irracional x. El siguiente procedimiento
ilustra una forma para definir un número como . A partir de la representación decimal 
= 1.414213562 . . . se observa que los números racionales

son sucesivamente mejores aproximaciones a Al usar estos números racionales como
exponentes, es de esperar que los números

sean sucesivamente mejores aproximaciones a . De hecho, puede demostrarse que esto
es cierto con una definición precisa de bx para un valor irracional de x. Pero a nivel práctico es
posible usar la tecla de una calculadora para obtener la aproximación 4.728804388 para

.

Leyes de los exponentes Puesto que bx está definido para todos los números reales x cuan-
do b > 0, puede demostrarse que las leyes de los exponentes se cumplen para todos los exponen-
tes que sean números reales. Si a 7 0, b 7 0 y x, x1 y x2 denotan números reales, entonces

Gráficas Para (1) se distinguen dos tipos de gráficas, dependiendo de si la base b satisface
b � 1 o 0 � b � 1. El siguiente ejemplo ilustra las gráficas de y Antes de
graficar es posible hacer algunas observaciones intuitivas sobre ambas funciones. Puesto que las
bases b � 3 y b = son positivas, los valores de 3x y son positivos para todo número real x.
Además, ni 3x ni pueden ser 0 para ninguna x, de modo que las gráficas de f(x) = 3x y

no tienen intersecciones x. También, 30 = 1 y significan que las gráficas
de f(x) = 3x y tienen la misma intersección y (0, 1).

EJEMPLO  1 Gráficas de funciones exponenciales

Grafique las funciones

a) , b) .f (x) � Q1
3
Rxf (x) � 3x

f (x) � A13B x A13B0 � 1f (x) � A13B x A13B x A13B x1
3

f (x) � A13B x.f (x) � 3x

312

yx

312

31,   31.4,   31.41,   31.414,   31.4142,   31.41421, p

12.

1,   1.4,   1.41,   1.414,   1.4142,   1.41421, p

12312

31.4
� 314>10

� 37>5
� 25 3731>5

� 15 3

x � 1.4,x �
1
5

(�q,  q).

Definición 2.6.1 Función exponencial

Si b � 0 y , entonces una función exponencial y � f(x) es una función de la forma

f(x) � bx. (1)

El número b se denomina base y x se denomina exponente.

b � 1
En (1), la base b se restringe a
números positivos para garanti-
zar que bx sea un número real.
También, b = 1 carece de interés
puesto que f(x) = 1x = 1.

Una definición de bx, para x irra-
cional, está dada por

donde t es racional. Esto se lee
“bx es el límite de bt cuando t
tiende a x”. Los límites se es-
tudiarán en detalle en la
unidad 3.

,bx lím
tSx

 bt

i) ii) iii)

iv) v) vi) .Qa
b
Rx ax

bx(ab)x a xbx1
bx2

b x2

(bx1) x2 bx1x2
bx1

bx2
bx1 x2bx1 . bx2 bx1 x2



Solución
a) Primero se elabora una tabla de algunos valores funcionales correspondientes a valo-

res de x seleccionados de antemano. Como se muestra en la FIGURA 2.6.1a), se trazan los
puntos correspondientes obtenidos a partir de la tabla
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x

y

asíntota
horizontal

y �bx, 0 � b � 1 y �bx, b � 1

 y �0
asíntota

horizontal

 y �0

(0, 1)

FIGURA 2.6.2 f creciente para
b � 1; f decreciente para 0 �
b � 1

x

y
y � 5x

y � 3x

y � 2x

y � (1.2)x

(0, 1)

FIGURA 2.6.3 Gráficas de y = bx

para b = 1.2, 2, 3, 5

y

x

y � 3x

(2, 9)

(1, 3)

a)

(0, 1)
�1,   (        )1

3

y

x

y �

(�2, 9)

b)

(�1, 3)

(0, 1)

 x1
3

1
3

1,   

(   )
(    )

FIGURA 2.6.1 Gráfica de las fun-
ciones en el ejemplo 1

y se unen con una curva continua. La gráfica muestra que f es una función creciente
sobre el intervalo 

b) Procediendo como en el inciso a), se elabora una tabla de algunos valores
(�q,  q).

de la función correspondientes a valores de x seleccionados de antemano. Observe,
por ejemplo, por las leyes de los exponentes 
Como se muestra en la figura 2.6.1b), se trazan los puntos correspondientes obteni-
dos a partir de la tabla y se unen con una curva continua. En este caso, la gráfica
muestra que f es una función decreciente sobre el intervalo (�q, q).

Nota: Las funciones exponenciales con bases que satisfacen 0 � b � 1, como a
menudo se escriben en forma alterna. Al escribir como y usando iii) de las
leyes de los exponentes se observa que es lo mismo que 

Asíntota horizontal La FIGURA 2.6.2 ilustra las dos formas generales que puede tener la gráfica
de una función exponencial f(x) � bx. Pero hay un aspecto más importante de todas estas gráficas.
Observe en la figura 2.6.2 que para 0 � b � 1, los valores de la función f(x) tienden a 0 cuando x
crece sin cota en la dirección positiva, y para b � 1 los valores funcionales f(x) tienden a 0 cuan-
do x se crece sin cota en la dirección negativa. En otras palabras, la recta y � 0 (el eje x) es una
asíntota horizontal para ambos tipos de gráficas exponenciales.

Propiedades de una función exponencial La lista siguiente resume algunas de las propieda-
des importantes de la función exponencial f con base b. Vuelva a analizar las gráficas en la figu-
ra 2.6.2 mientras lee la lista.

• El dominio de f es el conjunto de números reales; es decir, 
• El rango de f es el conjunto de números reales positivos; es decir, 
• La intersección y de f es (0, 1). La gráfica no tiene intersección x.
• La función f es creciente sobre el intervalo para b � 1 y decreciente sobre

el intervalo para 0 � b � 1.
• El eje x, es decir y 0, es una asíntota horizontal para la gráfica de f.
• La función f es uno a uno.

Aunque todas las gráficas de y � bx cuando b � 1 comparten la misma forma básica y
todas pasan por el mismo punto (0, 1), hay algunas diferencias sutiles. Mientras más grande
es la base b, el ascenso de la gráfica es más pronunciado cuando x crece. En la FIGURA 2.6.3 se
comparan las gráficas de y � 5x, y � 3x, y � 2x y y � (1.2)x, sobre los mismos ejes de coor-
denadas. A partir de esta gráfica observamos que los valores de y � (1.2)x crecen lentamente
cuando x crece.

El hecho de que (1) es una función uno a uno se concluye a partir de la prueba de la recta
horizontal que se analizó en la sección 2.5.

El número e La mayoría de los estudiantes de matemáticas ha escuchado acerca del famoso
número irracional p � 3.141592654. . . , y quizás haya trabajado con él. En cálculo y matemá-
ticas aplicadas, podría decirse que el número irracional

e � 2.718281828459. . . (2)

�

(�q,  q)
(�q,  q)

(0,  q).
(�q,  q).

y � 3�x.y � A13Bx y � (3�1)xy � A13Bx b �
1
3,

f (�2) � A13B�2
� (3�1)�2

� 32
� 9.

x �3 �2 �1 0 1 2

f (x) 27 9 3 1 1
3

1
9

x �3 �2 �1 0 1 2

f (x) 1
27

1
9

1
3

1 3 9



desempeña un papel más importante que el número . La definición usual del número e es
que se trata del número al que se acerca la función cuando se deja que x

crezca sin cota en la dirección positiva. Si el símbolo de flecha representa la expresión se

acerca, entonces el hecho de que cuando es evidente en la tabla de valores
numéricos de f

x S qf (x) S e
S

f (x) � (1 � 1>x)x
p
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y a partir de la gráfica en la FIGURA 2.6.4. En la figura, la recta horizontal discontinua y = e es
un asíntota horizontal de la gráfica de f. También se dice que e es el límite de f (x) =
(1 + 1 x)x cuando y se escribe

(3)

A menudo observará una definición alterna del número e. Si en (3) se hace h = 1 x, entonces
cuando tendremos simultáneamente Por tanto, una forma equivalente de (3) es

(4)

La función exponencial natural Cuando la base en (1) se escoge como b = e, la función f(x)
= ex se denomina función exponencial natural. Puesto que b = e 7 1 y b = 1 e 6 1, las gráfi-
cas de y = ex y y = e�x se proporcionan en la FIGURA 2.6.5. A la vista de ello, no
cuenta con ninguna característica observable que la distinga, por ejemplo, de la función f(x)
= 3x, y no tiene ninguna propiedad especial diferente a las que se proporcionaron en la lista
de la página anterior. Preguntas de por qué es una función “natural” y francamente
la función exponencial más importante, se responderán en las siguientes unidades y en sus cur-
sos más allá de cálculo.

Inversa de la función exponencial Puesto que una función exponencial es uno a uno,
se sabe que tiene una función inversa. Para encontrar su inversa, se intercambian las variables x
y y para obtener . Esta última fórmula define a y como una función de x:

• y es el exponente de la base b que produce x.

Al sustituir la palabra exponente por la palabra logaritmo, la línea precedente puede volver a
escribirse como:

• y es el logaritmo de la base b que produce x.

La última línea se abrevia usando la notación y � logb x y se denomina función logarítmica.

x � b y

y � b x

f (x) � e x

f (x) � e x

>
h S 0.x S q

>
x S q>

Para b 7 0 no hay ningún número real y para el cual by sea 0 o negativo. Así, a partir de
x = by se concluye que x 7 0. En otras palabras, el dominio de una función logarítmica
y = logb x es el conjunto de números reales positivos 

Para enfatizar, todo lo que se ha dicho en las frases precedentes es:

• La expresión logarítmica y � logb x y la expresión exponencial x � by son equivalentes.

es decir, significan lo mismo. Como una consecuencia, dentro de un contexto específico como
al resolver un problema, es posible usar cualquier forma que sea la más conveniente. La lista
siguiente ilustra varios ejemplos de declaraciones logarítmicas y exponenciales equivalentes:

(0,  q).

x

y

y � e

1

1

y �  1�    
x1

x(      )

FIGURA 2.6.4 y = e es una asín-
tota horizontal de la gráfica de f

y

x

�1, (0, 1)

a)

(1, e)

y � ex

(       )1
e

FIGURA 2.6.5 Función exponen-
cial natural en a)

(�1, e)

y � e�x y

x

(0, 1)

b)

1
e1,(     )

e lím
xSq
Q1 1

x
Rx.

e lím
hS0

(1 h)1>h.

x 100 1 000 10 000 100 000 1 000 000

(1 � 1>x)x 2.704814 2.716924 2.718146 2.718268 2.718280

Definición 2.6.2 Función logarítmica

La función logarítmica con base se define por

(5)

b 7 0,  b � 1,

y logb  x si y sólo si x b y.



Gráficas Debido a que una función logarítmica es la inversa de una función exponencial, es
posible obtener la gráfica de la primera al reflejar la gráfica de la segunda en la recta y = x. A
medida que inspeccione las dos gráficas en la FIGURA 2.6.6, recuerde que el dominio y
el rango de y = bx se vuelven, a su vez, el rango y el dominio de

Observe que la intersección y (0, 1) de la función exponencial se vuelve la intersec-
ción x (1, 0) de la función logarítmica. También, cuando la función exponencial se refleja en la
recta y = x, la asíntota horizontal y = 0 para la gráfica de y = bx se vuelve una asíntota vertical
para la gráfica de En la figura 2.6.6 se observa que para b 7 1, x = 0, que es la ecua-
ción del eje y, es una asíntota vertical para la gráfica de 

Propiedades de la función logarítmica En la lista siguiente se resumen algunas de las pro-
piedades importantes de la función logarítmica f(x) = logb x:

• El dominio de f es el conjunto de números reales positivos; es decir, 
• El rango de f es el conjunto de números reales; es decir, 
• La intersección x de f es (1, 0). La gráfica de f no tiene intersección y.
• La función f es creciente sobre el intervalo para b > 1 y decreciente sobre el

intervalo para 0 < b < 1.
• El eje y, es decir, x = 0, es una asíntota vertical para la gráfica de f.
• La función f es uno a uno.

Se pide su atención especial para el tercer elemento de la lista anterior

logb 1 = 0 puesto que b0 = 1. (6)

También, logb b = 1 puesto que b1 = b. (7)

El resultado en (7) significa que además de (1, 0), la gráfica de cualquier función logarítmica
(5) con base b también contiene al punto (b, 1). La equivalencia de y = logb x y x � by tam-
bién produce dos identidades útiles algunas veces. Al sustituir y = logb x en x = by, y luego
x � by en y = logb x, se obtiene

x = blog
b

x y y = logb by. (8) 

Por ejemplo, a partir de 2log2 10 = 10 y log3 37 = 7.

Logaritmo natural Los logaritmos con base b � 10 se denominan logaritmos comunes y los
logaritmos con base b = e se llaman logaritmos naturales. Además, suele ser costumbre escri-
bir el logaritmo natural loge x como ln x. Puesto que b = e � 1, la gráfica de y = ln x tiene
la forma logarítmica característica que se muestra en la figura 2.6.6. Para la base b = e, (5) se
vuelve

y = ln x si y sólo si x � ey. (9)

Los análogos de (6) y (7) para el logaritmo natural son

ln 1 = 0 puesto que e0 = 1. (10)

ln e = 1 puesto que e1 = e. (11)

Las identidades en (8) se vuelven

x � eln x y y = ln ey. (12) 

Por ejemplo, a partir de (12), eln 25 = 25.

(0,  q)
(0,  q)

(�q,  q).
(0,  q).

y � logb x.
y � logb x.

y � logb x.
(0,  q)(�q,  q)(0,  q)

(�q,  q)
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y � bx

y � x

y � log
b
 x

(0, 1)

(1, 0)

x � 0
asíntota
vertical

x

y

FIGURA 2.6.6 Gráfica de la fun-
ción logarítmica con base b � 1

Forma logarítmica Forma exponencial

log3 9 = 2

log8 2 =

log10 0.001 = -3

logb 5 = -1 5 � b�1

0.001 � 10�3

2 � 81>31
3

9 � 32



Leyes de los logaritmos Las leyes de los exponentes pueden volver a plantearse de manera
equivalente como las leyes de los logaritmos. Por ejemplo, si y entonces por
(5), x1 = logb M y x2 = logb N. Por i) de las leyes de los exponentes, . Esto, expre-
sado como un logaritmo, es x1 + x2 = logb MN. Al sustituir x1 y x2 se obtiene logb M + logb N =
logb MN. Las partes restantes del siguiente teorema pueden demostrarse de la misma manera.

MN � b 
x1�x2

N � b 
x2,M � b x1
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EJEMPLO  2 Leyes de los logaritmos

Simplifique y escriba ln 36 + 2 ln 4 como un logaritmo único.

Solución Por iii) de las leyes de los logaritmos, puede escribirse

Entonces, por i) de las leyes de los logaritmos,

EJEMPLO  3 Reescribir expresiones logarítmicas

Use las leyes de los logaritmos para volver a escribir cada expresión y evalúe.

a) b) ln 5e c)

Solución
a) Puesto que por iii) de las leyes de los logaritmos se tiene:

b) Por i) de las leyes de los logaritmos y con una calculadora:

c) Por ii) de las leyes de los logaritmos:

Observe que iii) de las leyes de los logaritmos también puede usarse aquí:

EJEMPLO  4 Solución de ecuaciones

a) Resuelva la ecuación logarítmica ln 2 + ln(4x - 1) = ln(2x + 5) para x.
b) Resuelva la ecuación exponencial para k.e10k

� 7

1e � e1>2
ln 

1
e

ln 1e

1
2

Teorema 2.6.1 Leyes de los logaritmos

Para cualquier base y números enteros positivos M y N:b 7 0, b � 1,

i)

ii)

iii) logb Mc c logb M, para cualquier número real c.

logb 
aM

N
b logb M logb N

logb MN logb M logb N

1
2

ln 36 2 ln 4 ln 6 ln 16 ln (6 . 16) ln 96.

1
2

ln 36 2 ln 4 ln (36)1>2 ln 42 ln 6 ln 16.

. d a partir de (11), ln e 1

. d a partir de (11), ln e 1

. d a partir de (10) y (11)

ln
1
e

ln e 1 ( 1) ln e 1.

ln
1
e

ln 1 ln e 0 1 1

ln 5e ln 5 ln e ln 5 1 2.6094

ln1e ln e1>2 1
2

ln e
1
2



Solución
a) Por i) de las leyes de los logaritmos, el miembro izquierdo de la ecuación puede escri-

birse

Entonces, la ecuación original es

Por (9) se concluye que

A partir de la última ecuación encontramos que .
b) Se usa (9) para volver a escribir la expresión exponencial como la expresión

logarítmica 10k = ln 7. En consecuencia, con ayuda de una calculadora

Cambio de base La gráfica de es la gráfica de y = 2x desplazada 5 unidades hacia
abajo. Como se observa en la FIGURA 2.6.7, la gráfica tiene una intersección x. Al hacer y = 0 vemos
que x es la solución de la ecuación o Así, una solución perfectamente válida
es x = log2 5. Pero desde un punto de vista computacional (es decir, el hecho de expresar x como
un número), la última respuesta no es aconsejable porque ninguna calculadora tiene una función
logarítmica con base 2. Podemos calcular la respuesta al cambiar log2 5 al logaritmo natural al
tomar simplemente el log natural de ambos miembros de la ecuación exponencial 2x = 5:

Por cierto, puesto que se empezó con x = log2 5, el último resultado también demuestra la igualdad

log2 5 = . Entonces, la intersección x de la gráfica es (log2 5, 0) = (log 5 ln 2, 0) (2.32, 0).

En general, para convertir un logaritmo con cualquier base b 7 0 en logaritmo natural,

primero reescribimos la expresión logarítmica x = logb N como una expresión exponencial

equivalente Luego se toma el logaritmo natural a ambos miembros de la última igual-

dad x ln b = ln N y se despeja x. Esto produce la fórmula general de cambio de base:

(13)

b x
� N.

>ln 5
ln 2

2x
� 5.2x

� 5 � 0

y � 2x
� 5

e10k
� 7

x 7
6
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Fundamentos

En los problemas 1-6, trace la gráfica de la función dada.

Encuentre la intersección y y la asíntota horizontal de la grá-

fica.

1. 2.

3. 4.

5. 6.

En los problemas 7-10, encuentre una función exponencial

tal que la gráfica de f pase por el punto dado.

7. 8.

9. 10.

En los problemas 11-14, use una gráfica para resolver la des-

igualdad dada para x.

11. 12. e x
� 12x 7 16

(2, e)(�1, e2)

(�1,  5)(3,  216)

f (x) � b x

f (x) � 2 � e�xf (x) � �5 � e x

f (x) � �2�xf (x) � �2x

f (x) � a4
3
bx

f (x) � a3
4
bx

2.6 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-7.

y � �5

y � 2x
� 5

(0, �4)

y

x

intersección x

FIGURA 2.6.7 Intersección x de

y = 2x
� 5

ln(8x 2) ln(2x 5) 0  o bien ln
8x 2
2x 5

0.

8x 2
2x 5

e0 1  o bien 8x 2 2x 5.

.logb N
ln N
ln b

k
1
10

ln 7 0.1946.

ln 2 ln(4x 1) ln 2(4x 1) ln(8x 2).

.x
ln 5
ln 2

2.3219

x ln 2 ln 5
ln 2x ln 5

Nota: En realidad dividimos

los logaritmos aquíS



13. 14.

En los problemas 15 y 16, use f(- x) = f(x) para demostrar
que la función dada es par. Trace la gráfica de f.

15. 16.

En los problemas 17 y 18, use la gráfica obtenida en los pro-
blemas 15 y 16 como ayuda para trazar la gráfica de la fun-
ción f dada.

17. 18.

19. Demuestre que es una función par.
Trace la gráfica de f.

20. Demuestre que es una función impar.
Trace la gráfica de f.

En los problemas 21 y 22, trace la gráfica de la función f

dada definida por partes.

21. 22.

En los problemas 23-26, vuelva a escribir la expresión expo-
nencial dada como una expresión logarítmica equivalente.

23. 24.

25. 104 = 10 000 26.

En los problemas 27-30, vuelva a escribir la expresión loga-
rítmica dada como una expresión exponencial equivalente.

En los problemas 31 y 32, encuentre una función logarítmica
f(x) = logb x tal que la gráfica de f pase por el punto dado.

31. 32.

En los problemas 33-38, encuentre el valor exacto de la
expresión dada.

En los problemas 39-42, encuentre el dominio de la función
f dada. Encuentre la intersección x y la asíntota vertical de
la gráfica. Trace la gráfica de f.

39. f(x) = -ln x 40. f(x) = -1 + ln x

41. 42.

En los problemas 43 y 44, encuentre el dominio de la fun-
ción f dada.

43. 44.

45. Demuestre que es una función par. Trace la
gráfica de f. Encuentre las intersecciones x y la asíntota
vertical de la gráfica.

46. Use la gráfica obtenida en el problema 45 para trazar la
gráfica de . Encuentre las intersecciones x
y la asíntota vertical de la gráfica.

En los problemas 47-50, use las leyes de los logaritmos para
volver a escribir la expresión dada como un logaritmo.

En los problemas 51-54, use las leyes de los logaritmos de
modo que ln y no contenga productos, cocientes ni potencias.

51. 52.

53.

54.

En los problemas 55 y 56, use el logaritmo natural para
encontrar x en el dominio de la función dada para el que f

asume el valor indicado.

55. 56.

En los problemas 57-60, use el logaritmo natural para des-
pejar x.

57. 58.

59. 60.

En los problemas 61 y 62, despeje x.

Modelos matemáticos

63. Crecimiento exponencial Un modelo exponencial
para el número de bacterias en un cultivo en el instante
t está dado por , donde P0 es la población
inicial y k 0 es la constante de crecimiento.

a) Después de 2 horas, se observa que el número ini-
cial de bacterias en un cultivo se ha duplicado.
Encuentre un modelo de crecimiento exponencial
P(t).

b) Según el modelo del inciso a), ¿cuál es el número de
bacterias presentes en el cultivo al cabo de 5 horas?

c) Encuentre el tiempo necesario para que el cultivo
crezca hasta 20 veces su tamaño inicial.

64. Desintegración exponencial Un modelo exponencial
para la cantidad de sustancia radiactiva remanente en el
instante t está dado por donde A0 es la can-
tidad inicial y k < 0 es la constante de desintegración.

a) Al inicio estaban presentes 200 mg de una sustancia
radiactiva. Después de 6 horas, la masa había decre-
cido 3%. Elabore un modelo exponencial para la can-
tidad de la sustancia en desintegración remanente
después de t horas.

A(t) � A0 e kt,

�

P(t) � P0 ekt

32(x�1)
� 2x�35x

� 2e x�1

4 . 72x
� 92x�5

� 9

f (x) � a1
2
bx

; f (x) � 7f (x) � 6x; f (x) � 51

y � 64 x 61x � 123 x 2
� 2

y �
(x 3

� 3)5(x4
� 3x 2

� 1)8

1x (7x � 5)9

y � A
(2x � 1)(3x � 2)

4x � 3
y �

x102x 2
� 5

23 8x 3
� 2

y � ln 0x � 2 0

f (x) � ln 0x 0 f (x) � ln (x 2
� 2x)f (x) � ln (9 � x 2)

f (x) � 1 � ln (x � 2)f (x) � �ln (x � 1)

A4, 13B(49,  2)

100.3010
� 2

90
� 14�1>2

�
1
2

f (x) e e�x,
�e x,

x � 0
x 7 0

f (x)e�e x,
�e�x,

x 6 0
x 	 0

f (x) � 2x
� 2�x

f (x) � 2x
� 2�x

f (x) � 2 � 3e� 0x 0f (x) � 1 � e x 2

f (x) � e� 0x 0f (x) � e x 2

a1
2
bx

	 8e x�2 6 1
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.84.74

.05.94 5 ln 2 2 ln 3 3 ln 4ln 5 ln 52 ln 53 ln 56

lnax
y
b 2 ln x3 4 ln yln(x4 4) ln(x 2 2)

61.

62. ln 3 ln(2x 1) ln 4 ln(x 1)

ln x ln(x 2) ln 3

.82.72

.03.92

.43.33

.63.53

.83.73 e
1
2 lnpe ln 7

25log5 810log10 62

ln(e4e9)ln ee

log16 2
1
4

log13 81 8

log5
1
25

2log2 128 7



b) Encuentre la cantidad remanente después de 24 horas.
c) Encuentre el instante en que se denomina

vida media de la sustancia. ¿Cuál es la vida media
de la sustancia en el inciso a)?

65. Crecimiento logístico Un estudiante contagiado con el
virus de influenza vuelve a un campus aislado de una uni-
versidad donde hay 2 000 estudiantes. El número de estu-
diantes infectados después de t días del regreso del estu-
diante se pronostica por medio de la función logística

a) Según este modelo matemático, ¿cuántos estudiantes
estarán contagiados por la influenza después de 5 días?

b) ¿En cuánto tiempo estará infectada la mitad de la
población de estudiantes?

c) ¿Cuántos estudiantes pronostica el modelo que esta-
rán infectados al cabo de un muy largo periodo?

d) Trace la gráfica de P(t).

66. Ley de enfriamiento de Newton Si un objeto o
cuerpo se coloca en un medio (como aire, agua, etc.) que
se mantiene a temperatura constante Tm, y si la tempera-
tura inicial del objeto es T0, entonces la ley de enfria-

miento de Newton pronostica que la temperatura del
objeto en el instante t está dada por

a) Un pastel se retira de un horno donde la temperatura
era 350 
F y se coloca en una cocina donde la tem-
peratura es constante a 75 
F. Un minuto después se
mide que la temperatura del pastel es 300 
F. ¿Cuál
es la temperatura del pastel después de 6 minutos?

b) ¿En qué instante la temperatura del pastel es 80 
F?

Piense en ello

67. Analice: ¿cómo es posible obtener las gráficas de las
funciones dadas a partir de la gráfica de f(x) � ln x por
medio de una transformación rígida (desplazamiento o
reflexión)?

68. a) Use un instrumento de graficado para obtener la grá-
fica de la función 

b) Demuestre que f es una función impar; es decir,
f (�x) � �f (x).

f (x) � ln(x � 2x2
� 1).

T(t) � Tm � (T0 � Tm)e kt, k 6 0.

A(t) �
1
2 
A0
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2.7 De las palabras a las funciones
Introducción En la unidad 5 hay varias instancias en las que se espera que usted traduzca las

palabras que describen una función o una ecuación en símbolos matemáticos.
En esta sección el centro de atención lo constituyen problemas que implican funciones.

Se empieza con una descripción verbal sobre el producto de dos números.

EJEMPLO  1 Producto de dos números

La suma de dos números no negativos es 5. Exprese el producto de uno y el cuadrado del otro
como una función de uno de los números.

Solución Primero, los números se representan por los símbolos x y y y se recuerda que no

negativos significa que y Al usar estos símbolos, las palabras “la suma. . . es 5”
se traduce en la ecuación ésta no es la función que se busca. La palabra producto

en la segunda oración sugiere el uso del símbolo P para denotar la función que se quiere. Así,
P es el producto de uno de los números; por ejemplo, x y el cuadrado del otro, por ejemplo, y2:

(1)

No, aún no hemos terminado porque se supone que P “es una función de uno de los núme-
ros”. Ahora usamos el hecho de que los números x y y están relacionados por A
partir de esta última ecuación, sustituimos en (1) para obtener el resultado deseado:

(2) 

A continuación se muestra un diagrama simbólico del análisis del problema dado en el
ejemplo 1:

P(x) � x(5 � x)2.

y � 5 � x
x � y � 5.

P � xy2.

x � y � 5;
y 	 0.x 	 0

.P(t)
2 000

1 1 999e 0.8905t

x y 15

sean los números x 0 y y 0

La suma de dos números no negativos es 15. Exprese el producto de

yx 2 use x

uno y el cuadrado del otro como una función de uno de los números.

P

          

                

               

  

a) b)

c) d) y ln( x)y ln x 1

y ln
x
4

y ln 5x

(3)



Observe que la segunda oración es vaga respecto a cuál número se eleva al cuadrado. Esto
implica que en realidad no importa: (1) también podría escribirse como También hubié-
ramos podido usar x = 5 - y en (1) para llegar a P(y) = (5 - y)y2. En un entorno de cálculo
no importaría si trabajamos con P(x) o P(y) porque al encontrar uno de los números automáti-
camente hallamos el otro a partir de la ecuación x + y = 5. Esta última ecuación se denomina
restricción. Una restricción no sólo define una relación entre las variables x y y, sino que a
menudo impone una limitación sobre la forma en que pueden variar x y y. Como veremos en
el siguiente ejemplo, las restricciones ayudan a determinar el dominio de la función.

EJEMPLO  2 Continuación del ejemplo 1

¿Cuál es el dominio de la función P(x) en (2)?

Solución Tomado fuera del contexto del planteamiento del problema en el ejemplo 1, podría
concluirse que puesto que

es una función polinomial, su dominio es el conjunto de números reales Pero en el
contexto del problema original, los números eran no negativos. A partir del requerimiento de
que y se obtiene y lo cual significa que x debe satisfacer
la desigualdad simultánea Al usar notación de intervalos, el dominio de la función
producto P en (2) es el intervalo cerrado [0, 5].

A menudo en problemas que requieren la traducción de palabras en una función, una buena
idea es trazar una curva o imagen e identificar cantidades dadas en el dibujo. Éste debe ser
sencillo.

EJEMPLO  3 Cantidad de valla

Un ranchero desea cercar un terreno rectangular cuya área es de 1 000 m2. El terreno será cer-
cado y dividido en porciones iguales mediante una cerca paralela a dos lados del terreno. Exprese
la cantidad de valla usada como una función de la longitud de uno de los lados del terreno.

Solución El dibujo debe ser un rectángulo con una recta trazada en su parte media, seme-
jante a la FIGURA 2.7.1. Como se muestra en la figura, sea x � 0 la longitud del terreno rectan-
gular y sea y � 0 su ancho. La función que se busca es la “cantidad de valla”. Si el símbolo
F representa esta cantidad, entonces la suma de las longitudes de las cinco porciones —dos
horizontales y tres verticales— de la valla es

(4)

Pero el área del terreno cercado debe ser de 1 000 m2, de modo que x y y deben estar rela-
cionados por la restricción xy = 1 000. A partir de la última ecuación se obtiene y = 1 000 x,
que puede usarse para eliminar y en (4). Así, la cantidad de valla F como una función de la
longitud x es F(x) = 2x + 3(1 000 x), o bien,

(5)

Puesto que x representa una dimensión física que satisface xy � 1 000, se concluye que es
positiva. Pero además de esta restricción, sobre x no hay ninguna otra. Entonces, a diferencia
del ejemplo previo, la función (5) no está definida sobre un intervalo cerrado. El dominio de
F(x) es el intervalo 

EJEMPLO  4 Área de un rectángulo

Un rectángulo tiene dos vértices sobre el eje x y dos vértices sobre el semicírculo cuya ecua-
ción es Vea la FIGURA 2.7.2a). Exprese el área del rectángulo como una función
de x.

Solución Si denota el vértice de un rectángulo sobre el círculo en el pri-
mer cuadrante, entonces como se muestra en la figura 2.7.2b), el área A es longitud * ancho,
o bien,

(6)A � (2x) � y � 2xy.

(x,  y),  x 7 0,  y 7 0,

y � 225 � x2.

(0,  q).

> >
F � 2x � 3y.

0 � x � 5.
x � 5,x 	 0y � 5 � x 	 0x 	 0

(�q, q).

P(x) � x (5 � x)2
� 25x � 10x2

� x3

P � yx2.
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FIGURA 2.7.1 Terreno rectangular
en el ejemplo 3
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Si se permite x � 5, entonces
y � 5 – x � 0, lo cual contradice
la hipótesis de que y � 0.
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La ecuación del semicírculo es la restricción en este problema. Esta ecuación
se usa para eliminar y en (6) y obtener el área del rectángulo como una función de x,

(7)

El dominio implícito de (7) es el intervalo cerrado pero debido a que asumimos que
(x, y) era un punto sobre el semicírculo en el primer cuadrante, debemos tener x > 0. Así, el
dominio de (7) es el intervalo (0, 5).

EJEMPLO  5 Distancia

Exprese la distancia de un punto (x, y) en el primer cuadrante sobre el círculo 
hasta el punto (2, 4) como una función de x.

Solución Sea (x, y) un punto en el primer cuadrante sobre el círculo y sea d la distancia de
(x, y) a (2, 4). Vea la FIGURA 2.7.3. Entonces, a partir de la fórmula de la distancia,

(8)

La restricción en este problema es la ecuación del círculo A partir de esta ecua-
ción es posible sustituir de inmediato en (8) por el número 1. Además, al usar la res-
tricción para escribir es posible eliminar el símbolo y en (8). Así, la distancia
d como una función de x es:

. (9)

Puesto que (x, y) es un punto sobre el círculo en el primer cuadrante, la variable x puede variar
entre 0 y 1; es decir, el dominio de la función en (9) es el intervalo abierto (0, 1).

Si un problema en lenguaje coloquial implica triángulos, es necesario estudiar el problema
con cuidado y determinar qué es aplicable: el teorema de Pitágoras, triángulos semejantes o
trigonometría con triángulos rectángulos.

EJEMPLO  6 Longitud de una sombra

Un árbol se planta a 30 pies de la base de un poste que mide 25 pies de altura. Exprese la
longitud de la sombra del árbol como una función de su altura.

Solución Como se muestra en la FIGURA 2.7.4a), h y s denotan la altura del árbol y la longitud
de su sombra, respectivamente. Debido a que los triángulos mostrados en la figura 2.7.4b) son
rectángulos, podría pensarse en utilizar el teorema de Pitágoras. Para este problema, no obs-
tante, el teorema de Pitágoras llevaría por mal camino. La cuestión importante que debe obser-
varse aquí es que los triángulos ABC y AB�C� son semejantes. Luego aplicamos el hecho de
que las razones de lados correspondientes de triángulos semejantes son iguales para escribir

d(x) � 321 � 4x � 821 � x2

y � 21 � x2
x2

� y2
x2

� y2
� 1.

d � 2(x � 2)2
� (y � 4)2

� 2x2
� y2

� 4x � 8y � 20.

x2
� y2

� 1

[�5,  5] ,

A(x) � 2x225 � x2.

y � 225 � x2
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FIGURA 2.7.4 Poste y árbol en el ejemplo 6
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Al despejar s en la última ecuación en términos de h se obtiene la función racional

. (10)

Tiene sentido físico tomar el dominio de la función (10) definido por Si h 7 25,
entonces s(h) es negativo, lo cual no tiene sentido en el contexto físico del problema.

EJEMPLO  7 Longitud de una escalera

Una pared de 10 pies de altura está a 5 pies de un edificio. Una escalera, sostenida por la
pared, se coloca en el piso como se muestra en la FIGURA 2.7.5. Exprese la longitud de la esca-
lera en términos de la distancia x entre la base de la pared y la base de la escalera.

Solución Sea L la longitud de la escalera. Con las variables x y y definidas en la figura 2.7.5,
de nuevo se observa que hay dos triángulos rectángulos; el mayor tiene tres lados con longi-
tudes L, y y x � 5, y el menor tiene dos lados de longitudes x y 10. La escalera es la hipo-
tenusa del triángulo rectángulo mayor, de modo que por el teorema de Pitágoras,

(11)

Los triángulos rectángulos en la figura 2.7.5 son semejantes porque ambos contienen un ángulo
recto y comparten el ángulo agudo común que la escalera forma con el piso. De nuevo se usa
el hecho de que las razones de lados correspondientes de triángulos semejantes son iguales.
Esto permite escribir lo siguiente:

de modo que

Al usar el último resultado, (11) se vuelve

Al tomar la raíz cuadrada se obtiene L como una función de x,

(12) 

EJEMPLO  8 Distancia

Un avión vuela a una altura constante de 3 000 pies sobre el nivel del suelo alejándose de un
observador que está en tierra. Exprese la distancia horizontal entre el avión y el observador
como una función del ángulo de elevación del plano medido por el observador.

Solución Como se muestra en la FIGURA 2.7.6, sea x la distancia horizontal entre el avión y el
observador, y sea u el ángulo de elevación. El triángulo en la figura es rectángulo. Así, por
trigonometría de triángulos rectos, el cateto opuesto a u está relacionado con el cateto adya-
cente a u por tan u � op ady. En consecuencia,

(13)

donde 0 6 u 6 p>2.

>

L (x) �
x � 5

x
2 x2

� 100 .  

 � (x � 5)2 c x2
� 100
x2 d .

 � (x � 5)2 c1 �
100
x2 d

L2
� (x � 5)2

� c10(x � 5)
x

d 2 
y �

10(x � 5)
x

.
y

x � 5
�

10
x

L2
� (x � 5)2

� y2.

0 � h 6 25.

s(h) �
30h

25 � h
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FIGURA 2.7.5 Escalera en el
ejemplo 7
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Fundamentos
En los problemas 1-32, traduzca las palabras en una función
idónea. Proporcione el dominio de la función.

1. El producto de dos números positivos es 50. Exprese su
suma como una función de uno de los números.

2. Exprese la suma de dos números diferentes de cero y su
recíproco como una función del número.

3. La suma de dos números no negativos es 1. Exprese la
suma del cuadrado de uno y el doble del cuadrado del
otro como una función de uno de los números.

4. Sean m y n enteros positivos. La suma de dos números
no negativos es S. Exprese el producto de la m-ésima

potencia de uno y la n-ésima potencia del otro como una

función de uno de los números.

5. El perímetro de un rectángulo es 200 pulg. Exprese el

área del rectángulo como una función de la longitud de

uno de sus lados.

6. El área de un rectángulo es 400 pulg2. Exprese el perí-

metro del rectángulo como una función de la longitud

de uno de sus lados.

7. Exprese el área del rectángulo sombreado en la FIGURA

2.7.7 como una función de x.

8. Exprese la longitud del segmento de recta que contiene

al punto (2, 4) mostrado en la FIGURA 2.7.8 como una fun-

ción de x.

9. Exprese como una función de x la distancia de un punto

(x, y) sobre la gráfica de x + y = 1 al punto (2, 3).

10. Exprese como una función de x la distancia de un punto

(x, y) sobre la gráfica de al punto (0, 1).

11. Exprese el perímetro de un cuadrado como una función

de su área A.

12. Exprese el área de un círculo como una función de su

diámetro d.

13. Exprese el diámetro de un círculo como una función de

su circunferencia C.

14. Exprese el volumen de un cubo como una función del

área A de su base.

15. Exprese el área de un triángulo equilátero como una fun-

ción de su altura h. 

16. Exprese el área de un triángulo equilátero como una fun-

ción de la longitud s de uno de sus lados.

17. Un alambre de longitud x se dobla en forma de círculo.

Exprese el área del círculo como una función de x.

18. A un alambre de longitud L se cortan x unidades desde

un extremo. Una parte del alambre se dobla en forma de

cuadrado y la otra parte se dobla en forma de círculo.

Exprese la suma de las áreas como una función de x.

19. Un ranchero desea cercar un corral rectangular cuya área

es de 1 000 pies2 usando dos tipos de valla distintos. A

lo largo de dos lados paralelos, la valla cuesta $4 por

pie. Para los otros dos lados paralelos, la valla cuesta

$1.60 por pie. Exprese el costo total para cercar el corral

como una función de la longitud de uno de los lados con

valla que cuesta $4 por pie.

20. El marco de un cometa consta de seis partes de plástico

ligero. El marco externo del cometa consta de cuatro par-

tes cortadas de antemano; dos partes de longitud 2 pies y

dos partes de longitud 3 pies. Exprese el área del cometa

como una función de x, donde 2x es la longitud de la barra

transversal horizontal mostrada en la FIGURA 2.7.9.

21. Una empresa desea construir una caja rectangular abierta

con un volumen de 450 pulg3, de modo que la longitud

de su base sea tres veces su ancho. Exprese el área

superficial de la caja como una función de su ancho.

22. Un tanque cónico, con el vértice hacia abajo, tiene un

radio de 5 pies y una altura de 15 pies. Vea la FIGURA

2.7.10. Hacia el tanque se bombea agua. Exprese el volu-

men del agua como una función de su profundidad.

[Sugerencia: El volumen de un cono es ]

agua

r

h
15 pies

5
pies

FIGURA 2.7.10 Tanque

cónico en el problema 22

V �
1
3pr 2h.

2 pies

3 pies 3 pies

2 pies

x x

FIGURA 2.7.9 Cometa

en el problema 20

y � 4 � x 2

(x, 0)

(0, y)

(2, 4)

y

x

FIGURA 2.7.8 Segmento de

recta en el problema 8

y

x

x � 2y � 4

(x, y)

FIGURA 2.7.7 Rectángulo en el

problema 7
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23. El automóvil A pasa por el punto O en dirección al este
a velocidad constante de 40 mi/h; el automóvil B pasa
por el mismo punto 1 hora después en dirección al norte
a velocidad constante de 60 mi/h. Exprese la distancia
entre los automóviles como una función del tiempo t,
donde t se mide empezando cuando el automóvil B pasa
por el punto O. Vea la FIGURA 2.7.11.

24. En el instante t � 0 (medido en horas), dos aviones con
una separación vertical de 1 mi pasan uno encima del
otro, volando en direcciones opuestas. Vea la FIGURA

2.7.12. Los aviones vuelan horizontalmente a velocidades
de 500 mi/h y 550 mi/h.

a) Exprese la distancia horizontal entre los aviones
como una función de t. [Sugerencia: Distancia �

velocidad � tiempo.]
b) Exprese la distancia diagonal entre los aviones como

una función de t.

25. La piscina que se muestra en la FIGURA 2.7.13 mide 3 pies
de profundidad en la parte poco profunda, 8 pies en la
profunda, 40 pies de largo, 30 pies de ancho y el fondo
es un plano inclinado. Hacia la piscina se bombea agua.
Exprese el volumen del agua en la piscina como una
función de la altura h del agua por arriba del extremo
profundo. [Sugerencia: El volumen es una función defi-
nida por partes con dominio definido por ]

26. Las regulaciones del Servicio Postal de Estados Unidos
de América para el envío de paquetes postales estipulan
que la longitud más la circunferencia (el perímetro de
un extremo) de un paquete no debe exceder 108 pulg.

Exprese el volumen del paquete como una función del
ancho x mostrado en la FIGURA 2.7.14.

27. Exprese la altura del globo mostrado en la FIGURA 2.7.15

como una función de su ángulo de elevación.

28. A una gran plancha metálica de 40 pulg de ancho se da
forma de V al doblarla por la mitad a lo largo de su lon-
gitud. Exprese el área de la sección transversal triangu-
lar del canal como una función del ángulo u en el vér-
tice de la V. Vea la FIGURA 2.7.16.

29. Como se muestra en la FIGURA 2.7.17, un tablón está apo-
yado en un burro, de modo que un extremo está
apoyado en el suelo y el otro contra una construcción.
Exprese la longitud L del tablón como una función del
ángulo u indicado. [Sugerencia: Use dos triángulos rec-
tángulos.]

3 pies

4 pies

�

L

FIGURA 2.7.17 Tablón en el problema 29

20 pulg

��2

FIGURA 2.7.16 Sección transversal
triangular en el problema 28

300 pies

Ángulo de elevación

FIGURA 2.7.15 Globo en el problema 27

x

Longitud

Circunferencia

x

y

FIGURA 2.7.14 Paquete en el problema 26

h

FIGURA 2.7.13 Piscina en el problema 25

0 � h � 8.

a) t = 0

t = 0 t = 0

d1 d2

1 mi

b) t > 0

FIGURA 2.7.12 Aviones en el problema 24

Norte

Sur

Oeste Este

Automóvil B

Automóvil A
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FIGURA 2.7.11 Automóviles en el problema 23
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30. Un ranchero desea cercar un terreno de pasto en forma
de triángulo rectángulo usando 2 000 pies de valla a la
mano. Vea la FIGURA 2.7.18. Exprese el área de ese terreno
como una función del ángulo u. [Sugerencia: Use los
símbolos en la figura para formar cot u y csc u.]

31. Una estatua se coloca en un pedestal como se muestra
en la FIGURA 2.7.19. Exprese el ángulo de visión u como
una función de la distancia x desde el pedestal.

32. Una mujer en una isla desea llegar a un punto R en una
costa recta desde un punto P en la isla. El punto P está a
9 mi de la costa y a 15 mi del punto R. Vea la FIGURA 2.7.20.
Si la mujer rema en un bote a una velocidad de 3 mi/h
hacia un punto Q en tierra, y luego camina el resto del
camino a una velocidad de 5 mi/h, exprese el tiempo total

necesario para que la mujer llegue al punto R como una
función del ángulo u indicado. [Sugerencia: Distancia �
velocidad � tiempo.]

Piense en ello

33. Suponga que la altura en el ejemplo 7 es 60 pies. ¿Cuál
es el dominio de la función L(x) dada en (12)?

34. En un texto de ingeniería, el área del octágono mostrado
en la FIGURA 2.7.21 está dada por Demuestre
que esta fórmula es en realidad una aproximación al
área; es decir, encuentre el área exacta A del octágono
como una función de r.

r

FIGURA 2.7.21 Octágono en el problema 34

A � 3.31r 2.

Isla

Costa

9 mi
15 mi

Q

P

R

�

FIGURA 2.7.20 Mujer remando hacia la costa en el problema 32

�

x
Nivel de
la vista

½ m

½ m

FIGURA 2.7.19 Estatua en el problema 31

�

z

x

y

FIGURA 2.7.18 Terreno de pasto en el problema 30
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Competencia final de la unidad 2
Las respuestas de los problemas impares comienzan en la página RES-8.

A. Falso/verdadero _____________________________________________________
En los problemas 1-20, indique si la afirmación dada es falsa (F) o verdadera (V).

1. Si f es una función y f(a) � f(b), entonces a � b. _____

2. La función es una función impar. _____

3. La gráfica de la función f (x) � 5x2 cos x es simétrica con respecto al eje y. _____

4. La gráfica de la función es la gráfica de y � f(x) desplazada 3 unidades a

la derecha. _____

5. La gráfica de la función no tiene intersección x. _____

6. Una asíntota es una recta a la que tiende la gráfica de una función pero sin cruzarla

jamás. _____

7. La gráfica de una función puede tener cuanto mucho dos asíntotas horizontales. _____

8. Si es una función racional y q(a) � 0, entonces la recta x � a es una

asíntota vertical para la gráfica de f. _____ 

9. La función y � �10 sec x tiene amplitud 10. _____

10. El rango de la función f (x) � 2 � cos x es [1, 3]. _____

f (x) � p(x)>q(x)

f (x) �
1

x � 1
�

1
x � 2

y � f (x � 3)

f (x) � x 5
� 4x 3

� 2
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11. Si es uno a uno, entonces _____

12. Si entonces _____

13. Ninguna función par puede ser uno a uno. _____

14. Un punto de intersección de las gráficas de f y f �1 debe estar sobre la recta y � x. _____

15. La gráfica de y � sec x no corta el eje x. _____

16. La función f(x) � sen�1 x no es periódica. _____

17. y son la misma función. _____

18. ln(e + e) = 1 + ln 2 _____

20. El punto (b, 1) está sobre la gráfica de f(x) = logb x. _____

B. Llene los espacios en blanco __________________________________________

En los problemas 1-20, llene los espacios en blanco.

1. El dominio de la función es ________.

2. Si y entonces ________, ________
y ________.

3. El vértice de la gráfica de la función cuadrática es ________.

4. Las intersecciones x de la gráfica de son ________.

5. La gráfica de la función polinomial es tangente al eje x en
________ y pasa por el eje x en ________.

6. El rango de la función es ________.

7. La intersección y de la gráfica de es _______.

8. Una función racional cuya gráfica tiene la asíntota horizontal y = 1 e intersección x (3, 0)
es ________.

9. El periodo de la función es ________.

10. La gráfica de la función y = sen(3x - p 4) es la gráfica de f(x) = sen 3x desplazada
________ unidades a la ________.

11. sen-1(sen p) = ________.

12. Si f es una función uno a uno tal que , entonces un punto sobre la gráfica de f
es ________.

13. Por transformaciones rígidas, el punto (0, 1) sobre la gráfica de se mueve hacia el
punto ________ sobre la gráfica de .

14. ________.

15. Si entonces ________.

16. Si , entonces ________.

17. Si log3 x = -2, entonces ________.

18. Al escribir log9 27 � 1.5 como declaración exponencial, se encuentra que es equivalente
a ________.

19. La inversa de y � ex es________.

20. Si , entonces f(�ln 2) � ________.

C. Ejercicios ___________________________________________________________
1. Estime el valor funcional haciendo uso de la gráfica de la función y � f(x) en la FIGURA

2.R.1.
a) b)
c) d)
e) f )
g) h)
i) j) f (4)f (3.5)

f (2)f (1.5)
f (1)f (0)
f (�1)f (�2)
f (�3)f (�4)

f (x) � e x
� 3

x �

x �3e x
� 4e�3x

x �3x
� 5,

e 3 ln 10
�

y � 4 � e x�3
y � e x

f �1(3) � 1

>y 2 sen  

p

3
x

f (x) �

f (x) � (2x � 4)>(5 � x)

f (x) � 10>(x2
� 1)

f (x) � x 3(x � 1)2(x � 5)

f (x) � x 2
� 2x � 35

f (x) � x 2
� 16x � 70

( f � f )(1) �

(g � f )(1) �( f � g)(1) �g(x) � 2x � 3,f (x) � 4x2
� 7

f (x) � 1x � 2>x

y � (0.1) xy � 10�x

 tan 
�1(�1) � 5p>4. tan (5p>4) � �1,

f �1(3) � 0.f (x) � 1 � x � 2e x

19. _____ln
eb

ea b a



2. Dado que

Encuentre para 

a) b)
c) d)
e) f )

3. Determine si los números 1, 5 y 8 están en el rango de la función

.

4. Suponga que , y . Encuentre el dominio de cada
una de las funciones dadas.

a) b)
c) d)
e) f )

En los problemas 5 y 6, calcule y simplifique.

5. 6.

En los problemas 7-16, relacione la función racional dada con una de las gráficas a)-j).

f (x) � 1 � 2x �
3
x

f (x) � �x 3
� 2x 2

� x � 5

f (x � h) � f (x)
h

,  h � 0,

f>gf � g
g � gf � f
g � hf � h

h(x) � x 2g (x) 15 xf (x) � 1x � 4

f (x) � •2x,
3,
x � 4,

 �2 � x 6
   x �

   x 7

2
2
2

g (2a)g (�a)
g (a)g (1.5 � a)
g (1 � a)g (1 � a)

0 6 a 6 1:

y

x

y �ƒ(x)

FIGURA 2.R.1 Gráfica para el problema 1

y

x

a)

2

2�2

FIGURA 2.R.2

y
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b)

2�2

FIGURA 2.R.3

3

�3

y

x

c)

3

FIGURA 2.R.4

3

�3

y

x

d)

3

FIGURA 2.R.5

3

y

x

e)

3

FIGURA 2.R.6

y

x

f )

2

2

�2

FIGURA 2.R.7

3

�3

y

x

g)

3

FIGURA 2.R.8

3

�3

y

x

h)

3

FIGURA 2.R.9

x

y

i)

2

2�2

�2

FIGURA 2.R.10

3

y

x

j)

3

FIGURA 2.R.11

g(t) e t2,
2t,

1 6 t 1
t 1 o bien, t 7 1
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7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

En los problemas 17 y 18, encuentre la pendiente de la recta L en cada figura.

17. 18.

En los problemas 19 y 20, suponga que 2t
� a y 6t

� b. Use las leyes de los exponentes dadas
en la sección 2.6 para encontrar el valor de la cantidad dada.

19. a) b) c)

20. a) b) c)

21. Encuentre una función si (0, 5) y (6, 1) son puntos sobre la gráfica de f.

22. Encuentre una función si f(3) = 8 y f(0) = .

23. Encuentre una función si f(1) � 5.5 y la gráfica de f tiene una
asíntota horizontal y 5.

24. Encuentre una función si f(11) � 10 y la gráfica de f tiene una
asíntota vertical x 2.

En los problemas 25-30, relacione las siguientes funciones con las gráficas dadas.

a) b) y = 2 - ln x
c) d)
e) f )

25. 26.

27. 28. y

x

4

2

1 2 3 4
�2

�4

FIGURA 2.R.17 Gráfica para
el problema 28

y

x

4

2

21
�2

�2

�4

�1

FIGURA 2.R.16 Gráfica
para el problema 27

y

x

4

2

3 4
�2

�4

FIGURA 2.R.15 Gráfica
para el problema 26

y

x

4

2

1 2 3 4
�2

�4

FIGURA 2.R.14 Gráfica
para el problema 25

y � 2 � ln (�x � 2)y � �ln (2x)
y � �2 � ln (x � 2)y � 2 � ln (x � 2)

y � ln (x � 2)

�

f (x) � a � log3(x � c)

�

f (x) � a � b x,̌̌̌   0 6 b 6 1,

1
2f (x) � a 10 kx

f (x) � a e kx

18t2�3t
 27t63t

6�t3t12t

x

ƒ(x) � ln x

y

L e2

FIGURA 2.R.13 Gráfica para el
problema 18

y

x

ƒ(x) � 3�( x � 1)

�2

�2 � h

L

FIGURA 2.R.12 Gráfica
para el problema 17

f (x) �
3

x 2 � 1
f (x) �

2x
x 3 � 1

f (x) �
�x 2 � 5x � 5

x � 2
f (x) �

x 2
� 10

2x � 4

f (x) �
(x � 1) 2

x � 2
f (x) �

x
(x � 2) 2

f (x) � 2 �
1
x 2f (x) �

2x
x � 2

f (x) �
x 2 � 1
x 2 � 1

f (x) �
2x

x 2 � 1
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29. 30.

31. El ancho de una caja rectangular es tres veces su longitud, y su altura es dos veces su lon-
gitud.

a) Exprese el volumen V de la caja como una función de su longitud l.
b) Como una función de su ancho w.
c) Como una función de su altura h.

32. Se piensa construir una caja cerrada en forma de cubo usando dos materiales distintos. El
material para los lados cuesta 1 centavo por centímetro cuadrado y el material para las
caras superior e inferior cuesta 2.5 centavos por centímetro cuadrado. Exprese el costo
total C de construcción como una función de la longitud x de un lado.

33. Exprese el volumen V de la caja que se muestra en la FIGURA 2.R.20 como una función del
ángulo u indicado.

34. Considere el círculo de radio h con centro (h, h) mostrado en la FIGURA 2.R.21. Exprese el
área de la región sombreada A como una función de h.

35. Se construirá un canalón con una lámina metálica de 30 cm de ancho al doblar los bor-
des de ancho 10 cm a lo largo de cada lado, de modo que los lados formen ángulos f
con la vertical. Vea la FIGURA 2.R.22. Exprese el área de la sección transversal del canalón
como una función del ángulo f.

36. Un tubo metálico se instalará horizontalmente alrededor de una esquina en forma de ángulo
recto desde un vestíbulo de 8 pies de ancho hacia un vestíbulo de 6 pies de ancho. Vea la
FIGURA 2.R.23. Exprese la longitud L del tubo como una función del ángulo u que se mues-
tra en la figura.

8 pies

6 pies

�

FIGURA 2.R.23 Tubo en el problema 36

10 cm 10 cm

10 cm

� �

FIGURA 2.R.22 Canalón en el problema 35

x

(h, h)

y

FIGURA 2.R.21 Círculo en el problema 34

�

5 pies

6 pies 12 pies

FIGURA 2.R.20 Caja en el problema 33

y

x

4

2

21
�2

�2

�4

�1

FIGURA 2.R.19 Gráfica para el
problema 30

y

x

4

2

21
�2

�2

�4

�1

FIGURA 2.R.18 Gráfica para el
problema 29
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37. En la FIGURA 2.R.24 se muestra un prisma cuyas caras paralelas son triángulos equiláteros.
La base rectangular del prisma es perpendicular al eje x y está inscrita en el círculo

Exprese el volumen V del prisma como una función de x.

38. El contenedor que se muestra en la FIGURA 2.R.25 consta de un cono invertido (abierto en su
parte superior) sujeto a la parte inferior de un cilindro circular recto (abierto en sus par-
tes superior e inferior) de radio fijo R. El volumen V del contenedor es fijo. Exprese el
área superficial total S del contenedor como una función del ángulo u indicado. [Sugeren-

cia: El área superficial lateral de un cono está dada por

abierto

h�

R

FIGURA 2.R.25 Contenedor en el problema 38

pR2R 2
� h 2. ]

(x, y)

x2
�y2

�1

y

x
x

FIGURA 2.R.24 Prisma en el problema 37

x 2
� y 2

� 1.
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Límite de una función

En esta unidad En un curso típico de cálculo se incluyen muchos temas. Sin embargo, los
tres temas más importantes en este estudio son los conceptos de límite, derivada e integral.
Cada uno de estos conceptos está relacionado con las funciones, razón por la cual
empezamos con una revisión de algunos hechos importantes sobre funciones y sus gráficas.

Históricamente, para introducir los enunciados fundamentales del cálculo, se han usado
dos problemas: el problema de la recta tangente y el problema del área. En esta unidad y en
unidades posteriores veremos que la solución de ambos problemas implica el concepto de
límite.

87

Unidad 3

y � ƒ(x)

L

a
x →a� x

y

ƒ(x) →L

ƒ(x) →L

x →a�

Competencia específica

Comprender el concepto de límite de funciones y aplicarlo para determinar de manera
analítica la continuidad de una función en un punto o en un intervalo, y mostrar gráfi-
camente los diferentes tipos de discontinuidad.



3.1 Límites: un enfoque informal
Introducción Las dos grandes áreas del cálculo, denominadas cálculo diferencial y cálculo

integral, se basan en el concepto fundamental de límite. En esta sección, el enfoque que haremos
a este importante concepto será intuitivo, centrado en la comprensión de qué es un límite mediante
el uso de ejemplos numéricos y gráficos. En la siguiente sección nuestro enfoque será analítico;
es decir, usaremos métodos algebraicos para calcular el valor del límite de una función.

Límite de una función: enfoque informal Considere la función

(1)

cuyo dominio es el conjunto de todos los números reales excepto - 4. Aunque no es posible
evaluar f en - 4 porque al sustituir - 4 por x se obtiene la cantidad indefinida 0�0, f(x) puede
calcularse en cualquier número x que esté muy próximo a - 4. Las dos tablas

f (x) �
16 � x2

4 � x
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muestran que cuando x tiende a �4 por la izquierda o por la derecha, parece que los valores
de la función f(x) tienden a 8; en otras palabras, cuando x está próxima a �4, f(x) está cerca
de 8. Para interpretar de manera gráfica la información numérica en (1), observe que para todo
número , la función f puede simplificarse por cancelación:

Como se ve en la FIGURA 3.1.1, la gráfica de f es esencialmente la gráfica de con la
excepción de que la gráfica de f tiene un hueco en el punto que corresponde a . Para

x suficientemente cerca de �4, representado por las dos puntas de flecha sobre el eje x, las
dos puntas de flecha sobre el eje y, que representan los valores de la función f(x), simultánea-
mente se aproximan cada vez más al número 8. En efecto, en vista de los resultados numéri-
cos en (2), las puntas de flecha pueden hacerse tan próximas como se quiera al número 8. Se
dice que 8 es el límite de f(x) cuando x tiende a �4.

Definición informal Suponga que L denota un número finito. El concepto de f(x) que tiende
a L a medida que x tiende a un número a puede definirse informalmente de la siguiente manera.

• Si f(x) puede hacerse arbitrariamente próximo al número L al tomar x suficientemente
cerca de, pero diferente de un número a, por la izquierda y por la derecha de a, enton-
ces el límite de f(x) cuando x tiende a a es L.

Notación El análisis del concepto de límite se facilita al usar una notación especial. Si el
símbolo de flecha S representa la palabra tiende, entonces el simbolismo

indica que x tiende al número a por la izquierda,

es decir, a través de los números que son menores que a, y

significa que x tiende a a por la derecha,

es decir, a través de los números que son mayores que a. Finalmente, la notación

significa que x tiende a a desde ambos lados,

en otras palabras, por la izquierda y por la derecha de a sobre una recta numérica. En la tabla
izquierda en (2) se hace (por ejemplo, �4.001 está a la izquierda de �4 sobre la
recta numérica), mientras en la tabla derecha .

Límites laterales En general, una función f(x) puede hacerse arbitrariamente próxima a un
número L1 al tomar x suficientemente cerca, pero sin que sea igual, a un número a por la
izquierda; entonces se escribe

(3)

x S �4�

x S �4�

x S a

x S a�

x S a�

x � �4
y � 4 � x

f (x) �
16 � x2

4 � x
�

(4 � x)(4 � x)
4 � x

� 4 � x.

x � �4

x �4.1 �4.01 �4.001

f(x) 8.1 8.01 8.001

x �3.9 �3.99 �3.999

f(x) 7.9 7.99 7.999
(2)

x

y �

�4

y

8

16 � x2

4 � x

FIGURA 3.1.1 Cuando x está pró-
xima a �4, f(x) está cerca de 8

f (x)S L1 cuando xS a   o bien,   lím
xSa

f (x) L1.



Se dice que el número L1 es el límite por la izquierda de f(x) cuando x tiende a a. De
manera semejante, si f(x) puede hacerse arbitrariamente próxima a un número L2 al tomar x

suficientemente cerca a, pero diferente de, un número a por la derecha, entonces L2 es el límite
por la derecha de f(x) cuando x tiende a a y se escribe

(4)

Las cantidades en (3) y (4) también se denominan límites laterales.

Límites por dos lados Si tanto el límite por la izquierda como el límite por la
derecha existen y tienen un valor común L,

entonces se dice que L es el límite de f(x) cuando x tiende a a y se escribe

(5)

Se dice que un límite como (5) es por los dos lados. Vea la FIGURA 3.1.2. Puesto que las tablas
numéricas en (2) sugieren que

(6)

es posible sustituir las dos declaraciones simbólicas en (6) por la declaración

(7)

Existencia o no existencia Por supuesto, un límite (por un lado o por dos lados) no tiene
por qué existir. Pero es importante no olvidar lo siguiente:

• La existencia de un límite de una función f cuando x tiende a a (desde un lado o desde
ambos lados) no depende de si f está definida en a, sino sólo de si está definida para
x cerca del número a.

Por ejemplo, si la función en (1) se modifica de la siguiente manera

entonces f(�4) está definida y f(�4) � 5, pero Vea la FIGURA 3.1.3. En

general, el límite por los dos lados no existe

• si alguno de los dos límites laterales, o no existe, o

• si f (x) � L1 y f (x) � L2, pero

EJEMPLO  1 Un límite que existe

La gráfica de la función se muestra en la FIGURA 3.1.4. Como se observa
en la gráfica y en las tablas acompañantes, parece válido que

y, en consecuencia, f (x) � �6.lím
xS4

f (x) � �x2
� 2x � 2

L1 � L2.lím
xSa�

lím
xSa�

lím
xSa

f (x)lím
xSa

f (x)

lím
xSa

f (x)

lím
xS 4

16 x2

4 x
8.

f (x) � •16 � x2

4 � x
, x � �4

5, x � �4,

lím
xSa

f (x)
lím

xSa
f (x)
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xS 4 3.9 3.99 3.999

f(x) �5.41000 �5.94010 −5.99400

xS 4 4.1 4.01 4.001

f(x) �6.61000 �6.06010 −6.00600

y � ƒ(x)

L

a
x →a� x

y

ƒ(x) →L

ƒ(x) →L

x →a�

x
�4

y

8

y �

16 � x2

4 � x
,

5, x � �4

x ��4

y � �x2
� 2x � 2

x

y

�6

4

FIGURA 3.1.2 cuando
si y sólo si 

cuando y 
cuando x S a�

f (x) S Lx S a�

f (x) S Lx S a

f (x) S L

FIGURA 3.1.3 El hecho de que f
esté definida o no en a es irrele-
vante con respecto a la existencia
del límite de f (x) cuando x S a

FIGURA 3.1.4 Gráfica de la fun-
ción en el ejemplo 1

Observe que en el ejemplo 1 la función dada ciertamente está definida en 4, pero en nin-
gún momento se sustituye x � 4 en la función para encontrar el valor de f (x).lím

xS4

f (x)S L2 cuando xS a   o bien,  lím
xSa

f (x) L2.

lím
xSa

f (x) L  y  lím
xSa

f (x) L,

lím
xSa

f (x) L.

f (x)S 8 cuando xS 4   y  f (x)S 8 cuando xS 4 ,

f(x)S 8 cuando xS 4  o, en forma equivalente,  lím
xS 4

16 x2

4 x
8.

lím
xS4

f (x) 6  y  lím
xS4

f (x) 6



EJEMPLO  2 Un límite que existe

La gráfica de la función definida por partes

se muestra en la FIGURA 3.1.5. Observe que f(2) no está definido, aunque esto no tiene ninguna
consecuencia cuando se considera . A partir de la gráfica y de las tablas acompañantes,lím

xS2
f (x)

f (x) � e x2, x 6 2
�x � 6, x 7 2
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xS 2 2.1 2.01 2.001

f(x) 3.90000 3.99000 3.99900

xS 2 1.9 1.99 1.999

f(x) 3.61000 3.96010 3.99600

xS 5 5.1 5.01 5.001

f(x) 4.90000 4.99000 4.99900

xS 5 4.9 4.99 4.999

f(x) 6.90000 6.99000 6.99900

x

y

4

2
FIGURA 3.1.5 Gráfica de la fun-
ción en el ejemplo 2

FIGURA 3.1.6 Gráfica de la fun-
ción en el ejemplo 3

x

y

5

7

5

x

y

1

1�1 2 3 4 5

2

3

4

�2

y �  x  

x
x

y y �   x

FIGURA 3.1.7 Gráfica de la fun-
ción en el ejemplo 4

FIGURA 3.1.8 Gráfica de la fun-
ción en el ejemplo 5

La función entero mayor se
analizó en la sección 1.1.

observamos que cuando x se hace próxima a 2, f(x) puede hacerse arbitrariamente próxima a
4, y así

Es decir, � 4.

EJEMPLO  3 Un límite que no existe

La gráfica de la función definida por partes

se muestra en la FIGURA 3.1.6. A partir de la gráfica y de las tablas acompañantes, parece que
cuando x se hace próxima a 5 a través de números menores que 5, Luego, cuando

x tiende a 5 a través de números mayores que 5 parece que . Pero puesto que

se concluye que no existe.lím
xS5

f (x)

lím
xS5

f (x) 5

lím
xS5

f (x) 7.

f (x) � e x � 2, x � 5
�x � 10, x 7 5

lím
xS2

f (x)

EJEMPLO  4 Un límite que no existe

Recuerde que la función entero mayor o parte entera se define como el mayor
entero que es menor o igual que x. El dominio de f es el conjunto de números reales .
A partir de la gráfica en la FIGURA 3.1.7 vemos que f(n) está definida para todo entero n; a pesar
de ello, para cada entero n, no existe. Por ejemplo, cuando x tiende, por ejemplo, al
número 3, los dos límites laterales existen pero sus valores son diferentes:

(8)

En general, para un entero n,

EJEMPLO  5 Un límite por la derecha

A partir de la FIGURA 3.1.8 debe resultar evidente que cuando es decir,

Sería incorrecto escribir puesto que esta notación implica la connotación de que

los límites por la izquierda y por la derecha existen y son iguales a 0. En este caso 
no existe puesto que no está definida para x 6 0.f (x) � 1x

lím
xS0
1x

lím
xS0
1x 0

x S 0�,f (x) � 1x S 0

lím
xSn

f (x)

(�q, q)
f (x) � :x ;

lím
xS2

f (x) 4  y  lím
xS2

f (x) 4.

lím
xS5

f (x) lím
xS5

f (x),

lím
xS3

f (x) 2 mientras que lím
xS3

f (x) 3.

lím
xSn

f (x) n 1 mientras que lím
xSn

f (x) n.

lím
xS0
1x 0.



Si x = a es una asíntota vertical para la gráfica de entonces f(x) nunca existe

porque los valores de la función f(x) deben volverse sin límite desde por lo menos un lado de
la recta x = a.

EJEMPLO  6 Un límite que no existe

Una asíntota vertical siempre corresponde a una ruptura infinita en la gráfica de la función f.
En la FIGURA 3.1.9 observamos que el eje y o x � 0 es una asíntota vertical para la gráfica de

Las tablasf (x) � 1>x.

lím
xSa

y � f (x),
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xS 0 0.1 0.01 0.001

f(x) 10 100 1 000

xS 0 �0.1 �0.01 �0.001

f(x) �10 �100 −1 000

xS 0 0.1 0.01 0.001 0.0001

f(x) 0.99833416 0.99998333 0.99999983 0.99999999

xxx

y

ƒ(x)

ƒ(x)

y �
1
x

FIGURA 3.1.9 Gráfica de la fun-
ción en el ejemplo 6

x

y
y �

sen x
x

�� �

1

FIGURA 3.1.10 Gráfica de la fun-
ción en el ejemplo 7

muestran claramente que los valores de la función f (x) se vuelven sin límite en valor absoluto
cuando se tiende a 0. En otras palabras, f (x) no tiende a un número real cuando ni
cuando En consecuencia, ni el límite por la izquierda ni el límite por la derecha exis-
ten cuando x tiende a 0. Por tanto, es posible concluir que f(x) no existe.

EJEMPLO  7 Un límite trigonométrico importante

Para calcular las funciones trigonométricas sen x, cos x, tan x, etc., es importante darse cuenta
de que la variable x es un número real o un ángulo medido en radianes. Con eso en mente,
considere los valores numéricos de f(x) � (sen x)�x cuando dados en la tabla siguiente.x S 0�

lím
xS0

x S 0�.
x S 0�

Resulta fácil ver que se cumplen los mismos resultados proporcionados en la tabla cuando
Debido a que sen x es una función impar, para x 7 0 y - x 6 0, se tiene sen(- x) =

- sen x y en consecuencia,

Como puede verse en la FIGURA 3.1.10, f es una función par. La tabla de valores numéricos, así
como la gráfica de f sugieren fuertemente el siguiente resultado:

(9)

El límite en (9) es un resultado muy importante que se usará en la sección 4.4. Otro límite
trigonométrico que se le pedirá comprobar como ejercicio está dado por

(10)

Vea el problema 43 en la sección “Desarrolle su competencia 3.1”. Debido a su importancia,
tanto (9) como (10) se demostrarán en la sección 3.4.

Una forma indeterminada Se dice que el límite de un cociente , donde tanto el
numerador como el denominador tienden a 0 cuando tiene una forma indeterminada
0 0. El límite (7) en el análisis inicial tenía esta forma indeterminada. Muchos límites impor-
tantes, como (9) y (10), y el límite

que constituye la columna vertebral del cálculo diferencial, también tienen la forma indeter-
minada 0�0.

> x S a,
f (x)>g(x)

x S 0�.

f( x)
sen ( x)

x
sen x

x
f (x).

lím
xS0

sen x
x

1.

lím
xS0

1 cos x
x

0.

lím
hS0

f (x h) f (x)
h

,



EJEMPLO  8 Una forma indeterminada

El límite 0x 0�x tiene la forma indeterminada 0�0, pero, a diferencia de (7), (9) y (10), este

límite no existe. Para ver por qué, analizaremos la gráfica de la función Para

y así reconocemos a f como la función definida por partes

(11)

A partir de (11) y de la gráfica de f de la FIGURA 3.1.11 debe resultar evidente que los dos lími-
tes de f, izquierdo y derecho, existen y

Debido a que estos límites laterales son diferentes, se concluye que 0x 0�x no existe.lím
xS0

f (x) �
0x 0
x

� e1, x 7 0
�1, x 6 0.

x � 0, 0x 0 � e x, x 7 0
�x, x 6 0

f (x) � 0x 0 >x.
lím
xS0
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Fundamentos

En los problemas 1-14, trace la gráfica de la función para
encontrar el límite dado, o concluya que no existe.

NOTAS DESDE EL AULA

Aunque las gráficas y tablas de valores funcionales pueden ser convincentes para determinar
si un límite existe o no, usted ciertamente está enterado de que todas las calculadoras y
computadoras funcionan sólo con aproximaciones, y que las gráficas pueden trazarse de
manera inexacta. Un uso ciego de las calculadoras también puede conducir a una conclusión
falsa. Por ejemplo, se sabe que sen(p�x) no existe, pero a partir de los valores tabulares

podría concluirse en forma natural que sen(p�x) � 0. Por otra parte, puede demos-
trarse que el límite

(12)

existe y es igual a Vea el ejemplo 11 en la sección 3.2. Con calculadora se obtiene

El problema al calcular (12) para toda x próxima a 0 es que en forma correspondiente,

está muy próximo a 2. Cuando se restan dos números casi iguales en una calcu-
ladora, es posible que ocurra una pérdida de cifras significativas debido al error por redondeo.
2x2

� 4

1
4.

lím
xS0

lím
xS0

xS 0 �0.00001 �0.000001 �0.0000001

f(x) 0.200000 0.000000 0.000000

x

y y �
x
x

�1

1

FIGURA 3.1.11 Gráfica de la fun-
ción en el ejemplo 8

xS 0 �0.1 �0.01 �0.001

f(x) 0 0 0

.

3.1 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-8.

lím
xSa

.lím
xS0

0x 0
x

1  y  lím
xS0

0x 0
x

1

lím
xS0

2x2 4 2
x2

.2.1

.4.3

.6.5

.8.7 lím
xS0

0x 0 x
x

lím
xS3

0x 3 0
x 3

lím
xS0

x2 3x
x

lím
xS1

x2 1
x 1

lím
xS5
1x 1lím

xS0
Q1 1

x
R lím

xS2
(x2 1)lím

xS2
(3x 2)

.01.9

11. donde

12. donde

13. donde f (x) • x2 2x, x 6 2
1, x 2
x2 6x 8, x 7 2

lím
xS2

f (x)

f (x) e x, x 6 2
x 1, x 2

lím
xS2

f (x)

f (x) e x 3, x 6 0
x 3, x 0

lím
xS0

f (x)

lím
xS1

x4 1
x2 1

lím
xS0

x3

x



14. f (x) donde 

En los problemas 15-18, use la gráfica dada para encontrar
el valor de cada cantidad, o concluya que no existe.

a) f (1) b) f (x) c) f (x) d) f (x)

15. 16.

17. 18.

En los problemas 19-28, cada límite tiene el valor 0, pero
alguna notación es incorrecta. Si la notación es incorrecta,
escriba la declaración correcta.

En los problemas 29 y 30, use la gráfica dada para encon-
trar cada límite, o concluya que no existe.

29. a) f (x) b) f (x)

c) f (x) d) f (x)

e) f (x) f ) f (x)

30. a) f (x) b) f (x)

c) f (x) d) f (x)

e) f (x) f ) f (x)

En los problemas 31-34, trace una gráfica de la función f con
las propiedades dadas.

31. f (�1) � 3, f (0) � �1, f (1) � 0, f (x) no existe

32. f (�2) � 3, f (x) � 2, f (x) � �1, f (1) � �2

33. f (0) � 1, f (x) � 3, f (x) � 3, f (1) está inde-

finido, f (3) 0

34. f (�2) � 2, f (x) � 1, �1 x 1, f (x) � 1,
f (x) no existe, f (2) = 3

Problemas con calculadora/SAC

En los problemas 35-40, use una calculadora o un SAC para
obtener la gráfica de la función dada f sobre el intervalo
[ , 0.5]. Use la gráfica para conjeturar el valor de f (x),
o concluya que el límite no existe.

37.

38.

39. 40.

En los problemas 41-50, proceda como en los ejemplos 3, 6
y 7 y use una calculadora para construir tablas de valores
funcionales. Conjeture el valor de cada límite o concluya que
no existe.

f (x) �
ln 0x 0

x
f (x) �

e�2x
� 1

x

f (x) �
9
x

 [19 � x � 19 � x]

f (x) �
2 � 14 � x

x

lím
xS0

�0.5

lím
xS1

lím
xS�1

��

�

lím
xS1�

lím
xS1�

lím
xS0�

lím
xS0

lím
xS0

x

1

�1

y

lím
xS1

lím
xS0

lím
xS�3

lím
xS�3�

lím
xS�3�  

lím
xS�5

lím
xS4�

lím
xS3

lím
xS1

lím
xS0

lím
xS�2

lím
xS�4�

lím
xS1

lím
xS1�

lím
xS1�

f (x) � • x2, x 6 0
2, x � 01x � 1, x 7 0

lím
xS0
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y

x

y � ƒ(x)

y

x

y � ƒ(x)

y

x

y � ƒ(x)

FIGURA 3.1.12 Gráfica
para el problema 15

FIGURA 3.1.13 Gráfica
para el problema 16

y

x

y � ƒ(x)

FIGURA 3.1.14 Gráfica
para el problema 17

FIGURA 3.1.15 Gráfica para
el problema 18

y

x1

1

FIGURA 3.1.16 Gráfica para el problema 29

FIGURA 3.1.17 Gráfica para el problema 30

.02.91

.22.12

.42.32

.62.52

.82.72 lím
xS1

 ln x 0lím
xS3
29 x2 0

lím
xS1

 cos 1x 0lím
xSp

 sen x 0

lím
xS1

2

:x ; 0lím
xS0
:x ; 0

lím
xS 2

1x 2 0lím
xS1
11 x 0

lím
xS0
14 x 0lím

xS0
13 x 0

.24.14

.44.34

.64.54

.84.74

.05.94 lím
xS 2

x3 8
x 2

lím
xS1

x4 x 2
x 1

lím
xS3
c 6
x2 9

61x 2
x2 9

dlím
xS4

1x 2
x 4

lím
xS0

tan x
x

lím
xS0

x
sen 3x

lím
xS0

1 cos x

x2
lím
xS0

1 cos x
x

lím
xS1

ln x
x 1

lím
xS1

61x 612x 1
x 1

.63.53 f (x) x cos
1
x

f (x) cos
1
x



3.2 Teoremas sobre límites
Introducción La intención del análisis informal en la sección 3.1 fue proporcionarle una

comprensión intuitiva de cuándo un límite existe o no. Sin embargo, no es aconsejable ni prác-
tico, en ninguna instancia, llegar a una conclusión respecto a la existencia de un límite con
base en una gráfica o tabla de valores numéricos. Debe ser posible evaluar un límite, o con-
cluir su no existencia, de alguna forma analítica. Los teoremas que se considerarán en esta
sección establecen tales mecanismos.

El primer teorema proporciona dos resultados básicos que se usarán en todo el análisis de
esta sección.

94 UNIDAD 3 Límite de una función

Teorema 3.2.1 Dos límites fundamentales

i)

ii)

Teorema 3.2.2 Límite de una función multiplicada por una constante

Si c es una constante, entonces

Aunque ambas partes del teorema 3.2.1 requieren una demostración formal, el teorema 3.2.1ii)
es casi tautológico cuando se plantea verbalmente:

• El límite de x cuando x tiende a a es a.

EJEMPLO  1 Uso del teorema 3.2.1

a) A partir del teorema 3.2.1i),

b) A partir del teorema 3.2.1ii),

El límite de una constante por una función f es la constante por el límite de f cuando x

tiende a un número a.

Ahora es posible empezar a usar los teoremas combinados.

EJEMPLO  2 Uso de los teoremas 3.2.1 y 3.2.2

A partir de los teoremas 3.2.1ii) y 3.2.2,

a)

b)

El siguiente teorema es particularmente importante porque constituye un medio para calcu-
lar límites de manera algebraica.

lím
xSa

x a

lím
xSa

c c, donde c es una constante.

lím
xS2

10 10 y lím
xS6
p p.

lím
xS2

x 2 y  lím
xS0

x 0.

lím
xSa

c f (x) c lím
xSa

f (x).

lím
xS 2

( 3
2 x) 3

2 lím
xS 2

x ( 3
2) . ( 2) 3.

lím
xS8

5x 5 lím
xS8

x 5 . 8 40



El teorema 3.2.3 puede plantearse coloquialmente como

• Si ambos límites existen, entonces

i) el límite de una suma es la suma de los límites,
ii) el límite de un producto es el producto de los límites y

iii) el límite de un cociente es el cociente de los límites, en el supuesto que el
límite del denominador no es cero.

Nota: Si todos los límites existen, entonces el teorema 3.2.3 también es válido para límites
laterales; es decir, la notación en el teorema 3.2.3 puede sustituirse por o por

. Además, el teorema 3.2.3 puede extenderse a diferencias, sumas, productos y cocien-
tes que implican más de dos funciones.

EJEMPLO  3 Uso del teorema 3.2.3

Evalúe (10x � 7).

Solución Por los teoremas 3.2.1 y 3.2.2, sabemos que 7 y 10x existen. Por tanto, a
partir del teorema 3.2.3i),

Límite de una potencia El teorema 3.2.3ii) puede usarse para calcular el límite de una
potencia entera positiva de una función. Por ejemplo, si f (x) � L, entonces por el teo-
rema 3.2.3ii) con 

Por el mismo razonamiento es posible aplicar el teorema 3.2.3ii) al caso general en que f(x)
es un factor n veces. Este resultado se plantea en el siguiente teorema.

g (x) � f (x),
lím
xSa

lím
xS5

lím
xS5

lím
xS5

x S a�

x S a�x S a
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Para el caso especial f(x) � xn, el resultado proporcionado en el teorema 3.2.4 produce

(1)

Teorema 3.2.3 Límites de una suma, un producto y un cociente

Suponga que a es un número real y que f (x) y g(x) existen. Si f (x) � L1 y
g(x) � L2, entonces

i)

ii)

iii)

lím
xSa

lím
xSa

lím
xSa

lím
xSa

Teorema 3.2.4 Límites de una potencia

Sean f (x) � L y n un entero positivo. Entonceslím
xSa

y,

lím
xSa

f (x)
g(x)

lím
xSa

f (x)

lím
xSa

g(x)
L1

L2
, L2 0.

lím
xSa

[ f (x)g(x)] (lím
xSa

f (x))(lím
xSa

g(x)) L1L2

lím
xSa

[ f (x) g(x)] lím
xSa

f (x) lím
xSa

g(x) L1 L2,

10 . 5 7 57.

10 lím
xS5

x lím
xS5

7

 lím
xS5

(10x 7) lím
xS5

10x lím
xS5

7

lím
xSa

[ f (x)] 2 lím
xSa

[ f (x) . f (x)] (lím
xSa

f (x))(lím
xSa

f (x)) L2.

lím
xSa

 [ f (x)] n [ lím
xSa

f (x)]n Ln.

lím
xSa

xn an.



EJEMPLO  4 Uso de (1) y el teorema 3.2.3

Evalúe

a) x3 b)

Solución
a) Por (1),

x3
� 103

� 1 000.

b) Por el teorema 3.2.1 y (1) sabemos que 5 � 5 y x2
� 16 0. En conse-

cuencia, por el teorema 3.2.3iii),

EJEMPLO  5 Uso del teorema 3.2.3

Evalúe (x2
� 5x � 6).

Solución Debido a los teoremas 3.2.1, 3.2.2 y (1), todos los límites existen. En consecuen-
cia, por el teorema 3.2.3i),

EJEMPLO  6 Uso de los teoremas 3.2.3 y 3.2.4

Evalúe (3x � 1)10.

Solución Primero, por el teorema 3.2.3i) se observa que

(3x � 1) � 3x � 1 � 2.

Luego, por el teorema 3.2.4 se concluye que

Límite de funciones polinomiales Algunos límites pueden evaluarse por sustitución directa.
Para calcular el límite de una función polinomial general pueden usarse (1) y el teorema 3.2.3i).
Si

es una función polinomial, entonces

En otras palabras, para evaluar el límite de una función polinomial f cuando x tiende a un
número real a, sólo es necesario evaluar la función en x � a:

f(x) � f(a). (2)

Al revisar el ejemplo 5 observamos que f (x), donde f (x) = x2 - 5x + 6 está dada por
f(3) = 0.

Debido a que una función racional f es el cociente de dos polinomios p(x) y q(x), por (2)
y por el teorema 3.2.3iii) se concluye que el límite de una función racional 
también puede encontrarse al evaluar f en x � a:

(3)

f (x) � p(x)>q(x)

lím
xS3

lím
xSa

f (x) � cnx n
� cn�1xn�1

� . . . � c1x � c0

lím
xS1

lím
xS1

lím
xS1

lím
xS1

lím
xS3

lím
xS4

lím
xS4

lím
xS10

lím
xS10
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f está definida en x � a y
este límite es f(a)

d

lím
xS4

5
x2

.

lím
xS4

5
x2

lím
xS4

 5

lím
xS4

x2
5
42

5
16

.

lím
xS3

(x2 5x 6) lím
xS3

x 2 lím
xS3

5x lím
xS3

6 32 5 . 3 6 0.

lím
xS1

(3x 1)10 [lím
xS1

(3x 1)]10 210 1 024.

lím
xSa

f (x) lím
xSa

p(x)
q(x)

p(a)
q(a)

.

cnan cn 1an 1 . . . c1a c0.

lím
xSa

cnxn lím
xSa

cn 1x
n 1 . . . lím

xSa
c1x lím

xSa
c0

 lím
xSa

f (x) lím
xSa

(cnxn cn 1xn 1 . . . c1x c0)



Por supuesto, es necesario agregar a (3) el siempre importante requisito de que el límite del
denominador no sea cero; es decir, q(a) Z 0.

EJEMPLO  7 Uso de (2) y (3)

Evalúe 

Solución es una función racional, de modo que si se identifican los

polinomios y , entonces por (2)

p(x) � p(�1) � �7 y q(x) � q(�1) � 4.

Puesto que , por (3) se concluye que

Usted no debe quedarse con la impresión de que siempre es posible encontrar el límite de
una función al sustituir el número a directamente en la función.

EJEMPLO  8 Uso del teorema 3.2.3

Evalúe 

Solución En este límite la función es racional, pero si en la función sustituimos x � 1, se
observa que el límite tiene la forma indeterminada 0�0. No obstante, si primero se simplifica,
después puede aplicarse el teorema 3.2.3iii):

Algunas veces es posible afirmar a primera vista cuándo no existe un límite.

q(�1) � 0

lím
xS�1

lím
xS�1

q(x) � 8x2
� 2x � 2p(x) � 3x � 4

f (x) �
3x � 4

8x2
� 2x � 2
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DEMOSTRACIÓN Se proporcionará una demostración indirecta de este resultado, basada en
el teorema 3.2.3. Suponga que f(x) � L1 0 y g(x) � 0, y también que ( f(x)�g(x))

existe y que es igual a L2. Entonces

El teorema se ha demostrado por contradicción de la hipótesis .L1 � 0

lím
xSa

lím
xSa

lím
xSa

cancelar es válido en el
supuesto que x Z 1

d

Teorema 3.2.5 Un límite que no existe

Sean f(x) � L1 0 y g(x) � 0. Entonces

no existe.

lím
xSa

lím
xSa

Si un límite de una función
racional tiene la forma indeter-
minada 0�0 cuando x S a,
entonces por el teorema del fac-
tor del álgebra x � a debe ser un
factor tanto del numerador como
del denominador. Estas cantida-
des se factorizan y se cancela el
factor x � a.

lím
xS 1

3x 4
8x2 2x 2

.

lím
xS 1

3x 4
8x2 2x 2

p( 1)
q( 1)

7
4

7
4

.

lím
xS1

x 1
x2 x 2

.

lím
xS1

1

lím
xS1

(x 2)
1
3

.

lím
xS1

1
x 2

 lím
xS1

x 1
x2 x 2

lím
xS1

x 1
(x 1)(x 2)

lím
xSa

f (x)
g(x)

(lím
xSa

g(x)) QlímxSa

f (x)
g(x)
R 0 . L2 0.

L1 lím
xSa

f (x) lím
xSa
Qg(x) . f (x)

g(x)
R,  g(x) 0,



EJEMPLO  9 Uso de los teoremas 3.2.3 y 3.2.5

Evalúe

Solución Cada función en los tres incisos del ejemplo es racional.
a) Puesto que el límite del denominador x es 5, pero el límite del denominador x � 5

es 0, concluimos del teorema 3.2.5 que el límite no existe.
b) Al sustituir x � 5, tanto el denominador como el numerador se hacen iguales a 0, de

modo que el límite tiene la forma indeterminada 0�0. Por el teorema del factor del
álgebra, x � 5 es un factor tanto del numerador como del denominador. Así,

c) De nuevo, el límite tiene la forma indeterminada 0�0. Después de factorizar el deno-
minador y cancelar los factores, por la manipulación algebraica

se ve que el límite no existe puesto que el límite del numerador en la última expre-
sión ahora es 1, pero el límite del denominador es 0.

Límite de una raíz El límite de la raíz n-ésima de una función es la raíz n-ésima del límite
siempre que el límite exista y tenga una raíz n-ésima real. El siguiente teorema resume este
hecho.
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d se cancela el factor x - 5

d el límite existe

Teorema 3.2.6 Límite de una raíz

Sean f(x) � L y n un entero positivo. Entonces

en el supuesto que cuando n es par.L � 0

lím
xSa

Un caso especial inmediato del teorema 3.2.6 es

(4)

en el supuesto que cuando n es par. Por ejemplo,

EJEMPLO  10 Uso de (4) y del teorema 3.2.3

Evalúe .

Solución Puesto que (2x � 10) � �6 0, por el teorema 3.2.3iii) y (4) observamos
que

Cuando el límite de una función algebraica que implica radicales tiene la forma indeter-
minada 0�0, algo que puede intentarse es racionalizar el numerador o el denominador.

lím
xS�8

lím
xS�2

a � 0

)c)b)a lím
xS5

x 5
x2 10x 25

.lím
xS5

x2 10x 25
x2 4x 5

lím
xS5

x
x 5

0
6

0.

lím
xS5

x 5
x 1

 lím
xS5

x2 10x 25
x2 4x 5

lím
xS5

(x 5)2

(x 5)(x 1)

lím
xS5

1
x 5

 lím
xS5

x 5
x2 10x 25

lím
xS5

x 5
(x 5)2

lím
xSa
2n f (x) 2n lím

xSa
f (x) 2n L,

lím
xSa
2n x 2n a,

x 13 x
2x 10

lím
xS 8

x 13 x
2x 10

lím
xS 8

x [ lím
xS 8

x]1>3
lím

xS 8
2( x 10)

8 ( 8)1>3
6

6
6

1.

.lím
xS9
1x [lím

xS9
x]1>2 91>2 3



EJEMPLO  11 Racionalización de un numerador

Evalúe 

Solución Puesto que por inspección vemos que el límite
dado tiene la forma indeterminada 0 0. Sin embargo, al racionalizar el numerador obtenemos

Ahora ya es posible que apliquemos los teoremas 3.2.3 y 3.2.6:

En caso de que alguien se pregunte si puede haber más de un límite de una función f (x)
cuando , para que quede registro se plantea el último teorema.x S a

>2x2 4 2lím
xS0

(x2 4) 2lím
xS0

lím
xS0

3.2 Teoremas sobre límites 99

el límite ya
no es 0�0

d

se cancelan las xd

Teorema 3.2.7 Existencia implica unicidad

Si f (x) existe, entonces es único.lím
xSa

NOTAS DESDE EL AULA

En matemáticas es tan importante saber lo que un teorema o una definición no dice, así como
saber lo que dice.

i) La propiedad i) del teorema 3.2.3 no dice que el límite de una suma siempre es la suma
de los límites. Por ejemplo, (1�x) no existe, de modo que

A pesar de ello, puesto que para el límite de la diferencia existe.

ii) En forma semejante, el límite de un producto puede existir y no obstante no ser igual al
producto de los límites. Por ejemplo, x�x � 1, para x 0, y así

pero

puesto que (1�x) no existe.lím
xS0

x � 0,1>x � 1>x � 0

lím
xS0

lím
xSa

En la sección “Notas desde el
aula”, al final de la sección 3.1,
vimos este límite en la ecuación
(12).

2x2 4 2
x2

.

lím
xS0

1

2x2 4 2
.

lím
xS0

x2

x2A2x2 4 2B
lím
xS0

(x2 4) 4

x2A2x2 4 2B
 lím
xS0

2x2 4 2
x2

lím
xS0

2x2 4 2
x2

. 2x2 4 2

2x2 4 2

1
2 2

1
4

.

lím
xS0

1

2lím
xS0

(x2 4) lím
xS0

2

 lím
xS0

2x2 4 2
x2

lím
xS0

1

2x2 4 2

.lím
xS0
c 1

x
1
x
d lím

xS0

1
x

lím
xS0

1
x

lím
xS0
c 1

x
1
x
d lím

xS0
 0 0.

 lím
xS0
Qx . 1

x
R (lím
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Fundamentos

En los problemas 1-52, encuentre el límite dado, o concluya
que no existe.

En los problemas 53-60, suponga que f (x) � 4 y g(x)

� 2. Encuentre el límite dado, o concluya que no existe.

Piense en ello
En los problemas 61 y 62, use el primer resultado para
encontrar los límites en los incisos a)-c). Justifique cada paso
de su trabajo citando la propiedad idónea de los límites.

lím
xSa

lím
xSa
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iii) El teorema 3.2.5 no afirma que el límite de un cociente no existe cuando el límite del
denominador es cero. El ejemplo 8 es un contraejemplo de esa interpretación. No obs-
tante, el teorema 3.2.5 establece que el límite de un cociente no existe cuando el límite
del denominador es cero y el límite del numerador no es cero.

3.2 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-8.

61.

a) b) c)

62.

a) b) c)

63. Use para mostrar que 

64. Si encuentre lím
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3.3 Continuidad
Introducción En el análisis de la sección 2.1 sobre funciones y gráficas se usó la frase

“estos puntos se unen con una curva suave”. Esta frase invoca la imagen que es una curva con-

tinua agradable; en otras palabras, una curva sin rupturas, saltos o huecos. En efecto, una fun-
ción continua a menudo se describe como una cuya gráfica puede trazarse sin levantar el lápiz
del papel.

En la sección 3.2 vimos que el valor funcional f(a) no desempeñaba ningún papel en la
determinación de la existencia de f (x). Pero en la sección 3.2 observamos que los límites
cuando de funciones polinomiales y ciertas funciones racionales pueden encontrarse sim-
plemente al evaluar la función en x = a. La razón por la que puede hacerse lo anterior en algu-
nas instancias es el hecho de que la función es continua en un número a. En esta sección vere-
mos que tanto el valor de f(a) como el límite de f cuando x tiende a un número a desempeñan
papeles primordiales al definir el concepto de continuidad. Antes de proporcionar la defini-
ción, en la FIGURA 3.3.1 se ilustran algunos ejemplos intuitivos de funciones que no son conti-
nuas en a.

x S a

lím
xSa
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FIGURA 3.3.1 Cuatro ejemplos de f no continua en a

Definición 3.3.1 Continuidad en a

Se dice que una función f es continua en un número a si

i ) f(a) está definido, ii ) f (x) existe y iii) f (x) � f(a).lím
xSa

lím
xSa

y

x

y

a

a) lím ƒ(x) no existe

y ƒ(a) no está
definida

x → a

x

y

a

b) lím ƒ(x) no existe

pero ƒ(a) está
definida

x → a

x

y

a

c) lím ƒ(x) existe

pero ƒ(a) no está
definida

x → a

x

y

a
x

y

a

d) lím ƒ(x) existe,

ƒ(a) está definida,
pero lím ƒ(x) �ƒ(a)

x → a

x → a

Recuerde de sus conocimientos
de álgebra que

Continuidad en un número La figura 3.3.1 sugiere la siguiente condición tripartita de con-
tinuidad de una función f en un número a.

Si alguna de las condiciones en la definición 3.3.1 no se cumple, entonces se dice que f
es discontinua en el número a.

EJEMPLO  1 Tres funciones

Determine si cada una de las siguientes funciones es continua en 1.

a) b) c) .

Solución
a) f es discontinua en 1 puesto que al sustituir x � 1 en la función se obtiene 0�0. Se

afirma que f (1) no está definida, de modo que se viola la primera condición de con-
tinuidad en la definición 3.3.1.

b) Debido a que g está definida en 1, es decir, g(1) � 2, a continuación se determina si
g(x) existe. Por

(1)

lím
xS1

h (x) � • x3
� 1

x � 1
, x � 1

3, x � 1
g(x) � • x3

� 1
x � 1

, x � 1

2, x � 1
f (x) �

x3
� 1

x � 1
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x3 1
x 1

lím
xS1

(x 1)(x2 x 1)
x 1

lím
xS1

(x2 x 1) 3 a3 b3 (a b)
(a2 ab b2)



concluimos que g(x) existe y es igual a 3. Puesto que este valor no es el mismo
que g(1) 2, se viola la segunda condición de la definición 3.3.1. La función g es
discontinua en 1.

c) Primero, h(1) está definida; en este caso, h(1) 3. Segundo, h(x) � 3 por (1)
del inciso b). Tercero, se tiene h(x) h(1) 3. Por tanto, se cumplen las tres

condiciones en la definición 3.3.1 y así la función h es continua en 1.
Las gráficas de las tres funciones se comparan en la FIGURA 3.3.2.

��lím
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�

lím
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y � ƒ(x)

x

y

3

1

a)

y � g(x)

x

y

3

2

1

b)

y � h(x)

x

y

3

1

c)
FIGURA 3.3.2 Gráficas de las funciones en el ejemplo 1

Definición 3.3.2 Continuidad sobre un intervalo

Una función f es continua

i) sobre un intervalo abierto (a, b) si es continua en todo número en el intervalo; y
ii) sobre un intervalo cerrado [a, b] si es continua en (a, b) y, además,

f (x) � f (a) y f (x) � f (b).lím
xSb�

lím
xSa�

y � ƒ(x)

x

y

5

2
FIGURA 3.3.3 Gráfica de la fun-
ción en el ejemplo 2

EJEMPLO  2 Función definida por partes

Determine si la función definida por partes es continua en 2.

Solución Primero, observe que f(2) está definida y es igual a 5. Luego, por

observamos que el límite de f existe cuando . Por último, debido a que f(x) 

f(2) = 5, por iii) de la definición 3.3.1 se concluye que f es discontinua en 2. La gráfica de f
se muestra en la FIGURA 3.3.3.

Continuidad sobre un intervalo A continuación veremos que el concepto de continuidad en
un número a se extiende a continuidad sobre un intervalo.

lím
xS2

x S 2

f (x) � • x2, x 6 2
5, x � 2
�x � 6, x 7 2.

Si se cumple la condición límite por la derecha f (x) f (a) dada por ii) de la defi-

nición 3.3.1, se dice que f es continua por la derecha en a; si f (x) f (b), entonces f

es continua por la izquierda en b.
Extensiones de estos conceptos a intervalos como [a, b), (a, b], 

(- q, q), [a, q) y se hacen como se espera. Por ejemplo, f es continua en [1, 5) si
es continua en el intervalo abierto (1, 5) y es continua por la derecha en 1.

(�q, b ]
(�q, b),(a, q),

�lím
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x2 4

lím
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¶ implica  lím
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EJEMPLO  3 Continuidad sobre un intervalo

a) Como observamos en la FIGURA 3.3.4a), es continua sobre el inter-
valo abierto ( 1, 1) pero no es continua sobre el intervalo cerrado [ 1, 1], ya que ni
f ( 1) ni f (1) están definidos.

b) es continua sobre [ 1, 1]. Observe por la figura 3.3.4b) que

c) es continua sobre el intervalo no acotado ya que

para cualquier número real a que cumpla a 7 1, y f es continua por la derecha en 1
puesto que

Vea la figura 3.3.4c).

Una revisión de las gráficas en las figuras 2.4.1 y 2.4.2 muestra que y = sen x y y = cos
x son continuas en Las figuras 2.4.3 y 2.4.5 muestran que y = tan x y y = sec x

son discontinuas en , mientras las figuras 2.4.4 y
2.4.6 muestran que y = cot x y y = csc x son discontinuas en 
Las funciones trigonométricas inversas y = sen�1 x y y = cos�1 x son continuas sobre el inter-
valo cerrado Vea las figuras 2.5.9 y 2.5.12. La función exponencial natural y = ex

es continua sobre el intervalo , mientras que la función logaritmo natural y = ln x es
continua sobre Vea las figuras 2.6.5 y 2.6.6.

Continuidad de una suma, producto y cociente Cuando dos funciones f y g son continuas
en un número a, entonces la combinación de las funciones formadas por suma, multiplicación
y división también es continua en a. En el caso de la división f�g es necesario, por supuesto,
requerir que g(a) � 0.

(0, q).
(�q, q)

[�1, 1] .

x � np, n � 0, �1, �2, . . .
x � (2 n � 1) p>2, n � 0, �1, �2, . . . 

(�q, q).

[1, q),f (x) � 1x � 1

�f (x) � 21 � x2

�

��

f (x) � 1>21 � x2
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1
x

y

a)

�1

y �
1

1 � x 2

b)

1�1
x

y
y �   1 � x 2

c)

1
x

y
y �    x � 1

FIGURA 3.3.4 Gráficas de las
funciones en el ejemplo 3

Teorema 3.3.1 Continuidad de una suma, un producto y un cociente

Si las funciones f y g son continuas en un número a, entonces la suma f � g, el producto
fg y el cociente son continuos en x � a.f>g (g(a) � 0)

DEMOSTRACIÓN DE LA CONTINUIDAD DEL PRODUCTO fg Como una consecuencia de la hipó-
tesis de que las funciones f y g son continuas en un número a, podemos decir que ambas fun-
ciones están definidas en x � a, los límites de las dos funciones existen cuando x tiende a a y

Debido a que el límite existe, sabemos que el límite de un producto es el producto de los límites:

Las demostraciones de las partes restantes del teorema 3.3.1 se obtienen de manera semejante.

Puesto que la definición 3.3.1 implica que f (x) � x es continua en cualquier número real
x, a partir de aplicaciones sucesivas del teorema 3.3.1 se observa que las funciones

también son continuas para cualquier x en el intervalo Debido a
que una función polinomial es justo una suma de potencias de x, otra aplicación del teorema
3.3.1 muestra lo siguiente:

• Una función polinomial f es continua en (�q, q).

Se dice que las funciones, como las polinomiales, el seno y el coseno, que son continuas para
todos los números reales, es decir, sobre el intervalo son continuas en todas par-
tes. De una función que es continua en todas partes también se dice que es continua. Luego,

(�q, q),

(�q, q).x, x2, x3, . . . , xn

y lím
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f (x) f (1) 0.lím
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f (x) f ( 1) 0
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g(x) g(a).
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( f (x)g(x)) ( lím
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f (x))( lím
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g(x)) f (a)g(a).



si p(x) y q(x) son funciones polinomiales, por el teorema 3.3.1 también se concluye directa-
mente que

• Una función racional f (x) � p(x)�q(x) es continua excepto en números en los que el
denominador q(x) es cero.

Terminología Una discontinuidad de una función f a menudo se denomina de manera especial.

• Si x � a es una asíntota vertical para la gráfica de y � f(x), entonces se dice que f

tiene una discontinuidad infinita en a.

La figura 3.3.1a) ilustra una función con una discontinuidad infinita en a.

• Si f (x) � L1 y f (x) � L2 y entonces se dice que f tiene una dis-

continuidad finita o una discontinuidad de tipo salto en a.

La función y � f(x) dada en la FIGURA 3.3.5 tiene una discontinuidad de tipo salto en 0, puesto
que f (x) � �1 y f (x) � 1. La función entero mayor tiene una disconti-

nuidad de tipo salto en todo valor entero de x.

• Si f (x) existe pero f no está definida en x � a o f (a) f (x), entonces se dice

que f tiene una discontinuidad removible en a.

Por ejemplo, la función no está definida en x � 1 pero f (x) � 2.
Al definir f (1) � 2, la nueva función

es continua en todas partes. Vea la FIGURA 3.3.6.

Continuidad de f �1 La validez del siguiente teorema se concluye del hecho de que la grá-
fica de la función inversa f �1 es una reflexión de la gráfica de f en la recta y � x.

f (x) � • x2
� 1

x � 1
, x � 1

2, x � 1

lím
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f (x) � (x2
� 1)>(x � 1)
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f (x) � :x ;lím
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�1

1

y

x

FIGURA 3.3.5 Discontinuidad tipo
salto en x � 0

y

1

1

1
x

x 2
�1

x �1y �

x 2
�1

x �1

,     x �1

2, x � 1 

b) Continua en 1

a) No es continua en 1

y �

y

x
1

FIGURA 3.3.6 Discontinuidad
removible en x � 1

Teorema 3.3.2 Continuidad de una función inversa

Si f es una función continua uno a uno sobre un intervalo [a, b], entonces f �1 es continua
ya sea sobre o sobre .[ f (b), f (a)][ f (a), f (b)]

Teorema 3.3.3 Límite de una función compuesta

Si g(x) � L y f es continua en L, entonceslím
xSa

La función seno, f (x) sen x, es continua sobre , y como ya se observó, la

inversa de f, y sen�1 x, es continua sobre el intervalo cerrado 

Límite de una función compuesta El siguiente teorema establece que si una función es con-
tinua, entonces el límite de esa función es la función del límite.

� [�1, 1] .f (p>2)][  f (�p>2),�

[�p>2, p>2]�

El teorema 3.3.3 es útil en la demostración de otros teoremas. Si la función g es continua
en a y f es continua en g(a), entonces vemos que

lím
xSa 

f (g(x)) f  ( lím
xSa  

 g (x)) f (L).



Acabamos de demostrar que la composición de dos funciones continuas es continua.
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Teorema 3.3.5 Teorema del valor intermedio

Si f denota una función continua sobre un intervalo cerrado [a, b] para el cual 
y si N es cualquier número entre f (a) y f (b), entonces existe por lo menos un número c entre
a y b tal que f (c) � N.

f (a) � f (b),

FIGURA 3.3.8 Localización de ceros de funciones usando el teorema del valor intermedio

y

x

y � ƒ(x)

ƒ(b) � 0
a c

b

a) Un cero c en (a, b)

ƒ(a) � 0

b) Tres ceros c1, c2, c3 en (a, b)

y

x

ƒ(b) � 0
y � ƒ(x)

a

c1 c2 c3 bƒ(a) � 0

Teorema 3.3.4 Continuidad de una función compuesta

Si g es continua en un número a y f es continua en g(a), entonces la función compuesta
es continua en a.( f � g)(x) � f (g(x))

a c

N

b

y

x

ƒ(a)

ƒ(b)

FIGURA 3.3.7 Una función conti-
nua f asume todos los valores
entre f (a) y f (b)

EJEMPLO  4 Continuidad de una función compuesta

es continua sobre el intervalo [0, q) y g(x) � x2
� 2 es continua sobre 

Pero, puesto que para toda x, la función compuesta

es continua en todas partes.

Si una función f es continua sobre un intervalo cerrado [a, b], entonces, como se ilustra
en la FIGURA 3.3.7, f asume todos los valores entre f (a) y f (b). Dicho de otra manera, una fun-
ción continua f no omite ningún valor.

( f � g)(x) � f (g(x)) � 2x2
� 2

g(x) � 0
(�q, q).f (x) � 1x

EJEMPLO  5 Consecuencia de la continuidad

La función polinomial es continua sobre el intervalo y f (-1) = -3,
f (4) = 7. Para cualquier número N para el cual el teorema 3.3.5 garantiza que
hay una solución para la ecuación es decir, en Específi-
camente, si se escoge N = 1, entonces es equivalente a

Aunque la última ecuación tiene dos soluciones, sólo el valor c � 3 está entre �1 y 4.

El ejemplo anterior sugiere un corolario al teorema del valor intermedio.

• Si f satisface las hipótesis del teorema 3.3.5 y f (a) y f (b) tienen signos algebraicos
opuestos, entonces existe un número x entre a y b para el que f (x) � 0.

Este hecho se usa a menudo para localizar ceros reales de una función continua f. Si los valores
f (a) y f (b) tienen signos opuestos, entonces al identificar N = 0 podemos afirmar que hay por lo
menos un número c en (a, b) para el cual f (c) = 0. En otras palabras, si f (a) 7 0, f (b) 6 0
o f (a) 6 0, f (b) 7 0, entonces f (x) tiene por lo menos un cero c en el intervalo (a, b). La vali-
dez de esta conclusión se ilustra en la FIGURA 3.3.8.

c2
� c � 5 � 1

[�1, 4] .c2
� c � 5 � Nf (c) � N,

�3 � N � 7,
[�1, 4]f (x) � x2

� x � 5

lím
xSa

f (g(x)) f ( lím
xSa

g(x)) f (g(a)).

c2 c 6 0  o bien,  (c 3)(c 2) 0.



Método de bisección Como una consecuencia directa del teorema del valor intermedio, es
posible concebir un medio para aproximar los ceros de una función continua hasta cualquier
grado de precisión. Suponga que y = f(x) es continua sobre el intervalo cerrado [a, b] tal que
f(a) y f(b) tienen signos algebraicos opuestos. Luego, como acabamos de ver, f tiene un cero
en [a, b]. Suponga que el intervalo [a, b] se biseca encontrando el punto medio

Si f(m1) = 0, entonces m1 es un cero de f y ya no se continúa, pero si
entonces puede afirmarse lo siguiente:

• Si f(a) y tienen signos algebraicos opuestos, entonces f tiene un cero c en [a, m1].
• Si y f(b) tienen signos algebraicos opuestos, entonces f tiene un cero c en [m1, b].

Es decir, si entonces f tiene un cero en un intervalo que mide la mitad del inter-
valo original. Vea la FIGURA 3.3.9. A continuación se repite el proceso al bisecar este nuevo in-
tervalo al encontrar su punto medio m2. Si m2 es un cero de f, entonces detenemos el proceso,
pero si hemos localizado un cero en un intervalo que mide la cuarta parte del inter-
valo [a, b]. Continuamos este proceso de localizar un cero en f de manera indefinida en in-
tervalos cada vez más cortos. Este método de aproximar un cero de una función continua por
medio de una sucesión de puntos medios se denomina método de bisección. Al volver a ins-
peccionar la figura 3.3.9 se observa que el error en una aproximación a un cero en un inter-
valo es menos de la mitad de la longitud del intervalo.

EJEMPLO  6 Ceros de una función polinomial

a) Demuestre que los ceros de la función polinomial tiene un cero
real en y en [1, 2].

b) Aproxime el cero en [1, 2] hasta dos cifras decimales.

Solución
a) Observe que y Este cambio de signo indica que la

gráfica de f debe cruzar el eje x por lo menos una vez en el intervalo En
otras palabras, hay por lo menos un cero en 

De manera semejante, y implican que hay por lo
menos un cero de f en el intervalo [1, 2].

b) Una primera aproximación al cero en [1, 2] es el punto medio del intervalo:

Luego, puesto que y se sabe que el cero está en el inter-
valo

La segunda aproximación al cero es el punto medio de 

Puesto que el cero está en el intervalo 
La tercera aproximación al cero es el punto medio de 

Después de ocho cálculos, encontramos que m8 � 1.300781 con error menor que
0.005. Por tanto, 1.30 es una aproximación al cero de f en [1, 2] que es precisa hasta
dos cifras decimales. La gráfica de f se proporciona en la FIGURA 3.3.10.

m3 �

5
4 �

3
2

2
�

11
8

� 1.375,  error 6
1
2

 a3
2

�
5
4
b � 0.125.

[5
4, 

3
2]:

[5
4, 

3
2].f (m2) � f  (5

4) 6 0,

m2 �
1 �

3
2

2
�

5
4

� 1.25,  error 6
1
2

 Q3
2

� 1R � 0.25.

[1, 32]:
[1, 32].

f (1) 6 0,f (m1) � f  (3
2) 7 0

m1 �
1 � 2

2
�

3
2

� 1.5,  error 6
1
2

 (2 � 1) � 0.5.

f (2) � 57 7 0f (1) � �3 6 0
[�1, 0] .

[�1, 0] .
f (0) � �1 6 0.f (�1) � 3 7 0

[�1, 0]
f (x) � x6

� 3x � 1

f (m2) � 0,

f (m1) � 0,

f (m1)
f (m1)

f (m1) � 0,
m1 � (a � b)>2.

106 UNIDAD 3 Límite de una función

el punto medio es
una aproximación

al cerocero de ƒ

x
a m1c b

→→

FIGURA 3.3.9 El número m1 es
una aproximación al número c

�1 1

1

2

y

x

FIGURA 3.3.10 Gráfica de la
función en el ejemplo 6

Si se desea que la aproximación
sea precisa hasta tres cifras
decimales, continuamos hasta
que el error se vuelva menor
que 0.0005, y así sucesivamente.

3.3 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-8.

Fundamentos

En los problemas 1-12, encuentre los números, en caso de
haberlos, en que la función f dada es discontinua.

1. 2. f (x) �
x

x2
� 4

f (x) � x3
� 4x2

� 7

.4.3

.6.5 f (x)
tan x
x 3

f (x)
x2 1
x4 1

f (x) (x2 9x 18) 1

f (x)
x 1
sen 2x



7. 8.

9.

10.

12.

En los problemas 13-24, determine si la función f es conti-
nua en el intervalo indicado.

13.

a) b)

14.

a) b)

15.

a) (0, 4] b) [1, 9]

16.

a) b)

17. f (x) � tan x

a) b)

18. f (x) � csc x

a) b)

19.

a) b)

20.

a) b) [1, 6]

a) b)

a) b)

23.

FIGURA 3.3.11 Gráfica para el problema 23

a) b) (2, 4]

24.

FIGURA 3.3.12 Gráfica para el problema 24

a) [2, 4] b) [1, 5]

En los problemas 25-28, encuentre los valores de m y n de
tal manera que la función f sea continua.

25.

26.

27.

28.

En los problemas 29 y 30, denota el mayor entero que
no excede a x. Trace una gráfica para determinar los puntos
en que la función dada es discontinua.

29. 30.

En los problemas 31 y 32, determine si la función dada tiene
una discontinuidad removible en el número dado a. Si la dis-
continuidad es removible, defina una nueva función que sea
continua en a.

31. 32.

En los problemas 33-42, use el teorema 3.3.3 para encontrar
el límite dado.

En los problemas 43 y 44, determine el (los) intervalo(s)
donde es continua.

43.

44. f (x) �
5x

x � 1
, g(x) � (x � 2)2

f (x) �
1

1x � 1
, g(x) � x � 4

f � g

f (x) �
x4

� 1
x2

� 1
, a � 1f (x) �

x � 9
1x � 3

, a � 9

f (x) � :x ; � xf (x) � :2x � 1 ;
:x ;

f (x) � •mx � n, x 6 1
5, x � 1
2mx � n, x 7 1

f (x) � •mx, x 6 3
n, x � 3
�2x � 9, x 7 3

f (x) � • x2
� 4

x � 2
, x � 2

m, x � 2

f (x) � emx, x 6 4
x2, x � 4

y � ƒ(x)

x

y

[�1, 3]

y � ƒ(x)

x

y

[�2>p, 2>p ][1>p, q)

[p>2, 3p>2](�q, q)

(�q, �1]

f (x) �
10x 0 � 4

(�q, q)[�4, �3]

f (x) �
x

x3
� 8

(2p, 3p)(0, p)

[�p>2, p>2][0, p ]

[3, q)[�3, 3]

f (x) � 2x2
� 9

f (x) �
1
1x

(0, q)(�q, q)

f (x) �
1
x

[5, q)[�1, 4]

f (x) � x2
� 1

f (x) �
2

ex
� e�x

f (x) � µ x � 1

1x � 1
, x � 1

1
2

, x � 1

f (x) � • x2
� 25

x � 5
, x � 5

10, x � 5

f (x) � • 0 x 0x
, x � 0

1, x � 0
f (x) � • x, x 6 0

x2, 0 � x 6 2
x, x 7 2
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.43.33

.63.53

.83.73

.04.93

.24.14 lím
xSp

ecos 3xlím
xS 3

sen 1a x 3
x2 4x 3

b
lím
tS1

(4t sen 2pt)3lím
tSp
2t p cos2 t

lím
tS0

tana pt

t 2 3t
blím

tSp
cosa t 2 p2

t p
b

lím
xSp>2(1 cos(cos x))lím

xSp>2sen(cos x)

lím
xSp2

cos1xlím
xSp>6sen(2x p>3)

21.

22. f (x) sen
1
x

f (x)
x

2 sec x

.11 f (x)
1

2 ln x



En los problemas 45-48, compruebe el teorema del valor
intermedio para f en el intervalo dado. Encuentre un número
c en el intervalo para el valor indicado de N.

45.

46.

47.

48.

49. Dado que demuestre que hay un
número c tal que f(c) = 50.

50. Dado que f y g son continuas sobre [a, b] de modo que
y demuestre que hay un

número c en (a, b) tal que [Sugerencia:
Considere la función f � g.]

En los problemas 51-54, muestre que la ecuación dada tiene
una solución en el intervalo indicado.

51.

52.

53. e-x = ln x, (1, 2)

54.

Problemas con calculadora/SAC
En los problemas 55 y 56, use una calculadora o un SAC para
obtener la gráfica de la función dada. Use el método de bisec-
ción para aproximar, con precisión de dos cifras decimales,
los ceros reales de f que descubra a partir de la gráfica.

55. 56.

57. Use el método de bisección para aproximar el valor de
c en el problema 49 hasta una precisión de dos cifras
decimales.

58. Use el método de bisección para aproximar la solución
en el problema 51 hasta una precisión de dos cifras deci-
males.

59. Use el método de bisección para aproximar la solución
en el problema 52 hasta una precisión de dos cifras deci-
males.

60. Suponga que un cilindro circular recto cerrado tiene un
volumen V y un área superficial S (lado lateral, tapa y
base).

a) Demuestre que el radio r del cilindro debe satisfacer
la ecuación 

b) Suponga que V = 3 000 pies3 y S = 1 800 pies2. Use
una calculadora o un SAC para obtener la gráfica de

1 800r + 6 000.

c) Use la gráfica en el inciso b) y el método de bisección
para encontrar las dimensiones del cilindro corres-
pondientes al volumen y área superficial dadas en el
inciso b). Use una precisión de dos cifras decimales.

Piense en ello

61. Dado que f y g son continuas en un número a, demues-
tre que f � g es continua en a.

62. Dado que f y g son continuas en un número a y
demuestre que f�g es continua en a.

63. Sean la función entero mayor y g(x) = cos x.
Determine los puntos en que es discontinua.

64. Considere las funciones

Trace las gráficas de y Determine si y
son continuas en 0.

65. Un clásico matemático La función de Dirichlet

recibe su nombre en honor del matemático alemán
Johann Peter Gustav Lejeune Dirichlet (1805-1859). A
Dirichlet se debe la definición de una función como se
conoce actualmente.

a) Demuestre que f es discontinua en todo número real
a. En otras palabras, f no es una función continua en

ninguna parte.
b) ¿Cómo se ve la gráfica de f ?
c) Si r es un número racional positivo, demuestre que

f es r-periódica; es decir, f (x � r) � f (x).

g � f
f � gg � f.f � g

f � g
f (x) � :x ;g (a) � 0,

2pr3
�f (r) �

2pr3
� Sr � 2V � 0.

f (x) � x5
� x � 1f (x) � 3x5

� 5x3
� 1

x2
� 1

x � 3
�

x4
� 1

x � 4
� 0, (�3, 4)

2x7
� 1 � x, (0, 1)

f (c) � g(c).
f (b) 6 g(b),f (a) 7 g(a)

f (x) � x5
� 2x � 7,

f (x) �
10

x2
� 1

, [0, 1] ; N � 8

f (x) � x3
� 2x � 1, [�2, 2] ; N � 1

f (x) � x2
� x � 1, [�2, 3] ; N � 6

f (x) � x2
� 2x, [1, 5] ; N � 8
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3.4 Límites trigonométricos
Introducción En esta sección se analizan límites que implican funciones trigonométricas.

Como se ilustrará con los ejemplos de esta sección, el cálculo de límites trigonométricos supone
manipulaciones algebraicas y conocimiento de algunas identidades trigonométricas básicas. Empe-
zaremos con algunos resultados simples sobre límites que son consecuencia de la continuidad.

Uso de la continuidad En la sección precedente vimos que las funciones seno y coseno son
continuas en todas partes. Por la definición 3.3.1 se concluye que para cualquier número real a,

sen x � sen a, (1)

cos x � cos a. (2)lím
xSa

lím
xSa

sen x
x

1
2

, (p>2, p) f (x) 0x 0  y  g (x) e x 1, x 6 0
x 1, x 0.

f (x) e 1, x racional
0, x irracional



En forma semejante, para un número a en el dominio de la función trigonométrica dada

(3)

(4)

EJEMPLO  1 Uso de (1) y (2)

A partir de (1) y (2) se tiene

(5)

Los resultados en (5) se obtendrán en el siguiente análisis sobre el cálculo de otros lími-
tes trigonométricos. Pero primero se considera un teorema que reviste una utilidad particular
cuando se trabaja con límites trigonométricos.

Teorema de compresión El siguiente teorema posee muchos nombres, algunos de éstos son:
teorema de compresión, teorema del pellizco, teorema del emparedado y teorema del juego
de compresión, entre otros. Como se muestra en la FIGURA 3.4.1, si la gráfica de f (x) se “comprime”
entre las gráficas de otras dos funciones g(x) y h(x) para toda x próxima a a, y si las funciones g
y h tienen un límite común L cuando tiene sentido afirmar que f también tiende a L cuando
x S a.

x S a,
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y

y � ƒ(x)

y � h(x)

y � g(x)

a
x

FIGURA 3.4.1 Gráfica de f opri-
mida entre las gráficas de g y h

y

x

y � sen

�

1
x

1
�

1
�

FIGURA 3.4.2 Gráfica de la
función en el ejemplo 2

Teorema 3.4.1 Teorema de compresión

Suponga que f, g y h son funciones para las cuales para toda x en un inter-
valo abierto que contiene a un número a, excepto posiblemente al mismo a. Si

g(x) � L y h(x) � L,

entonces f(x) � L.lím
xSa

lím
xSa

lím
xSa

g(x) � f (x) � h(x) Un colega ruso dijo que este
resultado se denominaba teore-
ma de los dos soldados cuando
estaba en la escuela. Piense en
ello.

Antes de aplicar el teorema 3.4.1 se considerará un límite trigonométrico que no existe.

EJEMPLO  2 Un límite que no existe

El límite sen(1�x) no existe. La función f(x) � sen(1�x) es impar pero no es periódica.

La gráfica oscila entre 1 y 1 cuando :

Por ejemplo, sen(1�x) � 1 para n � 500 o y sen(1�x) � �1 para n � 501 o
Esto significa que cerca del origen la gráfica de f se vuelve tan comprimida que

parece ser una mancha continua de color. Vea la FIGURA 3.4.2.

EJEMPLO  3 Uso del teorema de compresión

Encuentre el límite .

Solución Primero observe que

porque en el ejemplo 2 acabamos de ver que sen(1�x) no existe. Pero para tenemos
-1 sen(1 x) 1. En consecuencia,�>�

x � 0lím
xS0

x � 0.00063.
x � 0.00064,

x S 0�

lím
xS0

lím
xSa

sec x sec a,  lím
xSa

csc x csc a.

lím
xSa

tan x tan a,  lím
xSa

cot x cot a,

lím
xS0

sen x sen 0 0 y lím
xS0

cos x cos 0 1.

sen
1
x

1 para 
1
x

p

2
np, n 0, 1, 2, p

lím
xS0

x2 sen
1
x

lím
xS0

x 2 sen
1
x
Q lím

xS0
x 2RQ lím

xS0
 sen

1
x
R

.x2 x2 sen
1
x

x2



Luego, si hacemos las identificaciones y por (1) de la sección 3.2 se
sigue que g(x) = 0 y h(x) = 0. Así, por el teorema de compresión concluimos que

En la FIGURA 3.4.3 observe la pequeña escala en los ejes x y y.

lím
xS0

lím
xS0

h (x) � x2,g(x) � �x2
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0.01

0.005

�0.005

�0.01

0.1�0.1

y

y � x2

y � �x2

x

y � x2 sen 1
x

FIGURA 3.4.3 Gráfica de la función en el ejemplo 3

y

x
���

sen x
xy �

FIGURA 3.4.4 Gráfica de f (x) �
(sen x)�x

O R

P
Q

t

1

1

x

y

O

t

1

a) Circunferencia unitaria

1

FIGURA 3.4.5 Circunferencia unitaria junto con dos triángulos y un sector circular
b) Triángulo OPR

O R

P

1
t

O R

P

1

c) Sector OPR

t

O R

Q

1

d) Triángulo rectángulo OQR

t

Un límite trigonométrico importante Aunque la función f(x) � (sen x) x no está definida
en x = 0, la tabla numérica en el ejemplo 7 de la sección 3.1 y la gráfica en la FIGURA 3.4.4

sugieren que (sen x)�x existe. Ahora ya es posible demostrar esta conjetura usando el teo-
rema de compresión.

Considere un círculo con centro en el origen O y radio 1. Como se muestra en la FIGURA

3.4.5a), sea la región sombreada OPR un sector del círculo con ángulo central t tal que
A partir de los incisos b), c) y d) de la figura 3.4.5 se observa que

(6)

Por la figura 3.4.5b), la altura de es

(7)

Por la figura 3.4.5d), de modo que

(8)

o QR tan t,QR>OR tan  t

^OPR

0 6 t 6 p>2.

lím
xS0

>

lím
xS0

x2 sen
1
x

0.

y así

área de^OQR
1
2

OR . QR
1
2

. 1 . tan t
1
2

tan t.

área de^OPR
1
2

OR . (altura)
1
2

. 1 . sen t
1
2

sen t.

OPsen t 1 . sen t sen t,

área de^OPR área del sector OPR área de^OQR.



Por último, el área de un sector del círculo es donde r es el radio y u es el ángulo cen-
tral medido en radianes. Así,

(9)

Al usar (7), (8) y (9) en la desigualdad (6) se obtiene

Por las propiedades de las desigualdades, la última desigualdad puede escribirse como

Ahora se hace en el último resultado. Puesto que (sen t)�t está “comprimida” entre 1
y cos t (del cual se sabe por (5) que tiende a (1), a partir del teorema 3.4.1 se concluye que
(sen t)�t S 1. Aunque se ha supuesto el mismo resultado se cumple para
cuando Al usar el símbolo x en lugar de t, el resultado se resume como sigue:

(10)

Como se ilustra con los siguientes ejemplos, los resultados en (1), (2), (3) y (10) se usan a
menudo para calcular otros límites. Observe que el límite (10) es de la forma indeterminada 0�0.

EJEMPLO  4 Uso de (10)

Encuentre el límite .

Solución La expresión fraccionaria vuelve a escribirse como dos fracciones con el mismo
denominador x:

EJEMPLO  5 Uso de la fórmula del ángulo doble

Encuentre el límite

Solución Para evaluar el límite dado se usan la fórmula del ángulo doble sen 2x � 2 sen x
cos x de la sección 2.4, y el hecho de que el límite existe:

Por (5) y (10) se sabe que cos x S 1 y (sen x)�x S 1 cuando de modo que la línea
precedente se vuelve

x S 0,

�p>2 6 t 6 0.
t S 0�0 6 t 6 p>2,

t S 0�

1
2r

2u,
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puesto que ambos límites existen,
las x también se cancelan en la
primera expresión

d ahora se usa (10)

d

área del sector OPR
1
2

. 12 . t
1
2

t.

1
2

sen t 6
1
2

t 6
1
2

tan t   o bien,   1 6
t

sen t
6

1
cos t

.

cos t 6
sen t

t
6 1.

lím
xS0

sen x
x

1.

lím
xS0

10x 3 sen x
x

7.

10 3 . 1

lím
xS0

10 3 lím
xS0

sen x
x

lím
xS0

10x
x

3 lím
xS0

sen x
x

 lím
xS0

10x 3 sen x
x

lím
xS0
c 10x

x
3 sen x

x
d

lím
xS0

sen 2x
x

.

lím
xS0

sen 2x
x

2 . 1 . 1 2.

2 Alím
xS0

cos xB Qlím
xS0

sen x
x
R.2 lím

xS0
Qcos x . sen x

x
R lím

xS0

sen 2x
x

lím
xS0

2 cos x sen x
x



EJEMPLO  6 Uso de (5) y (10)

Encuentre el límite .

Solución Al usar tan x � (sen x)�cos x y el hecho de que el límite existe, puede escribirse

Uso de una sustitución A menudo se tiene interés en límites semejantes a los considera-

dos en el ejemplo 5. Pero si queremos encontrar, por ejemplo, , el procedimiento

empleado en el ejemplo 5 deja de funcionar a nivel práctico puesto que no se cuenta con una
identidad trigonométrica a la mano para sen 5x. Hay un procedimiento alterno que permite

encontrar rápidamente donde es cualquier constante real, al simplemente

cambiar la variable por medio de una sustitución. Si se hace t kx, entonces Observe
que cuando entonces necesariamente Así, es posible escribir

Por tanto, se ha demostrado el resultado general

(11)

Por (11), con k � 2, se obtiene el mismo resultado que se obtuvo en el ejem-
plo 5.

EJEMPLO  7 Una sustitución

Encuentre el límite

Solución Antes de empezar, observe que el límite tiene la forma indeterminada 0�0 cuando
x S 1. Al factorizar el límite dado puede expresarse como un
límite de un producto:

(12)

Luego, si se hace t � x � 1, veremos que implica En consecuencia,

Al volver a (12) es posible escribir

t S 0.x S 1

x2
� 2x � 3 � (x � 3)(x � 1)

lím
xS0

sen 2x
x

2

t S 0.x S 0
x � t>k.�

k � 0lím
xS0

sen kx
x

,

lím
xS0

sen 5x
x
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d por (5) y (10)
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puesto que ambos límites existen. Así,

EJEMPLO  8 Uso de una identidad pitagórica

Encuentre el límite

Solución Para calcular este límite empezamos con un poco de ingenio algebraico al multi-
plicar el numerador y el denominador por el factor conjugado del numerador. Luego usamos
la identidad pitagórica fundamental sen2 x � cos2 x � 1 en la forma 1 � cos2 x � sen2 x:

Para el siguiente paso de nuevo se acude al álgebra para volver a escribir la expresión frac-
cionaria como un producto, y luego se usan los resultados en (5):

Debido a que (sen x)�(1 � cos x) � 0�2 � 0 se tiene

(13)

Puesto que el límite en (13) es igual a 0, puede escribirse

Luego, al dividir entre �1 se obtiene otro importante límite trigonométrico:

(14)

En la FIGURA 3.4.6 se muestra la gráfica de f(x) � (cos x �1) x. Los resultados en (10) y (14)
se usarán en la sección “Desarrolle su competencia 3.7” y también en la sección 3.4.

>

lím
xS0
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y
1

�1

x
2� 

�2� 

y �

cos x �1
x

FIGURA 3.4.6 Gráfica de
f(x) � (cos x � 1)�x

3.4 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-9.

Fundamentos

En los problemas 1-36, encuentre el límite dado, o concluya
que no existe.
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37. Suponga que f(x) � sen x. Use (10) y (14) de esta sec-
ción junto con (17) de la sección 2.4 para encontrar el
límite:

38. Suponga que f(x) � cos x. Use (10) y (14) de esta sec-
ción junto con (18) de la sección 2.4 para encontrar el
límite:

En los problemas 39 y 40, use el teorema de compresión para
establecer el límite dado.

41. Use las propiedades de los límites dadas en el teorema
3.2.3 para demostrar que

42. Si para toda x en un intervalo que contiene
a 0, demuestre que x2f (x) 0.

En los problemas 43 y 44, use el teorema de compresión para
establecer el límite dado.

43. f (x) donde 

44. f (x) donde 

Piense en ello

En los problemas 45-48, use una sustitución idónea para
encontrar el límite dado.

49. Analice: ¿La función

es continua en 0?

50. La existencia de no implica la existencia de

. Explique por qué el segundo límite no existe.lím
xS0

sen 0 x 0
x

lím
xS0

sen x
x

0 f (x) � 1 0 � x2, x � 0lím
xS0

2x � 1 � f (x) � x2
� 2x � 3, x � 2lím

xS2

�lím
xS0

0 f (x) 0 � B
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3.5 Límites que involucran el infinito
Introducción En las secciones 2.2 y 2.3 se consideraron algunas funciones cuyas gráficas

poseían asíntotas. En esta sección se verá que las asíntotas vertical y horizontal de una grá-
fica están definidas en términos de límites que implican el concepto de infinito. Recuerde, los
símbolos de infinito, (“menos infinito”) y (“más infinito”) son herramientas de nota-
ción usadas para indicar, a su vez, que una cantidad decrece o crece sin límite en la dirección
negativa (en el plano cartesiano esto significa a la izquierda para x y hacia abajo para y) y en
la dirección positiva (a la derecha para x y hacia arriba para y).

Aunque la terminología y notación usadas cuando se trabaja con son estándar, lamen-
tablemente son ligeramente desafortunadas y pueden ser confusas. Así, desde el principio se
advierte que se considerarán dos tipos de límites. Primero se analizarán

• límites infinitos.

La expresión límites infinitos siempre se refiere a un límite que no existe porque la función f
exhibe un comportamiento no acotado: o Luego se considerarán

• límites en el infinito.

f (x) S q.f (x) S �q

�q

q�qEn algunos textos se usa el
símbolo �q y las palabras
más infinito en lugar de q e
infinito.
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La expresión en el infinito significa que se está intentando determinar si una función f posee
un límite cuando se deja que el valor de la variable x disminuya o aumente sin límite:
o Estos límites pueden o no existir.

Límites infinitos El límite de una función f no existe cuando x tiende a un número a siem-
pre que los valores de la función crecen o decrecen sin límite. El hecho de que los valores de
la función f(x) crecen sin límite cuando x tiende a a se expresa simbólicamente por

(1)

Si los valores de la función decrecen sin límite cuando x tiende a a, se escribe

(2)

Recuerde que el uso del símbolo significa que f muestra el mismo comportamiento
—en este caso, sin límite— a ambos lados del número a sobre el eje x. Por ejemplo, la nota-
ción en (1) indica que

Vea la FIGURA 3.5.1.

En forma semejante, la FIGURA 3.5.2 muestra el comportamiento sin límite de una función f
cuando x tiende a a por un lado. Observe en la figura 3.5.2c) que no es posible describir el
comportamiento de f cerca de a usando un solo símbolo de límite.

En general, cualquier límite de los seis tipos

(3)

se denomina límite infinito. De nuevo, en cada caso de (3) simplemente se está describiendo
de manera simbólica el comportamiento de una función f cerca del número a. Ninguno de los

límites en (3) existe.
En la sección 2.3 se repasó cómo identificar una asíntota vertical para la gráfica de una

función racional Ahora ya podemos definir una asíntota vertical de cual-
quier función en términos del concepto de límite.

f (x) � p(x)>q(x).

y

x

y � ƒ(x)

x � a

a) lím ƒ(x) � �
x → a�

x � a

y

y �ƒ(x)

x → a�

b) lím ƒ(x) � ��

x

x � a

y

x

y �ƒ(x)

c) lím ƒ(x) � � y lím ƒ(x) � ��
x → a� x → a�

FIGURA 3.5.2 Tres tipos más de límites infinitos

x � a

y

x

y �ƒ(x)

a) lím ƒ(x) � �
x → a

y � ƒ(x)

x � a

x

y

b) lím ƒ(x) � ��
x → a

FIGURA 3.5.1 Dos tipos de límites infinitos

x S a

x S q.
x S �q
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A lo largo de todo el análisis, no
olvide que �q y q no repre-
sentan números reales y nunca

deben manipularse aritmética-
mente como se hace con los
números.

o bien, lím
xSa

f (x) q.f (x)Sq cuando xS a

o bien, lím
xSa

f (x) q.f (x)S q cuando xS a

y f (x)Sq cuando xS a .f (x)Sq cuando xS a

lím
xSa

f (x) q,  mil 
xSa

f (x) q,

lím
xSa

f (x) q,   lím
xSa

f (x) q,

lím
xSa

f (x) q,   lím
xSa

f (x) q,



En el repaso de las funciones en la unidad 2 se vio que las gráficas de funciones racio-
nales a menudo poseen asíntotas. Se vio que las gráficas de las funciones racionales 
y eran semejantes a las gráficas en la figura 3.5.2c) y 3.5.1a), respectivamente. El
eje y, es decir, x = 0, es una asíntota vertical para cada una de estas funciones. Las gráficas de

y (4)

se obtienen al desplazar las gráficas y horizontalmente unidades. Como se
observa en la FIGURA 3.5.3, x a es una asíntota vertical para las funciones racionales en (4).
Se tiene

(5)

y (6)

Los límites infinitos en (5) y (6) son justo casos especiales del siguiente resultado general:

(7)

para n un entero positivo impar y

(8)

para n un entero positivo par. Como consecuencia de (7) y (8), la gráfica de una función racio-
nal se asemeja a la gráfica en la figura 3.5.3a) para n impar o la de la figura
3.5.3b) para n par.

Para una función racional general , donde p y q no tienen factores comu-
nes, por este análisis debe resultar evidente que cuando q contiene un factor n un
entero positivo, entonces la forma de la gráfica cerca de la recta vertical x a debe ser alguna
de las que se muestran en la figura 3.5.3 o su reflexión en el eje x.

EJEMPLO  1 Asíntotas verticales de una función racional

Al inspeccionar la función racional

se observa que x = - 4 y x � 0 son asíntotas verticales para la gráfica de f. Puesto que el deno-
minador contiene los factores y , es de esperar que la gráfica de f cerca
de la recta x = - 4 se asemeje a la figura 3.5.3a) o a su reflexión en el eje x, y la gráfica de
f cerca de x = 0 se asemeje a la figura 3.5.3b) o a su reflexión en el eje x.

Para x próxima a 0 por cualquier lado, resulta fácil ver que Pero para x cerca
de - 4, por ejemplo x = - 4.1 y x = - 3.9, se tiene y respectivamente. Al
usar la información adicional de que sólo hay una intersección x simple (-2, 0), se obtiene la
gráfica de f en la FIGURA 3.5.4.

EJEMPLO  2 Límite por un lado

En la figura 2.6.6 se vio que el eje y, o la recta x � 0, es una asíntota vertical para la función
logarítmica natural f(x) � ln x puesto que

f (x) 6 0,f (x) 7 0
f (x) 7 0.

(x � 0)2(x � (�4))1

f (x) �
x � 2

x2(x � 4)

�

(x � a)n,
f (x) � p(x)>q(x)

y � 1>(x � a)n

�

0a 0y � 1>x2y � 1>x
y �

1
(x � a)2

y �
1

x � a

y � 1>x2
y � 1>x
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b)

x � a

y

x

y �
1

( x � a)2

x � a

y

a)

x

y �
1

x � a

FIGURA 3.5.3 Gráfica de las
funciones en (4)

y

x
1

1

x ��4 x �0

y �
x � 2

x2(x � 4)

FIGURA 3.5.4 Gráfica de la
función en el ejemplo 1

Definición 3.5.1 Asíntota vertical

Se dice que una recta x � a es una asíntota vertical para la gráfica de una función f si por
lo menos una de las seis afirmaciones en (3) es verdadera.

Vea la figura 2.2.1.

y

lím
xSa

1
(x a)2

q.

lím
xSa

1
x a

qlím
xSa

1
x a

q

y lím
xSa

1
(x a)n q,lím

xSa

1
(x a)n q

lím
xSa

1
(x a)n q,

lím
xS0

ln x q.



La gráfica de la función logarítmica es la gráfica de desplazada 3
unidades a la izquierda. Por tanto, x = -3 es una asíntota vertical para la gráfica de

puesto que ln(x + 3) = - q.

EJEMPLO  3 Límite por un lado

Grafique la función .

Solución Al inspeccionar f se observa que su dominio es el intervalo y la intersec-
ción con el eje y es (0, 0). A partir de la tabla siguiente se concluye que f decrece

(�2, q)

f (x) �
x

1x � 2

lím
xS�3�

y � ln(x � 3)

f (x) � ln xy � ln(x � 3)
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y

x

x ��2

y �
x

x � 2

FIGURA 3.5.5 Gráfica de la fun-
ción en el ejemplo 3

Definición 3.5.2 Asíntota horizontal

Se dice que la recta y � L es una asíntota horizontal para la gráfica de una función f si
por lo menos una de las dos declaraciones en (9) es verdadera.

y � L

y

x

a) ƒ(x) → L cuando x → �

y � L

y

x

b) ƒ(x) → L cuando x → ��

y � L

y

x

c) ƒ(x) → L cuando x → ��,
   ƒ(x) → L cuando x → �

y � L1

y � L2

y

x

d) ƒ(x) → L1 cuando x → ��,
   ƒ(x) → L2 cuando x → �

FIGURA 3.5.6 y � L es una asíntota horizontal en a), b) y c); y � L1 y y � L2 son asíntotas horizontales en d)

sin límite cuando x tiende a �2 por la derecha:

f (x) � �q.

Por tanto, la recta x � �2 es una asíntota vertical. La gráfica de f se proporciona en la FIGURA

3.5.5.

Límites en el infinito Si una función f tiende a un valor constante L cuando la variable
independiente x crece sin límite o cuando x decrece sin límite, entonces
se escribe

f (x) � L o f (x) � L (9)

y se dice que f posee un límite en el infinito. A continuación se presentan todas las posibili-
dades para límites en el infinito f (x) y f (x):

• Un límite existe pero el otro no.
• Tanto f (x) como f (x) existen y son iguales al mismo número.

• Tanto f (x) como f (x) existen pero son números diferentes.

• Ni f (x) ni f (x) existen.

Si por lo menos uno de los límites existe, por ejemplo, f (x) = L, entonces la gráfica de f

puede hacerse arbitrariamente próxima a la recta y = L cuando x crece en la dirección positiva.

lím
xSq

lím
xSq

lím
xS�q

lím
xSq

lím
xS�q

lím
xSq

lím
xS�q

lím
xSq

lím
xS�q

lím
xSq

lím
xS�q

(x S �q)(x S q)

lím
xS�2�

En la FIGURA 3.5.6 se han ilustrado algunas asíntotas horizontales típicas. Se observa, junto
con la figura 3.5.6d) que, en general, la gráfica de una función puede tener como máximo dos

asíntotas horizontales, aunque la gráfica de una función racional puede tener
cuando mucho una. Si la gráfica de una función racional f posee una asíntota horizontal y = L,
entonces su comportamiento final es como se muestra en la figura 3.5.6c); es decir:

f (x) � p(x)>q(x)

f (x)S L cuando xS q  y  f (x)S L cuando xSq.

x S �2�
�1.9 �1.99 �1.999 �1.9999

f (x) �6.01 �19.90 �63.21 �199.90



Por ejemplo, si x se vuelve sin límite en la dirección positiva o en la negativa, las funcio-
nes en (4) tienden a 0 y se escribe

(10)

En general, si r es un número racional positivo, y si está definido, entonces

(11)

EJEMPLO  4 Asíntotas horizontal y vertical

El dominio de la función es el intervalo En virtud de (11) puede escri-

birse

Observe que no es posible considerar el límite de f cuando porque la función no está
definida para No obstante, y � 0 es una asíntota horizontal. Luego, por el límite en
infinito

se concluye que x � 2 es una asíntota vertical para la gráfica de f. Vea la FIGURA 3.5.7.

En general, si entonces en la siguiente tabla se resumen los resultados
para límites de las formas F(x), F(x) y F(x). El símbolo L denota un número
real.

lím
xS�q

lím
xSq

lím
xSa

F(x) � f (x)>g(x),

x � 2.
x S q

(�q, 2).f (x) �
4

12 � x

(x � a)r
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Estos resultados también son
verdaderos cuando x – a se sus-
tituye por a – x, en el supuesto
que (a – x)r esté definido.

y

x

x � 2y � 0

y �
 4

1

1

2 � x

FIGURA 3.5.7 Gráfica de la fun-
ción en el ejemplo 4

Se dice que límites de la forma F(x) = �q o F(x) = �q son límites infinitos en
el infinito. Además, las propiedades de los límites dadas en el teorema 3.2.3 se cumplen al
sustituir el símbolo a por o en el supuesto de que los límites existen. Por ejemplo,

(13)

siempre que f (x) y g(x) existan. En el caso del límite de un cociente, también debe

tenerse g(x) 0.

Comportamiento final En la sección 2.3 vimos que la forma en que una función f se com-
porta cuando es muy grande se denomina comportamiento final. Como ya se analizó, si

f (x) = L, entonces la gráfica de f puede hacerse arbitrariamente próxima a la recta y = L

para grandes valores positivos de x. La gráfica de una función polinomial,

se asemeja a la gráfica de para muy grande. En otras palabras, para

(14)

Los términos encerrados en el rectángulo en (14) son irrelevantes cuando la gráfica de una
función polinomial se observa globalmente; es decir, para muy grande. Así, se tiene

(15)

cuando (15) es q o - q dependiendo de an y n. En otras palabras, el límite en (15) consti-
tuye un ejemplo de límite infinito en el infinito.
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L
�q
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L

, L � 0
L
0

, L � 0

el límite es: 0 infinito infinito
(12)



EJEMPLO  5 Límite en el infinito

Evalúe .

Solución No es posible aplicar la ley del límite de un cociente en (13) a la función dada,
puesto que (�6x4

� x2
� 1) � �q y (2x4

� x) � q. No obstante, al dividir el

numerador y el denominador entre x4 podemos escribir

Esto significa que la recta y � �3 es una asíntota horizontal para la gráfica de la función.

Solución alterna En virtud de (14) es posible descartar todas las potencias de x, menos la
más alta:

descartar términos de los recuadros
T

EJEMPLO  6 Límite infinito en el infinito

Evalúe

Solución Por (14),

En otras palabras, el límite no existe.

EJEMPLO  7 Gráfica de una función racional

Grafique la función 

Solución Al inspeccionar la función f se observa que su gráfica es simétrica con respecto al
eje y, la intersección con el eje y es (0, 0) y las asíntotas verticales son x = -1 y x = 1. Luego,
a partir del límite

se concluye que la recta y � �1 es una asíntota horizontal. La gráfica de f se muestra en la
FIGURA 3.5.8.

Otra ley de los límites que se cumple para límites en el infinito es que el límite de una
raíz n-ésima de una función es la raíz n-ésima del límite, siempre que el límite exista y la raíz
n-ésima esté definida. En símbolos, si g(x) � L, entonces

(16)

en el supuesto de que cuando n es par. El resultado también se cumple para x S �q.L � 0

lím
xSq

f (x) �
x2

1 � x2
.

lím
xSq

lím
xSq
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El límite del numerador
existe, así como el límite
del denominador, y el
límite del denominador
no es cero

d

y

x

y � �1

x ��1 x �1

y �
 x2

1 � x2

FIGURA 3.5.8 Gráfica de la
función en el ejemplo 7
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.
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EJEMPLO  8 Límite de una raíz cuadrada

Evalúe

Solución Debido a que el límite de la función racional en el radical existe y es positivo,
puede escribirse

EJEMPLO  9 Gráfica con dos asíntotas horizontales

Determine si la gráfica de tiene asíntotas horizontales.

Solución Puesto que la función no es racional, es necesario investigar el límite de f cuando
y cuando Primero, recuerde del álgebra que es no negativa, o más al

punto,

Luego, volvemos a escribir f como

Los límites de f cuando y son, respectivamente,

y

Por tanto, la gráfica de f tiene dos asíntotas horizontales y � 5 y y � �5. La gráfica de f, que
es semejante a la figura 3.5.6d), se proporciona en la FIGURA 3.5.9.

En el siguiente ejemplo se ve que la forma del límite dado es pero el límite
existe y no es 0.

EJEMPLO  10 Uso de racionalización

Evalúe

Solución Debido a que es una función par (compruebe que
) con dominio , si f (x) existe, debe ser el mismo que f (x).

Primero racionalizamos el numerador:
lím

xS�q
lím
xSq

(�q, q)f (�x) � f (x)
f (x) � x2

� 2x4
� 7x2

� 1

q � q,

x S �qx S q

f (x) �

5x

2x2

2x2
� 4

2x2

�

5x0x 0
2x2

� 4

2x2

�

5x0x 0
A1 �

4
x2

.

2x2
� 0x 0 � e x,

�x,
x � 0
x 6 0.

2x2x S �q.x S q

f (x) �
5x

2x2
� 4
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y
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y � 5

y �
 5x

x2
� 4

FIGURA 3.5.9 Gráfica de la
función en el ejemplo 9
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Luego, el numerador y el denominador se dividen entre :

Con ayuda de un SAC, la gráfica de la función f se proporciona en la FIGURA 3.5.10. La recta
es una asíntota horizontal. Observe la simetría de la gráfica con respecto al eje y.

Cuando se trabaja con funciones que contienen la función exponencial natural, los cuatro
siguientes límites ameritan una atención especial:

(17)

Como se analizó en la sección 2.6 y se comprobó por los límites segundo y tercero en (17),
y � 0 es una asíntota horizontal para la gráfica de y Vea la FIGURA 3.5.11.

EJEMPLO  11 Gráfica con dos asíntotas horizontales

Determine si la gráfica de tiene alguna asíntota horizontal.

Solución Debido a que f no es una función racional, es necesario analizar f (x) y
f (x). Primero, en virtud del tercer resultado proporcionado en (17) podemos escribir

Así, y � 6 es una asíntota horizontal. Luego, debido a que e�x
� q por la tabla en (12)

se concluye que

En consecuencia, y � 0 es una asíntota horizontal. La gráfica de f se muestra en la FIGURA

3.5.12.

Funciones compuestas El teorema 3.3.3, el límite de una función compuesta, se cumple
cuando a se sustituye por o y el límite existe. Por ejemplo, si g(x) � L y f es
continua en L, entonces

(18)

El resultado del límite en (16) es justo un caso especial de (18) cuando El resul-
tado en (18) también se cumple para El último ejemplo ilustra a (18) cuando implica
un límite en .q

x S �q.
f (x) � 1n x.

lím
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q�q  
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y � �
7
2

2x4
� x2
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FIGURA 3.5.10 Gráfica de la
función en el ejemplo 10
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FIGURA 3.5.11 Gráficas de
funciones exponenciales
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FIGURA 3.5.12 Gráfica de la
función en el ejemplo 11
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EJEMPLO  12 Otro repaso a una función trigonométrica

En el ejemplo 2 de la sección 3.4 vimos que sen(1 x) no existe. No obstante, el límite en
el infinito, sen(1 x), existe. Por la ecuación (18), podemos escribir

Como se observa en la FIGURA 3.5.13, y � 0 es una asíntota horizontal para la gráfica de f(x) �
sen(1�x). Compare esta gráfica con la mostrada en la figura 3.4.2.

>lím
xSq

>lím
xSq
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3.5 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-9.

y � 0

y

x

y � sen 1
x

FIGURA 3.5.13 Gráfica de la fun-
ción en el ejemplo 12

Fundamentos

En los problemas 1-24, exprese el límite dado como un
número, como o como 

En los problemas 25-32, encuentre f (x) y f (x) para
la función dada f.

25. 26.

27. 28.

29. 30.

31. 32.

En los problemas 33-42, encuentre todas las asíntotas verti-
cales y horizontales para la gráfica de la función dada f.
Trace la gráfica.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

En los problemas 43-46, use la gráfica dada para encontrar:

a) f (x) b) f (x)

c) f (x) d) f (x)

43.

FIGURA 3.5.14 Gráfica para el problema 43

44.

FIGURA 3.5.15 Gráfica para el problema 44

y

y � ƒ(x)

x

y

y � ƒ(x)

x

lím
xSq

lím
xS�q

lím
xS2�

lím
xS2�

f (x) �
x � 3

2x2
� 1

f (x) �
x � 2

2x2
� 1

f (x) �
1 � 1x

1x
f (x) � A x

x � 1

f (x) �
4x2

x2
� 4

f (x) �
1

x2(x � 2)

f (x) �
x2

� x

x2
� 1

f (x) �
x2

x � 1

f (x) �
x

x2
� 1

f (x) �
1

x2
� 1

f (x) �
04x 0 � 0x � 1 0

x
f (x) �

0x � 5 0
x � 5

f (x) � 1 �
2e�x

ex
� e�xf (x) �

ex
� e�x

ex
� e�x

f (x) �
�5x2

� 6x � 3

2x4
� x2

� 1
f (x) �

2x � 1

23x2
� 1

f (x) �
29x2

� 6
5x � 1

f (x) �
4x � 1

2x2
� 1

lím
xSq

lím
xS�q

q.�q,

lím
xSq

sen
1
x

sena lím
xSq

1
x
b sen 0 0.

.2.1

.4.3

.6.5

.8.7

.01.9

.21.11

.41.31

.61.51

.81.71

.02.91

.22.12

.42.32 lím
xSq

lna x
x 8

blím
xS q

sen 1a x

24x2 1
b

lím
xS q

sena px

3 6x
blím

xSq
cosQ5

x
R lím

xSq
(2x2 5x x)lím

xSq
(x 2x2 1 )

lím
xS qB3 2x 1

7 16x
lím
xSqA3x 2

6x 8

lím
xSq
a x

3x 1
b a4x2 1

2x2 x
b3

lím
xSq
a 3x

x 2
x 1
2x 6

b
lím

xS q

1 713 x

213 x
lím
xSq

8 2x

1 42x

lím
xS q

a 6

13 x

1

15 x
blím

xSq
Q5 2

x4
R

lím
xSq

x2

1 x 2
lím
xSq

x2 3x

4x2 5

lím
xSp

cscxlím
xS0

2 sen x
x

lím
xS0

1

2x
lím
xS1

1
(x 1)4

lím
xS2

10
x2 4

lím
xS 4

2
(x 4)3

lím
xS6

4
(x 6)2

lím
xS5

1
x 5



3.6 Límites: un enfoque formal
Introducción En el análisis que se presenta a continuación se considerará un enfoque alterno

a la idea de límite, que se basa en conceptos analíticos más que en conceptos intuitivos. Una
demostración de la existencia de un límite jamás debe estar basada en la habilidad para ela-
borar gráficas o en tablas de valores numéricos. Aunque una buena comprensión intuitiva de
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45.

FIGURA 3.5.16 Gráfica para el problema 45

46.

FIGURA 3.5.17 Gráfica para el problema 46

En los problemas 47-50, trace una gráfica de una función f
que satisface las condiciones dadas.

51. Use una sustitución idónea para evaluar

52. Según la teoría de la relatividad de Einstein, la ma-
sa m de un cuerpo que se mueve con velocidad es

donde m0 es la masa inicial y c

es la velocidad de la luz. ¿Qué ocurre a m cuando

Problemas con calculadora/SAC
En los problemas 53 y 54, use una calculadora o SAC para
investigar el límite dado. Conjeture su valor.

55. Use una calculadora o un SAC para obtener la gráfica
de Use la gráfica para conjeturar los
valores de f(x) cuando

a) , b) y c) .

56. a) Un n-gono regular es un polígono regular de n lados
inscrito en un círculo; el polígono está formado por
n puntos equidistantes sobre el círculo. Suponga que
el polígono que se muestra en la FIGURA 3.5.18 repre-

senta un n-gono regular inscrito en un círculo de
radio r. Use trigonometría para demostrar que el área
A(n) del n-gono está dada por

b) Tiene sentido afirmar que el área A(n) tiende al área
del círculo a medida que aumenta el número de lados
del n-gono. Use una calculadora para obtener A(100)
y A(1 000).

c) Sea en A(n) y observe que cuando 
entonces Use (10) de la sección 3.4 para
demostrar que A(n) �

FIGURA 3.5.18 n-gono inscrito para
el problema 56

Piense en ello

57. a) Suponga que y 
Demuestre que

b) ¿Qué indica el resultado del inciso a) respecto a las
gráficas de f y g, donde es grande?

c) De ser posible, asigne un nombre a la función g.

58. Muy a menudo los estudiantes e incluso los profesores
trazan incorrectamente gráficas desplazadas vertical-
mente. Por ejemplo, las gráficas de y 
están dibujadas incorrectamente en la FIGURA 3.5.19a) pero
lo están correctamente en la figura 3.5.19b). Demuestre
que la figura 3.5.19b) es correcta al mostrar que la dis-
tancia horizontal entre los dos puntos P y Q en la figura
tiende a 0 cuando 

FIGURA 3.5.19 Gráficas para el problema 58
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f (x) es suficiente para continuar con el estudio del cálculo en este texto, en general una
comprensión intuitiva es algo muy vago como para usarlo en la demostración de teoremas. Para
presentar una demostración rigurosa de la existencia de un límite, o para demostrar los impor-
tantes teoremas de la sección 3.2, es necesario empezar con una definición precisa de límite.

Límite de una función Se intentará demostrar que (2x � 6) � 10 al trabajar la siguiente
idea: “Si puede hacerse arbitrariamente próximo a 10 al tomar x suficientemente
próximo a 2, por ambos lados pero diferente de 2, entonces f (x) 10.” Es necesario pre-
cisar los conceptos arbitrariamente próximo y suficientemente próximo. Para establecer una
norma de proximidad arbitraria, se pedirá que la distancia entre los números f(x) y 10 sea
menor que 0.1; es decir,

(1)

Así, ¿cuán próximo a 2 debe estar x para satisfacer (1)? Para averiguarlo, es posible usar álge-
bra normal para volver a escribir la desigualdad

cuando . Al sumar �2 a ambos miembros de esta desigualdad simultánea se
obtiene

Al usar valores absolutos y recordar que la última desigualdad puede escribirse como
Así, para una cercanía arbitrariamente próxima a 10 de 0.1, suficiente-

mente próximo a 2 significa a menos de 0.05. En otras palabras, si x es un número diferente
de 2 tal que su distancia a 2 satisface entonces se garantiza que la distancia de
f(x) a 10 satisface Al expresarlo de otra manera, cuando x es un número
diferente de 2, pero que está en el intervalo abierto (1.95, 2.05) sobre el eje x, entonces f(x)
está en el intervalo (9.9, 10.1) sobre el eje y.

Se intentará generalizar usando el mismo ejemplo. Suponga que (la letra griega épsilon)
denota un número positivo arbitrario que constituye la medida de la proximidad arbitraria al
número 10. Si se pide que

(2)

entonces por y por álgebra, se encuentra que

(3)

De nuevo, al usar valores absolutos y al recordar que la última desigualdad en (3) puede
escribirse como

. (4)

Si se denota por el nuevo símbolo (la letra griega delta), (2) y (4) pueden escribirse como

siempre que

Así, para un nuevo valor para por ejemplo establece la pro-
ximidad correspondiente a 2. Para cualquier número x diferente de 2 en (1.9995, 2.0005),*
puede tenerse la certeza de que f(x) está en (9.999, 10.001). Vea la FIGURA 3.6.1.

Una definición El análisis anterior conduce a la definición de límite.e-d

e � 0.001, d � e>2 � 0.0005e,

0 6 0 x � 2 0 6 d.0 f (x) � 10 0 6 e

de>2 0 6 0 x � 2 0 6
e

2

x � 2,

10 � e 6 2x � 6 6 10 � e

e

0 f (x) � 10 0 6 0.1.
0x � 2 0 6 0.05,

0 6 0x � 2 0 6 0.05.
x � 2,

�0.05 6 x � 2 6 0.05.

1.95 6 x 6 2.05

9.9 6 2x � 6 6 10.1

�lím
xS2

f (x) � 2x � 6
lím
xS2

lím
xSa
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* Por esta razón se usa en lugar de Al considerar f (x), no olvide que f en 2 carece
de importancia.

lím
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0 x � 2 0 6 d.0 6 0 x � 2 0 6 d

y � 2x � 6y

ƒ(x)
10

10 ��

10 ��

2 � � 2 � �2
x

x

FIGURA 3.6.1 f (x) está en
siempre que x

esté en (2 � d, 2 � d), x � 2
(10 � e, 10 � e)

Definición 3.6.1 Definición de límite 

Suponga que una función f está definida en todas partes sobre un intervalo abierto, excepto
quizás en un número a en el intervalo. Entonces

f(x) � L

significa que para todo existe un número tal que

siempre que 0 6 0x � a 0 6 d.0 f (x) � L 0 6 e

d 7 0e 7 0,

lím
xSa

0 f (x) 10 0 6 0.1  o   9.9 6 f (x) 6 10.1.

0 f (x) 10 0 6 e  o  10 e 6 f (x) 6 10 e,

2
e

2
6 x 6 2

e

2
  o  

e

2
6 x 2 6

e

2
.



Sea f(x) = L y suponga que es el número que “funciona” en el sentido de la

definición 3.6.1 para un e 7 0 dado. Como se muestra en la FIGURA 3.6.2a), toda x en
con la posible excepción de a mismo, tendrá entonces una imagen f(x)

en Además, en la figura 3.6.2b), una elección para la misma tam-
bién “funciona” en el sentido de que toda x diferente a a en proporciona f(x)
en No obstante, la figura 3.6.2c) muestra que al escoger un 
más pequeño, demanda encontrar un nuevo valor de Observe en la figura 3.6.2c) que x está
en pero no en de modo que f(x) no necesariamente está en
(L � e1, L � e1).

(a � d1, a � d1),(a � d, a � d)
d.

e1, 0 6 e1 6 e,(L � e, L � e).
(a � d1, a � d1)

ed1 6 d(L � e, L � e).
(a � d, a � d),

d 7 0lím
xSa
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y

x
x

L � �

L � �

L

a � � a a � �

a) Un � que funciona para un � dado

ƒ(x)

y

x

L � �

L � �

L

a � �
a � �1

a a � �
a � �1

b) Un �1 más pequeño también funciona
    para el mismo �

c) Un �1 más pequeño requiere un �1� �. 
    Para x en (a � �, a � �), f (x) no
    necesariamente está en (L � �1, L � �1)

y

x

ƒ(x)

x

L � �
L � �1

L � �

L � �1
L

a � � a a � �

a � �1 a � �1

FIGURA 3.6.2 f (x) está en siempre que x esté en (a � d, a � d), x � a(L � e, L � e)

Este límite se analizó en (1) y
(2) de la sección 3.1.

EJEMPLO  1 Uso de la definición 3.6.1

Demuestre que (5x � 2) � 17.

Solución Para cualquier arbitrario sin importar cuán pequeño sea, se quiere encon-
trar un de modo que

siempre que

Para hacer lo anterior, considere

Así, para hacer sólo es necesario hacer
es decir, se escoge 

Verificación Si entonces implica

EJEMPLO  2 Uso de la definición 3.6.1

Demuestre que 

Solución Para

Así,

siempre que se tiene es decir, se escoge

EJEMPLO  3 Un límite que no existe

Considere la función

f (x) � e0, x � 1
2, x 7 1.

d � e.0 6 0x � (�4) 0 6 e;

` 16 � x2

4 � x
� 8 ` � 0x � (�4) 0 6 e

` 16 � x2

4 � x
� 8 ` � 04 � x � 8 0 � 0�x � 4 0 � 0x � 4 0 � 0x � (�4) 0x � �4,

5 0x � 3 0 6 e0 6 0x � 3 0 6 e>5,

d � e>5.
0 6 0 x � 3 0 6 e>5;0 (5x � 2) � 17 0 � 5 0x � 3 0 6 e,

0 (5x � 2) � 17 0 � 05x � 15 0 � 5 0x � 3 0 .
0 6 0x � 3 0 6 d.0 (5x � 2) � 17 0 6 e

d

e 7 0,

lím
xS3

o bien, 0 (5x 2) 17 0 6 e  o bien,  0 f (x) 17 0 6 e.05x 15 0 6 e
lím

xS 4

16 x2

4 x
8.



En la FIGURA 3.6.3 se reconoce que f tiene una discontinuidad de tipo salto en 1, de modo que
f (x) no existe. No obstante, para demostrar este último hecho, se procederá indirectamente.

Suponga que el límite existe; a saber, f (x) L. Luego, por la definición 3.6.1 sabemos

que para la elección debe existir un tal que

siempre que

Luego, a la derecha de 1 se escoge Puesto que

debe tenerse

(5)

A la izquierda de 1, se escoge Pero

implica (6)

Al resolver las desigualdades en valor absoluto (5) y (6) se obtiene, respectivamente,

Puesto que ningún número L puede satisfacer estas dos desigualdades, concluimos que
f (x) no debe existir.

En el siguiente ejemplo se considera el límite de una función cuadrática. Veremos que en
este caso encontrar la requiere un poco más de ingenio que en los ejemplos 1 y 2.

EJEMPLO  4 Uso de la definición 3.6.1

Demuestre que (�x2
� 2x � 2) � �6.

Solución Para un arbitrario es necesario encontrar un tal que

Luego,

(7)

En otras palabras, se quiere hacer Pero puesto que hemos acordado exa-
minar valores de x cerca de 4, sólo se consideran aquellos valores para los cuales
Esta última desigualdad da o, de manera equivalente, En conse-
cuencia, podemos escribir Entonces, por (7),

implica .

Si ahora se escoge como el mínimo de los dos números 1 y escrito d = mín{1, e 7}
se tiene

implica

El razonamiento en el ejemplo 4 es sutil. En consecuencia, merece la pena dedicar unos
minutos para volver a leer el análisis que está inmediatamente después de la definición 3.6.1,

0�x2
� 2x � 2 � (�6) 0 6 7 0x � 4 0 6 7 . e

7
� e.0 6 0x � 4 0 6 d

>e>7,d

0�x2
� 2x � 2 � (�6) 0 6 7 0 x � 4 00 6 0 x � 4 0 6 1

0x � 2 0 6 7.
5 6 x � 2 6 7.3 6 x 6 5

0 x � 4 0 6 1.
0x � 2 0 0x � 4 0 6 e.

 � 0 x � 2 0 0x � 4 0 . � 0 (x � 2)(x � 4) 0 0�x2
� 2x � 2 � (�6) 0 � 0 (�1)(x2

� 2x � 8) 0
d 7 0e 7 0

lím
xS4

d

lím
xS1

 ` f  a1 �
d

2
b � L ` � 00 � L 0 � 0L 0 6

1
2

.

 0 6 `1 �
d

2
� 1 ` � `�d

2
` 6 d

x � 1 � d>2.

` f  a1 �
d

2
b � L ` � 02 � L 0 6

1
2

.

0 6 `1 �
d

2
� 1 ` � ` d

2
` 6 d

x � 1 � d>2.

0 6 0 x � 1 0 6 d.0 f (x) � L 0 6
1
2

d 7 0e �
1
2

�lím
xS1

lím
xS1

126 UNIDAD 3 Límite de una función

y

x
1

FIGURA 3.6.3 El límite de f no
existe cuando x tiende a 1 en el
ejemplo 3

Este límite se analizó en el
ejemplo 1 de la sección 3.1.

3
2
6 L 6

5
2
  y  

1
2
6 L 6

1
2

.

0 x2 2x 2 ( 6) 0 6 e  siempre que  0 6 0x 4 0 6 d.



volver a examinar la figura 3.3.2b) y luego volver a pensar en por qué d = mín{1, e 7} es el
que “funciona” en el ejemplo. Recuerde que el valor de puede escogerse arbitrariamente;

considere para, por ejemplo, e = 8, e = 6 y 

Límites laterales A continuación se presentan las definiciones de los límites laterales,
f (x) y f (x).lím

xSa�
lím
xSa�

e � 0.01.d

ed
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Definición 3.6.2 Límite por la izquierda

Suponga que una función f está definida sobre un intervalo abierto (c, a). Entonces

f(x) � L

significa que para todo existe una tal que

siempre que a � d 6 x 6 a.0 f (x) � L 0 6 e

d 7 0e 7 0

lím
xSa�

Definición 3.6.3 Límite por la derecha

Suponga que una función f está definida sobre un intervalo abierto (a, c). Entonces

f(x) � L

significa que para todo existe una tal que

siempre que a 6 x 6 a � d.0 f (x) � L 0 6 e

d 7 0e 7 0

lím
xSa�

Definición 3.6.4 Límites infinitos

i ) f(x) � q significa que para todo M 7 0 existe un tal que f(x) 7 M siempre

que 
ii) f(x) � �q significa que para todo M 6 0 existe un tal que f(x) 6 M siem-

pre que 0 6 0 x � a 0 6 d.
d 7 0lím

xSa

0 6 0x � a 0 6 d.
d 7 0lím

xSa

EJEMPLO  5 Uso de la definición 3.6.3

Demuestre que 

Solución Primero, podemos escribir

.

Luego, siempre que En otras palabras, se escoge 

Verificación Si entonces implica

o bien,

Límites que implican el infinito Los dos conceptos de límite infinito

y límite en el infinito

se formalizan en las dos secciones siguientes.
Recuerde que un límite infinito es un límite que no existe cuando .x S a

01x � 0 0 6 e.01x 0 6 e

0 6 1x 6 e0 6 x 6 e2,

d � e2.0 6 x 6 0 � e2.01x � 0 0 6 e

01x � 0 0 � 01x 0 � 1x

lím
xS0�
1x 0.

f (x)Sq (o bien, q) cuando xS a

f (x)S L cuando xSq (o bien, q)



Los incisos i) y ii) de la definición 3.6.4 se ilustran en la FIGURA 3.6.4a) y en la figura 3.6.4b),
respectivamente. Recuerde, si f (x) S q (o - q) cuando entonces x � a es una asín-
tota vertical para la gráfica de f. En el caso en que cuando entonces f(x)
puede hacerse más grande que cualquier número positivo arbitrario (es decir, f(x) 7 M) al
tomar x suficientemente próximo a a (es decir, ).0 6 0 x � a 0 6 d

x S a,f (x) S q
x S a,
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FIGURA 3.6.5 Límites en el infinito

y

x

y � M

a � �

a) Para un M dado, siempre que
    a � � � x � a � �, x � a,
    se tiene que ƒ(x) 	 M

a � �ax

ƒ(x)

b) Para un M dado, siempre que
    a � � � x � a � �, x � a,
    se tiene que ƒ(x) � M

y

x

y � M

a � � a � �a x

ƒ(x)

FIGURA 3.6.4 Límites infinitos cuando x S a

Definición 3.6.5 Límites en el infinito

i ) f (x) � L si para todo existe un N 7 0 tal que 

siempre que x 7 N.
ii ) f (x) � L si para todo existe un N 6 0 tal que 

siempre que x 6 N.

0 f (x) � L 0 6 ee 7 0,lím
xS�q

0 f (x) � L 0 6 ee 7 0,lím
xSq

y

x
x

ƒ(x)

L � �

L � �

N

L

a) Para un � dado, x 	 N implica
    L � � � f (x) � L � �

y

x
x

ƒ(x)

N

L � �

L � �

L

b) Para un � dado, x � N implica
    L � � � f (x) � L � �

Los cuatro límites infinitos por un lado

se definen de forma análoga a la proporcionada en las definiciones 3.6.2 y 3.6.3.

Los incisos i) y ii) de la definición 3.6.5 se ilustran en la FIGURA 3.6.5a) y en la figura 3.6.5b),
respectivamente. Recuerde, si cuando x S q (o - q), entonces y � L es una asín-
tota horizontal para la gráfica de f. En el caso en que cuando entonces la
gráfica de f puede hacerse arbitrariamente próxima a la recta y L (es decir, )
al tomar x suficientemente lejos sobre el eje x positivo (es decir, x 7 N).

0 f (x) � L 0 6 e�

x S q,f (x) S L
f (x) S L

f (x)Sq cuando xS a ,  f (x)S q cuando xS a

f (x)Sq cuando xS a ,  f (x)S q cuando xS a



EJEMPLO  6 Uso de la definición 3.6.5i )

Demuestre que

Solución Por la definición 3.6.5i), para cualquier e 7 0 es necesario encontrar un número
N 7 0 tal que

siempre que

Luego, al considerar x 7 0, tenemos

siempre que . Entonces, se escoge . Por ejemplo, si entonces
garantiza que siempre que

Posdata: Un poco de historia Después de esta sección tal vez esté de acuerdo con el filó-
sofo, predicador, historiador y científico inglés William Whewell (1794-1866), quien escribió
en 1858 que “Un límite es una concepción. . . peculiar”. Durante muchos años después de la
invención del cálculo en el siglo XVII, los matemáticos discutían y debatían acerca de la natu-
raleza de un límite. Había la percepción de que la intuición, las gráficas y ejemplos numéri-
cos de razones de cantidades que desaparecen proporcionan cuando mucho un cimiento ines-
table para tal concepto fundamental. Como se verá al principio de la siguiente unidad, el
concepto de límite juega un papel central en cálculo. El estudio del cálculo pasó por varios
periodos de creciente rigor matemático empezando con el matemático francés Augustin-Louis
Cauchy y luego con el matemático alemán Karl Wilhelm Weierstrass.

Augustin-Louis Cauchy (1789-1857) nació durante una época de convulsión
en la historia de Francia. Cauchy estaba destinado a iniciar una revolución por
sí mismo en matemáticas. Por muchas contribuciones, pero especialmente
debido a sus esfuerzos por clarificar cuestiones matemáticas oscuras, su
demanda incesante por contar con definiciones satisfactorias y demostraciones
rigurosas de teoremas, Cauchy a menudo es denominado “padre del análisis
moderno”. Escritor prolífico cuyo trabajo sólo ha sido superado por unos cuan-

tos, Cauchy produjo casi 800 artículos sobre astronomía, física y matemáticas. Sin embargo,
la misma mentalidad que siempre estaba abierta y preguntaba sobre ciencia y matemáticas tam-
bién era estrecha y no cuestionaba muchas otras áreas. Franca y arrogante, la postura apasio-
nada de Cauchy respecto a asuntos políticos y religiosos a menudo lo alejaron de sus colegas.

Karl Wilhelm Weierstrass (1815-1897) ¡Uno de los analistas matemáticos
más destacados del siglo XIX sin haber tenido ningún grado académico!
Después de especializarse en leyes en la Universidad de Bonn, aunque con-
centrado en esgrima y en beber cerveza durante cuatro años, Weierstrass se
“graduó” en la vida real sin ningún título. Al necesitar trabajo, Weierstrass
aprobó un examen estatal y recibió un certificado para enseñar en 1841.
Durante 15 años como profesor de enseñanza secundaria, su genio matemático

dormido floreció. Aunque la cantidad de sus investigaciones publicadas era modesta, especial-
mente en comparación con la de Cauchy, la calidad de estos trabajos impresionó tanto a
la comunidad matemática alemana que se le otorgó un doctorado, honoris causa, de la
Universidad de Königsberg, y finalmente fue contratado como profesor en la Universidad de
Berlín. Una vez ahí, Weierstrass obtuvo reconocimiento internacional como matemático y como
maestro de matemáticas. Una de sus estudiantes fue Sonja Kowalewski, la más grande mate-
mática del siglo XIX. Fue Karl Weierstrass quien dotó de sólidos fundamentos al concepto de
límite con la definición .e-d

x 7 300.0 f (x) � 3 0 6 0.01N � 3>(0.01) � 300
e � 0.01,N � 3>ex 7 3>e ` 3x

x � 1
� 3 ` � ` �3

x � 1
` �

3
x � 1

6
3
x

6 e

x 7 N.` 3x
x � 1

� 3 ` 6 e
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Cauchy

Weierstrass

lím
xSq

3x
x 1

3.
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3.6 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-9.

Fundamentos

En los problemas 1-24, use las definiciones 3.6.1, 3.6.2 o
3.6.3 para demostrar el resultado sobre límites dado.

25. Para a 7 0, use la identidad

y el hecho de que para demostrar que

26. Demuestre que (1�x) � . [Sugerencia: Considere

sólo los números x tales que 1 6 x 6 3.]

En los problemas 27-30, demuestre que f(x) no existe.

27.

28.

29.

30.

En los problemas 31-34, use la definición 3.6.5 para demos-
trar el resultado de límites dado.

Piense en ello
35. Demuestre que f (x) � 0,

donde

lím
xS0

f (x) �
1
x

; a � 0

f (x) � e x, x � 0
2 � x, x 7 0

; a � 0

f (x) � e 1, x � 3
�1, x 7 3

; a � 3

f (x) � e 2, x 6 1
0, x �  1

; a � 1

lím
xSa

1
2lím

xS2

1x � 0

01x � 1a 0 � 01x � 1a 0 . 1x � 1a

1x � 1a
�

0x � a 0
1x � 1a

.2.1

.4.3

.6.5

.8.7

.01.9

.21.11

13.

14.

.61.51

.81.71

19.

20.

.22.12

.42.32 lím
xS5

(x2 2x) 35lím
xS1

(x2 2x 4) 3

lím
xS2

(2x2 4) 12lím
xS3

x2 9

lím
xS1

f (x) 3, f (x) e0, x 1
3, x 7 1

lím
xS0

f (x) 1, f (x) e2x 1, x 6 0
2x 1, x 7 0

lím
xS(1>2)

12x 1 0lím
xS0
15x 0

lím
xS0

8x3 0lím
xS0

x2 0

lím
xS1

2x3 5x 2 2x 5
x2 1

7

lím
xS0

8x 5 12x 4

x4
12

lím
xS3

x 2 7x 12
2x 6

1
2

lím
xS 5

x2 25
x 5

10

lím
xS1>28(2x 5) 48lím

xS2

2x 3
4

1
4

lím
xS1

(9 6x) 3lím
xS0

(3x 7) 7

lím
xS0

(x 4) 4lím
xS 1

(x 6) 5

lím
xS4

2x 8lím
xS3

x 3

lím
xS 2
p plím

xS5
10 10

lím
xSa
1x 1a.

.23.13

.43.33 lím
xS q

x2

x2 3
1lím

xS q

10x
x 3

10

lím
xSq

2x
3x 8

2
3

lím
xSq

5x 1
2x 1

5
2

f (x) e x, x racional
0, x irracional.

Competencia final de la unidad 3
Las respuestas de los problemas impares comienzan en la página RES-10.

A. Falso/verdadero _____________________________________________________

En los problemas 1-22, indique si la afirmación dada es falsa (F) o verdadera (V).

7. Si f(x) � 3 y g(x) � 0, entonces f(x)�g(x) no existe. _____

8. Si f(x) existe y g(x) no existe, entonces f(x)g(x) no existe. _____

9. Si f(x) � q y g(x) � q, entonces f(x)�g(x) � 1. _____

10. Si f(x) � q y g(x) � q, entonces [ f(x) � g(x)] � 0. _____

11. Si f es una función polinomial, entonces f(x) � q. _____lím
xSq

lím
xSa

lím
xSa

lím
xSa

lím
xSa

lím
xSa

lím
xSa

lím
xSa

lím
xSa

lím
xSa

lím
xSa

lím
xSa

lím
xSa

1. _____ 2. _____

3. _____ 4. _____

5. no existe. _____ 6. no existe. _____lím
zS1

z3 8z 2

z2 9z 10
lím

xS0
tan 1Q1

x
R lím

xSq
e2x x2

qlím
xS0

0x 0
x

1

lím
xS5
2x 5 0lím

xS2

x3 8
x 2

12



12. Toda función polinomial es continua sobre _____

13. Para existe un número c en tal que f(c) � 0. _____

14. Si f y g son continuas en el número 2, entonces f g es continua en 2. _____

15. La función entero mayor no es continua sobre el intervalo [0, 1]. _____

16. Si f (x) y f (x) existen, entonces f(x) existe. _____

17. Si una función f es discontinua en el número 3, entonces f(3) no está definido. _____

18. Si una función f es discontinua en el número a, entonces (x � a) f(x) � 0. _____

19. Si f es continua y , existe una raíz de f(x) � 0 en el intervalo [a, b]. _____

20. La función es discontinua en 5. _____

21. La función tiene una asíntota vertical en x � �1. _____

22. Si y � x � 2 es una recta tangente a la gráfica de la función y � f(x) en , enton-
ces f(3) � 1. _____

B. Llene los espacios en blanco __________________________________________

En los problemas 1-22, llene los espacios en blanco.

15. Si y f(4) 9, entonces f (x) � _____.

16. Suponga que para toda x. Entonces f (x)�x2
� _____.

17. Si f es continua en un número a y f (x) � 10, entonces _____.

18. Si f es continua en , y g(x) � 10, entonces [g(x) � f(x)] � _____.

19. es _________ (continua/discontinua) en el número .

20. La ecuación tiene precisamente _____ raíces en el intervalo 

21. La función tiene una discontinuidad removible en x 2. Para quitar

la discontinuidad, es necesario definir que f(2) sea _____.

22. Si g(x) � �9 y entonces f (g(x)) � _____.

C. Ejercicios ___________________________________________________________

En los problemas 1-4, trace una gráfica de la función f que satisface las condiciones dadas.

lím
xS�5

f (x) � x 2,lím
xS�5

�f (x) �
10
x

�
x 2

� 4
x � 2

(�q, q).e�x 2

� x 2
� 1

1
2f (x) � • 2x � 1

4x2
� 1

, x �
1
2

0.5, x �
1
2

lím
xS5

lím
xS5

x � 5, f (5) � 2

f (a) �
.

lím
xSa

lím
xS0

x2
� x4>3 � f (x) � x2

lím
xS4�

�f (x) � 2(x � 4)> 0x � 4 0 , x � 4,

(3, f (3))

f (x) �
1x

x � 1

f (x) � • x 2
� 6x � 5
x � 5

, x � 5

4, x � 5

f (a) f (b) 6 0

lím
xSa

lím
xSa

lím
xSa�

lím
xSa�
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En los problemas 5-10, establezca cuáles de las condiciones a)-j) son aplicables a la gráfica
de y � f(x).
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1.

2.

3.
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FIGURA 3.R.1 Gráfica
FIGURA 3.R.2 Gráfica
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para el problema 5
para el problema 6

para el problema 7

8. 9. 10.

FIGURA 3.R.4 Gráfica
FIGURA 3.R.5 Gráfica FIGURA 3.R.6 Gráficapara el problema 8
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En los problemas 11 y 12, trace la gráfica de la función dada. Determine los valores numéri-
cos en caso de haber alguno, en que f es continua.

11. 12.

En los problemas 13-16, determine intervalos sobre los que la función dada es continua.

13. 14.

15. 16.

17. Encuentre un número k de modo que

sea continua en el número 3.

18. Encuentre números a y b tales que

sea continua en todas partes.
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La derivada

En esta unidad La palabra calculus es una forma diminutiva de la palabra calx, que significa
“piedra”. En civilizaciones antiguas, piedras pequeñas o guijarros se usaban a menudo como
medio de reconocimiento. En consecuencia, la palabra calculus se refiere a cualquier método
sistemático de computación. No obstante, durante los últimos siglos la connotación de la
palabra cálculo ha evolucionado para significar esa rama de las matemáticas relacionada con
el cálculo y la aplicación de entidades conocidas como derivadas e integrales. Así, el tema
conocido como cálculo se ha dividido en dos áreas amplias pero relacionadas: el cálculo
diferencial y el cálculo integral.

En esta unidad se inicia el estudio del cálculo diferencial.
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Competencia específica

Comprender el concepto de derivada para aplicarlo como la herramienta que estudia
y analiza la variación de una variable con respecto a otra.



4.1 El problema de la recta tangente
Introducción En un curso de cálculo se estudian muchas cosas diferentes, pero como se

mencionó en la introducción de la sección 3.1, el tema “cálculo” por lo regular se divide en
dos amplias áreas —relacionadas entre sí— denominadas cálculo diferencial y cálculo inte-
gral. El análisis de cada uno de estos temas suele comenzar con un problema de motivación
que implica la gráfica de una función. El estudio del cálculo diferencial se motiva con el
siguiente problema.

• Encontrar la recta tangente a la gráfica de una función f,

mientras el estudio del cálculo integral se motiva con el siguiente problema:

• Encontrar el área bajo la gráfica de una función f.

El primer problema se abordará en esta sección y el segundo se analizará en el libro Matemá-

ticas 2 de esta serie.

Recta tangente a una gráfica La palabra tangente surge del verbo latino tangere, que sig-
nifica “tocar”. Quizá recuerde del estudio de geometría plana que una tangente a un círculo
es una recta L que corta, o toca, al círculo exactamente en un punto P. Vea la FIGURA 4.1.1. No
resulta tan fácil definir una recta tangente a la gráfica de una función f. La idea de tocar tras-
lada del concepto de recta tangente a la gráfica de una función, pero la idea de cortar la grá-

fica en un punto no lo hace.
Suponga que y = f (x) es una función continua. Si, como se muestra en la FIGURA 4.1.2, f posee

una recta tangente L a su gráfica en un punto P, entonces ¿cuál es la ecuación de esta recta? Para
contestar esta pregunta requerimos las coordenadas de P y la pendiente mtan de L. Las coordena-
das de P no presentan ninguna dificultad, puesto que un punto sobre la gráfica de una función f se
obtiene al especificar un valor de x en el dominio de f. Así, las coordenadas del punto de tangen-
cia en x = a son (a, f (a)). En consecuencia, el problema de encontrar una recta tangente se vuelve
en el problema de encontrar la pendiente mtan de la recta. Como medio para aproximar mtan, es
fácil encontrar las pendientes msec de rectas secantes (del verbo latino secare, que significa “cor-
tar”) que pasan por el punto P y cualquier otro punto Q sobre la gráfica. Vea la FIGURA 4.1.3.

Pendiente de rectas secantes Si las coordenadas de P son (a, f(a)) y las coordenadas de
Q son entonces como se muestra en la FIGURA 4.1.4, la pendiente de la recta
secante que pasa por P y Q es

o bien, (1)

La expresión en el miembro derecho de la igualdad en (1) se denomina cociente diferencial.
Cuando se hace que h asuma valores que cada vez son más próximos a cero, es decir, cuando

, entonces los puntos se mueven en la curva cada vez más cerca del
punto . Intuitivamente, es de esperar que las rectas secantes tiendan a la recta tan-
gente L, y que cuando Es decir,

en el supuesto de que el límite existe. Esta conclusión se resume en una forma equivalente del
límite usando el cociente diferencial (1).

h S  0.msec S  mtan

P(a, f  (a))
Q(a � h, f (a � h))h S  0

(a � h, f (a � h)),
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FIGURA 4.1.1 La recta tangente L
toca un círculo en el punto P

Recta
tangente
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P

Recta
tangente en
P(a, ƒ(a))

L

x
a

y
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y 

Recta
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Rectas
secantes

L

Q

P(a, ƒ(a))

FIGURA 4.1.2 Recta tangente L a
una gráfica en el punto P

FIGURA 4.1.3 Pendientes de rec-
tas secantes aproximan la
pendiente mtan de L

Definición 4.1.1 Recta tangente con pendiente

Sea y � f(x) continua en el número a. Si el límite

(2)

existe, entonces la recta tangente a la gráfica de f en (a, f(a)) es la recta que pasa por el
punto (a, f(a)) con pendiente mtan.

Recta
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P(a, ƒ(a))
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ƒ(a � h) �ƒ(a)
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FIGURA 4.1.4 Rectas secantes
giran en la recta tangente L
cuando h S 0

.msec

f (a h) f (a)
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f (a h) f (a)
(a h) a

mtan lím
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msec

mtan lím
hS0

f (a h) f (a)
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Directrices para calcular (2)

i) Evaluar f(a) y 
ii) Evaluar la diferencia Simplificar.

iii) Simplificar el cociente diferencial

.

iv) Calcular el límite del cociente diferencial

f (a � h) � f (a)
h

f (a � h) � f (a).
f (a � h).

Justo como muchos de los problemas analizados antes en esta unidad, observe que el límite
en (2) tiene la forma indeterminada 0�0 cuando 

Si el límite en (2) existe, el número mtan también se denomina pendiente de la curva
en .

El cálculo de (2) es esencialmente un proceso de cuatro pasos, tres de los cuales implican
sólo precálculo matemático: álgebra y trigonometría. Si los tres primeros pasos se llevan a cabo
con precisión, el cuarto, o paso de cálculo, puede ser la parte más sencilla del problema.

(a, f (a))y � f (x)

h S  0.

.lím
hS0

f (a h) f (a)
h

En muchas instancias, el cálculo de la diferencia en el paso ii) es el más
importante. Resulta imperativo que usted simplifique este paso cuanto sea posible. Un consejo
de cómo hacerlo: en muchos problemas que implican el cálculo de (2) es posible factorizar h de
la diferencia 

EJEMPLO  1 El proceso de cuatro pasos

Encuentre la pendiente de la recta tangente a la gráfica de en x � 1.

Solución El procedimiento de cuatro pasos presentado antes se usa con el número 1 en lugar
del símbolo a.

i) El paso inicial es el cálculo de f(1) y f(1 � h). Se tiene y

ii) Luego, por el resultado en el paso precedente, la diferencia es:

iii) Ahora, el cálculo del cociente diferencial es directo.
De nuevo, se usan los resultados del paso precedente:

iv) Ahora el último paso es fácil. Se observa que el límite en (2) es

La pendiente de la recta tangente a la gráfica de en (1, 3) es 2.

EJEMPLO  2 Ecuación de la recta tangente

Encuentre una ecuación de la recta tangente cuya pendiente se halló en el ejemplo 1.

y � x2
� 2

f ( 1 � h) � f (1)
h

f (1) � 12
� 2 � 3,

y � x2
� 2

f (a � h) � f (a).

f (a � h) � f (a)

Nota

observe el factor de hd

por el paso precedente

d d

las h se canceland

mtan lím
hS0

f (1 h) f (1)
h

lím
hS0

(2 h) 2.

f (1 h) f (1)
h

h (2 h)
h

2 h.

h(2 h).

2h h2

f (1 h) f (1) 3 2h h2 3

3 2h h2.

(1 2h h2) 2

f (1 h) (1 h)2 2



Solución Se conocen el punto de tangencia (1, 3) y la pendiente mtan � 2, de modo que por
la ecuación punto-pendiente de una recta se encuentra

o bien,

Observe que la última ecuación es consistente con las intersecciones x y y de la recta mos-
trada en la FIGURA 4.1.5.

EJEMPLO  3 Ecuación de la recta tangente

Encuentre una ecuación de la recta tangente a la gráfica de en x � 2.

Solución Se empieza por usar (2) para encontrar mtan con a identificada como 2. En el
segundo de los cuatro pasos es necesario combinar dos fracciones simbólicas por medio de un
común denominador.

i) Se tiene y 

ii)

iii) El último resultado debe dividirse entre h o, más precisamente, entre . Se invierte

y multiplica por

iv) Por (2), mtan es

Como f(2) � 1, el punto de tangencia es (2, 1) y la pendiente de la recta tangente en (2, 1)
es . Con base en la ecuación punto-pendiente de una recta, la recta tangente es

o

Las gráficas de y � 2�x y la recta tangente en (2, 1) se muestran en la FIGURA 4.1.6.

EJEMPLO  4 Pendiente de una recta tangente

Encuentre la pendiente de la recta tangente a la gráfica de en x � 5.

Solución Al sustituir a por 5 en (2) se tiene:

i) y

ii) La diferencia es

.

Debido a que se espera encontrar un factor de h en esta diferencia, procedemos a
racionalizar el numerador:

f (5 � h) � f (5) � 14 � h � 2

f (5) � 15 � 1 � 14 � 2,

f (x) � 1x � 1

y � �
1
2

 x � 2.y � 1 �
1
2

 (x � 2)

mtan � �
1
2

1
h

:

h
1

f (2 � h) � 2>(2 � h).f (2) � 2>2 � 1

f (x) � 2>x

y � 2x � 1.y � 3 � 2(x � 1)
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FIGURA 4.1.5 Recta tangente en
el ejemplo 2
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FIGURA 4.1.6 Recta tangente en
el ejemplo 3

Punto de tangencia

(2, 1)

x

y

La pendiente es mtan � �

y�
2
x

1
2

h
2 h

.

2 2 h
2 h

2
2 h

1
1

. 2 h
2 h

f (2 h) f (2)
2

2 h
1

mtan lím
hS0

 

f (2 h) f (2)
h

lím
hS0

  

1
2 h

1
2

.

f (2 h) f (2)
h

h
2 h

h
1

h
2 h

. 1
h

1
2 h

.

.f (5 h) 15 h 1 14 h



mtan lím
hS0

f (a h) f (a)
h

lím
hS0

m(a h) b (ma b)
h

lím
hS0

mh
h

lím
hS0

m m.

iii) Así, el cociente diferencial es:

iv) El límite en (2) es

La pendiente de la recta tangente a la gráfica de en (5, 2) es 

El resultado obtenido en el siguiente ejemplo no es sorprendente.

EJEMPLO  5 Recta tangente a una recta

Para cualquier función lineal y � mx � b, la recta tangente a su gráfica coincide con la recta
misma. Así, no de manera inesperada, la pendiente de la recta tangente para cualquier número
x � a es

Tangentes verticales El límite en (2) puede no existir para una función f en x � a y aun así
ser una tangente en el punto La recta tangente a una gráfica puede ser vertical, en cuyo
caso su pendiente está indefinida. El concepto de tangente vertical se abordará en la sección 4.2.

EJEMPLO  6 Recta tangente vertical

Aunque por esta ocasión no se abundará en los detalles, puede demostrarse que la gráfica de
posee una tangente vertical en el origen. En la FIGURA 4.1.7 se observa que el eje y,

es decir, la recta x 0, es tangente a la gráfica en el punto (0, 0).

Una tangente que puede no existir La gráfica de una función f que es continua en un
número a no tiene por qué poseer una recta tangente en el punto Una recta tangente
no existirá cuando la gráfica de f tenga un pico pronunciado en En la FIGURA 4.1.8 se
indica qué puede ser erróneo cuando la gráfica de la función tiene un “pico”. En este caso f
es continua en a, pero las rectas secantes que pasan por P y Q tienden a L2 cuando Q S P,
y las rectas secantes que pasan por P y Q� tienden a una recta diferente L1 cuando Q¿ S P.
En otras palabras, el límite en (2) no existe porque los límites laterales del cociente diferen-
cial son diferentes (cuando y cuando .

EJEMPLO  7 Gráfica con un pico

Demuestre que la gráfica de no tiene tangente en (0, 0).f (x) � 0 x 0
h S 0�)h S 0�

(a, f (a)).
(a, f (a)).

�

f (x) � x1>3

(a, f (a)).

1
4.f (x) � 1x � 1

f (5 � h) � f (5)
h
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éste es el factor de hd
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FIGURA 4.1.7 Tangente vertical
en el ejemplo 6
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Solución La gráfica de la función valor absoluto en la FIGURA 4.1.9 tiene un pico en el origen.
Para demostrar que la gráfica de f no posee una recta tangente en el origen es necesario exa-
minar

Por la definición de valor absoluto

observamos que

Puesto que los límites por la derecha y por la izquierda no son iguales, se concluye que el
límite (2) no existe. Aunque la función es continua en x � 0, la gráfica de f no
posee ninguna tangente en (0, 0).

Razón de cambio media En contextos diferentes el cociente diferencial en (1) y (2), o pen-
diente de la recta secante, se escribe en términos de símbolos alternos. El símbolo h en (1) y
(2) a menudo se escribe como y la diferencia se denota por , es decir,
el cociente diferencial es

(3)

Además, si , entonces y (3) es lo mismo que

(4)

La pendiente de la recta secante que pasa por los puntos y se deno-
mina razón de cambio media de la función f sobre el intervalo Así, el límite 
se denomina razón de cambio media instantánea de la función con respecto a x en x0.

Casi todo mundo tiene una noción intuitiva de la velocidad como la razón a la cual se
cubre una distancia en cierto lapso. Cuando, por ejemplo, un autobús recorre 60 mi en 1 h, la
velocidad media del autobús debe haber sido 60 mi/h. Por supuesto, resulta difícil mantener
la razón de 60 mi/h durante todo el recorrido porque el autobús disminuye su velocidad al
pasar por poblaciones y la aumenta al rebasar a otros vehículos. En otras palabras, la veloci-
dad cambia con el tiempo. Si el programa de la compañía de transportes demanda que el auto-
bús recorra las 60 millas de una población a otra en 1 h, el conductor sabe instintivamente que
debe compensar velocidades inferiores a 60 mi/h al conducir a velocidades superiores en otros
puntos del recorrido. Saber que la velocidad media es 60 mi/h no permite, sin embargo, con-
testar la pregunta: ¿cuál es la velocidad del autobús en un instante particular?

Velocidad media En general, la velocidad media o rapidez media de un objeto en movi-
miento está definida por

(5)

Considere un corredor que termina una carrera de 10 km en un tiempo de 1 h 15 min
(1.25 h). La velocidad media del corredor, o rapidez media de la carrera, fue

Pero suponga ahora que deseamos determinar la velocidad exacta y en el instante en que el
corredor ya lleva media hora corriendo. Si se mide que la distancia recorrida en el intervalo
de 0 h a 0.5 h es igual a 5 km, entonces

De nuevo, este número no es una medida, o necesariamente incluso un indicador aceptable,
de la velocidad instantánea y a que el corredor se ha movido 0.5 h en la carrera. Si determi-

¢y>¢xlím
¢xS0

[x0, x1 ] .
(x1, f (x1))(x0, f (x0))¢y>¢x

f (x1) � f (x0)
x1 � x0

�
¢y

¢x
.

¢x � x1 � x0x1 � a � ¢x, x0 � a

¢yf (a � ¢x) � f (a)¢x

f (x) � 0 x 0

0h 0 � eh, h 7 0
�h, h 6 0
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FIGURA 4.1.9 Función en el
ejemplo 7
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namos que a 0.6 h el corredor está a 5.7 km de la línea de salida, entonces la velocidad media
de 0 h a 0.6 h es pro � 5.7/0.6 � 9.5 km/h. No obstante, durante el lapso de 0.5 h a 0.6 h,

El último número es una medida más realista de la razón y. Vea la FIGURA 4.1.10. Al “estirar” el
lapso entre 0.5 h y el tiempo que corresponde a la posición medida cerca de 5 km, se espera
obtener incluso una mejor aproximación a la velocidad del corredor en el instante 0.5 h.

Movimiento rectilíneo Para generalizar el análisis precedente, suponga que un objeto, o
partícula, en el punto P se mueve a lo largo de una recta de coordenadas vertical u horizon-
tal como se muestra en la FIGURA 4.1.11. Además, considere que la partícula se mueve de modo
que su posición, o coordenada, sobre la recta está dada por una función s � s(t), donde t repre-
senta el tiempo. Los valores de s son distancias dirigidas medidas a partir de O en unidades
como centímetros, metros, pies o millas. Cuando P está a la derecha o arriba de O, se consi-
dera s > 0, mientras s < 0 cuando P está a la izquierda o abajo de O. El movimiento en línea
recta se denomina movimiento rectilíneo.

Si un objeto, como un automóvil de juguete, se mueve sobre una recta de coordenadas
horizontal, se trata de un punto P en el instante t0 y un punto P� en el instante t1, y entonces
las coordenadas de los puntos, que se muestran en la FIGURA 4.1.12, son s(t0) y s(t1). Por (4), la
velocidad media del objeto en el intervalo de tiempo [t0, t1] es

(6)

EJEMPLO  8 Velocidad media

La altura s por arriba del suelo a que se suelta una pelota desde la parte superior del Arco de
San Luis Missouri está dada por donde s se mide en pies y t en segun-
dos. Vea la FIGURA 4.1.13. Encuentre la velocidad media de la pelota que cae entre el instante en
que se suelta la pelota y el instante en que golpea el suelo.

Solución El instante en que se suelta la pelota está determinado por la ecuación s(t) � 630 o
Así se obtiene t � 0 s. Cuando la pelota golpea el suelo, entonces

s(t) � 0 o Con la última ecuación se obtiene Así, por
(6) la velocidad media en el intervalo de tiempo es

Si se hace , o y entonces (6) es equiva-
lente a

(7)

Esto sugiere que el límite de (7) cuando proporciona la razón de cambio instantá-
nea de s(t) en t � t0, o velocidad instantánea.

¢t S 0

¢s � s(t0 � ¢t) � s(t0),¢t � t1 � t0,t1 � t0 � ¢t

[0, 1315>8]
t � 1315>8 � 6.27 s.�16t 2

� 630 � 0.
�16t 2

� 630 � 630.

s(t) � �16t 2
� 630,

y
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ypro
5.7 5

0.6 0.5
7 km/h.

ypro

cambio en posición
cambio en tiempo

s(t1) s(t0)
t1 t0

.

Definición 4.1.2 Velocidad instantánea

Sea una función que proporciona la posición de un objeto que se mueve en línea
recta. Entonces la velocidad instantánea en el instante t t0 es

(8)

siempre que el límite exista.

�

s � s(t)

ypro

s(1351>8) s(0)

1351>8 0
0 630
1351>8 0

100.40 pies/s.

ypro
¢s
¢t

.

y(t0) lím
¢tS0

s(t0 ¢t) s(t0)
¢t

lím
¢tS0

¢s
¢t

,

Nota: Excepto por notación e interpretación, no hay ninguna diferencia matemática entre (2)
y (8). También, a menudo se omite la palabra instantánea, de modo que entonces se habla de
la razón de cambio de una función o la velocidad de una partícula en movimiento.



140 UNIDAD 4 La derivada

EJEMPLO  9 Otro repaso al ejemplo 8

Encuentre la velocidad instantánea de la pelota que cae en el ejemplo 8 en t � 3 s.

Solución Se usa el mismo procedimiento de cuatro pasos que en los ejemplos anteriores con
s � s(t) dada en el ejemplo 8.

i) Para cualquier 

ii)

iii)

iv) Por (8),

(9)

En el ejemplo 9, el número s(3) � 486 pies es la altura de la pelota por arriba del nivel
del suelo a 3 s de haber sido soltada. El signo menos en (9) es importante porque la pelota se
está moviendo en dirección opuesta a la dirección positiva (hacia arriba), es decir, se mueve
hacia abajo.

¢s
¢t

�
¢t(�16¢t � 96)

¢t
� �16¢t � 96

 � �16(¢t)2
� 96¢t � ¢t(�16¢t � 96)

 s(3 � ¢t) � s(3) � [�16(¢t)2
� 96¢t � 486] � 486

s(3 � ¢t) � �16(3 � ¢t)2
� 630 � �16(¢t)2

� 96¢t � 486.

¢t � 0,s(3) � �16(9) � 630 � 486.

Fundamentos

En los problemas 1-6, trace la gráfica de la función y la recta
tangente en el punto dado. Encuentre la pendiente de la
recta secante que pasa por los puntos que corresponden a los
valores indicados de x.

1.

2.

En los problemas 7-18, use (2) para encontrar la pendiente
de la recta tangente a la gráfica de la función en el valor
dado de x. Encuentre una ecuación de la recta tangente en el
punto correspondiente.

7.

8.

9.

10.

11. 12.

13. 14.

15. 16.

17. 18.

En los problemas 19 y 20, use (2) para encontrar la pendiente
de la recta tangente a la gráfica de la función en el valor

dado de x. Encuentre una ecuación de la recta tangente en el
punto correspondiente. Antes de empezar, revise los límites
en (10) y (14) de la sección 3.4, así como las fórmulas de
suma (17) y (18) en la sección 2.4.

19. f (x) � sen x, x � p 6 20. f (x) � cos x, x � p 4

En los problemas 21 y 22, determine si la recta que pasa por
los puntos sobre la parábola es tangente a la gráfica de f(x)
� x2 en el punto dado.

21. 22.

23. En la FIGURA 4.1.16, la recta mostrada es tangente a la grá-
fica de y � f(x) en el punto indicado. Encuentre una
ecuación de la recta tangente. ¿Cuál es la intersección y
de la recta tangente?

24. En la FIGURA 4.1.17, la recta mostrada es tangente a la grá-
fica de y � f(x) en el punto indicado. Encuentre f(�5).

>>

f (x) �
1
1x

, x � 1f (x) � 1x, x � 4

f (x) � 4 �
8
x

, x � �1f (x) �
1

(x � 1)2
, x � 0

f (x) �
4

x � 1
, x � 2f (x) �

1
2x

, x � �1

f (x) � 8x3
� 4, x �

1
2

f (x) � �2x3
� x, x � 2

f (x) � �x2
� 5x � 3, x � �2

f (x) � x2
� 3x, x � 1

f (x) � �3x2
� 10, x � �1

f (x) � x2
� 6, x � 3

f (x) � x2
� 4x, (0, 0); x � �

1
4

, x � 0

f (x) � �x2
� 9, (2, 5); x � 2, x � 2.5

4.1 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-10.
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(3, 9)

(�1, 1)

y

x

FIGURA 4.1.15 Gráfica
para el problema 22

y

x

(4, 6)

(1, 1)

FIGURA 4.1.14 Gráfica
para el problema 21

y

4

2 6
x

y � ƒ(x)

FIGURA 4.1.16 Gráfica para el problema 23

3.

4.

5.

6. f (x) cos x, A p>3, 1
2B; x p>2, x p>3f (x) sen x, (p>2, 1); x p>2, x 2p>3f (x) 1>x, (1, 1); x 0.9, x 1

f (x) x3, ( 2, 8); x 2, x 1

y(3) lím
¢tS0

¢s
¢t

lím
¢tS0

( 16¢t 96) 96 pies/s.



En los problemas 25-28, use (2) para encontrar una fórmula
para mtan en un punto general sobre la gráfica de f.
Use la fórmula mtan para determinar los puntos en que la
recta tangente a la gráfica es horizontal.

25. 26.

27. 28.

Aplicaciones
29. Un automóvil recorre 290 mi entre Los Ángeles y Las

Vegas en 5 h. ¿Cuál es la velocidad media?
30. Dos señalizaciones sobre una carretera recta están a una

distancia de mi entre sí. Una patrulla observa que un
automóvil cubre la distancia entre las marcas en 40 s.
Suponiendo que la velocidad límite es 60 mi/h, ¿el auto-
móvil será detenido por exceso de velocidad?

31. Un avión se desplaza a 920 mi/h para recorrer los 3 500
km que hay entre Hawaii y San Francisco. ¿En cuántas
horas realiza este vuelo?

32. Una carrera de maratón se lleva a cabo en una pista recta
de 26 mi. La carrera empieza a mediodía. A la 1:30 p.m.,
un corredor cruza la marca de 10 mi y a las 3:10 p.m. el
corredor pasa por la marca de 20 mi. ¿Cuál es la veloci-
dad media del corredor entre la 1:30 p.m. y las 3:10 p.m.?

En los problemas 33 y 34, la posición de una partícula que
se mueve sobre una recta horizontal de coordenadas está
dada por la función. Use (8) para encontrar la velocidad ins-
tantánea de la partícula en el instante indicado.

33. 34.

35. La altura por arriba del suelo a que se suelta una pelota a
una altura inicial de 122.5 m está dada por s(t) � �4.9t 2

� 122.5, donde s se mide en metros y t en segundos.

a) ¿Cuál es la velocidad instantánea en 
b) ¿En qué instante la pelota golpea el suelo?
c) ¿Cuál es la velocidad de impacto?

36. Al ignorar la resistencia del aire, si un objeto se deja
caer desde una altura inicial h, entonces su altura por
arriba del nivel del suelo en el instante t 7 0 está dada
por donde g es la aceleración de la
gravedad.

a) ¿En qué instante el objeto choca contra el suelo?
b) Si h � 100 pies, compare los instantes de impacto

para la Tierra (g � 32 pies/s2), Marte (g � 12
pies/s2) y la Luna (g � 5.5 pies/s2).

c) Use (8) para encontrar una fórmula para la veloci-
dad instantánea y en el instante general t.

d) Use los instantes encontrados en el inciso b) y la
fórmula encontrada en el inciso c) para calcular las

velocidades de impacto correspondientes para la
Tierra, Marte y la Luna.

37. La altura de un proyectil disparado desde el nivel del
suelo está dada por donde s se mide
en pies y t en segundos.

a) Determine la altura del proyectil en t � 2, t � 6,
t � 9 y t � 10.

b) ¿Cuál es la velocidad media del proyectil entre t � 2
y t � 5?

c) Demuestre que la velocidad media entre t = 7 y t = 9
es cero. Interprete físicamente.

d) ¿En qué instante el proyectil choca contra el suelo?
e) Use (8) para encontrar una fórmula para la velocidad

instantánea y en el instante general t.
f ) Use el resultado del inciso d) y la fórmula encontrada

en el inciso e) para aproximar la velocidad de impac-
to final.

g) ¿Cuál es la altura máxima que alcanza el proyectil?

38. Suponga que la gráfica mostrada en la FIGURA 4.1.18 es la
de la función de posición s = s(t) de una partícula que
se mueve en una línea recta, donde s se mide en metros
y t en segundos.

a) Calcule la posición de la partícula en t = 4 y t = 6.
b) Calcule la velocidad media de la partícula entre t = 4

y t = 6.
c) Calcule la velocidad inicial de la partícula; es decir,

su velocidad en t = 0.
d) Calcule el instante en que la velocidad de la partícula

es cero.
e) Determine un intervalo en que la velocidad de la par-

tícula es decreciente.
f ) Determine un intervalo en que la velocidad de la par-

tícula es creciente.

Piense en ello

39. Sea una función par cuya gráfica tiene una recta
tangente m con pendiente Demuestre que la
pendiente de la recta tangente en (-a, f (a)) es -m. [Suge-

rencia: Explique por qué 

40. Sea y = f(x) una función impar cuya gráfica tiene una
recta tangente m con pendiente Demuestre que
la pendiente de la recta tangente en es m.

41. Proceda como en el ejemplo 7 y demuestre que no hay
recta tangente a la gráfica de en (0, 0).f (x) � x2

� 0x 0
(�a, �f (a))

(a, f (a)).

f (�a � h) � f (a � h). ]

(a, f (a)).
y � f (x)

s � �16t 2
� 256t,

s(t) � �
1
2   
gt 2

� h,

t �
1
2?

s(t) � t 2
�

1
5t � 1

, t � 0s(t) ��4t 2
�10t �6, t �3

1
2

f (x) � �x3
� x2f (x) � x3

� 3x

f (x) � 2x2
� 24x � 22f (x) � �x2

� 6x � 1

(x, f (x))
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FIGURA 4.1.17 Gráfica para el problema 24

FIGURA 4.1.18 Gráfica para el problema 38

s

5

5
t

s � s(t)



4.2 La derivada
Introducción En la sección anterior vimos que la recta tangente a una gráfica de una fun-

ción y � f(x) es la recta que pasa por el punto (a, f(a)) con pendiente dada por

siempre que el límite exista. Para muchas funciones suele ser posible obtener una fórmula
general que proporcione el valor de la pendiente de la recta tangente. Esto se lleva a cabo al
calcular

(1)

para cualquier x (para la que existe el límite). Luego sustituimos un valor de x después que
se ha encontrado el límite.

Una definición El límite del cociente de la diferencia en (1) define una función: una fun-
ción que se deriva de la función original y � f(x). Esta nueva función se denomina función
derivada, o simplemente la derivada, de f y se denota por f �.
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Recuerde que mtan también se
denomina pendiente de la curva
en (a, f (a)).

Definición 4.2.1 Derivada

La derivada de una función y � f(x) en x está dada por

(2)

siempre que el límite exista.

A continuación reconsideraremos los ejemplos 1 y 2 de la sección anterior.

EJEMPLO  1 Una derivada

Encuentre la derivada de 

Solución Así como en el cálculo de mtan en la sección 4.1, el proceso de encontrar la deri-
vada f �(x) consta de cuatro pasos:

i)

ii)

iii)

iv)

Por el paso iv) vemos que la derivada de es f ¿(x) � 2x.

Observe que el resultado en el ejemplo 1 de la sección 4.1 se obtiene al evaluar
la derivada en es decir, 

EJEMPLO  2 Valor de la derivada

Para encuentre f ¿A B y Interprete.

Solución Por el ejemplo 1 sabemos que la derivada es f �(x) � 2x. Por tanto,

f ¿(1).1
2f ¿(0),f ¿(�2),f (x) � x2

� 2,

f ¿(1) � 2.x � 1, f ¿(x) � 2x
mtan � 2

f (x) � x2
� 2

f (x) � x2
� 2.

d las h se cancelan

d el punto de tangencia es (�2, 6)

d la pendiente de la recta tangente en (�2, 6) es m � �4

d el punto de tangencia es (0, 2)

d la pendiente de la recta tangente en (0, 2) es m � 0

mtan lím
hS0

f (a h) f (a)
h

lím
hS0

f (x h) f (x)
h

f ¿(x) lím
hS0

f (x h) f (x)
h

lím
hS0

f (x h) f (x)
h

lím
hS0

[2x h ] 2x.

f (x h) f (x)
h

h(2x h)
h

2x h

f(x h) f (x) [x2 2xh h2 2] x2 2 h(2x h)

f(x h) (x h)2 2 x2 2xh h2 2

en x 0, e f (0) 2
f ¿(0) 0

en x 2, e f ( 2) 6
f ¿( 2) 4



Recuerde que la pendiente de una recta horizontal es 0. Así, el hecho de que signi-
fica que la recta tangente es horizontal en (0, 2).

Por cierto, si regresa al proceso de cuatro pasos en el ejemplo 1, encontrará que la deri-
vada de también es Esto tiene sentido intuitivo: puesto que la
gráfica de es una traslación vertical rígida o desplazamiento de la gráfica de

para un valor dado de x, los puntos de tangencia cambian, pero no así la pendiente
de la recta tangente en los puntos. Por ejemplo, en pero los puntos de
tangencia son y 

EJEMPLO  3 Una derivada

Encuentre la derivada de 

Solución Para calcular usamos el teorema del binomio.

i)

ii)

iii)

iv)

La derivada de es f ¿(x) � 3x2.

EJEMPLO  4 Recta tangente

Encuentre una ecuación de la recta tangente a la gráfica de en 

Solución Por el ejemplo 3 tenemos dos funciones y Como vimos en el
ejemplo 2, cuando estas funciones se evalúan en el mismo número se obtiene diferente
información:

Así, por la ecuación punto-pendiente de una recta,* una ecuación de la recta tangente está dada
por

La gráfica de la función y la recta tangente se muestran en la FIGURA 4.2.1.

EJEMPLO  5 Una derivada

Encuentre la derivada de 

Solución En este caso usted debe poder demostrar que la diferencia es

En consecuencia,

La derivada de es f ¿(x) � �1�x2.f (x) � 1�x

d
las fracciones se suman usando
un común denominadorf (x � h) � f (x) �

1
x � h

�
1
x

�
�h

(x � h)x
.

f (x) � 1�x.

x �
1
2

f ¿(x) � 3x2.f (x) � x3

x �
1
2.f (x) � x3

f (x) � x3

f (x � h),

f (x) � x3.

(3, f (3)) � (3, 11).(3, g(3)) � (3, 9)
g¿(3) � 6 � f ¿(3)x � 3,

g(x) � x2
f (x) � x2

� 2
g¿(x) � 2x � f ¿(x).g(x) � x2

f ¿(0) � 0
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Recuerde de sus estudios
de álgebra que

Luego, a se sustituye por x y b
por h.

(a b)3 a3 3a2b
3ab2 b3.

FIGURA 4.2.1 Recta tangente en
el ejemplo 4

y

x

y � x3

�1

�1

1

1

�       �1 1

y �   x �
13

2 8
,

4 4

d el punto de tangencia es (1, 3)

d la pendiente de la recta tangente en (1, 3) es m 2
en x 1, e f (1) 3

f ¿(1) 2.

d el punto de tangencia es (1
2, 9

4)
d la pendiente de la recta tangente en (1

2, 9
4) es m 1

en x 1
2, e f A12B 9

4

f ¿A12B 1

lím
hS0

f (x h) f (x)
h

lím
hS0

[3x2 3xh h2 ] 3x2.

f (x h) f (x)
h

h [3x2 3xh h2 ]
h

3x2 3xh h2

f (x h) f (x) [x3 3x2h 3xh2 h3 ] x3 h (3x2 3xh h2)

f (x h) (x h)3 x3 3x2h 3xh2 h3

d el punto de tangencia es A12, 1
8 B

d la pendiente de la recta tangente en A12, 1
8 B es 34

f Q1
2
R Q1

2
R3 1

8

f ¿Q1
2
R 3Q1

2
R2 3

4
.

y
1
8

3
4
Qx 1

2
R  o bien,  y

3
4

x
1
4

.

lím
hS0

1
(x h)x

1
x 2

.

 lím
hS0

f (x h) f (x)
h

lím
hS0

h
h(x h)x

*N. del RT. También se le conoce como forma punto-pendiente.



Notación A continuación se presenta una lista de la notación común usada en la literatura
matemática para denotar la derivada de una función:

Para una función como escribimos si la misma función se escribe y = x2,
entonces utilizamos y¿ = 2x o En este texto usaremos las tres prime-
ras formas. Por supuesto, en varias aplicaciones se usan otros símbolos. Por tanto, si 
entonces

La notación dy�dx tiene su origen en la forma derivada de (3) de la sección 4.1. Al sustituir h por
y denotar la diferencia por en (2), a menudo la derivada se define como

(3)

EJEMPLO  6 Una derivada donde se usa (3)

Use (3) para encontrar la derivada de 

Solución En el procedimiento de cuatro pasos, la manipulación algebraica importante tiene
lugar en el tercer paso:

i)

ii)

iii)

iv)

La derivada de es 

Valor de una derivada El valor de la derivada en un número a se denota por los símbolos

EJEMPLO  7 Una derivada

Por el ejemplo 6, el valor de la derivada de en, por ejemplo, x � 9 se escribe

En forma alterna, para evitar la torpe barra vertical, simplemente escribimos 

Operadores diferenciación El proceso de encontrar o calcular una derivada se denomina
diferenciación. Así, la diferenciación es una operación que se lleva a cabo sobre una función

y ¿(9) �
1
6.

dy

dx
`
x�9

�
1

21x
`
x�9

�
1
6

.

y � 1x

f ¿(a), 
dy

dx
`
x�a

, y¿(a), Dxy `
x�a

.

dy dx 1>A21x B.y � 1x

y � 1x.

¢yf (x � h) � f (x)¢x

z � t 
2, 

Dx y � 2x.dy�dx � 2x, 
f ¿(x) � 2x; f (x) � x2,

f ¿(x), 
dy

dx
, y ¿, Dy, Dx y.
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d racionalización del
numerador

dz

dt
2t  o bien,  z¿ 2t.

dy

dx
lím
¢xS0

 
f (x ¢x) f (x)

¢x
lím
¢xS0

 
¢y

¢x
.

lím
¢xS0

 
¢y

¢x
lím
¢xS0

 
1

1x ¢x 1x

1
1x 1x

1
21x

.

 
1

1x ¢x 1x

 
¢x

¢x (1x ¢x 1x)

 
x ¢x x

¢x(1x ¢x 1x)

 
1x ¢x 1x

¢x
. 1x ¢x 1x

1x ¢x 1x

 
¢y

¢x

f (x ¢x) f (x)
¢x

1x ¢x 1x
¢x

¢y f (x ¢x) f (x) 1x ¢x 1x

f (x ¢x) 1x ¢x



y � f(x). La operación de diferenciación de una función con respecto a la variable x se repre-
senta con los símbolos d�dx y Dx. Estos símbolos se denominan operadores diferenciación.
Por ejemplo, los resultados en los ejemplos 1, 3 y 6 pueden expresarse, a su vez, como

El símbolo

Diferenciabilidad Si el límite en (2) existe para un número x dado en el dominio de f, se
dice que la función es diferenciable en x. Si una función f es diferenciable en todo número x
en los intervalos abiertos (- q, b) y entonces f es diferenciable sobre el inter-
valo abierto. Si f es diferenciable sobre entonces se dice que f es diferenciable en
todas partes. Se dice que una función f es diferenciable sobre un intervalo cerrado [a, b]
cuando f es diferenciable sobre el intervalo abierto (a, b), y

(4)

ambos existen. Los límites en (4) se denominan derivadas por la derecha y por la izquierda,
respectivamente. Una función es diferenciable sobre cuando es diferenciable sobre

y tiene derivada por la derecha en a. Una definición semejante en términos de una deri-
vada por la izquierda se cumple para diferenciabilidad sobre Además, puede demos-
trarse que:

• Una función es diferenciable en un número c en un intervalo (a, b) si y sólo si (5)

Tangentes horizontales Si es continua en un número a y entonces la recta
tangente en es horizontal. En los ejemplos 1 y 2 vimos que el valor de la derivada f ¿(x)
= 2x de la función en x = 0 es Por tanto, la recta tangente a la gráfica
es horizontal en (0, f (0)) o (0, 0). Se deja como ejercicio (vea el problema 7 en la sección
“Desarrolle su competencia 4.2”) comprobar por la definición 4.2.1 que la derivada de la función
continua es Observe en este último caso que f ¿(x) = 0
cuando o x = 2. Hay una tangente horizontal en el punto 

Dónde f no es diferenciable Una función no tiene derivada en x � a si

i) la función es discontinua en x � a, o
ii) la gráfica de f tiene un pico en (a, f(a)).

Además, puesto que la derivada proporciona la pendiente, f no es diferenciable

iii) en un punto (a, f(a)) en el cual la recta tangente es vertical.

El dominio de la derivada f �, definido por (2), es el conjunto de números x para los cuales el
límite existe. Por tanto, el dominio de f � necesariamente es un subconjunto del dominio de f.

EJEMPLO  8 Diferenciabilidad

a) La función es diferenciable para todos los números reales x; es decir,
el dominio de es 

b) Debido a que es discontinua en x � 0, f no es diferenciable en x � 0 y
en consecuencia no es diferenciable sobre cualquier intervalo que contenga 0.

f (x) � 1>x (�q, q).f ¿(x) � 2x
f (x) � x2

� 2

(2, f (2)) � (2, 5).�2x � 4 � 0
f ¿(x) � �2x � 4.f (x) � �x2

� 4x � 1

f ¿(0) � 0.f (x) � x2
� 2

(a, f (a))
f ¿(a) � 0, y � f (x)

f ¿ (c) f ¿ (c).

(�q, b ] .
(a, q)

[a, q)

(�q, q),
(a, q),(a, b),

d
dx

 (x2
� 2) � 2x, 

d
dx

 x3
� 3x2, 

d
dx
1x �

1
21x

.
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dy

dx
  entonces significa  

d
dx

 y.

f ¿(b) lím
hS0 

 
f (b h) f (b)

h

f ¿ (a) lím
hS0 

f (a h) f (a)
h



EJEMPLO  9 Otro repaso al ejemplo 7 de la sección 4.1

En el ejemplo 7 de la sección 4.1 vimos que la gráfica de no tiene tangente en el
origen (0, 0). Así, no es diferenciable en x = 0. Pero es diferenciable
sobre los intervalos abiertos y En el ejemplo 5 de la sección 4.1 demostra-
mos que la derivada de una función lineal es Por tanto, para x 0
tenemos y así También, para y así f ¿(x) =
-1. Puesto que la derivada de f es una función definida por partes,

que podemos graficar como cualquier función. En la FIGURA 4.2.2b) observamos que f � es dis-
continua en x � 0.

Con símbolos diferentes, lo que demostramos en el ejemplo 9 es que f ��(0) � �1 y f ��(0)
� 1. Puesto que f ��(0) f ��(0) por (5) se concluye que f no es diferenciable en 0.

Tangentes verticales Sea continua en un número a. Si 0 f ¿(x) 0 � q, entonces

se dice que la gráfica de f tiene una tangente vertical en (a, f(a)). Las gráficas de muchas
funciones con exponentes radicales tienen tangentes verticales.

En el ejemplo 6 de la sección 4.1 se mencionó que la gráfica de tiene una línea
tangente vertical en (0, 0). Verificamos esta afirmación en el siguiente ejemplo.

EJEMPLO  10 Tangente vertical

Se deja como ejercicio demostrar que la derivada de está dada por

(Vea el problema 55 de esta sección.) Aunque f es continua en 0, resulta evidente que f � no está
definida en ese número. En otras palabras, f no es diferenciable en x � 0. Además, debido a
que

tenemos cuando Esto es suficiente para afirmar que en (0, f(0)) o (0, 0)
hay una recta tangente y que es vertical. En la FIGURA 4.2.3 se muestra que las rectas tangentes a
la gráfica a cualquier lado del origen se vuelven cada vez más pronunciadas cuando 

La gráfica de una función f también puede tener una tangente vertical en un punto 
si f es diferenciable sólo por un lado de a, es continua por la izquierda (derecha) en a, y se
cumple 0 f ¿(x) 0 S q cuando x S a� o 0 f ¿(x) 0 S q cuando x S a�.

EJEMPLO  11 Tangente vertical por un lado

La función no es diferenciable sobre el intervalo porque por la derivada
observamos que no existe. La función es continua sobre

pero diferenciable sobre Además, debido a que f es continua en 0 y f ¿(x)
= q, en el origen (0, 0) hay una tangente vertical. En la FIGURA 4.2.4 vemos que la tangente
vertical es el eje y.

Las funciones y son continuas en todas partes. En particular, ambas
son continuas en 0 pero ninguna es diferenciable en ese número. En otras palabras, la conti-
nuidad en un número a no es suficiente para garantizar que una función sea diferenciable en
a. No obstante, si f es diferenciable en a, entonces f debe ser continua en ese número. Este
hecho se resume en el siguiente teorema.

f (x) � x 
1>3f (x) � 0x 0

lím
xS0�

(0, q).[0, q)
f (x) � 1xf ¿�(0)f ¿(x) � 1>A21x B [0, q)f (x) � 1x

(a, f (a))

x S 0.

x S 0.0 f ¿(x) 0 S q

f  ¿(x) �
1

3x2>3.

f (x) � x1>3

y � x 
1>3

lím
xSa

y � f (x)

f ¿(x) � e 1, x 7 0
�1, x 6 0,

f (x) � 0x 0 � �xx 6 0, f ¿(x) � 1.f (x) � 0x 0 � x

�f ¿(x) � m.f (x) � mx � b
(�q, 0).(0, q)

f (x) � 0x 0f (x) � 0x 0 f (x) � 0x 0
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y

x

ƒ(x) �

a) Función valor absoluto de ƒ

x

FIGURA 4.2.2 Gráficas de f y f �

en el ejemplo 9

y

x

ƒ�(x) � 1, x  >  0

ƒ�(x) � �1, x  <  0

b) Gráfica de la derivada ƒ�

FIGURA 4.2.3 Rectas tangentes a
la gráfica de la función en el
ejemplo 10

y

x

y � x1/3

FIGURA 4.2.4 Tangente vertical
en el ejemplo 11

y

El eje y es
tangente a
la gráfica
en (0, 0)

x

y � x

Importante

Teorema 4.2.1 Diferenciabilidad implica continuidad

Si f es diferenciable en un número a, entonces f es continua en a.

lím
xS0

f ¿(x) q  y  lím
xS0

f ¿(x) q



DEMOSTRACIÓN Para demostrar la continuidad de f en un número a, es suficiente demos-
trar que f(x) � f(a) o bien, de manera equivalente, que [ f(x) - f(a)] = 0. La hipóte-
sis es que

existe. Si se hace entonces cuando tenemos Por tanto, el límite ante-
rior equivale a

Luego, puede escribirse

Posdata: Un poco de historia Se sabe que Isaac Newton (1642-1727), matemático y físico
inglés, fue el primero en establecer muchos de los principios básicos del cálculo en manuscri-

tos no publicados sobre el método de fluxiones, fechado en 1665. La palabra
fluxión se originó por el concepto de cantidades que “fluyen”; es decir, canti-
dades que cambian a cierta razón. Newton usó la notación de punto para
representar una fluxión, o como se conoce ahora: la derivada de una función.
El símbolo nunca fue popular entre los matemáticos, de modo que en la actua-
lidad lo usan esencialmente los físicos. Debido a razones tipográficas, la así
denominada “notación flyspeck” ha sido sustituida por la notación prima.

Newton alcanzó fama imperecedera con la publicación de su ley de la gravitación universal en
su tratado monumental Philosophiae Naturalis Principia Mathematica en 1687. Newton tam-
bién fue el primero en demostrar, usando el cálculo y su ley de gravitación, las tres leyes empí-
ricas de Johannes Kepler del movimiento planetario, y el primero en demostrar que la luz blanca
está compuesta de todos los colores. Newton fue electo al Parlamento, nombrado guardián de
la Real Casa de Moneda y nombrado caballero en 1705. Sir Isaac Newton dijo acerca de estos
logros: “Si he visto más lejos que otros, es porque me apoyé en los hombros de gigantes.”

El matemático, abogado y filósofo alemán Gottfried Wilhelm Leibniz (1646-
1716) publicó una versión corta de su cálculo en un artículo en un periódico
alemán en 1684. La notación dy�dx para la derivada de una función se debe
a Leibniz. De hecho, fue Leibniz quien introdujo la palabra función en la lite-
ratura matemática. Pero, puesto que es bien sabido que los manuscritos de
Newton sobre el método de fluxiones datan de 1665, Leibniz fue acusado
de apropiarse de las ideas de Newton a partir de esta obra no publicada.

Alimentado por orgullos nacionalistas, durante muchos años hubo una controversia sobre quién
de los dos “inventó” el cálculo. Hoy los historiadores coinciden en que ambos llegaron a
muchas de las premisas más importantes del cálculo de manera independiente. Leibniz y
Newton se consideran “coinventores” del tema.

y
.

y
.

x S a.h S 0x � a � h, 

lím
xSa

lím
xSa
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NOTAS DESDE EL AULA

i) En el análisis precedente vimos que la derivada de una función es en sí misma una fun-
ción que proporciona la pendiente de una recta tangente. La derivada no es, sin embar-
go, una ecuación de una recta tangente. También, afirmar que 
es una ecuación de la tangente en es incorrecto. Recuerde que f ¿(x) debe evaluar-
se en x0 antes de usarla en la forma punto-pendiente. Si f es diferenciable en x0, enton-
ces una ecuación de la recta tangente en es .y � y0 � f ¿(x0) . (x � x0)(x0, y0)

(x0, y0)
y � y0 � f ¿(x) . (x � x0)

d

dx

Newton

Leibniz

f ¿(a) lím
hS0

f (a h) f (a)
h

f ¿(a) lím
xSa

f (x) f (a)
x a

.

f ¿(a) . 0 0.

d ambos límites existenlím
xSa

f (x) f (a)
x a

. lím
xSa

 (x a)

d multiplicación por
x a
x a

1lím
xSa

 [ f (x) f (a)] lím
xSa

f (x) f (a)
x a

. (x a)



Fundamentos

En los problemas 1-20, use (2) de la definición 4.2.1 para
encontrar la derivada de la función dada.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

20.

En los problemas 21-24, use (2) de la definición 4.2.1 para
encontrar la derivada de la función dada. Encuentre una
ecuación de la recta tangente a la gráfica de la función en el
valor indicado de x.

21.

22.

23. 24.

En los problemas 25-28, use (2) de la definición 4.2.1 para
encontrar la derivada de la función dada. Encuentre uno o
varios puntos sobre la gráfica de la función dada donde la
recta tangente es horizontal.

25. 26.

27. 28.

En los problemas 29-32, use (2) de la definición 4.2.1 para
encontrar la derivada de la función dada. Encuentre uno o

varios puntos sobre la gráfica de la función dada donde la
recta tangente es paralela a la recta dada.

29.

30.

31.

32.

En los problemas 33 y 34, demuestre que la función dada no
es diferenciable en el valor indicado de x.

33.

34.

En la demostración del teorema 4.2.1 vimos que un plantea-
miento alterno de la derivada de una función f en a está dado
por

(6)

siempre que el límite exista. En los problemas 35-40, use (6)
para calcular f �(a).

35. 36.

37. 38.

39. 40.

41. Encuentre una ecuación de la recta tangente mostrada en
la FIGURA 4.2.5. ¿Cuáles son los valores f(�3) y f �(�3)?

FIGURA 4.2.5 Gráfica
del problema 41

y

1

�3
x

y �ƒ(x)

f (x) � 1xf (x) �
4

3 � x

f (x) � x4f (x) � x3
� 4x2

f (x) � x2
� 3x � 1f (x) � 10x2

� 3

f (x) � e 3x, x 6 0
�4x, x � 0

; x � 0

f (x) � e�x � 2, x � 2
2x � 4, x 7 2

; x � 2

f (x) � 61x � 2; �x � y � 2

f (x) � �x3
� 4; 12x � y � 4

f (x) � x2
� x; �2x � y � 0

f (x) �
1
2

 x 
2

� 1; 3x � y � 1

f (x) � x3
� x2

� 1f (x) � x3
� 3x

f (x) � x (x � 5)f (x) � x2
� 8x � 10

y � 2x � 1 �
6
x

; x � 2y � x �
1
x

; x � 1

f (x) �
1
3

x 
3

� 2x � 4; x � 0

f (x) � 4x 
2

� 7x; x � �1

f (x) � 12x � 1

f (x) �
1
x

�
1
x2

y �
2x � 3
x � 4

y �
x

x � 1
y �

2
x � 1

y � 3x4y � �x3
� 15x2

� x

f (x) � 2x3
� x2f (x) � x3

� x

f (x) � (2x � 5)2y � (x � 1)2

f (x) �
1
2

 x2
� 6x � 7f (x) � �x2

� 4x � 1

f (x) � �x2
� 1f (x) � 3x2

f (x) � pxf (x) � �3x � 5

f (x) � x � 1f (x) � 10
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ii) Aunque en esta sección se han recalcado las pendientes, no olvide el análisis sobre razo-
nes de cambio promedio y razones de cambio instantáneas en la sección 4.1. La deriva-
da f �(x) también es la razón de cambio instantánea de la función y � f(x) con respec-
to a la variable x. En las secciones que siguen se dirá más sobre estas razones.

iii) Los matemáticos de los siglos XVII al XIX creían que una función continua solía tener una
derivada. (En esta sección hemos observado excepciones.) En 1872, el matemático ale-
mán Karl Weierstrass destruyó de manera contundente este principio al publicar un ejem-
plo de función que es continua en todas partes pero no es diferenciable en ninguna.

4.2 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-10.

f ¿(a) lím
xSa

f (x) f (a)
x a

,

.91 f (x)
1
1x



42. Encuentre una ecuación de la recta tangente mostrada en
la FIGURA 4.2.6. ¿Cuál es el valor de f �(3)? ¿Cuál es la
intersección de la recta tangente con el eje y?

En los problemas 43-48, trace la gráfica de f � a partir de la
gráfica de f.

43. 44.

45. 46.

47.

48.

En los problemas 49-54, relacione la gráfica de f con una
gráfica de f � de a)-f ).

a) b)

c) d)

e) f )

49. 50.

FIGURA 4.2.13 Gráfica
FIGURA 4.2.14 Gráficadel problema 49
del problema 50

51. 52.

FIGURA 4.2.15 Gráfica

FIGURA 4.2.16 Gráfica

del problema 51

del problema 52

53. 54.

FIGURA 4.2.17 Gráfica FIGURA 4.2.18 Gráfica
del problema 53 del problema 54

Piense en ello

55. Use la definición alterna de la derivada (6) para encon-
trar la derivada de 

[Sugerencia: Observe que ]

56. En los ejemplos 10 y 11 vimos, respectivamente, que las
funciones y tenían tangentes ver-
ticales en el origen (0, 0). Conjeture dónde las gráficas
de y pueden tener tangen-
tes verticales.

57. Suponga que f es diferenciable en todas partes y que
tiene tres propiedades:
i) ii)
iii)

Use (2) de la definición 4.2.1 para demostrar que f �(x)
� f(x) para toda x.

f ¿(0) � 1.
f (0) � 1,f (x1 � x2) � f (x1) f (x2),

y � 1x � 2y � (x � 4) 
1>3

f (x) � 1xf (x) � x 
1>3

x � a � (x 
1>3) 

3
� (a 

1>3) 
3.

f (x) � x 
1>3.

y

x

y �ƒ(x)

y

x

y �ƒ(x)

y

x

y �ƒ(x)y

x

y �ƒ(x)

y

x

y �ƒ(x)y �ƒ(x)

y

x

FIGURA 4.2.12 Gráfica
del problema 48

y

x

y �ƒ(x)

(1, 2)

(3,  �2)

FIGURA 4.2.11 Gráfica
del problema 47

a

a

y

x

y �ƒ(x)

FIGURA 4.2.10 Gráfica
del problema 46

y

45�

60�

x

y �ƒ(x)

a b

FIGURA 4.2.9 Gráfica
del problema 45

y �ƒ(x)

y

45� 45�
x

�1 1

FIGURA 4.2.8 Gráfica
del problema 44

y

x

y �ƒ(x)

FIGURA 4.2.7 Gráfica
del problema 43

y

x

y �ƒ(x) (2,  3)

FIGURA 4.2.6 Gráfica
del problema 42

y

x

9 , 0y �ƒ(x)1

1

2
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y

x

y �ƒ�(x)

y

x

y �ƒ�(x)

y

x

y �ƒ�(x)

y

x

y �ƒ�(x)

y

x

y �ƒ�(x)
y

x

y �ƒ�(x)



58. a) Suponga que f es una función par diferenciable sobre
Use razonamiento geométrico para expli-

car por qué es decir, que f ¿ es una
función impar.

b) Suponga que f es una función impar diferenciable
sobre Use razonamiento geométrico para
explicar por qué es decir, que f ¿ es
una función par.

59. Suponga que f es una función diferenciable sobre 
tal que f(a) = 0 y f(b) = 0. Experimente con gráficas
para decidir si la siguiente afirmación es falsa o verda-
dera: hay un número c en (a, b) tal que f �(c) = 0.

60. Trace gráficas de varias funciones f que tengan la pro-
piedad para toda x en ¿Qué tienen en
común éstas?

Problemas con calculadora/SAC

61. Considere la función donde n es un
entero positivo. Use una calculadora o un SAC para
obtener la gráfica de f para n � 1, 2, 3, 4 y 5. Luego
use (2) para demostrar que f no es diferenciable en x � 0
para n � 1, 2, 3, 4 y 5. ¿Puede demostrar esto para cual-

quier entero positivo n? ¿Cuáles son f ��(0) y f ��(0) para
n 7 1?

f (x) � xn
� 0x 0 ,
[a, b ] .f ¿(x) 7 0

[a, b ]

f ¿(�x) � f ¿(x);
(�q, q).

f ¿(�x) � �f ¿(x);
(�q, q).
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4.3 Derivada de potencias y sumas
Introducción La definición de derivada

(1)

tiene la desventaja evidente de ser más bien molesta y cansada de aplicar. Para encontrar la
derivada de la función polinomial usando la definición anterior sólo es
necesario hacer malabares con 137 términos en los desarrollos del binomio de y

Hay formas más eficaces para calcular derivadas de una función que usar la defini-
ción cada vez. En esta sección, y en las secciones que siguen, veremos que hay algunos ata-
jos o reglas generales a partir de las cuales es posible obtener las derivadas de funciones como

literalmente, con un truco de pluma.
En la última sección vimos que las derivadas de las funciones potencia

eran, a su vez,

Si los miembros derechos de estas cuatro derivadas se escriben

observamos que cada coeficiente corresponde al exponente original de x en f y que el nuevo
exponente de x en f � puede obtenerse a partir del exponente anterior al restarle 1. En otras
palabras, el patrón para la derivada de la función potencia general es

(2)

Derivada de la función potencia En efecto, el patrón ilustrado en (2) se cumple para cual-
quier exponente que sea un número real n, y este hecho se planteará como un teorema formal,
pero en este momento del curso no se cuenta con las herramientas matemáticas necesarias para
demostrar su validez completa. Sin embargo, es posible demostrar un caso especial de esta
regla de potencias; las partes restantes de la demostración se proporcionarán en las secciones
idóneas más adelante.

f (x) � x 
n

f ¿(x) � 2x, f ¿(x) � 3x2, f ¿(x) � �
1
x2

� �x�2, f ¿(x) �
1

21x
�

1
2

 x 
�1>2.

f (x) � x2, f (x) � x3, f (x) �
1
x

� x 
�1, f (x) � 1x � x 

1>2
f (x) � 6x100

� 4x35

(x � h)35.
(x � h)100

f (x) � 6x100
� 4x35

Vea los ejemplos 3, 5 y 6 en la
sección 4.2.

f ¿(x) lím
hS0

f (x h) f (x)
h

.(  )x(  ) 1

el exponente se escribe como múltiplo
T

el exponente disminuye por uno
c

2 . x 2 1, 3 . x 3 1, ( 1) . x 1 1, 
1
2

. x
1
2 1,



DEMOSTRACIÓN La demostración sólo se presenta para el caso donde n es un entero posi-
tivo. A fin de calcular (1) para f(x) � xn usamos el método de cuatro pasos:

i)

ii)

iii)

iv)

EJEMPLO  1 Regla de potencias

Diferencie

a) b) c) d) .

Solución Por la regla de potencias (3),

a) con 

b) con 

c) con 

d) con 

Observe en el inciso b) del ejemplo 1 que el resultado es consistente con el hecho de que
la pendiente de la recta y � x es m � 1. Vea la FIGURA 4.3.1.

dy

dx
� 12x12�1.n � 12:

dy

dx
� Q�2

3
R x 

(�2>3)�1
� �

2
3

 x 
�5>3

� �
2

3x 
5>3,n � �

2
3

 :

dy

dx
� 1x 

1�1
� x 

0
� 1,n � 1:

dy

dx
� 7x 

7�1
� 7x 

6,n � 7:

y � x12y � x 
�2>3y � xy � x 

7
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Teorema 4.3.2 Regla de la función constante

Si f(x) � c es una función constante, entonces f �(x) � 0. (4)

Teorema 4.3.1 Regla de potencias

Para cualquier número real n,

(3)

FIGURA 4.3.1 La pendiente de la
recta m � 1 es consistente con
dy�dx � 1

Vea las Páginas de recursos

para un repaso del teorema del
binomio.

y

x

y � x

m � 1

d
dx

x n nx n 1.

Teorema general del binomio

estos términos S 0 cuando h S 0

lím
hS0
cnxn 1 n(n 1)

2!
xn 1h . . . nxh n 2 hn 1 d nxn 1.

f ¿(x) lím
hS0

f (x h) f (x)
h

nxn 1 n(n 1)
2!

xn 1h . . . nxhn 2 hn 1

f (x h) f (x)
h

h cnxn 1 n(n 1)
2!

xn 1h . . . nxhn 2 hn 1 d
h

h cnxn 1 n(n 1)
2!

xn 1h . . . nxhn 2 hn 1 d
nxn 1h

n(n 1)
2!

xn 2h2 . . . nxhn 1 hn

f(x h) f (x) xn nxn 1h
n(n 1)

2!
xn 2h2 . . . nxhn 1 hn xn

f (x h) (x h) n x n nx n 1h
n(n 1)

2!
x n 2h 2 . . . nxh n 1 h n

⎞ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 

⎞⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪



DEMOSTRACIÓN Si f(x) � c, donde c es cualquier número real, entonces se concluye que
la diferencia es Así, por (1),

El teorema 4.3.2 tiene una interpretación geométrica evidente. Como se muestra en la
FIGURA 4.3.2, la pendiente de la recta horizontal y � c es, por supuesto, cero. Además, el teo-
rema 4.3.2 coincide con (3) en el caso donde y n � 0.x 	 0

f (x � h) � f (x) � c � c � 0.
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Teorema 4.3.3 Regla de la multiplicación por constante

Si c es cualquier constante y f es diferenciable en x, entonces cf es diferenciable en x, y

(5)

Teorema 4.3.4 Reglas de suma y diferencia

Si f y g son diferenciables en x, entonces f � g y f � g son diferenciables en x, y

(6)

(7)

DEMOSTRACIÓN Sea Entonces

EJEMPLO  2 Un múltiplo constante

Diferencie 

Solución Por (3) y (5),

dy

dx
� 5 

d
dx

 x4
� 5(4x3) � 20x3.

y � 5x4.

G(x) � c f (x).

DEMOSTRACIÓN DE (6) Sea EntoncesG(x) � f (x) � g(x).

FIGURA 4.3.2 La pendiente de
una recta horizontal es 0

y

x

(x,  c) (x � h, c)

x � hx

ƒ(x) � c

f ¿(x) lím
hS0

c c
h

lím
hS0

0 0.

d
dx

cf(x) cf ¿(x).

c lím
hS0

f (x h) f (x)
h

cf ¿(x).

lím
hS0

c c f (x h) f (x)
h

d
G¿(x) lím

hS0

G(x h) G(x)
h

lím
hS0

cf(x h) cf(x)
h

d
dx

[ f (x) g(x)] f ¿(x) g¿(x).

d
dx

[ f (x) g(x)] f ¿(x) g¿(x),

f ¿(x) g¿(x).

lím
hS0

f (x h) f (x)
h

lím
hS0

g(x h) g(x)
h

lím
hS0

f (x h) f (x) g(x h) g(x)
h

G¿(x) lím
hS0

G(x h) G(x)
h

lím
hS0

[ f (x h) g(x h)] [ f (x) g(x)]
h

puesto que los límites
existen, el límite de
una suma es la suma
de los límites

S

reordenando términosd



El teorema 4.3.4 se cumple para cualquier suma finita de diferenciables. Por ejemplo, si
f, g y h son diferenciables en x, entonces

Ya que f � g puede escribirse como una suma, f � (�g), no es necesario demostrar (7) puesto
que el resultado se concluye de (6) y (5). Por tanto, el teorema 4.3.4 puede plantearse colo-
quialmente como:

• La derivada de una suma es la suma de las derivadas.

Derivada de un polinomio Dado que sabemos cómo diferenciar potencias de x y múltiplos
constantes de esas potencias, resulta fácil diferenciar sumas de estos múltiplos constantes. La
derivada de una función polinomial es particularmente fácil de obtener. Por ejemplo, ahora
vemos fácilmente que la derivada de la función polinomial mencionada
en la introducción de esta sección, es 

EJEMPLO  3 Polinomio con seis términos

Diferencie 

Solución Al usar (3), (5) y (6) obtenemos

Puesto que por (4), obtenemos

EJEMPLO  4 Recta tangente

Encuentre una ecuación de una recta tangente a la gráfica en el punto
correspondiente a x � �1.

Solución Por la regla de la suma,

Cuando las f y f ¿ se evalúan en el mismo número x � �1, obtenemos

Con la ecuación punto-pendiente obtenemos una ecuación de la recta tangente

Volver a escribir una función En algunas circunstancias, para aplicar una regla de diferen-
ciación de manera eficiente puede ser necesario volver a escribir una expresión en una forma
alterna. Esta forma alterna a menudo es resultado de algo de manipulación algebraica o una
aplicación de las leyes de los exponentes. Por ejemplo, es posible usar (3) para diferenciar las
siguientes expresiones, que primero reescribimos usando las leyes de los exponentes

f ¿(�1) � �13.

f (�1) � 8

f ¿(x) � 3(4x 
3) � 2(3x 

2) � 7(1) � 12x 
3

� 6x 
2

� 7.

f (x) � 3x 
4

� 2x 
3

� 7x

 � 20x4
� 2x3

� 27x2
� 20x � 13.

 
dy

dx
� 4(5x4) �

1
2

 (4x3) � 9(3x2) � 10(2x) � 13(1) � 0

d
dx

  6 � 0

dy

dx
� 4 

d
dx

 x5
�

1
2

  
d
dx

x4
� 9 

d
dx

 x3
� 10 

d
dx

 x2
� 13 

d
dx

 x �
d
dx

  6.

y � 4x5
�

1
2

 x4
� 9x3

� 10x2
� 13x � 6.

f ¿(x) � 600x99
� 140x34.

f (x) � 6x100
� 4x35,
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Vale la pena recordar este
análisis.

d el punto de tangencia es (�1, 8)

d la pendiente de la tangente en (�1, 8) es �13

d
dx

[ f (x) g(x) h(x)] f ¿(x) g¿(x) h¿(x).

y 8 13(x ( 1)) o bien,  y 13x 5.

,

.8x 3, 5x 3>2, 3
2

x1>2
S

la derivada de cada término
usando (3)

4x 2, 10x 1>2, x3>2,S
luego se vuelve a escribir
usando exponentes negativos

4
x2

, 10
x1>2, (x3)1>2

S
las raíces cuadradas se vuelven
a escribir como potencias

S
4
x2

, 10
1x

, 2x3



Una función como puede escribirse de nuevo como dos fracciones

Por la última forma de f, ahora resulta evidente que la derivada f � es

EJEMPLO  5 Volver a escribir los términos de una función

Diferencie 

Solución Antes de diferenciar, los tres primeros términos se vuelven a escribir como poten-
cias de x:

Así,

Por la regla de potencias (3) y (4) obtenemos

EJEMPLO  6 Tangentes horizontales

Encuentre los puntos sobre la gráfica de donde la recta tangente es hori-
zontal.

Solución En un punto (x, f(x)) sobre la gráfica de f donde la tangente es horizontal, debe-
mos tener La derivada de f es y las soluciones de f ¿(x) = -3x2

+ 6x = 0 o son x = 0 y x = 2. Así, los puntos correspondientes son
y Vea la FIGURA 4.3.3.

Recta normal Una recta normal en un punto P sobre una gráfica es una recta perpen-
dicular a la recta tangente en P.

EJEMPLO  7 Ecuación de una recta normal

Encuentre una ecuación de la recta normal a la gráfica de y � x2 en x � 1.

Solución Puesto que sabemos que mtan � 2 en (1, 1). Por tanto, la pendiente
de la recta normal que se muestra en la FIGURA 4.3.4 es el negativo recíproco de la pendiente de
la recta tangente; es decir, Por la forma punto-pendiente de la ecuación de la recta,
entonces una ecuación de la recta normal es

EJEMPLO  8 Tangente vertical

Para la función potencia la derivada es

Observe que f (x) � q mientras f (x) � �q. Puesto que f es continua en x � 0 y 
cuando concluimos que el eje y es una tangente vertical en (0, 0). Este

hecho resulta evidente a partir de la gráfica en la FIGURA 4.3.5.
x S 0,� f ¿(x)� S q

lím
xS0�

lím
xS0�

f ¿(x) �
2
3

 x�1>3
�

2
3x1>3.

f (x) � x 
2>3

m � �
1
2.

dy>dx � 2x,

(2, f (2)) � (2, 6).(0, f (0)) � (0, 2)
�3x(x � 2) � 0

f ¿(x) � �3x2
� 6xf ¿(x) � 0.

f (x) � �x3
� 3x2

� 2

 �
2
1x

�
8
x2

�
2

x4>3.

 
dy

dx
� 4 . 1

2
 x�1>2

� 8 . (�1)x�2
� 6 . Q�1

3
R  x�4>3

� 0

dy

dx
� 4 

d
dx

 x1>2
� 8 

d
dx

 x�1
� 6 

d
dx

 x�1>3
�

d
dx

 10.

y � 4x1>2
� 8x 

�1
� 6x 

�1>3
� 10.

y � 41x �
8
x

�
6

13 x
� 10.

f ¿(x) � 5(�x 
�2) � 2(�2x 

�3) � �
5
x2

�
4
x3

.

f (x) �
5x � 2

x2
�

5x

x2
�

2
x2

�
5
x

�
2
x2

� 5x 
�1

� 2x 
�2.

f (x) � (5x � 2)>x2
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FIGURA 4.3.3 Gráfica de la
función en el ejemplo 6

FIGURA 4.3.4 Recta normal en el
ejemplo 7

1

3

4

5

6

1�1 2 3

y

x

(0, 2)

(2, 6)

y � �x3
� 3x2

� 2

y

x

y � x 2
(1, 1)

tangente
normal

y

x

y � x 2/3

FIGURA 4.3.5 Gráfica de la
función en el ejemplo 8

y 1
1
2

(x 1)  o bien,  y
1
2

x
3
2

.



Cúspide Se dice que la gráfica de en el ejemplo 8 tiene una cúspide en el ori-
gen. En general, la gráfica de una función y f(x) tiene una cúspide en un punto (a, f(a)) si
f es continua en a, f �(x) tiene signos opuestos a cualquier lado de a, y cuando

Derivadas de orden superior Hemos visto que la derivada f �(x) es una función derivada de
y � f (x). Al diferenciar la primera derivada obtenemos otra función denominada segunda deri-
vada, que se denota por f –(x). En términos del símbolo de operación d�dx, la segunda de-
rivada con respecto a x la definimos como la función que se obtiene al diferenciar dos veces
consecutivas a y � f(x):

La segunda derivada suele denotarse por los símbolos

EJEMPLO  9 Segunda derivada

Encuentre la segunda derivada de 

Solución Primero se simplifica la ecuación al escribirla como y � x�3. Luego, por la regla
de potencias (3), tenemos

La segunda derivada se obtiene al diferenciar la primera derivada

Si se supone que todas las derivadas existen, es posible diferenciar una función y � f(x)
tantas veces como se quiera. La tercera derivada es la derivada de la segunda derivada; la
cuarta derivada es la derivada de la tercera derivada, y así sucesivamente. Las derivadas ter-
cera y cuarta se denotan por d3y�dx3 y d4y�dx4, y se definen como

En general, si n es un entero positivo, entonces la n-ésima derivada se define como

Otras notaciones para las primeras derivadas n son

Observe que la notación “prima” se usa para denotar sólo las tres primeras derivadas; después
de eso se usa el supraíndice y así sucesivamente. El valor de la n-ésima derivada de
una función y = f(x) en un número a se denota por

y 
(4), y 

(5),

d 
2y

dx2
�

d
dx

 (�3x�4) � �3(�4x�5) � 12x�5
�

12
x5

.

dy

dx
� �3x�4.

y �
1
x3

.

x S a.
� f ¿(x)� S q

�

f (x) � x2>3
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d
dx
Qdy

dx
R.

f –(x), y–, 
d 2y

dx2
, d 2

dx2
f (x), D2, D2

x.

d 3y

dx3

d
dx
Qd 2y

dx2
R  y  

d 4y

dx4

d
dx
Qd 3y

dx3
R.

d ny

dx n
d
dx
ad n 1y

dx n 1
b.

D x, D 2
x, D 3

x, D 4
x, p , D n

x.

D, D 2, D 3, D 4, p , D n,

d
dx

f (x), d 2

dx 2
f (x), d 3

dx 3
f (x), d 4

dx 4
f (x), p , d n

dx n f (x),

y ¿, y–, y‡, y (4), p , y (n), 
f ¿(x), f –(x), f ‡(x), f (4)(x), p , f (n)(x), 

f (n)(a),  y (n)(a)  y  
d ny

dx n `
x a

.



EJEMPLO  10 Quinta derivada

Encuentre las cinco primeras derivadas de 

Solución Tenemos

Después de reflexionar un momento, usted debe convencerse que al derivar la (n � 1)
veces una función polinomial de grado n el resultado es cero.

 f 
(5)(x) � 0.

 f 
(4)(x) � 48

 f ‡(x) � 48x � 36

 f –(x) � 24x2
� 36x � 14

 f ¿(x) � 8x3
� 18x2

� 14x � 5

f (x) � 2x4
� 6x3

� 7x2
� 5x.
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NOTAS DESDE EL AULA

i) En los diversos contextos de ciencias, ingeniería y negocios, las funciones a menudo
se expresan en otras variables distintas a x y y. De manera correspondiente, la nota-
ción de la derivada debe adaptarse a los nuevos símbolos. Por ejemplo,

Función Derivada

ii) Quizá se pregunte qué interpretación puede darse a las derivadas de orden superior. Si
piensa en términos de gráficas, entonces f – proporciona la pendiente de las rectas tan-
gentes a la gráfica de la función f �; f ‡ proporciona la pendiente de las rectas tangen-
tes a la gráfica de la función f –, y así sucesivamente. Además, si f es diferenciable,
entonces la primera derivada f � proporciona la razón de cambio instantánea de f. En
forma semejante, si f � es diferenciable, entonces f – proporciona la razón de cambio
instantánea de f �.

D ¿(p) �
dD
dp

� �129 � 2p.D(p) � 800 � 129p � p2

r ¿(u) �
dr
du

� 8u � 3r(u) � 4u 
2

� 3u

A¿(r) �
dA
dr

� 2prA(r) � pr 
2

y¿(t) �
dy
dt

� 32y(t) � 32t

d

dx

Fundamentos

En los problemas 1-8, encuentre dy�dx.

1. 2.

3. 4.

5. 6.

7. 8.

En los problemas 9-16, encuentre f �(x). Simplifique.

9.

10.

11.

12. f (x) �
2 x5

� 3 x4
� x3

� 2
x2

f (x) � x3(4 x2
� 5 x � 6)

f (x) � �
2
3

 x6
� 4 x5

� 13 x2
� 8 x � 2

f (x) �
1
5

 x5
� 3x4

� 9x2
� 1

y �
x � x2

1x
y � 41x �

6

23 x2

y � 6x3
� 3x2

� 10y � 7x2
� 4x

y � 4x12y � x9

y � p6y � �18

4.3 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-10.



13. 14.
15. 16.

En los problemas 17-20, encuentre la derivada de la función
dada.

17. 18.

19. 20.

En los problemas 21-24, encuentre una ecuación de la recta tan-
gente a la gráfica de la función dada en el valor indicado de x.

21. 22.

23. 24.

En los problemas 25-28, encuentre el punto o los puntos
sobre la gráfica de la función dada donde la recta tangente es
horizontal.

25. 26.

27. 28.

En los problemas 29-32, encuentre una ecuación de la recta nor-
mal a la gráfica de la función dada en el valor indicado de x.

29. 30.

31. 32.

En los problemas 33-38, encuentre la segunda derivada de la
función dada.

33. 34.

35. 36.

37. 38.

En los problemas 39 y 40, encuentre la derivada de orden
superior indicada.
39.

40.

En los problemas 41 y 42, determine intervalos para los cua-
les f �(x) 7 0 e intervalos para los cuales f �(x) 6 0.

41. 42.

En los problemas 43 y 44, encuentre el punto o los puntos
sobre la gráfica de f donde 

43. 44.

En los problemas 45 y 46, determine intervalos para los cua-
les f –(x) 7 0 e intervalos para los cuales f –(x) 6 0.

45. 46.

Una ecuación que contiene una o más derivadas de una fun-
ción desconocida y(x) se denomina ecuación diferencial. En
los problemas 47 y 48, demuestre que la función satisface la
ecuación diferencial dada.

47.
48.
49. Encuentre el punto sobre la gráfica de f (x) = 2x2 - 3x + 6

donde la pendiente de la recta tangente es 5.

50. Encuentre el punto sobre la gráfica de 
donde la recta tangente es 

51. Encuentre el punto sobre la gráfica de 
donde la pendiente de la recta normal es 2.

52. Encuentre el punto sobre la gráfica de 
donde la recta tangente es paralela a la recta 3x - 2y +
1 = 0.

53. Encuentre una ecuación de la recta tangente a la gráfica
de en el punto donde el valor de
la segunda derivada es cero.

54. Encuentre una ecuación de la recta tangente a la gráfica
de en el punto donde el valor de la tercera deri-
vada es 12.

Aplicaciones
55. El volumen V de una esfera de radio r es 

Encuentre el área superficial S de la esfera si S es la razón
de cambio instantánea del volumen con respecto al radio.

56. Según el físico francés Jean Louis Poiseuille (1799-
1869), la velocidad y del flujo sanguíneo en una arteria
cuya sección transversal circular es constante de radio R
es donde P, n y l son constan-
tes. ¿Cuál es la velocidad del flujo sanguíneo en el valor
de r para el cual y�(r) � 0?

57. La energía potencial de un sistema masa-resorte cuando
el resorte se estira una distancia de x unidades es

donde k es la constante del resorte. La
fuerza ejercida sobre la masa es Encuentre
la fuerza si la constante del resorte es 30 N/m y la can-
tidad de estiramiento es m.

58. La altura s por arriba del nivel del suelo de un proyectil
en el instante t está dada por

donde g, y0 y s0 son constantes. Encuentre la razón de
cambio instantánea de s con respecto a t en t � 4.

Piense en ello
En los problemas 59 y 60, el símbolo n representa un entero
positivo. Encuentre una fórmula para la derivada dada.

59. 60.

61. A partir de las gráficas de f y g en la FIGURA 4.3.6, deter-
mine qué función es la derivada de la otra. Explique ver-
balmente su decisión.

d 
n

dx 
n 

1
x

d 
n

dx 
n x 

n

s(t) �
1
2

 gt 
2

� y0 
t � s0,

1
2

F � �dU�dx.
U(x) �

1
2  
kx 

2,

(P�4nl )(R 
2

� r 
2),y(r) �

V �
4
3pr 

3.

y � x 
4

y � x3
� 3x2

� 4x � 1

f (x) �
1
4x

2
� 2x

f (x) � x2
� x

3x � 9y � 4 � 0.
f (x) � x2

� x

y � x � x3
� 4; x2 y– � 3 x y ¿ � 3 y � 12

y � x�1
� x4; x2 y– � 2 xy ¿ � 4y � 0

f (x) � x3
� x2f (x) � (x � 1)3

f (x) � x4
� 2 x3f (x) � x3

� 12 x2
� 20 x

f –(x) � 0.

f (x) � x3
� 3 x2

� 9 xf (x) � x2
� 8 x � 4

d 
5y>dx 

5y � x4
�

10
x

;

f  
(4)(x)f (x) � 4 x6

� x5
� x3;

f (x) � x � Q 2
x2R3f (x) � 10 x�2

y � 2 x5
� 4 x3

� 6 x2y � (�4 x � 9)2

y � 15 x2
� 241xy � �x2

� 3 x � 7

x � �1f (x) � x4
� x;x � 4f (x) �

1
3

x3
� 2x2;

x � 1y � x3;x � 2y � �x2
� 1;

f (x) � x4
� 4x3f (x) � x3

� 3x2
� 9x � 2

y �
1
3x3

�
1
2x2y � x2

� 8x � 5

x �1f (x) � �x3
� 6x2;x � 4f (x) �

4
1x

� 21x;

x � 2y � �x �
8
x

;x � �1y � 2x3
� 1;

Q(t) �
t5

� 4t2
� 3

6
g(r) �

1
r

�
1
r 

2
�

1
r 

3
�

1
r 

4

p(t) � (2t)�4
� (2t�1)2h(u) � (4u)3

f (x) � (9 � x)(9 � x)f (x) � A41x � 1B2 f (x) � (x3
� x2)3f (x) � x2(x2

� 5)2
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FIGURA 4.3.6 Gráficas para el problema 61

y

1

1
x

y �ƒ(x) y � g (x)



62. A partir de la gráfica de la función y � f(x) dada en la
FIGURA 4.3.7, trace la gráfica de f �.

63. Encuentre una función cuadrática 
tal que f ¿(-1) = 7 y 

64. Se dice que las gráficas de y = f(x) y y = g(x) son orto-
gonales si las rectas tangentes a cada gráfica son perpen-
diculares en cada punto de intersección. Demuestre que
las gráficas de y son ortogonales.

65. Encuentre los valores de b y c de modo que la gráfica
de tenga la recta tangente 
en 

66. Encuentre una ecuación de la(s) recta(s) que pasa(n) por
y es (son) tangente(s) a la gráfica de f (x) = x2 +

2x + 2.
67. Encuentre los puntos de la gráfica de tal

que la línea tangente a los puntos interseque al eje en x
(�3, 0).

68. Encuentre el o los puntos sobre la gráfica de 
tal que la recta tangente interseque al eje y en (0, -2).

69. Explique por qué la gráfica de no tiene
recta tangente con pendiente -1.

70. Encuentre coeficientes A y B de modo que la función
satisfaga la ecuación diferencial 2y– +

3y¿ = x - 1.
71. Encuentre valores de a y b tales que la pendiente de la

tangente a la gráfica de en (1, 4) sea �5.
72. Encuentre las pendientes de todas las rectas normales a

la gráfica de que pasan por el punto (2, 4).
[Sugerencia: Elabore una figura y observe que en (2, 4)
sólo hay una recta normal.]

73. Encuentre un punto sobre la gráfica de y
un punto sobre la gráfica de 
donde las rectas tangentes son paralelas.

74. Encuentre un punto sobre la gráfica de f (x) � 3x5
� 5x3

� 2x donde la recta tangente tiene la menor pendiente
posible.

75. Encuentre las condiciones sobre los coeficientes a, b y
c de modo que la gráfica de la función polinomial

tenga exactamente una tangente horizontal. Exactamente
dos tangentes horizontales. Ninguna tangente horizontal.

76. Sea f una función diferenciable. Si para toda
x en el intervalo (a, b), trace gráficas posibles de f sobre
el intervalo. Describa verbalmente el comportamiento de
la gráfica de f sobre el intervalo. Repita si para
toda x en el intervalo (a, b).

77. Suponga que f es una función diferenciable tal que
Encuentre 

78. Las gráficas de y = x2 y y = -x2
� 2x - 3 dada por la

FIGURA 4.3.8 muestran que hay dos rectas L1 y L2 que son
simultáneamente tangentes a ambas gráficas. Encuentre
los puntos de tangencia de ambas gráficas. Encuentre una
ecuación para cada recta tangente.

Problemas con calculadora/SAC

79. a) Use una calculadora o un SAC para obtener la grá-
fica de 

b) Evalúe f –(x) en 
x = 3 y x = 4.

c) A partir de los datos del inciso b), ¿observa alguna
relación entre la forma de la gráfica de f y los sig-
nos algebraicos de f –?

80. Use una calculadora o un sistema algebraico compu-
tacional para obtener la gráfica de las funciones dadas.
Por inspección de las gráficas, indique dónde cada fun-
ción puede no ser diferenciable. Encuentre f ¿(x) para
todos los puntos donde f es diferenciable.

a) b) f (x) � 0 x3
� 1 0f (x) � 0 x2

� 2 x 0

x � 2,
x � 1,x � 0,x � �1,x � �2,

f (x) � x4
� 4x3

� 2x2
� 12x � 2.

FIGURA 4.3.8 Gráficas para el problema 78

y

x

y � x2

y � �x2
�2x �3

L1

L2

f  
(100)(x).f ¿(x) � f (x) � 0.

f ¿(x) 6 0

f ¿(x) 7 0

f (x) � a x3
� b x2

� c x � d

g(x) � 2 x2
� 4 x � 1

f (x) � x2
� x

f (x) � x2

f (x) � a x2
� b x

y � A x2
� B x

f (x) �
1
5  
x5

�
1
3  
x3

f (x) � x2

f (x) � x2
� 5

(3
2, 1)

x � �3.
y � 2x � cf (x) � x2

� bx

y � �
1
4 x

2
� 3y �

1
8 x

2

f –(�1) � �4.f (�1) � �11,
f (x) � a x2

� b x � c

FIGURA 4.3.7 Gráfica para el problema 62
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4.4 Derivada de productos y cocientes
Introducción Hasta el momento sabemos que la derivada de una función constante y una

potencia de x son, a su vez:

(1)d
dx

c 0  y  d
dx

xn nx n 1.



DEMOSTRACIÓN Sea G(x) � f(x)g(x). Entonces por la definición de la derivada junto con
algo de manipulación algebraica:

Debido a que f es diferenciable en x, es continua ahí y entonces f(x � h) � f(x). Además,
g(x) � g(x). Por tanto, la última ecuación se vuelve

La regla del producto se memoriza mejor en palabras:

• La primera función por la derivada de la segunda más la segunda función por la deri-
vada de la primera.

EJEMPLO  1 Regla del producto

Diferencie 

Solución De la regla del producto (3),

y � (x3
� 2x2

� 3)(7x2
� 4x).

G¿(x) � f (x)g¿(x) � g(x) f ¿(x).

lím
hS0

lím
hS0

También sabemos que para funciones diferenciables f y g:

(2)

Aunque los resultados en (1) y (2) nos permiten diferenciar rápidamente funciones algebrai-
cas (como polinomios), ni (1) ni (2) constituyen una ayuda inmediata para encontrar la deri-

vada de funciones como o Se requieren reglas adicionales
para diferenciar productos fg y cocientes f g.

Regla del producto Las reglas de diferenciación y las derivadas de funciones surgen en
última instancia de la definición de la derivada. La regla de la suma en (2), que se obtuvo en la
sección precedente, se concluye de la definición y del hecho de que el límite de una suma es
la suma de los límites siempre que los límites existan. También sabemos que cuando los lími-
tes existen, el límite de un producto es el producto de los límites. Al razonar por analogía, pare-
cería plausible que la derivada de un producto de dos funciones es el producto de las deriva-
das. Lamentablemente, la regla del producto que se presenta a continuación no es tan simple.

> y � x>(2x � 1).y � x 
42x 

2
� 4
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Teorema 4.4.1 Regla del producto

Si f y g son funciones diferenciables en x, entonces fg es diferenciable en x, y

(3)

d
dx

cf (x) cf ¿(x) y d
dx

[ f (x) g(x)] f ¿(x) g¿(x).

d
dx

[ f (x)g(x)] f (x)g¿(x) g(x) f ¿(x).

cero

lím
hS0

f (x h) . lím
hS0

g(x h) g(x)
h

lím
hS0

g(x) . lím
hS0

f (x h) f (x)
h

.

lím
hS0
c f (x h)

g(x h) g(x)
h

g(x)
f (x h) f (x)

h
d

lím
hS0

f (x h)g(x h) f (x h)g(x) f (x h)g(x) f (x)g(x)
h

G ¿(x) lím
hS0

G(x h) G(x)
h

lím
hS0

f (x h)g(x h) f (x)g(x)
h

⎞ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ 

35x4 72x3 24x2 42x 12.

(x3 2x2 3)(14x 4) (7x2 4x)(3x2 4x)

dy

dx
(x3 2x2 3) . d

dx
(7x2 4x) (7x2 4x) . d

dx
(x3 2x2 3)

primera
derivada de
la segunda segunda

derivada de
la primera

⎞ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎞ ⎪ ⎬ ⎪ ⎞ ⎪ ⎪ ⎬ ⎪ ⎪ ⎞ ⎪ ⎪ ⎬ ⎪ ⎪ 



Solución alterna Los dos términos en la función dada pueden multiplicarse para obtener un
polinomio de quinto grado. Luego, la derivada puede obtenerse usando la regla de la suma.

EJEMPLO  2 Recta tangente

Encuentre una ecuación de la recta tangente a la gráfica de en x � 4.

Solución Antes de tomar la derivada, volvemos a escribirla como Luego, por la
regla del producto (3),

Al evaluar la función dada y su derivada en x � 4 obtenemos:

Por la forma punto-pendiente, la recta tangente es

Aunque (3) se ha planteado sólo para el producto de dos funciones, puede aplicarse a fun-
ciones con un mayor número de factores. La idea consiste en agrupar dos (o más) funciones
y tratar este agrupamiento como una función. El siguiente ejemplo ilustra la técnica.

EJEMPLO  3 Producto de tres funciones

Diferencie 

Solución Los dos primeros factores se identifican como la “primera función”:

Observe que para encontrar la derivada de la primera función es necesario aplicar la regla del
producto por segunda ocasión:

Regla del cociente A continuación se presenta la derivada del cociente de dos funciones
f y g.

y � (4x � 1)(2x2
� x)(x3

� 8x).

 �
3x � 21x � 2

21x
.

 � (1 � x 
1>2) . 1 � (x � 2) . 1

2  
x 

�1>2
 
dy

dx
� (1 � x 

1>2) 

d
dx

 (x � 2) � (x � 2) 

d
dx

 (1 � x 
1>2)

x 
1>2.1x

y � (1 � 1x)(x � 2)
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Teorema 4.4.2 Regla del cociente

Si f y g son funciones diferenciables en x y entonces f�g es diferenciable en x, y

(4)

g(x) 	 0,

d la pendiente de la tangente en (4, 6) es 7
2

dy

dx
`
x 4

12 214 2
214

7
2

.

d el punto de tangencia es (4, 6)y(4) A1 14 B(4 2) 6

y 6
7
2

(x 4)  o bien,  y
7
2

x 8.

dy

dx
(4x 1)(2x2 x)

d
dx

(x3 8x) (x3 8x)
d
dx

(4x 1)(2x2 x).

primera
derivada de
la segunda segunda

derivada de
la primera

⎞ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎞ ⎪ ⎬ ⎪ ⎞ ⎪ ⎬ ⎪ ⎞ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ 

(4x 1)(2x2 x)(3x2 8) (x3 8x)(16x2 1) 4(x3 8x)(2x2 x).

dy

dx
(4x 1)(2x2 x) . (3x2 8) (x3 8x) . [ (4x 1)(4x 1) (2x2 x) . 4]

De nuevo la regla del producto

⎞ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 

d
dx
c f (x)
g(x)
d g(x) f ¿(x) f (x)g¿(x)

[g(x)]2
.



DEMOSTRACIÓN Sea Entonces

Puesto que se supone que todos los límites existen, la última línea es lo mismo que

En palabras, la regla del cociente empieza con el denominador:

• El denominador por la derivada del numerador menos el numerador por la derivada del
denominador, todo dividido entre el denominador al cuadrado.

EJEMPLO  4 Regla del cociente

Diferencie 

Solución Por la regla del cociente (4),

EJEMPLO  5 Reglas del producto y el cociente

Encuentre los puntos sobre la gráfica de donde la recta tangente es

horizontal.

Solución Se empieza con la regla del cociente y luego se usa la regla del producto al dife-
renciar el numerador:

y �
(x2

� 1)(2x2
� 1)

3x2
� 1

y �
3x2

� 1
2x3

� 5x2
� 7

.

G ¿(x) �
g(x)f ¿(x) � f (x)g¿(x)

[g(x)] 2
.

G(x) � f (x)>g(x).
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cero

lím
hS0

g(x) . lím
hS0

f (x h) f (x)
h

lím
hS0

f (x) . lím
hS0

g(x h) g(x)
h

lím
hS0

g(x h) . lím
hS0

g(x)
.

lím
hS0

g(x)
f (x h) f (x)

h
f (x)

g(x h) g(x)
h

g(x h)g(x)

lím
hS0

g(x) f (x h) g(x) f (x) g(x) f (x) f (x)g(x h)
hg(x h)g(x)

lím
hS0

g(x)f (x h) f (x)g(x h)
hg(x h)g(x)

G¿(x) lím
hS0

G(x h) G(x)
h

lím
hS0

f (x h)
g(x h)

f (x)
g(x)

h

⎞ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ 

cuadrado del denominador

6x 4 6x 2 52x

(2x 3 5x 2 7) 2
.

(2x 3 5x 2 7) . 6x (3x 2 1) . (6x 2 10x)

(2x 3 5x 2 7) 2

dy

dx

(2x3 5x2 7) . d
dx

(3x2 1) (3x2 1) . d
dx

(2x3 5x2 7)

(2x3 5x2 7)2

derivada del
denominadornumerador

derivada del
numeradordenominador

d se multiplica por el numerador

⎞ ⎪ ⎪ ⎬ ⎪ ⎪  ⎞ ⎪ ⎬ ⎪  ⎞ ⎪ ⎬ ⎪  ⎞ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ 

⎞⎪⎪⎬⎪⎪



En un punto donde la recta tangente es horizontal, debe tenerse dy�dx � 0. La derivada que
acaba de encontrarse sólo puede ser 0 cuando el numerador satisface

(5)

En (5), debido a que para todos los números reales x, debe tenerse x = 0. Al
sustituir este número en la función obtenemos y(0) = 1. La recta tangente es horizontal en la
intersección con el eje y, el punto (0, 1).

Posdata: Otro repaso a la regla de potencias Recuerde que en la sección 4.3 establecimos
que la regla de potencias, es válida para todos los números reales exponen-
tes n. Ahora ya nos es posible demostrar la regla cuando el exponente es un entero negativo
�m. Puesto que, por definición donde m es un entero positivo, la derivada de x�m

puede obtenerse por medio de la regla del cociente y las leyes de los exponentes:
x�m

� 1>xm,

(d>dx)xn
� nxn�1,

12x2
� 8 � 0
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Fundamentos

En los problemas 1-10, encuentre dy�dx.

1.

2.

3.

4. y � ax2
�

1
x2
b ax3

�
1
x3
b

y � a41x �
1
x
b a2x �

6

13 x
b

y � (7x � 1)(x4
� x3

� 9x)

y � (x2
� 7)(x3

� 4x � 2)

Por supuesto, los valores de x
que hacen cero al numerador no

deben hacer simultáneamente
cero al denominador.

NOTAS DESDE EL AULA

i) Las reglas del producto y del cociente suelen conducir a expresiones que demandan
simplificación. Si su respuesta a un problema no se parece a la que se proporciona en
la sección de respuestas del texto, quizá no ha realizado suficientes simplificaciones.
No quede contento con sólo llevar a cabo las partes mecánicas de las diversas reglas
de diferenciación; siempre resulta una buena idea poner en práctica sus habilidades
algebraicas.

ii) Algunas veces, la regla del cociente se usa cuando no es necesario. Aunque es posible
usar esta regla para diferenciar funciones como

es más simple (y rápido) volver a escribir las funciones como y , y
luego usar las reglas del múltiplo constante y de potencias:

y � 10x�3y �
1
6 x5

d

dx

4.4 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-11.

12x5 8x3

(3x2 1)2
.

(3x2 1)[(x2 1)4x (2x2 1)2x ] (x2 1)(2x2 1)6x

(3x2 1)2

dy

dx

(3x2 1) . d
dx

[ (x2 1)(2x2 1)] (x2 1)(2x2 1) . d
dx

(3x2 1)

(3x2 1)2

Regla del
producto aquí

d se multiplica
por el numerador

⎞ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ 

12x5 8x3 0  o bien,  x3(12x2 8) 0.

d
dx

x m d
dx
Q 1
xmR xm . d

dx
1 1 . d

dx
xm

(xm)2

mxm 1

x2m
mx m 1.

T

se restan los exponentes

y
x5

6
  y  y

10
x3

,

dy

dx
1
6

d
dx

x5 5
6

x4  y  
dy

dx
10

d
dx

x 3 30x 4.



5. 6.

7. 8.

9. 10.

En los problemas 11-20, encuentre f �(x).

11.

12.

13. 14.

15.

16.

17. 18.

19.

20.

En los problemas 21-24, encuentre una ecuación de la recta
tangente a la gráfica de la función dada en el valor indicado
de x.

21. 22.

23.
24.

En los problemas 25-28, encuentre el o los puntos sobre la
gráfica de la función dada donde la recta tangente es hori-
zontal.

25. 26.

27. 28.

En los problemas 29 y 30, encuentre el punto o los puntos
sobre la gráfica de la función dada donde la recta tangente
tiene la pendiente indicada.

29.

30.

En los problemas 31 y 32, encuentre el punto o los puntos
sobre la gráfica de la función dada donde la recta tangente
tiene la propiedad indicada.

33. Encuentre el valor de k tal que la recta tangente a la grá-
fica de tiene pendiente 5 en x = 2.

34. Demuestre que la tangente a la gráfica de f (x) = (x2 +
14)�(x2 + 9) en x = 1 es perpendicular a la tangente de
la gráfica de en x = 1.

En los problemas 35-40, f y g son funciones diferenciables.
Encuentre F�(1) si f ¿(1) = -3 y g(1) = 6, g ¿(1)
= 2.

35. 36.

37. 38.

39. 40.

41. Suponga que donde f es una función
diferenciable. Encuentre F–(4) si f ¿(4) = 2
y 

42. Suponga que donde f y g son fun-
ciones diferenciables. Encuentre si y
g�(0) � 6.

43. Suponga que donde f es una función dife-
renciable. Encuentre 

44. Suponga que donde f es una función dife-
renciable. Encuentre 

En los problemas 45-48, determine intervalos para los cua-
les e intervalos para los cuales 

45. 46.

47.

48.

Aplicaciones

49. La ley de gravitación universal establece que la fuerza
F entre dos cuerpos de masas m1 y m2 separados por
una distancia r es donde k es constante.
¿Cuál es la razón de cambio instantánea de F con res-
pecto a r cuando 

50. La energía potencial U entre dos átomos en una molécula
diatómica está dada por donde q1

y q2 son constantes positivas y x es la distancia entre los
átomos. La fuerza entre los átomos se define como

Demuestre que 

51. La ecuación de estado de Van der Waals para un gas
ideal es

donde P es la presión, V es el volumen por mol, R es la
constante universal de los gases, T es la temperatura y
a y b son constantes que dependen del gas. Encuentre
dP�dV en el caso donde T es constante.

52. Para una lente convexa, la distancia focal f está relacio-
nada con la distancia al objeto p y la distancia a la ima-
gen q por la ecuación de la lente

Encuentre la razón de cambio instantánea de q con res-
pecto a p en el caso donde f es constante. Explique el
significado del signo negativo en su respuesta. ¿Qué
ocurre a q cuando p crece?

1
f

�
1
p

�
1
q

.

aP �
a

V 
2
b (V � b) � RT,

F(16 2q1>q2) � 0.F(x) � �U ¿(x).

U(x) � q1>x 
12

� q2>x 
6,

r �
1
2 km?

F � km1m2>r 
2,

f (x) � (x � 2)(4x2
� 8x � 4)

f (x) � (�2x � 6)(4x � 7)

f (x) �
x2

� 3
x � 1

f (x) �
5

x2
� 2x

f ¿(x) 6 0.f ¿(x) 7 0

F‡(x).
F(x) � x3f (x),

F–(x).
F(x) � f (x)>x,

f ¿(0) � �1F–(0)
F(x) � xf (x) � xg(x),

f –(4) � 3.
f (4) � �16,

F(x) �1x f (x),

F(x) �
xf (x)
g(x)

F(x) � a4
x

� f (x)b  g(x)

F(x) �
1 � 2f (x)
x � g(x)

F(x) �
2g(x)
3f (x)

F(x) � x2f (x)g(x)F(x) � 2 f (x)g(x)

f (1) � 2,

g(x) � (1 � x2)(1 � 2x)

f (x) � (k � x)>x2

y � (x � 1)(2x � 5); m � �3

y �
x � 3
x � 1

; m � �
1
8

y �
1

x2
� 6x

y �
x2

x4
� 1

y � x(x � 1)2y � (x2
� 4)(x2

� 6)

y � (2x2
� 4)(x3

� 5x � 3); x � 0
y � (21x � x)(�2x2

� 5x � 1); x � 1

y �
5x

x 
2

� 1
; x � 2y �

x
x � 1

; x �
1
2

f (x) � (x � 1) ax � 1 �
1

x � 2
b

f (x) � (x2
� 2x � 1) ax � 1

x � 3
b
f (x) �

x5

(x2
� 1)(x3

� 4)
f (x) �

(2x � 1)(x � 5)
3x � 2

f (x) � (x2
� 1)(x3

� x)(3x4
� 2x � 1)

f (x) � (x � 1)(2x � 1)(3x � 1)

f (x) �
x2

� 10x � 2
x(x2

� 1)
f (x) �

x2

2x2
� x � 1

f (x) � (x2
� 1) ax2

� 10x �
2
x2
b

f (x) � a1
x

�
4
x3
b (x3

� 5x � 1)

y � (x4
� 5x)2y � (6x � 1)2

y �
2 � 3x
7 � x

y �
3x � 1
2x � 5

y �
5

4x � 3
y �

10
x2

� 1

4.4 Derivada de productos y cocientes 163

31.

32. y
x

x 1
; paralela a y

1
4

x 1

y
x 4
x 5

; perpendicular a y x



Piense en ello

53. a) Grafique la función racional 

b) Encuentre todos los puntos sobre la gráfica de f tales
que las rectas normales pasen por el origen.

54. Suponga que y � f(x) es una función diferenciable.

a) Encuentre dy dx para 

b) Encuentre dy dx para 

c) Conjeture una regla para encontrar la derivada de
donde n es un entero positivo.

d) Use su conjetura en el inciso c) para encontrar la deri-
vada de 

55. Suponga que satisface la ecuación diferencial 
donde P es una función conocida.

Demuestre que satisface la ecuación dife-
rencial

siempre que u(x) satisface f (x)>y1(x).du>dx �
f (x)y ¿ � P(x)y �

u(x)y1(x)y �
y¿ � P(x)y � 0,

y1(x)

y � (x2
� 2x � 6)500.

y � [ f (x)]n,

y � [ f (x)]3.> y � [ f (x)]2.>

f (x) �
2

x2
� 1

.
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4.5 Derivada de funciones trigonométricas
Introducción En esta sección desarrollaremos las derivadas de las seis funciones trigono-

métricas. Una vez que se han encontrado las derivadas de sen x y cos x es posible determinar
las derivadas de tan x, cot x, sec x y csc x usando la regla del cociente encontrada en la sec-
ción precedente. De inmediato veremos que la derivada de sen x usa los dos siguientes resul-
tados de límites

(1)

que se encontraron en la sección 3.4.

Derivadas del seno y coseno Para encontrar la derivada de f(x) � sen x se usa la defini-
ción básica de la derivada

(2)

y el proceso de cuatro pasos introducido en las secciones 4.1 y 4.2. En el primer paso usamos
la fórmula de la suma para la función seno,

(3)

pero donde x y h desempeñan las partes de los símbolos x1 y x2.

i)

ii)

Como observamos en la línea siguiente, no es posible cancelar las h en el cociente diferencial,
aunque es posible volver a escribir la expresión para usar los resultados sobre límites en (1).

iii)

iv) En esta línea, el símbolo h desempeña la parte del símbolo x en (1):

A partir de los resultados sobre límites en (1), la última línea es lo mismo que

Por tanto, (4)

lím
xS0

 
sen  x

x
1  y  lím

xS0
 
cos x 1

x
0

dy

dx
lím
hS0

 
f (x h) f (x)

h

sen(x1 x2) sen  x1 cos x2 cos x1 sen  x2,

sen  x(cos h 1) cos x sen  h

d
se factoriza sen x
de los términos
primero y tercero

      f (x h) f (x) sen  x cos h cos x sen  h sen  x

d por (3)f (x h) sen(x h) sen  x cos h cos x sen  h

sen  x . cos h 1
h

cos x . sen h
h

f (x h) f (x)
h

sen  x(cos h 1) cos x sen h

h

f ¿(x) lím
hS0

 
f (x h) f (x)

h
sen  x . lím

hS0
 
cos h 1

h
cos x . lím

hS0
 
sen h

h
.

d
dx

 sen  x cos x.

f ¿(x) lím
hS0

 
f (x h) f (x)

h
sen x . 0 cos x . 1 cos x.



De manera semejante es posible demostrar que

(5)

Vea el problema 50 en los ejercicios al final de esta sección.

EJEMPLO  1 Ecuación de una recta tangente

Encuentre una ecuación de la recta tangente a la gráfica de f (x) � sen x en

Solución A partir de (4) la derivada de f (x) � sen x es f ¿(x) � cos x. Cuando éstas se eva-
lúan en el mismo número obtenemos:

A partir de la forma punto-pendiente de una recta, una ecuación de la recta tangente es

La tangente se muestra en la FIGURA 4.5.1.

Otras funciones trigonométricas Los resultados en (4) y (5) pueden usarse junto con las
reglas de diferenciación para encontrar las derivadas de la tangente, cotangente, secante y cose-
cante.

Para diferenciar tan x � sen x�cos x se usa la regla del cociente:

Al usar la identidad pitagórica fundamental sen2 x � cos2 x � 1 y el hecho de que 1 cos2 x �

(1 cos x)2
� sec2 x, la última ecuación se simplifica a

(6)

La fórmula de la derivada para la cotangente

(7)

se obtiene en forma análoga y se deja como ejercicio. Vea el problema 51 en la sección
“Desarrolle su competencia 4.5”.

Así, sec x � 1�cos x. En consecuencia, es posible usar otra vez la regla del cociente para
encontrar la derivada de la función secante:

(8)

Al escribir

> >

x � 4p>3
x � 4p>3.
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FIGURA 4.5.1 Recta tangente en
el ejemplo 1

x

y

punto de
tangencia 4� 3

2( ), �

la pendiente es

4� 1
ƒ�( )� �

y � sen x 

3 3 2

d
dx

 cos x sen x.

y
13
2

1
2
Qx 4p

3
R  o bien,   y

1
2

x
2p
3

13
2

.

d la pendiente de la tangente en A4p3 , 13
2 B es 1

2f ¿Q4p
3
R cos

4p
3

1
2

.

d el punto de tangencia es A4p3 , 13
2 Bf Q4p

3
R sen

4p
3

13
2

esto es igual a 1

cos x (cos x) sen x ( sen x)

(cos x)2

cos2 x sen2 x

cos2 x
.

d
dx

sen x
cos x

cos x
d
dx

 sen x sen x
d
dx

 cos x

(cos x)2

⎞ ⎪ ⎪ ⎬ ⎪ ⎪ 

d
dx

cot x csc2 x

d
dx

tan x sec2 x.

sen x

cos2 x

1
cos x

. sen x
cos x

sec x tan x

0 ( sen x)

(cos x)2

sen x

cos2 x
.

d
dx

1
cos x

cos x
d
dx

 1 1 . d
dx

 cos x

(cos x)2



podemos expresar (8) como

(9)

El resultado final también se concluye de inmediato a partir de la regla del cociente:

(10)

Vea el problema 52 en la sección “Desarrolle su competencia 4.5”.

EJEMPLO  2 Regla del producto

Diferencie y � x2 sen x.

Solución La regla del producto junto con (4) da

EJEMPLO  3 Regla del producto

Diferencie y � cos2 x.

Solución Una forma de diferenciar esta función es reconocerla como un producto: y �

(cos x)(cos x). Luego, por la regla del producto y (5),

En la siguiente sección veremos que hay un procedimiento alterno para diferenciar una poten-
cia de una función.

EJEMPLO  4 Regla del cociente

Diferencie 

Solución Por la regla del cociente, (4) y (9),

EJEMPLO  5 Segunda derivada

Encuentre la segunda derivada de f (x) � sec x.

Solución Por (9), la primera derivada es

f ¿(x) � sec x tan x.

Para obtener la segunda derivada, ahora es necesario usar la regla del producto junto con (6)
y (9):
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d
dx

 sec x sec x tan x.

d
dx

 csc x csc x cot x.

x2 cos x 2x sen x.

dy

dx
x2 d

dx
 sen x sen x

d
dx

x2

2 sen x cos x.

cos x ( sen x) (cos x)( sen x)

dy

dx
cos x

d
dx

 cos x cos x
d
dx

 cos x

y
sen x

2 sec x
.

1 2 cos x tan2 x

(2 sec x)2
.

(2 sec x) cos x sen x (sec x tan x)

(2 sec x)2

dy

dx

(2 sec x)
d
dx

 sen x sen x
d
dx

 (2 sec x)

(2 sec x)2

y
sen x(sec x tan x) sen2 x>cos2 x
sec x cos x 1

d

sec3 x sec x tan2 x.

sec x (sec2 x) tan x (sec x tan x)

f –(x) sec x
d
dx

 tan x tan x
d
dx

 sec x



Para referencia futura, a continuación se resumen las fórmulas de derivadas presentadas
en esta sección.
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Fundamentos

En los problemas 1-12, encuentre dy�dx.

En los problemas 13-22, encuentre f �(x). Simplifique.

En los problemas 23-26, encuentre una ecuación de la recta
tangente a la gráfica de la función dada en el valor indicado
de x.

En los problemas 27-30, considere la gráfica de la función
dada sobre el intervalo Encuentre las coordenadas
x del o de los puntos sobre la gráfica de la función donde la
recta tangente es horizontal.

En los problemas 31-34, encuentre una ecuación de la recta
normal a la gráfica de la función dada en el valor indicado
de x.

En los problemas 35 y 36, use una identidad trigonométrica
idónea para encontrar la derivada de la función dada.

35. f (x) � sen 2x 36.

En los problemas 37-42, encuentre la segunda derivada de la
función dada.

f (x) � cos2
 

x
2

[0, 2p ] .

Teorema 4.5.1 Derivadas de funciones trigonométricas

Las derivadas de las seis funciones trigonométricas son

(11)

(12)

(13)

NOTAS DESDE EL AULA

Cuando trabaje los problemas en la sección “Desarrolle su competencia 4.5”, puede que no
obtenga la misma respuesta que la proporcionada en la sección de respuestas al final del
libro. Esto se debe a que hay muchas identidades trigonométricas cuyas respuestas pueden
expresarse en una forma más breve. Por ejemplo, la respuesta en el ejemplo 3:

por la fórmula del ángulo doble para la función seno. Intente resolver las diferencias entre
su respuesta y la respuesta proporcionada.

d

dx

4.5 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-11.

d
dx

 csc x csc x cot x.
d
dx

 sec x sec x tan x,

d
dx

 cot x csc2 x,
d
dx

 tan x sec2 x,

d
dx

 cos x sen x,
d
dx

 sen x cos x,

es la misma que
dy

dx
sen 2x

dy

dx
2 sen x cos x

.2.1

.4.3

.6.5

.8.7

.01.9

.21.11 y x3cos x x3sen xy cos2 x sen2 x

y csc x tan xy (x2 sen x) sec x

y cos x cot xy (x3 2) tan x

y A41x 313 x B cos xy x sen x

y 3 cos x 5 cot xy 1 7 sen x tan x

y 4x3 x 5 sen xy x2 cos x

.41.31

.61.51

.81.71

.02.91

.22.12 f (x)
1 sen x

x cos x
f (x) x4 sen x tan x

f (x)
1 csc x
1 sec x

f (x)
sen x

1 cos x

f (x)
2 sen x

x
f (x)

x2

1 2 tan x

f (x)
x2 6x

1 cos x
f (x)

cot x
x 1

f (x)
2

cos x cot x
f (x) (csc x) 1 .23.13

33.

34. f (x)
x

1 sen x
; x p 2

f (x) x cos x; x p

f (x) tan2 x; x p 4f (x) sen x; x 4p 3

.82.72

.03.92 f (x) sen x cos xf (x)
1

x cos x

f (x)
sen x

2 cos x
f (x) x 2 cos x

.83.73

.04.93

.24.14 y tan xy csc x

f (x)
1

1 cos x
f (x)

sen x
x

f (x) 3x x2 cos xf (x) x sen x

.42.32

.62.52 f (x) csc x; x p>2f (x) sec x; x p>6 f (x) tan x; x pf (x) cos x; x p>3



En los problemas 43 y 44, C1 y C2 son constantes reales arbi-
trarias. Demuestre que la función satisface la ecuación dife-
rencial dada.

Aplicaciones

45. Cuando el ángulo de elevación del Sol es u, un poste
telefónico de 40 pies de altura proyecta una sombra de
longitud s como se muestra en la FIGURA 4.5.2. Encuentre
la razón de cambio de s con respecto a u cuando

radianes. Explique el significado del signo
menos en la respuesta.

46. Los dos extremos de una tabla de 10 pies de longitud se
sujetan a rieles perpendiculares como se muestra en la
FIGURA 4.5.3, de modo que el punto P puede desplazarse
con libertad sobre la vertical y el punto R puede moverse
libremente en dirección horizontal.

a) Exprese el área A del triángulo PQR como una fun-
ción del ángulo u indicado.

b) Encuentre la razón de cambio de A con respecto a u.
c) Al inicio la tabla está en posición plana sobre el riel

horizontal. Suponga que luego el punto R se mueve
en dirección del punto Q, obligando así al punto P a
moverse hacia arriba sobre el riel vertical. Al princi-
pio el área del triángulo es pero luego
aumenta durante un instante a medida que u crece
y después disminuye cuando R tiende a Q. Cuando
la tabla está vertical, el área del triángulo es
0 (u = p 2) de nuevo. Grafique la derivada 
Interprete la gráfica para encontrar valores de u para
los cuales A es creciente y los valores de u para los
cuales A es decreciente. Luego compruebe su inter-
pretación de la gráfica de la derivada al graficar A(u).

d) Use las gráficas en el inciso c) para encontrar el valor
de u para el cual el área del triángulo es máxima.

Piense en ello
47. a) Encuentre todos los enteros positivos n tales que

b) Use los resultados en el inciso a) como ayuda para
encontrar

48. Encuentre dos puntos distintos P1 y P2 sobre la gráfica
de y � cos x de modo que la recta tangente en P1 sea
perpendicular a la recta tangente en P2.

49. Encuentre dos puntos distintos P1 y P2 sobre la gráfica
de y � sen x de modo que la recta tangente en P1 sea
paralela a la recta tangente en P2.

50. Use (1), (2) y la fórmula de la suma para el coseno para
demostrar que

51. Use (4) y (5) y la regla del cociente para demostrar que

52. Use (4) y la regla del cociente para demostrar que

Problemas con calculadora/SAC
En los problemas 53 y 54, use una calculadora o un SAC para
obtener la gráfica de la función dada. Por inspección de la
gráfica, indique dónde la función puede no ser diferenciable.

55. Como se muestra en la FIGURA 4.5.4, un joven jala un trineo
donde va sentada su hermana. Si el peso total del trineo y
la chica es de 70 lb, y si el coeficiente de fricción de suelo
cubierto por nieve es 0.2, entonces la magnitud F de la
fuerza (medida en libras) necesaria para mover el trineo es

donde u es el ángulo que la cuerda forma con la hori-
zontal.

a) Use una calculadora o un SAC para obtener la grá-
fica de F sobre el intervalo 

b) Encuentre la derivada 
c) Encuentre el ángulo (en radianes) para el que

d) Encuentre el valor de F correspondiente al ángulo
encontrado en el inciso c).

e) Use la gráfica en el inciso a) como ayuda para inter-
pretar los resultados encontrados en los incisos c) y d).

dF�du � 0.

dF�du.
[�1, 1] .

FIGURA 4.5.3 Tabla en el problema 46

10 pies

riel

P

Q R riel

�

dA�du.>
0 (u � 0),

FIGURA 4.5.2 Sombra en el problema 45

40 pies

S

�

u � p�3
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43.

44. x2y– xy¿ Ax2 1
4By 0y C1

cos x

1x
C2

sen x

1x
;

y– y sen xy C1 cos x C2 sen x
1
2

x cos x;
d n

dx n cos x sen x; d n

dx n sen x cos x.

d n

dx n sen x sen x; d n

dx n cos x cos x;

F

�

FIGURA 4.5.4 Trineo en el problema 55

d 21

dx 21
 sen x, d 30

dx 30
 sen x, d 40

dx 40
 cos x y d 67

dx 67
 cos x.

d
dx

 cos x sen x.

.45.35 f (x) 0 x sen x 0f (x) 0.5(sen x 0sen x 0 )

F
70(0.2)

0.2 sen u cos u
,

d
dx

 csc x csc x cot x.

d
dx

 cot x csc2 x.



4.6 La regla de la cadena
Introducción Como se analizó en la sección 4.3, la regla de potencias

es válida para todos los números reales exponentes n. En esta sección veremos que una regla
semejante se cumple para la derivada de una potencia de una función Antes de
plantear el resultado formal, se considerará un ejemplo cuando n es un entero positivo.

Suponga que queremos diferenciar

(1)

Al escribir (1) como podemos encontrar la derivada al usar la regla
del producto:

(2)

En forma semejante, para diferenciar la función es posible escribirla como
y usar la regla del producto y el resultado que se proporciona en (2):

(3)

Asimismo, al escribir como es posible demostrar con
facilidad mediante la regla del producto y (3) que

(4)

Regla de potencias para funciones La inspección de (2), (3) y (4) revela un patrón para
diferenciar una potencia de una función g. Por ejemplo, en (4) vemos

Para recalcar lo anterior, si la función diferenciable se denota por [ ], resulta evidente que

El análisis anterior sugiere el resultado que se plantea en el siguiente teorema.

d
dx

[  ] n
� n [  ] n�1

 

d
dx

 [  ] .

d
dx

 (x5
� 1)4

� 4(x5
� 1)3 . 5x 

4.

y � (x5
� 1)3 . (x5

� 1)y � (x5
� 1) 

4

y � (x5
� 1)2 . (x5

� 1)
y � (x5

� 1)3,

 � 2(x5
� 1) . 5x 

4.

 � (x5
� 1) . 5x 

4
� (x5

� 1) . 5x 
4

 
d
dx

 (x5
� 1)2

� (x5
� 1) . d

dx
 (x5

� 1) � (x5
� 1) . d

dx
 (x5

� 1)

y � (x5
� 1) . (x5

� 1),

y � (x5
� 1)2.

y � [g(x)]n.
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Teorema 4.6.1 Regla de potencias para funciones

Si n es cualquier número real y es diferenciable en x, entonces

(5)

o, en forma equivalente, (6)

u � g(x)

d
dx

x n nx n 1

sabemos esto por (2)

3(x5 1)2 . 5x 4.

(x5 1)2 . 5x 4 (x5 1) . 2(x5 1) . 5x4

(x5 1)2 . d
dx

(x5 1) (x5 1) . d
dx

(x5 1)2

d
dx

(x5 1)3 d
dx

(x5 1)2 . (x5 1)
⎞ ⎪ ⎬ ⎪ 

el exponente se escribe como múltiplo
T T derivada de la función entre paréntesis

c
disminuir el exponente por 1

4(x5 1)3 . 5x4

d
dx

un nun 1 . du
dx

.

d
dx

[g(x)]n n [g(x)]n 1 . g¿(x),



El teorema 4.6.1 constituye en sí un caso especial de un teorema más general, denomi-
nado regla de la cadena, que se presentará después de considerar algunos ejemplos de esta
nueva regla de potencias.

EJEMPLO  1 Regla de potencias para funciones

Diferencie 

Solución Con la identificación de que por (6) vemos que

EJEMPLO  2 Regla de potencias para funciones

Para diferenciar podríamos, por supuesto, usar la regla del cociente. No obs-
tante, al volver a escribir la función como también es posible usar la regla de
potencias para funciones con n � �1:

EJEMPLO  3 Regla de potencias para funciones

Diferencie 

Solución Escribimos la función dada como Se identifica u = 7x5 -
x4 + 2, y se usa la regla de potencias (6):

EJEMPLO  4 Regla de potencias para funciones

Diferencie y = tan3 x.

Solución Para recalcar, primero volvemos a escribir la función como y luego se
usa (6) con u � tan x y n � 3:

Recuerde por (6) de la sección 4.4 que (d�dx) tan x = sec2 x. Por tanto,

EJEMPLO  5 Regla del cociente y luego regla de potencias

Diferencie 

Solución Empezamos con la regla del cociente seguida por dos aplicaciones de la regla de
potencias para:

y �
(x2

� 1)3

(5x � 1)8
.

y � (tan x)3

dy

dx
� �10(7x5

� x4
� 2)�11 . d

dx
 (7x5

� x4
� 2) �

�10(35x4
� 4x3)

(7x5
� x4

� 2)11
.

n � �10
y � (7x5

� x 
4

� 2)�10.

y �
1

(7x5
� x4

� 2)10
.

dy

dx
� (�1)(x2

� 1) 
�2 . d

dx
 (x2

� 1) � (�1)(x2
� 1) 

�2 2x �
�2x

(x2
� 1)2

.

y � (x2
� 1) 

�1,
y � 1>(x2

� 1),

u � g(x) � 4x3
� 3x � 1,

y � (4x3
� 3x � 1)7.
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T
Regla de potencias para funciones

T

 
(5x 1)8 . 3(x2 1)2 . 2x (x2 1)3 . 8(5x 1)7 . 5

(5x 1)16

 
dy

dx

(5x 1)8 . d
dx

 (x2 1)3 (x2 1)3 . d
dx

 (5x 1)8

(5x 1)16

 
dy

dx
3 tan2 x sec2 x.

 
dy

dx
3(tan x)2 . d

dx
 tan x.

n un 1 du>dx

dy

dx
7(4x3 3x 1)6 . d

dx
 (4x3 3x 1) 7(4x3 3x 1)6(12x2 3).

⎞ ⎪ ⎪ ⎬ ⎪ ⎪  ⎞ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ {



EJEMPLO  6 Regla de potencias y luego regla del cociente

Diferencie 

Solución Al volver a escribir la función como

podemos identificarla

y Por tanto, para calcular du�dx en (6) es necesario usar la regla del cociente:

Por último, se simplifica usando las leyes de los exponentes:

Regla de la cadena Una potencia de una función puede escribirse como una función com-
puesta. Si identificamos y u � g(x), entonces La regla de
la cadena constituye un mecanismo para diferenciar cualquier composición de dos fun-
ciones diferenciables f y g.

f � g
f (u) � f (g(x)) � [g(x)] n.f (x) � x 

n

dy

dx
�

13
(2x � 3)1>2 (8x � 1)3>2.

 �
1
2

  Q2x � 3
8x � 1

R 

�1>2
. 26

(8x � 1)2
.

 �
1
2

 Q2x � 3
8x � 1

R 

�1>2
. (8x � 1) . 2 � (2x � 3) . 8

(8x � 1)2

 
dy

dx
�

1
2

 Q2x � 3
8x � 1

R 

�1>2
. d

dx
  Q2x � 3

8x � 1
Rn �

1
2.

u �
2x � 3
8x � 1

y � Q2x � 3
8x � 1

R 

1>2
y � A2x � 3

8x � 1
.

 �
(x2

� 1)2(�10x2
� 6x � 40)

(5x � 1)9
.

 �
6x(5x � 1)8(x2

� 1)2
� 40(5x � 1)7(x2

� 1)3

(5x � 1)16
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DEMOSTRACIÓN PARA �u Z 0 En esta demostración parcial resulta conveniente usar la
forma de la definición de la derivada proporcionada en (3) de la sección 4.2. Para

(9)

o bien, Además,

Cuando x y están en algún intervalo abierto para el que es posible escribir

¢y

¢x
�

¢y

¢u
. ¢u

¢x
.

¢u � 0,x � ¢x

¢y � f (u � ¢u) � f (u) � f (g(x � ¢x)) � f (g(x)).

g(x � ¢x) � g(x) � ¢u � u � ¢u.

¢u � g(x � ¢x) � g(x)

¢x � 0,

Teorema 4.6.2 Regla de la cadena

Si la función f es diferenciable en u � g(x) y la función g es diferenciable en x, entonces
la composición es diferenciable en x y

(7)

o, en forma equivalente, (8)

y � ( f � g)(x) � f (g(x))

dy

dx

dy

du
. du

dx
.

d
dx

f (g(x)) f ¿(g(x)) . g¿(x)



Puesto que se supone que g es diferenciable, es continua. En consecuencia, cuando 
y así por (9) vemos que Por tanto,

Por la definición de derivada, (3) de la sección 4.2, se concluye que

Se supone que sobre algunos intervalos no se cumple para toda función diferen-
ciable g. Aunque el resultado proporcionado en (7) sigue siendo válido cuando la
demostración precedente no.

Para comprender la derivada de una composición podría ser de utilidad con-
siderar a f como la función externa y a u g(x) como la función interna. Así, la derivada de

es el producto de la derivada de la función externa (evaluada en la función
interna) y la derivada de la función interna (evaluada en x):

(10)

El resultado en (10) lo escribimos de varias formas. Puesto que y � f(u), tenemos
y, por supuesto, El producto de las derivadas en (10) es el mismo

que en (8). Por otra parte, si los símbolos u y u¿ en (10) los sustituimos por g(x) y g¿(x), obte-
nemos (7).

Demostración de la regla de potencias para funciones Como ya se observó, una potencia
de una función puede escribirse como una composición donde la función externa es

y la función interna es La derivada de la función interna 

es y la derivada de la función externa es Así, el producto de estas derivadas es

Ésta es la regla de potencias para funciones proporcionada en (5) y (6).

Funciones trigonométricas Las derivadas de las funciones trigonométricas compuestas con
una función diferenciable g se obtienen como una consecuencia directa de la regla de la cadena.
Por ejemplo, si y � sen u, donde u � g(x), entonces la derivada de y con respecto a la varia-
ble u es

Por tanto, (8) da

o bien, de manera equivalente,

En forma semejante, si y � tan u donde u � g(x), entonces dy�du = sec2 u y así

A continuación se resumen los resultados de la regla de la cadena para las seis funciones tri-
gonométricas.

dy

dx
�

dy

du
. du

dx
� nu 

n�1
 

du
dx

� n [g(x)]n�1g¿(x).

du
dx

.
dy

dx
� nu 

n�1

y � f (u) � u 
nu � g(x).y � f (x) � x 

n
( f � g)(x)

u¿ � du>dx.f ¿(u) � dy>du,

y � f (g(x)) � f (u)
�

y � f (g(x))

¢u � 0,
¢u � 0

dy

dx
�

dy

du
. du

dx
.

¢u S 0.g(x � ¢x) S g(x),
¢x S 0,
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d observe que ¢ ˛uS 0 en el primer términoQ lím
¢uS0

¢y

¢u
R . Q lím

¢xS0

¢u
¢x
R.

lím
¢xS0

¢y

¢x
Q lím
¢xS0

¢y

¢u
R . Q lím

¢xS0

¢u
¢x
R

derivada de la función externa

derivada de la función interna
c

d
dx

f (u) f ¿(u) . u¿.
T

.
d
dx

sen[  ] cos[  ]
d
dx

[  ]

dy

dx

dy

du
. du

dx
sec2 u

du
dx

.

dy

dx

dy

du
. du

dx
cos u

du
dx

dy

du
cos u.



EJEMPLO  7 Regla de la cadena

Diferencie y � cos 4x.

Solución La función es cos u con u � 4x. Por la segunda fórmula en (11) del teorema 4.6.3,
la derivada es

EJEMPLO  8 Regla de la cadena

Diferencie 

Solución La función es tan u con Por la segunda fórmula en (12) del teorema
4.6.3, la derivada es

EJEMPLO  9 Reglas del producto, de potencias y de la cadena

Diferencie y � (9x3
� 1)2 sen 5x.

Solución Primero se usa la regla del producto:

seguida de la regla de potencias (6) y la primera fórmula (11) del teorema 4.6.3,

En las secciones 4.3 y 4.4 vimos que aun cuando las reglas de la suma y el producto se
plantearon en términos de dos funciones f y g, son válidas para cualquier número finito de
funciones diferenciables. De este modo, también se planteó la regla de la cadena para la com-
posición de dos funciones f y g, aunque es posible aplicarla a la composición de tres (o más)
funciones diferenciables. En el caso de las tres, f, g y h, (7) se vuelve

 � f ¿(g(h(x))) . g¿(h(x)) . h¿(x).

 
d
dx

 f (g(h(x))) � f ¿(g(h(x))) . d
dx

 g(h(x))

u � 6x2
� 1.

y � tan(6x2
� 1).
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Teorema 4.6.3 Derivadas de funciones trigonométricas

Si u � g(x) es una función diferenciable, entonces

(11)

(12)

(13)
d
dx

 csc u csc u cot u  

du
dx

.
d
dx

 secu sec u tan u  

du
dx

,

d
dx

 cot u csc2u  

du
dx

,
d
dx

 tan u sec2u  

du
dx

,

d
dx

 cos u sen  u  

du
dx

,
d
dx

 sen  u cos u  

du
dx

,

dy

dx
sen  4x . d

dx
 4x 4 sen  4x.

dy

du

du

dx

⎞ ⎬ ⎞ ⎬ 

dy

dx
sec2(6x2 1) . d

dx
  (6x2 1) 12x sec2 (6x 2 1).

sec2 u

du

dx

⎞ ⎪ ⎪ ⎬ ⎪ ⎪  ⎞ ⎪ ⎬ ⎪ 

por (11) por (6)

 (9x3 1)(45x3 cos 5x 5 cos 5x 54x2 sen  5x).

 (9x3 1)2 . 5 cos 5x sen 5x . 2(9x3 1) . 27x2

 
dy

dx
(9x3 1)2 . cos 5x . d

dx
 5x sen 5x . 2(9x3 1) . d

dx
 (9x3 1)

TT

dy

dx
(9x3 1)2 . d

dx
 sen  5x sen  5x . d

dx
 (9x3 1)2



EJEMPLO  10 Uso repetido de la regla de la cadena

Diferencie 

Solución Para recalcar, primero escribimos la función dada como y � [cos(7x3
� 6x � 1]4.

Observe que esta función es la composición donde g(x) 
cos x y Primero aplicamos la regla de la cadena en la forma de regla
de potencias (6) seguida por la segunda fórmula en (11):

En el ejemplo final, la función dada es una composición de cuatro funciones.

EJEMPLO  11 Uso repetido de la regla de la cadena

Diferencie y = sen 

Solución La función es donde f (x) � sen x, g(x) � tan x, y k(x) =
3x2 + 4. En este caso se aplica la regla de la cadena tres veces consecutivas como sigue:

Por supuesto, usted debe volverse tan apto en aplicar la regla de la cadena que al final ya
no piense en el número de funciones presentes en la composición que se trate.

�
3x cos Atan23x2

� 4 B . sec223x2
� 4

23x 
2

� 4
.

� cos Atan23x2
� 4 B . sec223x2

� 4 . 1
2

 (3x2
� 4)�1>2 . 6x

� cos Atan23x2
� 4 B . sec223x2

� 4 . 1
2

 (3x2
� 4) 

�1>2 . d
dx

 (3x2
� 4)

� cos Atan23x2
� 4 B . sec223x2

� 4 . d
dx

  (3x2
� 4)1>2

� cos Atan23x2
� 4 B . sec223x2

� 4 . d
dx
23x2

� 4

dy

dx
� cos Atan23x2

� 4 B . d
dx

 tan23x2
� 4

h(x) � 1x,f (g(h(k(x)))),

h(x) � 7x3
� 6x � 1.

�f (x) � x4,( f � g � h)(x) � f (g(h(x)))

y � cos 
4(7x3

� 6x � 1).
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NOTAS DESDE EL AULA

i) Quizás el error más frecuente es olvidar efectuar la segunda parte de la regla de la cade-
na; a saber: la derivada de la función interna. Ésta es la parte du�dx en

Por ejemplo, la derivada de no es puesto que
es sólo la parte dy du. Podría ser útil usar de manera consistente el símbo-

lo de operación d dx:

d
dx

 (1 � x) 
57

� 57(1 � x) 
56 . d

dx
 (1 � x) � 57(1 � x) 

56 . (�1).

> >57(1 � x) 
56

dy>dx � 57(1 � x) 
56y � (1 � x) 

57

dy

dx
�

dy

du
 
du
dx

.

d

dx

d
primera regla de la cadena:
diferenciar el seno

d
segunda regla de la cadena:
diferenciar la tangente

d se vuelve a escribir la potencia

d
tercera regla de la
cadena: diferenciar
la potencia

d simplificar

4(21x 2 6)cos3(7x3 6x 1)sen (7x3 6x 1).

4 cos3(7x3 6x 1) . c sen(7x3 6x 1) . d
dx

(7x3 6x 1)d
dy

dx
4[cos(7x3 6x 1)] 3 . d

dx
cos(7x3 6x 1)

segunda regla de la
cadena: diferenciar
el coseno

d

primera regla de la
cadena: diferenciar
la potencia

d

(tan23x 2 4 ).



Fundamentos

En los problemas 1-20, encuentre dy�dx.

En los problemas 21-38, encuentre f �(x).

En los problemas 39-42, encuentre la pendiente de la recta tan-
gente a la gráfica de la función dada en el valor indicado de x.

En los problemas 43-46, encuentre una ecuación de la recta
tangente a la gráfica de la función dada en el valor indicado
de x.

43. 44.

En los problemas 47 y 48, encuentre una ecuación de la recta
normal a la gráfica de la función dada en el valor indicado
de x.

En los problemas 49-52, encuentre la derivada indicada.

49. f(x) � senpx; f ‡(x)
50.

51. y � x sen 5 x;  d3y�dx3 52. f(x) = cos x2; f –(x)

53. Encuentre el o los puntos sobre la gráfica de f(x) =
x (x2 + 1)2 donde la recta tangente es horizontal. La grá-
fica de f, ¿tiene alguna tangente vertical?

54. Determine los valores de t en los que la razón de cam-
bio instantánea de g(t) � sen t � cos 2t es cero.

55. Si ¿cuál es la pendiente de la recta tan-
gente a la gráfica de f ¿ en 

56. Si ¿cuál es la pendiente de la recta tan-
gente a la gráfica de f – en x = 2?

f (x) � (1 � x)4,

x � 2p?
f (x) � cos(x>3),

1
2

>
y � cos(2x � 1); d 

5y>dx5

y � x2(x � 1)3; x � 2y � a x
x � 1

b2

; x � �
1
2
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ii) Un error menos común, pero tal vez más grave que el primero, consiste en diferenciar
dentro la función dada. En su examen, un estudiante escribió que la derivada de

era dy�dx � �sen(2x); es decir que la derivada del coseno es el nega-
tivo del seno y que la derivada de es 2x. Ambas observaciones son correctas, pero
la forma donde se escribieron juntas es incorrecta. Tenga en cuenta que la derivada de la
función interna es un múltiplo de la derivada de la función externa. De nuevo, podría ser
de ayuda usar el símbolo de operación d�dx. La derivada correcta de es
el producto de dos derivadas.

y � cos (x 
2

� 1)

x2
� 1

y � cos (x2
� 1)

4.6 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-11.

dy

dx
sen  (x 

2 1) . d
dx

 (x 
2 1) 2x sen  (x 

2 1).

.2.1

.4.3

.6.5

.8.7

.01.9

.21.11

.41.31

.61.51

.81.71

.02.91 y 4 cos21xy sen3 5x

y 2 cos ( 3x 7)y sen(px 1)

y (2x 1)323x2 2xy x (x 1 x 2 x 
3) 4

y c 1
(x3 x 1)2

d 4y [x (x2 4)3 ]10

y
3x 4

(5x 2)3
y A

x2 1
x2 1

y sec x2y sen12x

y x4(x2 1)6y (3x 1)4( 2x 9)5

y
10

2x2 4x 1
y

1
(x3 2x2 7)4

y Qx 1
x2
R 

5

y (2x2 x)200

y (3>x)14y ( 5x)30

.22.12

.42.32

.62.52

.82.72

.03.92

.23.13

.43.33

.63.53

37.

38. f (x) c x2 a1 1
x
b 4 d 2f (x) (1 (1 (1 x3)4)5)6

f (x) sec (tan2
 x4)f (x) sen3(4x2 1)

f (x) tan(tan x)f (x) cos Asen22x 5 B f (x) tan Qcos 

x
2
Rf (x) sen  (sen 2x)

f (x) csc2
 2x csc 2x2f (x) (sec 4x tan 2x)5

f (x) sen2 2x cos3 3xf (x) sen 2x cos 3x

f (x) x cot(5>x2)f (x) tan(1>x)

f (x)
(1 cos 4x)2

(1 sen 5x)3
f (x) (2 x sen  3x)10

f (x)
sen 5x
cos  6x

f (x) x3 cos x3

.04.93

41.

42. y 50x tan3
 2x; x p>6y sen 3x 4x cos 5x; x p

y
1

(3x 1)2
; x 0y (x2 2)3; x 1

47.

48. y sen3
 

x
3

; x p

y sen  Q p
6x
R cos (px2); x

1
2

45.

46. y ( 1 cos 4x)3; x p>8y tan 3x; x p>4



Aplicaciones

57. La función R � (y0
2�g)sen 2u proporciona el rango de

un proyectil disparado a un ángulo u con respecto a la
horizontal con una velocidad inicial y0. Si y0 y g son
constantes, encuentre los valores de u con los cuales

58. El volumen de un globo esférico de radio r es 
El radio es una función del tiempo t y aumenta a razón
constante de 5 pulg/min. ¿Cuál es la razón de cambio
instantánea de V con respecto a r?

59. Suponga que un globo esférico se infla a razón cons-
tante dV�dt � 10 pulg3/min. ¿A qué ritmo aumenta su
radio cuando r � 2 pulg?

60. Considere una masa sobre un resorte como se muestra
en la FIGURA 4.6.1. En ausencia de fuerzas de amortigua-
ción, el desplazamiento (o distancia dirigida) de la masa,
medido desde una posición denominada posición de
equilibrio, está dado por la función

donde k es la constante del resorte (un indi-
cador de la rigidez del resorte), m es la masa (medida
en slugs o kilogramos), y0 es el desplazamiento inicial
de la masa (medido por arriba o por debajo de la posi-
ción de equilibrio), y0 es la velocidad inicial de la masa
y t es el tiempo medido en segundos.

FIGURA 4.6.1 Masa en un resorte en el problema 60

a) Compruebe que x(t) satisface la ecuación diferencial

b) Compruebe que x(t) satisface las condiciones inicia-
les y 

Piense en ello

61. Sea F una función diferenciable. ¿Qué es 

62. Sea G una función diferenciable. ¿Qué es 

63. Suponga ¿Qué es 

64. Suponga ¿Qué es 

En los problemas 65 y 66, el símbolo n representa un entero
positivo. Encuentre una fórmula para la derivada dada.

65. 66.

67. Suponga que donde 
y ¿Qué es g¿(1)?

68. Suponga que

y ¿Qué es 

69. Dado que f es una función impar diferenciable, use la
regla de la cadena para demostrar que f � es una función
par.

70. Dado que f es una función par diferenciable, use la regla
de la cadena para demostrar que f � es una función impar.

d 
2

dx2
 f (g(x)) `

x�1
?f –(2) � 3.

g(1) � 2, g¿(1) � 3, g–(1) � 1, f ¿(2) � 4,

h¿(3) � �2.
f ¿(1) � 6,f (1) � 3,g(t) � h( f (t)),

d 
n

dxn11 � 2x
d 

n

dxn  (1 � 2x)�1

d
dx

 f (x3)?
d
dx

 f (x) �
1

1 � x2
.

d
dx

 f (�10x � 7)?
d

du
 f (u) �

1
u

.

d
dx

[G(�x2)]2?

d
dx

 F(3x)?

x¿(0) � y0.x(0) � x0

d 
2x

dt 
2

� �
2x � 0.

x � 0

x � 0

Equilibrio

� � 1k>m,

V �
4
3pr 

3.

dR>du � 0.
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4.7 La derivada implícita
Introducción Las gráficas de las diversas ecuaciones que se estudian en matemáticas no

son las gráficas de funciones. Por ejemplo, la ecuación

(1)

describe un círculo de radio 2 con centro en el origen. La ecuación (1) no es una función,
puesto que para cualquier elección de x que satisfaga corresponden dos valores
de y. Vea la FIGURA 4.7.1a). A pesar de ello, las gráficas de ecuaciones como (1) pueden tener
rectas tangentes en varios puntos (x, y). La ecuación (1) define por lo menos dos funciones f
y g sobre el intervalo Gráficamente, las funciones evidentes son la mitad superior y
la mitad inferior del círculo. A fin de obtener fórmulas para éstas, se despeja y de la ecuación

en términos de x:

(2)

y (3)y � g(x) � �24 � x2.

y � f (x) � 24 � x2,

x2
� y2

� 4

[�2, 2] .

�2 6 x 6 2

x2
� y2

� 4

d semicírculo superior

d semicírculo inferior

x(t) x0 cos  t
y0

 sen  t,



Vea las figuras 4.7.1b) y c). Ahora ya es posible encontrar pendientes de las rectas tangentes
para �2 6 x 6 2 al diferenciar (2) y (3) con la regla de potencias para funciones.

En esta sección veremos cómo obtener la derivada dy�dx para (1), así como para ecua-
ciones más complicadas F(x, y) = 0, sin necesidad de resolver la ecuación para la variable y.

Funciones implícitas y explícitas Se dice que una función donde la variable dependiente
se expresa sólo en términos de la variable independiente x, a saber, y = f(x), es una función
explícita. Por ejemplo, es una función explícita. Por otra parte, se dice que una
ecuación equivalente define implícitamente la función, o que y es una fun-
ción implícita de x. Acabamos de ver que la ecuación define implícitamente las
dos funciones y .

En general, si una ecuación F(x, y) = 0 define implícitamente una función en algún inter-
valo, entonces es una identidad sobre el intervalo. La gráfica de f es una por-
ción o un arco (o toda) de la gráfica de la ecuación F(x, y) = 0. En el caso de las funciones
en (2) y (3), observe que ambas ecuaciones

son identidades sobre el intervalo 
La gráfica de la ecuación que se muestra en la FIGURA 4.7.2a) es una curva

famosa denominada hoja de Descartes. Con ayuda de un SAC como Mathematica o Maple,
encontramos que una de las funciones implícitas definidas por es

(4)

La gráfica de esta función es el arco que se observa en la figura 4.7.2b). En la figura 4.7.2c)
se proporciona la gráfica de otra función implícita definida por x3 + y3 = 3xy.

y �
2x

43
�4x3

� 42x6
� 4x3

�
1
2
43

�4x3
� 42x6

� 4x3.

x3
� y3

� 3xy

x3
� y3

� 3xy
[�2, 2] .

F(x, f (x)) � 0

g(x) � �24 � x2f (x) � 24 � x2
x2

� y2
� 4

2y � x3
� 2 � 0

y �
1
2  
x3

� 1
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Diferenciación implícita A partir del análisis anterior, no salte a la conclusión de que siem-
pre es posible resolver una ecuación F(x, y) � 0 para una función implícita de x como se hizo
en (2), (3) y (4). Por ejemplo, resolver una ecuación como

(5)

para y en términos de x es más que un ejercicio en algún desafío algebraico o una lección
sobre el uso de la sintaxis correcta en un SAC. ¡Es imposible! Sin embargo, (5) puede deter-
minar varias funciones implícitas sobre un intervalo restringido del eje x. A pesar de ello, pode-

mos determinar la derivada dy�dx por medio de un proceso denominado diferenciación implí-
cita. Este proceso consiste en diferenciar ambos miembros de una ecuación con respecto a x,
usando las reglas de diferenciación y luego resolviendo para dy�dx. Puesto que se considera
que y está determinada por la ecuación dada como una función diferenciable de x, la regla de
la cadena, en forma de la regla de potencias para funciones, proporciona el resultado útil

(6)

x4
� x2y3

� y5
� 2x � y

FIGURA 4.7.1 La ecuación
determina por lo

menos dos funciones
x2

� y2
� 4

x

y
x2

� y2
� 4 (x, y)

(x, �y)

2

2

a) No es una función

�2

�2

x

y

2

2

b) Función

�2

y �   4 � x2

x

y

2

c) Función

�2

�2

y � �  4 � x2

FIGURA 4.7.2 Las porciones de la gráfica en a) que se muestran en b) y c) son gráficas de dos funciones implícitas de x
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�1
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�2�3
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b) Función

1

2

3
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�1
�1

�2�3

�2

�3

2 3

y

x

Aunque no es posible resolver
ciertas ecuaciones para una fun-
ción explícita, sigue siendo posi-
ble graficar la ecuación con
ayuda de un SAC. Así, es posi-
ble ver las funciones como se
hizo en la figura 4.7.2.

x2 [ f (x)] 2 4 y x2 [g(x)]2 4

d
dx

yn nyn 1 dy

dx
,



donde n es cualquier número real. Por ejemplo,

mientras

En forma semejante, si y es una función de x, entonces por la regla del producto

y por la regla de la cadena

d
dx

  xy � x  

d
dx

 y � y  

d
dx

 x � x  

dy

dx
� y,

d
dx

 y2
� 2y 

dy

dx
.

d
dx

 x2
� 2 x
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En los siguientes ejemplos se supondrá que la ecuación dada determina por lo menos una
función diferenciable implícitamente.

EJEMPLO  1 Uso de la diferenciación implícita

Encuentre si 

Solución Se diferencian ambos miembros de la ecuación y luego se usa (6):

Al despejar la derivada obtenemos

(7)

Como se ilustra en (7) del ejemplo 1, la diferenciación implícita suele producir una deri-
vada que depende de ambas variables x y y. En el análisis introductorio vimos que la ecua-
ción define dos funciones que pueden diferenciarse implícitamente sobre el inter-
valo abierto El simbolismo representa la derivada de cualquiera
de las funciones sobre el intervalo. Observe que esta derivada indica con claridad que las fun-
ciones (2) y (3) no son diferenciables en x = �2 y x = 2 puesto que y = 0 para estos valo-
res de x. En general, la diferenciación implícita produce la derivada de cualquier función que
puede derivarse implícitamente definida por una ecuación F(x, y) = 0.

EJEMPLO  2 La pendiente de una recta tangente

Encuentre las pendientes de las rectas tangentes a la gráfica de en los puntos
correspondientes a x � 1.

Solución Al sustituir x � 1 en la ecuación dada obtenemos o Por tanto,
hay rectas tangentes en y Aunque y son puntos sobre laA1, �13 BA1, 13BA1, �13 B.A1, 13 B y � �13.y2

� 3

x2
� y2

� 4

dy>dx � �x>y�2 6 x 6 2.
x2

� y2
� 4

dy

dx
� �

x
y
.

x2
� y2

� 4.dy>dx

Directrices para diferenciación implícita

i) Al diferenciar con respecto a x ambos miembros de la ecuación, use las reglas
de diferenciación y considere a y como una función diferenciable de x. Para
potencias del símbolo y, use (6).

ii) Agrupe todos los términos donde aparece dy�dx en el miembro izquierdo de la
ecuación diferenciada. Mueva todos los otros términos al miembro derecho de
la ecuación.

iii) Factorice dy�dx en todos los términos donde aparezca este término. Luego, des-
peje dy�dx.

d
dx

 sen 5y cos 5y . d
dx

5y 5 cos 5y
dy

dx
.

 2x 2y
dy

dx
0.

d
dx

x2 d
dx

y2 d
dx

 4

T
use la regla de potencias (6) aquí



gráfica de dos funciones que pueden diferenciarse implícitamente, indicadas en la FIGURA 4.7.3,
(7) en el ejemplo 1 proporciona la pendiente correcta en cada número en el intervalo (�2, 2).
Tenemos

EJEMPLO  3 Uso de diferenciación implícita

Encuentre dy�dx si 

Solución En este caso, usamos (6) y la regla del producto:

Derivadas de orden superior Por medio de diferenciación implícita determinamos dy�dx.
Al diferenciar dy�dx con respecto a x obtenemos la segunda derivada Si la primera
derivada contiene a y, entonces de nuevo contiene el símbolo dy dx; esa cantidad
puede eliminarse al sustituir su valor conocido. El siguiente ejemplo ilustra el método.

EJEMPLO  4 Segunda derivada

Encuentre si 

Solución Por el ejemplo 1, ya sabemos que la primera derivada es La segunda
derivada es la derivada de dy dx, de modo que por la regla del cociente:

Al observar que , es posible volver a escribir la segunda derivada como

EJEMPLO  5 Reglas de la cadena y del producto

Encuentre dy�dx si sen y � y cos 2x.

Solución Por la regla de la cadena y la regla del producto obtenemos

d 
2y

dx2
� �

4
y3

.

x2
� y2

� 4

> dy>dx � �x>y.

x2
� y2

� 4.d 
2y>dx2

>d 
2y>dx2

d 
2y>dx2.

x4
� x2y3

� y5
� 2x � 1.
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FIGURA 4.7.3 Las rectas
tangentes en el ejemplo 2
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 x4 d
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 x2y3 d
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 2 x
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 1

factorice dy>dx de los términos
segundo y cuartod

regla del producto aquí
T T

regla de potencias (6) aquí

.

d 
2y

dx2

d
dx

 Qx
y
R y . 1 x . dy

dx

y2

y x Q x
y
R

y2

y2 x2

y3
.

T
al sustituir por dy>dx

T

 
dy

dx

2y sen 2x

cos y cos 2x
.

soc(  y cos  2x) 
dy

dx
2y sen 2x

soc  y . dy

dx
y ( sen  2x . 2) cos 2x . dy

dx

 
d
dx

 sen y
d
dx

 y cos 2x



Posdata: Otro repaso a la regla de potencias Hasta el momento se ha demostrado la regla
de potencias para todos los enteros exponentes n. La diferenciación implí-
cita constituye un mecanismo para demostrar esta regla cuando el exponente es un número
racional p�q, donde p y q son enteros y En el caso donde la función

proporciona

Luego, para la diferenciación implícita

Al despejar dy�dx en la última ecuación y simplificar con las leyes de los exponentes obtene-
mos

Al examinar el último resultado observamos que se trata de (3) de la sección 4.3 con n � p>q.

dy

dx
�

p

q
 
x 

p�1

y 
q�1

�
p

q
 

x 
p�1

(x 
p>q) 

q�1
�

p

q
 

x 
p�1

x 
p�p>q �

p

q
 x 

p>q�1.

y � 0,

yq
� x 

p.y � x 
p>q n � p>q,q � 0.

(d>dx)x 
n

� nx 
n�1
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Fundamentos

En los problemas 1-4, suponga que y es una función diferen-
ciable de x. Encuentre la derivada indicada.

En los problemas 5-24, suponga que la ecuación dada define
por lo menos una función diferenciable implícita. Use dife-
renciación implícita para encontrar dy�dx.

5. 6.

7. 8.

9. 3y � cos y � x2 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. xy � sen(x � y) 22.

23. x � sec y 24. x sen y � y cos x � 1

En los problemas 25 y 26, use diferenciación implícita para
encontrar la derivada indicada.

En los problemas 27 y 28, encuentre dy�dx en el punto indi-
cado.

En los problemas 29 y 30, encuentre dy�dx en los puntos que
corresponden al número indicado.

En los problemas 31-34, encuentre una ecuación de la recta
tangente en el punto o número indicado.

31. 32.

33. tan y � x; y � p 4 34. 3y � cos y � x2; (1, 0)

En los problemas 35 y 36, encuentre el o los puntos sobre la
gráfica de la ecuación dada donde la recta tangente es hori-
zontal.
35. 36.

37. Encuentre el o los puntos sobre la gráfica de x2
� y2

� 25
donde la pendiente de la tangente es 

38. Encuentre el punto donde se cortan las rectas tangentes
a la gráfica de en (�3, 4) y (�3, �4).

39. Encuentre el o los puntos sobre la gráfica de donde
la recta tangente es perpendicular a la recta y + 3x - 5 = 0.

40. Encuentre el o los puntos sobre la gráfica de x2
� xy � y2

� 27 donde la recta tangente es paralela a la recta y � 5.

En los problemas 41-48, encuentre 

41. 42.

43. 44.

45. x � y � sen y 46. y2
� x2

� tan 2x

47. 48.

En los problemas 49-52, primero use diferenciación implícita
para encontrar dy�dx. Luego despeje y explícitamente en tér-
minos de x y diferencie. Demuestre que las dos respuestas
son equivalentes.
49. 50.

51. 52. y sen x � x � 2yx3y � x � 1

4 x2
� y2

� 1x2
� y2

� x

x3
� y3

� 27x2
� 2xy � y2

� 1

x2
� 4y2

� 16x2
� y2

� 25

xy4
� 54y3

� 6x2
� 1

d 
2y>dx2.

y3
� x2

x2
� y2

� 25

1
2.

y2
� x2

� 4 x � 7x2
� xy � y2

� 3

> 1
x

�
1
y

� 1; x � 3x4
� y3

� 24; (�2, 2)

x � y � cos(xy)

x

y2
�

y2

x
� 5y2

�
x � 1
x � 2

x � y

x � y
� x(x � 1)2

� (y � 4)2
� 25

y4
� y2

� 10x � 3y�3x6
� y6x�3

� 2x � 1

y � (x � y)2(x2
� y2)6

� x3
� y3

x5
� 6xy3

� y4
� 1x3y2

� 2x2
� y2

y3
� 2y � 3x3

� 4x � 1

(y � 1)2
� 4(x � 2)xy2

� x2
� 4 � 0

4x2
� y2

� 8y2
� 2y � x

4.7 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-11.

d
dx

y q d
dx

x p  produce  qy q 1 dy

dx
px p 1.

.03.92 y3 2x2 11y; y 12y2 2xy 1 0; x
1
2

.2.1

.4.3
d
dx

y sen 3y
d
dx

cos y2

d
dx

x2

y2

d
dx

x2y4

.62.52 pr 2h 100; dh>drr2 sen 2u; dr>du
27.

28. y sen xy; (p>2, 1)

xy2 4y3 3x 0; (1, 1)



En los problemas 53-56, determine una función implícita a
partir de la ecuación dada tal que su gráfica sea la curva en
la figura.

53. 54.

55. 56.

En los problemas 57 y 58, suponga que tanto x como y son
diferenciables de una variable t. Encuentre dy�dt en térmi-
nos de x, y y dx�dt.
57. 58.

59. La gráfica de la ecuación es la hoja de
Descartes proporcionada en la figura 4.7.2a).

a) Encuentre una ecuación para la recta tangente en el
punto en el primer cuadrante donde la hoja corta la
gráfica de y � x.

b) Encuentre el punto en el primer cuadrante donde la
recta tangente es horizontal.

60. La gráfica de la ecuación mos-
trada en la FIGURA 4.7.8 se denomina lemniscata.

a) Encuentre los puntos sobre la gráfica que correspon-
den a x � 1.

b) Encuentre una ecuación de la recta tangente a la grá-
fica en cada punto encontrado en el inciso a).

c) Encuentre los puntos sobre la gráfica en los que la
tangente es horizontal.

En los problemas 61 y 62, demuestre que las gráficas de las
ecuaciones dadas son ortogonales en el punto de intersección
indicado. Vea el problema 64 en la sección “Desarrolle su
competencia 4.3”.

61.

62. (2, 1)

Si todas las curvas de una familia de curvas una
constante, cortan ortogonalmente a todas las curvas de otra fa-
milia una constante, entonces se dice que las
familias tienen trayectorias ortogonales entre sí. En los proble-
mas 63 y 64, demuestre que las familias de curvas tienen trayec-
torias ortogonales entre sí. Trace las dos familias de curvas.

63. 64.

Aplicaciones
65. Una mujer conduce hacia una señal en la carretera como

se muestra en la FIGURA 4.7.9. Sea u su ángulo de visión
de la señal y sea x su distancia (medida en pies) a esa
señal.

a) Si el nivel de sus ojos está a 4 pies de la superficie
de la carretera, demuestre que

b) Encuentre la razón a la que cambia u con respecto a x.
c) ¿A qué distancia se cumple que la razón del inciso

b) es igual a cero?

66. Un avión caza describe un círculo de 1 km de radio
como se muestra en la FIGURA 4.7.10. Suponga que se
escoge un sistema de coordenadas rectangulares de
modo que el origen está en el centro del círculo. La nave
dispara un misil que describe una trayectoria rectilínea
tangente al círculo e impacta en un blanco sobre el suelo
cuyas coordenadas son (2, �2).

a) Determine el punto sobre el círculo donde fue dispa-
rado el misil.

b) Si un misil se dispara en el punto sobre el
círculo, ¿en qué punto choca contra el suelo?

Suelo Objetivo

FIGURA 4.7.10 Avión caza en el problema 66

(�1
2, �

13
2 )

FIGURA 4.7.9 Automóvil en el problema 65

x
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x2
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� y2
� c1, xy � c2
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c1G(x, y) � c1,

2x2
� 2y2

� 3x;y3
� 3x2y � 13,

2 x2
� 3y2

� 5; (1, 1)y2
� x3,

FIGURA 4.7.8 Lemniscata en el problema 60
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tan u
4x

x2 252
.



Piense en ello

67. El ángulo u (0 6 u 6 p) entre dos curvas se define como
el ángulo entre sus rectas tangentes en el punto P de
intersección. Si m1 y m2 son las pendientes de las rectas
tangentes en P, es posible demostrar que tan u � (m1 �

m2)�(1 � m1m2). Determine el ángulo entre las gráficas
de x2

� y2
� 4y � 6 y x2

� 2x � y2
� 4 en (1, 1).

68. Demuestre que una ecuación de la recta tangente a la
elipse x2�a2

� y2�b2
� 1 en el punto (x0, y0) está dada

por

69. Considere la ecuación x2
� y2

� 4. Establezca otra fun-
ción implícita h(x) definida por esta ecuación para
�2 x 2 diferente de la proporcionada en (2), (3) y
el problema 55.

70. Para �1 6 x 6 1 y �p�2 6 y 6 p�2, la ecuación x �

sen y define una función implícita diferenciable.

a) Encuentre dy�dx en términos de y.
b) Encuentre dy�dx en términos de x.

��

x x0

a2
�

y y0

b2
� 1.
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4.8 Derivada de funciones inversas
Introducción En la sección 2.5 vimos que las gráficas de una función f uno a uno y su

inversa f �1 son reflexiones entre sí en la recta y � x. Como una consecuencia, si (a, b) es un
punto sobre la gráfica de f, entonces (b, a) es un punto sobre la gráfica de f �1. En esta sec-
ción también veremos que las pendientes de las rectas tangentes a la gráfica de una función
diferenciable f están relacionadas con las pendientes de tangentes a la gráfica de f �1.

Empezamos con dos teoremas sobre la continuidad de f y f �1.

Continuidad de f �1 Aunque los dos teoremas siguientes se plantean sin demostración, su
validez se concluye a partir del hecho de que f �1 es una reflexión de la gráfica de f en la recta
y � x.

f creciente y diferenciable
significa que las rectas tangen-
tes tienen pendiente positiva.

Teorema 4.8.1 Continuidad de la función inversa

Sea f una función continua uno a uno sobre su dominio X. Entonces f �1 es continua sobre
su dominio.

Teorema 4.8.2 Existencia de una función inversa

Sea f una función continua y creciente sobre un intervalo [a, b]. Entonces f �1 existe y es
continua y creciente sobre [  f (a), f (b)] .

FIGURA 4.8.1 f y f�1

son continuas y crecientes

(ƒ(a), a)

ƒ(a) ƒ(b)

(ƒ(b), b)

(b, ƒ(b))

(a, ƒ(a))

y �ƒ(x)

y �ƒ�1(x)
y � x

x

y

a b

Funciones crecientes-decrecientes Suponga que y � f(x) es una función definida sobre
un intervalo I, y que x1 y x2 son dos números cualesquiera en el intervalo tales que
Entonces por la sección 2.3 y la figura 2.3.4, recuerde que se dice que f es

• creciente sobre el intervalo si y (1)
• decreciente sobre el intervalo si (2)

Los dos teoremas siguientes establecen una relación entre el concepto de creciente/decre-
ciente y la existencia de una función inversa.

f (x1) 7 f (x2).
f (x1) 6 f (x2),

x1 6 x2.

El teorema 4.8.2 también se cumple cuando sustituimos la palabra creciente por la pala-
bra decreciente y el intervalo en la conclusión se reemplaza por Vea la FIGURA 4.8.1.
Además, por el teorema 4.8.2 concluimos que si f es continua y creciente sobre un intervalo

entonces f �1 existe y es continua y creciente sobre su dominio de inspección. Al
analizar las figuras 2.3.4 y 4.8.1 también observamos que si f en el teorema 4.8.2 es una fun-
ción diferenciable sobre (a, b), entonces

• f es creciente sobre el intervalo si sobre (a, b), y
• f es decreciente sobre el intervalo si sobre (a, b).

Estas afirmaciones se demostrarán en la siguiente unidad.

f ¿(x) 6 0[a, b ]
f ¿(x) 7 0[a, b ]

(�q, q),

[ f (b), f (a)] .



EJEMPLO  1 Existencia de una inversa

Demuestre que tiene una inversa.

Solución Puesto que f es una función polinomial, es diferenciable en todas partes; es decir,
f es diferenciable sobre el intervalo También, para toda x

implica que f es creciente sobre Por el teorema 4.8.3 se concluye que f es uno a
uno y entonces f �1 existe.

Derivada de f �1 Si f es diferenciable sobre un intervalo I y es uno a uno sobre ese inter-
valo, entonces para a en I el punto (a, b) sobre la gráfica de f y el punto (b, a) sobre la grá-
fica de f �1 son imágenes especulares entre sí en la recta y � x. Como veremos a continua-
ción, las pendientes de las rectas tangentes en (a, b) y (b, a) también están relacionadas.

EJEMPLO  2 Derivada de una inversa

En el ejemplo 5 de la sección 2.5 se demostró que la inversa de una función uno a uno
es En x � 2,

Luego, por

observamos que f �(2) � 4 y ( f �1)�(5) � Esto muestra que la pendiente de la tangente a la
gráfica de f en (2, 5) y la pendiente de la tangente a la gráfica de f �1 en (5, 2) son recíprocas:

Vea la FIGURA 4.8.2.

El siguiente teorema muestra que el resultado en el ejemplo 2 no es una coincidencia.

1
4.

f 
�1(x) � 1x � 1.f (x) � x2

� 1, x � 0

(�q, q).
f ¿(x) � 15x2

� 8 7 0(�q, q).

f (x) � 5x3
� 8x � 9
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Teorema 4.8.3 Diferenciabilidad de una función inversa

Suponga que f es una función diferenciable sobre un intervalo abierto (a, b). Si 
sobre el intervalo o sobre el intervalo, entonces f es uno a uno. Además, f �1 es
diferenciable para toda x en el rango de f.

f ¿(x) 6 0
f ¿(x) 7 0

FIGURA 4.8.2 Rectas tangentes
en el ejemplo 2

1
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ƒ�(2) � 4

(5, 2)

(2, 5)

y � x2
� 1, x � 0

(ƒ�1)�(5) �        �
1

ƒ�(2)
1 y � x � 1
4

Teorema 4.8.4 Derivada de una función inversa

Suponga que f es diferenciable sobre un intervalo I y que f �(x) nunca es cero sobre I. Si f
tiene una inversa f �1 sobre I, entonces f �1 es diferenciable en un número x y

(3)

DEMOSTRACIÓN Como vimos en (5) de la sección 2.5, para toda x en el domi-
nio de f �1. Por diferenciación implícita y la regla de la cadena,

Al despejar en la última ecuación obtenemos (3).

Resulta evidente que la ecuación (3) muestra que para encontrar la función derivada para
f �1 es necesario conocer de manera explícita f �1(x). Para una función uno a uno y � f(x),
resolver la ecuación x � f(y) para y algunas veces es difícil y a menudo imposible. En este

d
dx

 f 
�1(x)

f ( f 
�1(x)) � x

f (2) 5  y  f 
1(5) 2.

f ¿(x) 2x  y  ( f 
1)¿(x)

1
21x 1

.( f 
1) ¿(5)

1
f ¿(2)

  o  ( f 
1) ¿(5)

1
f ¿( f 

1(5))

d
dx

 f 
1(x)

1
f ¿( f 

1(x))
.

d
dx

 f ( f 
1(x))

d
dx

 x  o  f ¿( f 
1(x)) . d

dx
 f 

1(x) 1.



caso resulta conveniente volver a escribir (3) usando otra notación. De nuevo, por diferencia-
ción implícita,

Al despejar dy�dx en la última ecuación y escribir obtenemos

(4)

Si (a, b) es un punto conocido sobre la gráfica de f, el resultado en (4) permite evaluar la
derivada de f �1 en (b, a) sin contar con una ecuación que defina 

EJEMPLO  3 Derivada de una inversa

En el ejemplo 1 se indicó que la función polinomial es diferenciable
sobre y por tanto es continua sobre el intervalo. Puesto que el comportamiento final
de f es el de la función polinomial con un solo término , podemos concluir que el
rango de f también es Además, puesto que para toda x, f es
creciente sobre su dominio Entonces, por el teorema 4.8.3, f tiene una inversa dife-
renciable f �1 con dominio Al intercambiar x y y, la inversa se define por la ecua-
ción pero resolver esta ecuación para y en términos de x es difícil (se
requiere la fórmula cúbica). No obstante, al usar se encuentra que la deri-
vada de la función inversa está dada por (4):

(5)

Por ejemplo, puesto que f(1) � 4, sabemos que Entonces, la pendiente de la recta
tangente a la gráfica de f �1 en (4, 1) está dada por (5):

En el ejemplo 3, la derivada de la función inversa también puede obtenerse directamente
a partir de usando diferenciación implícita:

Al resolver la ecuación para dy�dx obtenemos (5). Como una consecuencia de esta observa-
ción, es posible usar diferenciación implícita para encontrar la derivada de una función inversa
con el mínimo esfuerzo. En el siguiente análisis se encontrarán las derivadas de las funciones
trigonométricas inversas.

Derivadas de funciones trigonométricas inversas Un repaso de las figuras 2.5.15 y
2.5.17a) revela que la tangente inversa y la cotangente inversa son diferenciables para toda x.
No obstante, las cuatro funciones trigonométricas restantes no son diferenciables en x � �1
o x � 1. Centraremos la atención en obtener las fórmulas de las derivadas del seno inverso,
la tangente inversa y la secante inversa, y la obtención de las otras se dejan como ejercicios.

Seno inverso: y � sen�1 x si y sólo si x � sen y, donde y En
consecuencia, la diferenciación implícita

y así (6)

Para la restricción dada sobre la variable y, cos y � 0 y así cos y � �

Al sustituir esta cantidad en (6), hemos demostrado que

(7)

21 � x2.21 sen2 y

�p>2 	 y 	p>2.�1 	 x 	 1

x � 5y3
� 8y � 9

dy

dx
`
x�4

�
1

15y2
� 8
`
y�1

�
1

23
.

f 
�1(4) � 1.

dy

dx
�

1
15y2

� 8
.

dx>dy � 15y2
� 8,

x � 5y3
� 8y � 9,

(�q, q).
(�q, q).

f ¿(x) � 15x2
� 8 7 0(�q, q).

y � 5x3
(�q, q)

f (x) � 5x3
� 8x � 9

f 
�1(x).

dx>dy � f ¿(y)

184 UNIDAD 4 La derivada

Lea otra vez este párrafo.

d
dx

x
d
dx

f (y)  proporciona  1 f ¿(y) . dy

dx
.

dy

dx
1

dx>dy
.

d
dx

x
d
dx

(5y3 8y 9)  proporciona  1 15y2 dy

dx
8

dy

dx
.

d
dx

x
d
dx

sen y  proporciona  1 cos y . dy

dx

d
dx

sen 1 x
1

21 x2
.

dy

dx
1

cos y
.



Como habíamos pronosticado, observe que (7) no está definida en x � �1 o x � 1. La fun-
ción seno inverso o arcsen es diferenciable sobre el intervalo abierto (�1, 1).

Tangente inversa: y � tan�1 x si y sólo si x � tan y, donde y
Por tanto,

o bien, (8)

Debido a la identidad sec2 y = 1 + tan2 y = 1 + x2, (8) se vuelve

(9)

Secante inversa: Para y o 

Al diferenciar implícitamente la última ecuación obtenemos

(10)

Debido a las restricciones sobre y, tenemos 
Por tanto, (10) se vuelve

(11)

Es posible deshacernos del signo en (11) al observar en la figura 2.5.17b) que la pendiente
de la recta tangente a la gráfica de y = sec-1 x es positiva para x 6 1 y positiva para x 7 1.
Así, (11) es equivalente a

(12)

El resultado en (12) puede volver a escribirse en forma más breve usando el símbolo de valor
absoluto:

(13)

La derivada de la composición de una función trigonométrica inversa con una función dife-
renciable u � g(x) se obtiene a partir de la regla de la cadena.

�

�x� 7 1.tan y 2sec2 y 1 2x2 1,

p>2 6 y 	 p,0 	 y 6 p>20 x 0 7 1

�p>2 6 y 6 p>2.
�q 6 x 6 q
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En las fórmulas en (14) debe tenerse mientras que en las fórmulas en (16) debe
tenerse 0u 0 7 1.

0u 0 6 1,

Teorema 4.8.5 Funciones trigonométricas inversas

Si u � g(x) es una función diferenciable, entonces

(14)

(15)

(16)

d
dx

tan 1 x
1

1 x2
.

d
dx

sec 1 x
10 x 02x2 1

.

d
dx

csc 1 u
10u 02u2 1

du
dx

.
d
dx

sec 1 u
10u 02u2 1

du
dx

,

d
dx

cot 1 u
1

1 u2

du
dx

,
d
dx

tan 1 u
1

1 u2

du
dx

,

d
dx

cos 1 u
1

21 u2

du
dx

,
d
dx

sen 1 u
1

21 u2

du
dx

,

proporciona    

dy

dx
1

sec2 y
.

l sec2 y . dy

dx
d
dx

x
d
dx

tan y

si y sólo si x sec y.y sec 1 x

d
dx

sec 1 x
1

x2x2 1
.

dy

dx
1

sec y tan y
.

d
dx

sec 1 x µ 1

x2x2 1
, x 6 1

1

x2x2 1
, x 7 1.



EJEMPLO  4 Derivada del seno inverso

Diferencie y � sen�1 5x.

Solución Con u � 5x, por la primera fórmula en (14) tenemos

EJEMPLO  5 Derivada de la tangente inversa

Diferencie 

Solución Con por la primera fórmula en (15) tenemos

EJEMPLO  6 Derivada de la secante inversa

Diferencie y = sec-1 x2.

Solución Para por la primera fórmula en (16) tenemos

(17)

Con ayuda de un dispositivo para graficar obtenemos la gráfica de y = sec-1 x2 que se mues-
tra en la FIGURA 4.8.3. Observe que (17) proporciona una pendiente positiva para x 7 1 y una
negativa para x 6 �1.

EJEMPLO  7 Recta tangente

Encuentre una ecuación de la recta tangente a la gráfica de f (x) � x2 cos-1 x en 

Solución Por la regla del producto y la segunda fórmula en (14):

Puesto que al evaluar las dos funciones f y f ¿ en obtenemos:

Por la forma punto-pendiente de la ecuación de una recta, la ecuación sin simplificar de la
recta tangente es

Puesto que el dominio de cos-1 x es el intervalo [- 1, 1], el dominio de f es [- 1, 1]. El
rango correspondiente es La FIGURA 4.8.4 se obtuvo con ayuda de un dispositivo para
graficar.

[0, p ] .

y �
p

6
� a� 1

213
�

2p
3
bax �

1
2
b.

x � �
1
2cos�1(�1

2) � 2p>3,

x � �
1
2.

 �
2x

x22x4
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�
2

x2x4
� 1

.
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10 x2 02(x2)2
� 1

. d
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 x2
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(2x � 2)12x � 1
.

 �
1

1 � (2x � 1)
. 1

2
 (2x � 1)�1>2 . 2
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1
1 � A12x � 1 B 2 . d

dx
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u � 12x � 1,

y � tan�112x � 1.
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dx
�

1

21 � (5x)2
. d
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5

21 � 25x2
.
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FIGURA 4.8.3 Gráfica de la fun-
ción en el ejemplo 6
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4.9 Derivada de funciones exponenciales
Introducción En la sección 2.6 vimos que la función exponencial 

está definida para todos los números reales; es decir, el dominio de f es Al revisar
la figura 2.6.2 observamos que f es continua en todas partes. Resulta que una función expo-
nencial también es diferenciable en todas partes. En esta sección desarrollaremos la derivada
de f (x) � bx.

(�q, q).
f (x) � bx, b 7 0, b � 1,
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Fundamentos

En los problemas 1-4, sin graficar determine si la función f
dada tiene una inversa.

1.

2.

3.

4.

En los problemas 5 y 6, use (3) para encontrar la derivada
de f �1 en el punto indicado.

5.

6.

En los problemas 7 y 8, encuentre f �1. Use (3) para encon-
trar y luego compruebe este resultado por diferencia-
ción directa de f �1.

7. 8.

En los problemas 9-12, sin encontrar la inversa, encuentre,
en el valor indicado de x, el punto correspondiente sobre la
gráfica de f �1. Luego use (4) para encontrar una ecuación
de la recta tangente en este punto.

9. 10.

11.

12.

En los problemas 13-32, encuentre la derivada de la función
dada.

En los problemas 33 y 34, use diferenciación implícita para
encontrar dy�dx.

33. tan�1 y � x2
� y2 34. sen�1 y � cos�1 x � 1

En los problemas 35 y 36, demuestre que f �(x) � 0.
Interprete el resultado.

35. f (x) � sen�1 x � cos�1 x

36. f (x) � tan�1 x � tan�1(1 x).

En los problemas 37 y 38, encuentre la pendiente de la recta
tangente a la gráfica de la función dada en el valor indicado
de x.

En los problemas 39 y 40, encuentre una ecuación de la recta
tangente a la gráfica de la función dada en el valor indicado
de x.

41. Encuentre los puntos sobre la gráfica de f(x) � 5 �

2 sen x, donde la recta tangente es para-
lela a la recta 

42. Encuentre todas las rectas tangentes a la gráfica de f(x)
� arctan x cuya pendiente es 

Piense en ello

43. Si f y son diferenciables, use (3) para encontrar
una fórmula para ( f 

�1)–(x).
( f 

�1) ¿

1
4.

y � 13x � 1.
0 � x � 2p,

>

y � 8 � 613 x � 2; x � �3

y � (x5
� 1)3; x � 1

y �
2x � 1
4x � 1

; x � 0y �
1
3

 x3
� x � 7; x � 3

f (x) � (5x � 7)3f (x) �
2x � 1

x

( f 
�1) ¿

f (x) � �x3
� 3x � 7; ( f (�1), �1)

f (x) � 2x3
� 8; A f  A12B, 12B

f (x) � x4
� 2x2

f (x) � x3
� x2

� 2x

f (x) � �7x 5
� 6x3

� 2x � 17

f (x) � 10x3
� 8x � 12

4.8 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-12.
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Derivada de una función exponencial Para encontrar la derivada de una función exponen-
cial usamos la definición de la derivada proporcionada en (2) de la definición 4.2.1.
Primero calculamos el cociente diferencial

(1)

en tres pasos. Para la función exponencial f(x) � bx, tenemos

i)

ii)

iii)

En el cuarto paso, el paso de cálculo, hacemos pero en forma semejante a las deriva-
das de sen x y cos x en la sección 4.5, no hay forma evidente de cancelar la h en el cociente
diferencial iii). No obstante, la derivada de es

(2)

Debido a que bx no depende de la variable h, (2) puede escribirse como

(3)

A continuación se presentan algunos resultados sorprendentes. Puede demostrarse que el límite
en (3),

(4)

existe para toda base positiva b. No obstante, como sería de esperar, para cada base b obtene-
mos una respuesta diferente. Así, por conveniencia, la expresión en (4) se denotará por el sím-
bolo m(b). Entonces, la derivada de es

(5)

Se solicita al lector aproximar el valor de m(b) en los cuatro casos b � 1.5, 2, 3 y 5 en los
problemas 57-60 de la sección “Desarrolle su competencia 4.9”. Por ejemplo, puede demos-
trar que y como una consecuencia, si entonces

(6)

Es posible que comprenda mejor lo que evalúa m(b) al evaluar (5) en x � 0. Puesto que
b0

� 1, tenemos En otras palabras, m(b) es la pendiente de la recta tangente a
la gráfica de en x 0; es decir, en la intersección y (0, 1). Vea la FIGURA 4.9.1. Dado
que es necesario calcular una m(b) diferente para cada base b, y que es probable que m(b)
sea un número “espantoso” como en (6), con el tiempo la siguiente pregunta surge de manera
natural:

• ¿Hay alguna base b para la cual m(b) � 1? (7)

Derivada de la función exponencial natural Para contestar la pregunta planteada en (7), es
necesario volver a las definiciones de e proporcionadas en la sección 2.6. En específico, (4)
de la sección 2.6,

(8)

constituye el mecanismo para responder la pregunta planteada en (7). Sabemos que, a nivel
intuitivo, la igualdad en (8) significa que cuando h se aproxima cada vez más a 0 entonces

puede hacerse arbitrariamente próximo al número e. Así, para valores de h cercanos
a 0, tenemos la aproximación y así se concluye que La última
expresión escrita en la forma

(9)
eh

� 1
h

� 1

1 � h � eh.(1 � h)1>h
� e

(1 � h)1>h

�f (x) � bx
f ¿(0) � m(b).

f ¿(x) � (2.302585p )10x.

f (x) � 10x,m(10) � 2.302585p

f ¿(x) � bxm (b).

f (x) � bx

f (x) � bx

h S 0

f (x � h) � f (x)
h

f (x) � bx
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FIGURA 4.9.1 Encuentre una
base b de modo que la pendiente
m(b) de la recta tangente en (0, 1)
sea 1
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e lím
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sugiere que

(10)

Puesto que el miembro izquierdo de (10) es m(e), tenemos la respuesta a la pregunta planteada
en (7):

• La base b para la cual m(b) � 1 es b � e. (11)

Además, por (3) hemos descubierto un resultado maravillosamente simple. La derivada de
f (x) � ex es ex. En resumen,

(12)

El resultado en (12) es el mismo que Además, si es una constante, enton-
ces la otra función diferente de cero f en cálculo cuya derivada es igual a sí misma es 
puesto que por la regla del múltiplo constante de la sección 4.3

Otro repaso a la derivada de f (x) � bx En el análisis precedente vimos que m(e) � 1, pero
se dejó sin contestar la pregunta de si m(b) tiene un valor exacto para todo b 7 0. Y lo tiene.
A partir de la identidad podemos escribir cualquier función exponencial
f(x) = bx en términos de la base e:

Por la regla de la cadena, la derivada de bx es

Volviendo a la línea precedente muestra que

(13)

Al relacionar el resultado en (5) con el de (13) concluimos que m(b) � ln b. Por ejem-
plo, la derivada de es Debido a que observa-
mos que es lo mismo que el resultado en (6).

A continuación se proporcionan las formas de los resultados de la regla de la cadena en
(12) y (13).

10x(ln 10)f ¿(x) �

ln 10 � 2.302585f ¿(x) � 10x(ln 10).f (x) � 10x

bx
� ex(ln b),

f ¿(x) �
d
dx

 ex(ln b)
� ex(ln b) . d

dx
 x(ln b) � ex(ln b)(ln b).

f (x) � bx
� (eln b)x

� ex(ln b).

b 7 0,eln b
� b,

dy

dx
�

d
dx

 cex
� c 

d
dx

 ex
� cex

� y.

y � cex
c � 0f ¿(x) � f (x).
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Teorema 4.9.1 Derivadas de funciones exponenciales

Si u � g(x) es una función diferenciable, entonces

(14)

y (15)

EJEMPLO  1 Regla de la cadena

Diferencie 

a) b) c)

Solución

a) Con u � �x, por (14) tenemos
dy

dx
� e�x . d

dx
 (�x) � e�x(�1) � �e�x.

y � 85x.y � e1>x3

y � e�x

lím
hS0

eh 1
h

1.

d
dx

ex ex.

d
dx

bx bx(ln b).

d
dx

bu bu(ln b)
du
dx

.

d
dx

eu eu du
dx

,



b) Al volver a escribir como , por (14) tenemos

c) Con u � 5x, por (15) tenemos

EJEMPLO  2 Reglas del producto y de la cadena

Encuentre los puntos sobre la gráfica de donde la recta tangente es horizontal.

Solución Se usa la regla del producto junto con (14):

Puesto que para todos los números reales x, cuando Al fac-

torizar la última ecuación obtenemos y así x = 0, x = -1 y x = 1. Así,
los puntos correspondientes sobre la gráfica de la función dada son (0, 0), (-1, 3e-1) y

La gráfica de junto con las tres rectas tangentes se muestran en la FIGURA

4.9.2.

En el ejemplo siguiente se recuerda el hecho de que una ecuación exponencial puede escri-
birse en una forma logarítmica equivalente. En particular, se usa (9) de la sección 2.6 en la
forma

(16)

EJEMPLO  3 Recta tangente paralela a una recta

Encuentre el punto sobre la gráfica de donde la recta tangente es paralela a

Solución Sea el punto desconocido sobre la gráfica de 
donde la recta tangente es paralela a y = - 4x - 2. Entonces, a partir de la derivada

, la pendiente de la recta tangente en este punto es Puesto que
y = - 4x - 2 y la recta tangente es paralela en ese punto, las pendientes son iguales:

o bien, o bien,

A partir de (16), la última ecuación proporciona -x0 = ln 2 o x0 = -ln 2. Por tanto, el punto
es (-ln 2, 2eln 2). Puesto que eln 2 = 2, el punto es (-ln 2, 4). En la FIGURA 4.9.3, la línea pro-
porcionada está a la izquierda y la recta tangente está a la derecha.

e�x0 � 2.�2e�x0 � �4f ¿(x0) � �4

f ¿(x0) � �2e�x0.f ¿(x) � �2e�x

f (x) � 2e�x(x0, f (x0)) � (x0, 2e�x0)

y � �4x � 2.
f (x) � 2e�x

y � 3x2e�x2

(1, 3e�1).

x (x � 1)(x � 1) � 0

�6x3
� 6x � 0.

dy

dx
� 0e�x2

� 0

 � e�x2

(�6x3
� 6x).

 � 3x2(�2xe�x2

) � 6xe�x2

 
dy

dx
� 3x2 . d

dx
 e�x2

� e�x2 . d
dx

 3x2

y � 3 x2e�x2

dy

dx
� e1>x3 . d

dx
 x�3

� e1>x3

(�3x�4) � �3 
e1>x3

x4
.

u � x�3u � 1>x3
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FIGURA 4.9.2 Gráfica de la
función en el ejemplo 2

y

1

�1 1(0, 0)

(�1, 3e�1) (1, 3e�1)

x

y �3x2 e�x2

FIGURA 4.9.3 Gráfica de la
función y rectas en el
ejemplo 3

y � 2e�x

y

x
1�1�2 2

(�ln 2, 4)

y � �4x � 2

1

2

3

4

5

NOTAS DESDE EL AULA

Los números e y p son trascendentes, así como irracionales. Un número trascendente es
un número que no es raíz de una ecuación polinomial con coeficientes enteros. Por ejem-
plo, es irracional pero no trascendente, puesto que es una raíz de la ecuación polino-
mial El hecho de que el número e sea trascendente fue demostrado por el mate-
mático francés Charles Hermite (1822-1901) en 1873, mientras que el matemático alemán
Ferdinand Lindemann (1852-1939) demostró nueve años después que es trascendente.
Esta última demostración evidenció de manera concluyente que resolver la “cuadratura del
círculo” con regla y compás era imposible.

p

x2
� 2 � 0.

12

d

dx

y ex  si y sólo si  x ln y.

dy

dx
85x . (ln  8) . d

dx
 5x 5 . 85x

 (ln 8).



Fundamentos

En los problemas 1-26, encuentre la derivada de la función
dada.

1. 2.

3. 4. y � esen 10x

5. 6.

7. 8. y � e�x sen px

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. f (x) � e-x tan ex 22. f (x) � sec e2x

23. 24.

25. 26.

27. Encuentre una ecuación de la recta tangente a la gráfica
de en x � 0.

28. Encuentre la pendiente de la recta normal a la gráfica de
en x � 0.

29. Encuentre el punto sobre la gráfica de donde la
recta tangente es paralela a 

30. Encuentre el punto sobre la gráfica de 
donde la recta tangente es paralela a y 6x.

En los problemas 31 y 32, encuentre el o los puntos sobre
la gráfica de la función dada donde la recta tangente es hori-
zontal. Use un dispositivo para graficar y obtenga la gráfica
de cada función.

31. f (x) � e�x sen x 32.

En los problemas 33-36, encuentre la derivada de orden
superior indicada.

En los problemas 37 y 38, C1 y C2 son constantes reales arbi-
trarias. Demuestre que la función satisface la ecuación dife-
rencial dada.

39. Si C y k son constantes reales, demuestre que la función
satisface la ecuación diferencial y� � ky.

40. Use el problema 39 para encontrar una función que
satisfaga las condiciones dadas.

a)

b)

En los problemas 41-46, use diferenciación implícita para
encontrar dy�dx.

41. 42.
43. y = cos exy 44.
45. 46.

47. a) Trace la gráfica de 
b) Encuentre f �(x).
c) Trace la gráfica de f �.
d) ¿La función es diferenciable en x � 0?

48. a) Demuestre que la función f (x) � ecos x es periódica
con periodo 

b) Encuentre todos los puntos sobre la gráfica de f

donde la tangente es horizontal.
c) Trace la gráfica de f.

Aplicaciones
49. La función logística

donde a y b son constantes positivas, a menudo sirve
como modelo matemático para una población en creci-
miento pero limitada.

a) Demuestre que P(t) satisface la ecuación diferencial

b) La gráfica de P(t) se denomina curva logística,
donde es la población inicial. Considere el
caso donde a 2, b 1 y P0 1. Encuentre asínto-
tas horizontales para la gráfica de P(t) al determinar
los límites P(t) y P(t).

c) Grafique P(t).
d) Encuentre el o los valores de t para los cuales

50. El modelo matemático de Jenss (1937) constituye una
de las fórmulas empíricas más precisas para pronosticar
la estatura h (en centímetros) en términos de la edad t (en
años) para niños en edad preescolar (de 3 meses a 6 años):

a) ¿Qué estatura pronostica este modelo para un niño de
2 años?

b) ¿Cuán rápido crece en estatura un niño de 2 años?
c) Use una calculadora o un SAC para obtener la grá-

fica de h sobre el intervalo 
d) Use la gráfica del inciso c) para estimar la edad de un

niño en edad preescolar que mide 100 cm de estatura.

[ 1
4, 6].

h(t) � 79.04 � 6.39t � e3.26�0.99t.

P–(t) � 0.

lím
tSq

lím
tS�q

���

P(0) � P0

dP
dt

� P(a � bP).

P(t) �
aP0

bP0 � (a � bP0)˛e�at ,

2p.

f (x) � e� 0x 0.e
x

� ey
� yx � y2

� ex>y y � e(x�y)2

xy � eyy � ex�y

y � Cekx

f (x) � (3 � x2)e�x

�

y � 5x � e2x

3x � y � 7.
y � ex

y � (x � 1)e�x

y � (ex
� 1)2

y � ex
� ex�e�xex2

y � e

y � e 
x�2
x�2f (x) � ex2x2

�1

f (x) � (2x � 1)3e�(1�x)4

f (x) � e x1>3
� (ex)1>3

y � a 1
exb100

y � (e3)x�1

y � e2xe3xe4xy �
e7x

e�x

y �
ex

� e�x

ex
� e�xy �

2
ex>2

� e�x>2
y � (e2x

� e�2x)10y � 21 � e�5x

f (x) �
xex

x � exf (x) �
e�2x

x

y � x3e4x

y � 10�3x2

y � 52x

y � e1x

y � e2x�3y � e�x

4.9 Derivada de funciones exponenciales 191

4.9 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-12.

37.

38. y C1e
x cos 2x C2e

x sen 2x; y– 2y ¿ 5y 0

y C1e
3x C2e

2x;  y– y¿ 6y 0

dP
dt

0.15P 0  y  P(0) P0

y ¿ 0.01y  y  y(0) 100

.43.33

.63.53 y x2ex; 
d 4y

dx4
y sen e2x; 

d 2y

dx2

y
1

1 e x; 
d 2y

dx2
y ex2

; 
d 3y

dx3



Piense en ello

51. Demuestre que la intersección con el eje x de la recta
tangente a la gráfica de en x � x0 está una uni-
dad a la derecha de x0.

52. ¿Cómo está relacionada la recta tangente a la gráfica
de en x � 0 con la recta tangente a la gráfica de

en x 0?

53. Explique por qué sobre la gráfica de no hay nin-
gún punto donde la recta tangente sea paralela a

54. Encuentre todas las rectas tangentes a la gráfica de
que pasan por el origen.

En los problemas 55 y 56, el símbolo n representa un entero
positivo. Encuentre una fórmula para la derivada dada.

55. 56.

Problemas con calculadora/SAC

En los problemas 57-60, use una calculadora para estimar el

valor para b = 1.5, b = 2, b = 3 y b = 5

al llenar la tabla siguiente.

57.

61. Use una calculadora o un SAC para obtener la gráfica
de

Demuestre que f es diferenciable para toda x. Use la
definición de la derivada para calcular f �(0).

f (x) � e e�1>x2

,
0,

x � 0
x � 0.

m(b) lím
hS0

bh 1
h

dn

dxn xe�xdn

dxn2ex

f (x) � ex

2x � y � 1.

y � ex

�y � e�x
y � ex

y � e�x
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4.10 Derivada de funciones logarítmicas
Introducción Debido a que la inversa de la función exponencial y � bx es la función loga-

rítmica y � logbx, la derivada de la segunda función puede encontrarse de tres maneras: (3)
de la sección 4.8, diferenciación implícita o a partir de la definición fundamental (2) en la sec-
ción 4.2. Demostraremos los dos últimos métodos.

Derivada de la función logaritmo natural Por (9) de la sección 2.6 sabemos que y � ln x
es lo mismo que x � ey. Por diferenciación implícita, la regla de la cadena y (14) de la sec-
ción 4.9,

En consecuencia,

Al sustituir ey por x, obtenemos el siguiente resultado:

(1)

Derivada de f (x) � logb x Precisamente de la misma manera en que se obtuvo (1), la deri-
vada de y � logb x puede obtenerse al diferenciar implícitamente x � by.

En consecuencia,
dy

dx
�

1
by(ln b)

.

dy

dx
�

1
ey.

Así como en las funciones trigo-
nométricas inversas, la derivada
de la inversa de la función expo-
nencial natural es una función
algebraica.

58.

59.

60.

hS 0 0.1 0.01 0.001 0.0001 0.00001 0.000001

2h 1
h

hS 0 0.1 0.01 0.001 0.0001 0.00001 0.000001

3h 1
h

hS 0 0.1 0.01 0.001 0.0001 0.00001 0.000001

5h 1
h

57.
hS 0 0.1 0.01 0.001 0.0001 0.00001 0.000001

(1.5)h 1
h

d
dx

x
d
dx

ey  proporciona  1 ey
dy

dx
.

d
dx

ln x
1
x

.

d
dx

x
d
dx

by  proporciona  1 by(ln b)
dy

dx
.



Al sustituir by por x, obtenemos

(2)

Puesto que ln e � 1, (2) se vuelve (1) cuando b � e.

EJEMPLO  1 Regla del producto

Diferencie f (x) = x2 ln x.

Solución Por la regla del producto y (1), tenemos

o bien,

EJEMPLO  2 Pendiente de una recta tangente

Encuentre la pendiente de la tangente a la gráfica de y � log10 x en x � 2.

Solución Por (2), la derivada de y � log10 x es

Con ayuda de una calculadora, la pendiente de la recta tangente en (2, log10 2) es

Los resultados en (1) y (2) se resumen en forma de regla de la cadena.
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Teorema 4.10.1 Derivadas de funciones logarítmicas

Si u � g(x) es una función diferenciable, entonces

(3)

y (4)

EJEMPLO  3 Regla de la cadena

Diferencie 

a) f (x) = ln(cos x) y b) y = ln(ln x).

Solución
a) Por (3), con u � cos x tenemos

o bien,

b) Al usar de nuevo (3), ahora con u � ln x, obtenemos

d
dx

 logb x
1

x (ln b)
.

d
dx

 logb u
1

u (ln b)
du
dx

.

d
dx

 ln u
1
u

du
dx

,

dy

dx
1

ln x
. d

dx
 lnx

1
ln x

. 1
x

1
x ln x

.

f ¿(x) tan x.

f ¿(x)
1

cos x
. d

dx
 cos x

1
cos x

. ( sen x)

f ¿(x) x 2 x ln x.

f ¿(x) x2 . d
dx

 ln x (ln x) . d
dx

x2 x2 . 1
x

(ln x) . 2x

dy

dx
`
x 2

1
2 ln 10

0.2171.

dy

dx
1

x (ln 10)
.



EJEMPLO  4 Regla de la cadena

Diferencie f (x) = ln x3.

Solución Debido a que x3 debe ser positiva, se entiende que x 7 0. Así, por (3), con u = x3,
tenemos

Solución alterna: Por iii) de las leyes de los logaritmos (teorema 2.6.1), ln N c = c ln N y
así es posible volver a escribir y � ln x3 como y � 3 ln x y después diferenciar:

Aunque el dominio del logaritmo natural y � ln x es el conjunto el dominio de
se extiende al conjunto Para los números en este último domi-

nio,

En consecuencia

(5)

Las derivadas en (5) prueban que para 

(6)

Así, el resultado en (6) se generaliza por la regla de la cadena. Para una función diferencia-
ble 

(7)

EJEMPLO  5 Uso de (6)

Encuentre la pendiente de la recta tangente a la gráfica de en x � �2 y x � 2.

Solución Puesto que (6) proporciona tenemos

y (8)

Debido a que ln 0-2 0 = ln 2, (8) proporciona, respectivamente, las pendientes de las rectas tan-
gentes en los puntos (-2, ln 2) y (2, ln 2). Observe en la FIGURA 4.10.1 que la gráfica de 
es simétrica con respecto al eje y; de igual manera, las rectas tangentes son simétricas.

EJEMPLO  6 Uso de (7)

Diferencie

a) y b)

Solución
a) Para o por (3) tenemos

(9)

b) Para o por (7) tenemos

(10)
dy

dx
�

1
2x � 3

. d
dx

 (2x � 3) �
2

2x � 3
.

x �
3
2,2x � 3 � 0,

dy

dx
�

1
2x � 3

. d
dx

 (2x � 3) �
2

2x � 3
.

x 7 3
2,2x � 3 7 0,

y � ln 02x � 3 0 .y � ln(2x � 3)

y � ln 0 x 0
dy

dx
`
x�2

�
1
2

.
dy

dx
`
x��2

� �
1
2

dy>dx � 1>x,

y � ln 0 x 0
u � 0,u � g(x),

x � 0,

0 x 0 � e x, x 7 0
�x, x 6 0.

(�q, 0) ´ (0, q).y � ln 0 x 0 (0, q),

f ¿(x) �
1
x3

. d
dx

 x3
�

1
x3

. (3x2) �
3
x

.
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FIGURA 4.10.1 Gráficas de
las rectas tangentes y función
en el ejemplo 5

(2, ln 2)(�2, ln 2)

y
y � ln

x

1

1 2�2 �1

�1

|x|

d
dx

 ln 0 x 0 1
x

.

d
dx

 ln 0u 0 1
u

du
dx

.

f(x) 3
d
dx

 ln x 3 . 1
x

3
x

.

para x 6 0, d
dx

 ln( x)
1
x

. ( 1)
1
x

.

para x 7 0, d
dx

 ln x
1
x



Aunque (9) y (10) parecen iguales, definitivamente no se trata de la misma función. La diferen-
cia consiste simplemente en que el dominio de la derivada en (9) es el intervalo mientras
el dominio de la derivada en (10) es el conjunto de números reales excepto

EJEMPLO  7 Una distinción

Las funciones f (x) � ln x4 y g(x) � 4 ln x no son las mismas. Puesto que para toda
el dominio de f es el conjunto de números reales excepto x = 0. El dominio de g es el

intervalo Así,

mientras

EJEMPLO  8 Simplificar antes de diferenciar

Diferencie 

Solución Al usar las leyes de los logaritmos proporcionadas en la sección 2.6 para x 7 0,
podemos volver a escribir el miembro derecho de la función dada como

de modo que

o bien,

Diferenciación logarítmica La diferenciación de una función complicada y � f(x) que con-
tiene productos, cocientes y potencias puede simplificarse por medio de una técnica denomi-
nada diferenciación logarítmica. El procedimiento consta de tres pasos.

 
dy

dx
�

1
2x

�
8

2x � 7
�

12x

3x2
� 1

.

 
dy

dx
�

1
2

. 1
x

� 4 . 1
2x � 7

. 2 � 2 . 1
3x2

� 1
. 6x

y � ln 
x1>2(2x � 7)4

(3x2
� 1)2

.

g¿(x) �
4
x

, x 7 0.f ¿(x) �
4
x

,  x � 0

(0, q).
x � 0,

x4 7 0

x �
3
2.
(3

2, q), 
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Directrices para diferenciación logarítmica

i) Tome el logaritmo natural de ambos miembros de y � f(x). Use las propiedades
generales de los logaritmos para simplificar tanto como sea posible el miembro
derecho de ln y � ln f(x).

ii) Diferencie implícitamente la versión simplificada de ln y � ln f(x):

iii) Puesto que la derivada del miembro izquierdo es multiplique ambos miem-

bros por y y sustituya y por f(x).

1
y

 
dy

dx
,

Ahora ya sabe cómo diferenciar cualquier función del tipo

Por ejemplo,

Hay funciones donde tanto la base como el exponente son variables:

(11)

y

y (variable)variable.

d
dx
p x p x(ln p)  y  d

dx
xp pxp 1.

y (variable)constante .y (constante)variable

d
dx

 ln y
d
dx

 ln f (x).

d ln N c c ln N
1
2

 ln x 4 ln(2x 7) 2 ln(3x2 1)

d ln(MN) ln M ln Nln x1>2 ln(2x 7)4 ln(3x2 1)2

d ln(M>N) ln M ln Ny ln x1>2(2x 7)4 ln(3x2 1)2



Por ejemplo, es una función del tipo descrito en (11). Recuerde que en la
sección 2.6 vimos que desempeñaba un papel importante en la definición
del número e. A pesar de que no se desarrollará una fórmula general para la derivada de fun-
ciones del tipo dado en (11), es posible obtener sus derivadas por medio del proceso de dife-
renciación logarítmica. El siguiente ejemplo ilustra el método para encontrar dy�dx.

EJEMPLO  9 Diferenciación logarítmica

Diferencie 

Solución Al tomar el logaritmo natural de ambos miembros de la ecuación dada y simplifi-
car obtenemos

Luego se diferencia implícitamente:

La gráfica de en la FIGURA 4.10.2 se obtuvo con ayuda de un dispositivo para graficar.
Observe que la gráfica tiene una tangente horizontal en el punto donde Por tanto,
la coordenada x del punto de tangencia horizontal se determina a partir de 2 + ln x = 0 o
ln x = -2. La última ecuación proporciona 

EJEMPLO  10 Diferenciación logarítmica

Encuentre la derivada de 

Solución Observe que la función dada no contiene logaritmos. Entonces podemos encontrar
dy�dx usando una aplicación ordinaria de las reglas del cociente, del producto y de potencias.
Este procedimiento, que es tedioso, puede evitarse al tomar primero el logaritmo de ambos
miembros de la ecuación dada, simplificar como se hizo en el ejemplo con las leyes de los
logaritmos y luego diferenciar implícitamente. Se toma el logaritmo de ambos miembros de la
ecuación dada y se simplifica el miembro derecho:

Al diferenciar la última línea con respecto a x obtenemos

Posdata: Otro repaso a la derivada de f (x) � logb x Como se afirmó en la introducción de
esta sección, podemos obtener la derivada de f (x) = logb x al usar la definición de la derivada.
Por (2) de la sección 4.2,

y �
23 x4

� 6x2
 (8x � 3)5

(2x2
� 7)2>3 .

x � e�2.

dy>dx � 0.
y � x1x

y � x1x, x 7 0.

f (x) � (1 � 1>x)x
f (x) � (1 � 1>x)x
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FIGURA 4.10.2 Gráfica de la
función en el ejemplo 9

x

y
1

1

y � x
x

d
propiedad iii) de las leyes de
los logaritmos. Sección 1.6

ln y ln x1x 1x ln x.

d
denominador común y
leyes de los exponentes

1
2

x1x 1
2 (2 ln x).

d ahora se sustituye y por x1x
dy

dx
y c 1
1x

ln x

21x
d

d regla del producto
1
y

dy

dx
1x . 1

x
1
2

x 1>2 . ln x

d
y se sustituye por la
expresión original

23 x4 6x2(8x 3)5

(2x2 7)2>3 c 4x3 12x

3(x4 6x2)
40

8x 3
8x

3(2x2 7)
d .

d ambos lados se multiplican por y
dy

dx
y c 4x3 12x

3(x4 6x2)
40

8x 3
8x

3(2x2 7)
d

1
y

dy

dx
1
3

. 1
x4 6x2

. (4x3 12x) 5 . 1
8x 3

. 8
2
3

. 1
2x2 7

. 4x

1
3

ln(x4 6x2) 5 ln(8x 3)
2
3

ln(2x2 7).

ln23 x4 6x2 ln(8x 3)5 ln(2x2 7)2 >3
nl y ln

23 x4 6x2 (8x 3)5

(2x2 7)2>3



(12)

El último paso, tomar el límite dentro de la función logarítmica, se justifica al invocar la con-
tinuidad de la función sobre y suponer que el límite entre corchetes existe. Si en la
última ecuación se hace , entonces, puesto que x es fija, implica En con-
secuencia, por (4) de la sección 2.6 vemos que

Por tanto, el resultado en (12) muestra que

(13)

Una vez que se hace la elección “natural” de b � e, (13) se vuelve (1) puesto que loge e =
ln e = 1.

Posdata: Otro repaso a la regla de potencias Finalmente, ya es posible demostrar la regla
de potencias (3) de la sección 4.3, para todos los números reales exponen-
tes n. Nuestra demostración usa el siguiente hecho: para se define para todos los
números reales n. Luego, debido a la identidad podemos escribir

Así,

Al sustituir en ln x = xn en el último resultado se completa la demostración para x 7 0,

La última fórmula de derivada también es válida para x 6 0 cuando es un número
racional y q es un entero impar.

n � p>q
d
dx

 xn
�

n
x

 xn
� nxn�1.

x � eln x
xnx 7 0,

(d>dx)xn
� nxn�1,

t S 0.h S 0t � h>x(0, q)
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Fundamentos

En los problemas 1-24, encuentre la derivada de la función
dada.

4.10 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-12.

Quienes poseen un ojo agudo y
gran memoria han observado
que (13) no es lo mismo que (2).
Los resultados son equivalentes,
puesto que por las fórmulas de
cambio de base para logaritmos
tenemos que
logbe = ln e�ln b = 1�ln b.

1
x

logb c lím
hS0
a1 h

x
bx>h d .

d las leyes de los logaritmos
1
x

lím
hS0

logba1 h
x
bx>h

d multiplicación por x>x � 1lím
hS0

1
x

. x
h

logba1 h
x
b

d división de x � h entre xlím
hS0

1
h

logb a1 h
x
b

d álgebra y las leyes de los logaritmoslím
hS0

1
h

logb
x h

x

f ¿(x) lím
hS0

logb (x h) logbx

h

lím
hS0
a1 h

x
bx>h

lím
tS0

(1 t)1>t e.

d
dx

logb x
1
x

logb e.

.41.31

.61.51

.81.71

.02.91

21.

22.

.42.32 f (x) lnB
(3x 2)5

x4 7
f (x) ln

(x 1)(x 2)
x 3

G(t) ln15t 1(t3 4)6

H(t) ln t2 (3t2 6)

w(u) u sen (ln 5u)g(x) 2ln1x

f (x) ln(ln(ln x))f (x) ln(x ln x)

y ln
1
x

y
1

ln x

y
1
3

ln 0 sen 3x 0y ln 0 cos x 0
.2.1

.4.3

.6.5

.8.7

.01.9

.21.11 y
ln 4x
ln 2x

y ln
x

x 1

y x (ln x)2y
ln x

x

y x ln 05x 1 0y x2 ln x3

y ln(x2 1)20y ln (x4 3x2 1)

y (ln x)1>2y ln x1>2 y ln 10xy 10 ln x

d
dx

xn d
dx

en ln x en ln x d
dx

(n ln x)
n
x

en ln x.

xn (eln x)n en ln x.



25. Encuentre una ecuación de la recta tangente a la gráfica
de y � ln x en x � 1.

26. Encuentre una ecuación de la recta tangente a la gráfica
de en x � 2.

27. Encuentre la pendiente de la tangente a la gráfica de
en x � 0.

28. Encuentre la pendiente de la tangente a la gráfica de
en x � 1.

29. Encuentre la pendiente de la tangente a la gráfica de 
en el punto en que la pendiente de la tangente a la grá-
fica de f (x) � ln x2 es 4.

30. Determine el punto sobre la gráfica de y = ln 2x donde
la recta tangente es perpendicular a x � 4y = 1.

En los problemas 31 y 32, encuentre el o los puntos sobre
la gráfica de la función dada donde la recta tangente es hori-
zontal.

En los problemas 33-36, encuentre la derivada indicada y
simplifique tanto como pueda.

En los problemas 37-40, encuentre la derivada de orden
superior indicada.

En los problemas 41 y 42, C1 y C2 son constantes reales arbi-
trarias. Demuestre que la función satisface la ecuación dife-
rencial dada para x 7 0.

En los problemas 43-48, use diferenciación implícita para
encontrar dy�dx.

En los problemas 49-56, use diferenciación logarítmica para
encontrar dy�dx.

57. Encuentre una ecuación de la recta tangente a la gráfica
de y � xx�2 en x � 1.

58. Encuentre una ecuación de la recta tangente a la gráfica
de y � x (ln x)x en x � e.

En los problemas 59 y 60, encuentre el punto sobre la grá-
fica de la función dada donde la recta tangente es horizon-
tal. Use un dispositivo para graficar a fin de obtener la grá-
fica de cada función sobre el intervalo 

59. 60.

Piense en ello

61. Encuentre las derivadas de
a) y = tan xx b) c) 

62. Encuentre

63. La función no es diferenciable sólo en
x = 0. La función g(x) = 0 ln x 0 no es diferenciable
en x = 0 ni en otro valor de x 7 0. ¿Cuál es?

64. Encuentre una manera para calcular

Problemas con calculadora/SAC

65. a) Use una calculadora o un SAC para obtener la grá-
fica de y � (sen x)ln x sobre el intervalo 

b) Explique por qué en ciertos intervalos parece que no
hay gráfica. Identifique los intervalos.

66. a) Use una calculadora o un SAC para obtener la grá-
fica de y = 0 cos x 0 cos x sobre el intervalo 

b) Determine, por lo menos aproximadamente, los valo-
res de x en el intervalo para los cuales la
tangente a la gráfica es horizontal.

67. Use una calculadora o un SAC para obtener la gráfica
de f(x) � x3

� 12 ln x. Luego encuentre al valor exacto

del menor valor de f(x).

[0, 5p ]

[0, 5p ] .

(0, 5p).

f (x) � ln 0 x 0
y � xx x

.y � xxex x

y � x2xy � x x

[0.01, 1] .

f ¿
y � ln (xe�x3

)

y � ln (e3x
� x)

y � ln (x2
� 3)
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4.11 Derivada de funciones hiperbólicas
Introducción Si alguna vez ha visitado el Arco de San Luis, Missouri, que mide 630 pies

de altura, quizá se haya preguntado: ¿cuál es la forma del arco?, y recibido la respuesta críp-
tica: la forma de una catenaria invertida. La palabra catenaria proviene de la palabra latina
catena y significa literalmente “cadena colgante” (los romanos usaban una cadena para suje-

41.

42.

x2y– 3xy¿ 3y 0

y C1x
1 cos A12 ln xB C2x 1 sen A12 ln xB;y C1x
1>2 C2x

1>2 ln x; 4x2y– 8xy¿ y 0

.05.94
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.65.55 y x1x 1 23 x2 2y
(x3 1)5(x4 3x3)4

(7x 5)9

y
x102x2 5

23 8x2 2
y

1(2x 1)(3x 2)
4x 3

y
(x2 1)x

x2
y x(x 1)x

y (ln 0 x 0 )xy xsen x

d 2y>dx2 para y 1x x.

.23.13

43.33 .

.63.53

.83.73

.04.93 y ln(5x 3); 
d 4y

dx4
y (ln 0 x 0 )2; 

d 2y

dx2

y x ln x; 
d 2y

dx2
y ln x; 

d3y

dx3

d
dx

ln(csc x cot x)
d
dx

ln(sec x tan x)

d
dx

lna1 21 x2

x
bd

dx
ln Ax 2x2 1B

f (x) x2 ln xf (x)
ln x

x
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.64.54

.84.74 x2 y2 ln(x y)2xy ln(x2 y2)

y ln xy2x y2 ln
x
y

y ln(x y)y2 ln xy

d
dx

logx e.



tar a los perros). Es posible demostrar que la forma que asumen un alambre flexible, una
cadena, un cable o una cuerda colgantes suspendidos en dos puntos es la gráfica de la función

(1)

para elecciones idóneas de las constantes c y k. La gráfica de cualquier función de la forma
dada en (1) se denomina catenaria.

Funciones hiperbólicas Combinaciones como (1) que implican las funciones exponencia-
les ex y e�x ocurren tan a menudo en matemáticas que ameritan definiciones especiales.

f (x) �
k
2

 (ecx
� e�cx)
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Puesto que el dominio de cada una de las funciones exponenciales ex y e�x es el conjunto
de números reales el dominio de y � senh x y y � cosh x es Por (2) y
(3) de la definición 4.11.1, también resulta evidente que

senh 0 � 0 y cosh 0 � 1.

En forma análoga a las funciones trigonométricas tan x, cot x, sec x y csc x que están
definidas en términos de sen x y cos x, las cuatro funciones hiperbólicas adicionales se defi-
nen en términos de senh x y cosh x.

(�q, q).(�q, q),

Gráficas de funciones hiperbólicas Las gráficas del seno hiperbólico y del coseno hiperbó-
lico se proporcionan en la FIGURA 4.11.1. Observe la semejanza de la gráfica en la figura 4.11.1b)
y la forma del Arco de San Luis, Missouri, en la foto al principio de esta sección. Las gráficas
de la tangente, cotangente, secante y cosecante hiperbólicas se muestran en la FIGURA 4.11.2.
Observe que x � 0 es una asíntota vertical de las gráficas de y � coth x y y � csch x.

El Arco de San Luis, Missouri.

Definición 4.11.1 Seno y coseno hiperbólico

Para cualquier número real x, el seno hiperbólico de x es

(2)

y el coseno hiperbólico de x es

(3)

Definición 4.11.2 Otras funciones hiperbólicas

Para un número real x, la tangente hiperbólica de x es

(4)

la cotangente hiperbólica de x, x 0, es

(5)

la secante hiperbólica de x es

(6)

la cosecante hiperbólica de x, x 0, es

(7)

La forma del Arco de San Luis,
Missouri, está basada en el
modelo matemático

y = A - B cosh(Cx�L).

donde A � 693.8597,
B � 68.7672, L � 299.2239,
C � 3.0022, y x y y se miden
en pies. Cuando x � 0, se
obtiene la altura aproximada
de 630 pies.

FIGURA 4.11.1 Gráficas del seno
y coseno hiperbólicos

y

x

y � senh x

1 ex

a) y � senh x

e�x
�

2

1
2

b) y � cosh x

y

x

y � cosh x

1 e�x

(0, 1)

2

1 ex

2

cosh x
e x e x

2
.

senh x
e x e x

2

csch x
1

senh x
2

e x e x.

sech x
1

cosh x
2

e x e x,

coth x
cosh x
senh x

e x e x

e x e x,

tanh x
senh x
cosh x

e x e x

e x e x,



Identidades Aunque las funciones hiperbólicas no son periódicas, cuentan con muchas
identidades que son semejantes a las de las funciones trigonométricas. Observe que las gráfi-
cas en la figura 4.11.1a) y b) son simétricas con respecto al origen y al eje y, respectivamente.
En otras palabras, y � senh x es una función impar y y � cosh x es una función par:

senh (�x) � �senh x, (8)

cosh (�x) � cosh x. (9)

En trigonometría, una identidad fundamental es cos2 x + sen2 x � 1. Para funciones hiperbó-
licas, el análogo de esta identidad es

cosh2 x �senh2 x � 1. (10)

Para demostrar (10) recurrimos a (2) y (3) de la definición 4.11.1:

Las ecuaciones (8) a (10) y otras once identidades se resumen en el siguiente teorema.
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y

x

y � tanh x1

�1

a) y � tanh x

y

x

y � coth x

�1

1

b) y � coth x

x

y

y � sech x1

c) y � sech x

y � csch x

x

y

d) y � csch x
FIGURA 4.11.2 Gráficas de la tangente, cotangente, secante y cosecante hiperbólicas

Teorema 4.11.1 Identidades hiperbólicas

(11)

(12)

(13)

(14)

(15)

(16)

(17)

Derivadas de funciones hiperbólicas Las derivadas de las funciones hiperbólicas se con-
cluyen por (14) de la sección 4.9 y las reglas de diferenciación; por ejemplo,

Es decir, (18)

En forma semejante, a partir de la definición del coseno hiperbólico en (3) debe resultar evi-
dente que

(19)

e2x 2 e 2x

4
e2x 2 e 2x

4
1.

hsoc 2 x senh2 x ae x e x

2
b2 ae x e x

2
b2

cosh2 x
1
2

(1 cosh 2x)senh2 x
1
2

( 1 cosh 2x)

cosh2x cosh2 x senh2 xcoth2 x 1 csch2 x

senh 2x 2 senh x cosh x1 tanh2 x sech2 x

cosh(x y) cosh x cosh y senh x senh ycosh2 x senh2 x 1

cosh(x y) cosh x cosh y senh x senh ytanh( x) tanh x

senh (x y) senh x cosh y cosh x senh ycosh( x) cosh x

senh (x y) senh x cosh y cosh x senh ysenh ( x) senh x

d
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senh x cosh x.

d
dx

senh x
d
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ex e x

2
1
2
c d
dx

ex d
dx

e x d e x e x

2
.

d
dx

cosh x senh x.



Para diferenciar, por ejemplo, la tangente hiperbólica, se usan la regla del cociente y la defi-
nición que se proporcionó en (4):

En otras palabras,

(20)

Las derivadas de las seis funciones hiperbólicas en el caso más general se concluyen por
la regla de la cadena.
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Usted debe tomar nota cuidadosa de la ligera diferencia en los resultados en las ecuacio-
nes (21) a (23) y las fórmulas análogas para las funciones trigonométricas:

EJEMPLO  1 Regla de la cadena

Diferencie

a) b) y = coth x3.

Solución
a) Por el primer resultado en (21),

 �
cosh12x � 1
12x � 1

.

 � cosh12x � 1 a1
2

 (2x � 1)�1>2 . 2b
 
dy

dx
� cosh12x � 1 . d

dx
 (2x � 1)1>2

Teorema 4.11.2 Derivadas de las funciones hiperbólicas

Si u � g(x) es una función diferenciable, entonces

(21)

(22)

(23)

d
dx

tanh x sech2 x.

1
cosh2 x

.

cosh2 x senh2 x

cosh2 x

cosh x . d
dx

senh x senh x . d
dx

cosh x

cosh2 x

d
dx

tanh x
d
dx

senh x
cosh x

d por (10), esto es igual a 1

d
dx

cschu cschu cothu
du
dx

.
d
dx

sechu sechu tanhu
du
dx

,

d
dx

cothu csch2u
du
dx

,
d
dx

tanhu sech2u
du
dx

,

d
dx

coshu senh u
du
dx

,
d
dx

senh u coshu
du
dx

,

d
dx

sec x sec x tan x  mientras  d
dx

sech x sech x tanh x.

d
dx

cos x sen x   mientras  d
dx

cosh x senh x

y senh12x 1



b) Por el segundo resultado en (22),

EJEMPLO  2 Valor de una derivada

Evalúe la derivada de en x � 0.

Solución Por la regla del cociente,

Debido a que senh 0 � 0 y cosh 0 � 1, tenemos

Funciones hiperbólicas inversas Al analizar la figura 4.11.1a) observamos que y � senh x

es una función uno a uno. Es decir, para cualquier número real y en el rango del
seno hiperbólico corresponde sólo un número real x en su dominio Por tanto,
y = senh x tiene una función inversa que escribimos y = senh�1 x. Vea la FIGURA 4.11.3a). Así
como en el análisis anterior de las funciones trigonométricas inversas en la sección 2.5, esta
última notación es equivalente a x � senh y. A partir de la figura 4.11.2a) también observa-
mos que y = tanh x con dominio y rango (�1, 1) también es uno a uno y tiene una
inversa y = tanh�1 x con dominio (-1, 1) y rango Vea la figura 4.11.3c). Pero por
las figuras 4.11.1b) y 4.11.2c) resulta evidente que y = cosh x y y = sech x no son funciones
uno a uno, de modo que no tienen funciones inversas a menos que sus dominios se restrinjan
en forma conveniente. Al analizar la figura 4.11.1b) observamos que cuando el dominio de y =
cosh x se restringe al intervalo el rango correspondiente es Entonces, el domi-
nio de la función inversa y = cosh�1 x es y su rango es Vea la figura 4.11.3b).
Las gráficas de todas las funciones hiperbólicas inversas junto con sus dominios y rangos se
resumen en la figura 4.11.3.

[0, q).[1, q)
[1, q).[0, q),

(�q, q).
(�q, q)

(�q, q).
(�q, q)

dy

dx
`
x�0

�
15
25

�
3
5

.

y �
3x

4 � cosh 2x
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y

x

y � senh�1 x

a) y � senh�1 x
 dominio: (��, �)
 rango: (��, �)

y

x

y � cosh�1 x

1

c) y � cosh�1 x
 dominio: [1, �)
 rango: [0, �)

y

x

y � tanh�1 x

1�1

c) y � tanh�1 x
 dominio: (−1, 1)
 rango: (��, �)

y

x

y � coth�1 x

1�1

d) y � coth�1 x
 dominio: (��, �1) � (1, �)
 rango: (��, 0) � (0, �) 

y

x

y � sech�1 x

1

e) y � sech�1 x
 dominio: (0, 1]  
 rango: [0, �) 

y

x

y � csch�1 x

f ) y � csch�1 x
 dominio: (��, 0) � (0, �)
 rango: (��, 0) � (0, �)

FIGURA 4.11.3 Gráficas de las inversas de las funciones hiperbólicas seno, coseno, tangente, cotangente, secante
y cosecante
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Funciones hiperbólicas inversas como logaritmos Debido a que todas las funciones hiper-
bólicas están definidas en términos de combinaciones de ex, no debe sorprender el hecho de
encontrar que las funciones hiperbólicas inversas pueden expresarse en términos del logaritmo
natural. Por ejemplo, y � senh�1x es equivalente a x � senh y, de modo que

Debido a que la última ecuación es cuadrática en ey, la fórmula cuadrática proporciona

(24)

Luego, es necesario rechazar la solución correspondiente al signo menos en (24) porque 
pero Así, tenemos

En forma semejante, para 

proporciona

o bien,

Se han demostrado dos resultados del siguiente teorema.

 y � tanh�1
 x �

1
2

 ln a1 � x
1 � x

b.
 2y � ln a1 � x

1 � x
b

 e2y
�

1 � x
1 � x

 ey(1 � x) � (1 � x)e�y

 x � tanh y �
ey

� e�y

ey
� e�y

0 x 0 6 1,y � tanh�1
 x,

x � 2x2
� 1 6 0.

ey 7 0

ey
�

2x � 24x2
� 4

2
� x � 2x2

� 1.
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Teorema 4.11.3 Identidades logarítmicas

(25)

(26)

(27)

Las identidades anteriores constituyen un medio conveniente para obtener los valores
numéricos de una función hiperbólica inversa. Por ejemplo, con ayuda de una calculadora, a
partir del primer resultado en (25) en el teorema 4.11.3 vemos que cuando x � 4,

Derivadas de funciones hiperbólicas inversas Para encontrar la derivada de una función
hiperbólica inversa es posible proceder de dos formas. Por ejemplo, si

Al usar diferenciación implícita es posible escribir

Por tanto,

x
ey e y

2
  o bien,  2x

e2y 1
e y   o bien,  e2y 2xey 1 0.

ey x 2x 2 1  o bien,  y senh 1x ln Ax 2x2 1B.

csch 1 x ln a1
x

21 x20 x 0 b, x 0sech 1x ln a1 21 x2

x
b, 0 6 x 1

coth 1 x
1
2

ln ax 1
x 1

b, 0 x 0 7 1tanh 1x
1
2

ln a1 x
1 x

b, 0 x 0 6 1

cosh 1 x ln Ax 2x2 1 B, x 1senh 1x ln Ax 2x2 1 B

dy

dx
1

cosh y
1

2senh2 y 1

1

2x2 1
.

 1 cosh y
dy

dx
.

d
dx

x
d
dx

senh y

y senh 1 x  entonces  x senh y.

senh 14 ln A4 117 B 2.0947.



El resultado anterior puede obtenerse de otra manera. Por el teorema 4.11.3 sabemos que

En consecuencia, por la derivada del logaritmo obtenemos

Esencialmente, se ha demostrado la primera entrada en (28) en el siguiente teorema.

y � ln Ax � 2x2
� 1B.
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Teorema 4.11.4 Derivadas de las funciones hiperbólicas inversas

Si es una función diferenciable, entonces

(28)

(29)

(30)

u � g(x)

EJEMPLO  3 Derivada del coseno hiperbólico inverso

Diferencie 

Solución Con por la segunda fórmula en (28) tenemos

EJEMPLO  4 Derivada de la tangente hiperbólica inversa

Diferencie y = tanh-1 4x.

Solución Con u � 4x por la primera fórmula en (29) tenemos

EJEMPLO  5 Reglas del producto y de la cadena

Diferencie y = ex2

sech-1 x.

Solución Por la regla del producto y la primera fórmula en (30) tenemos

dy

dx
�

1
1 � (4x)2

. d
dx

 4x �
4

1 � 16x2
.

dy

dx
�

1

2(x2
� 5)2

� 1
. d

dx
 (x2

� 5) �
2x

2x4
� 10x2

� 24
.

u � x2
� 5,

y � cosh�1
 (x2

� 5).

1

x 2x2 1

2x2 1 x

2x2 1

1

2x2 1
.

d por (3) de la sección 3.9
dy

dx
1

x 2x2 1
a1 1

2
(x2 1) 1>2 . 2xb

d
dx

csch 1 u
10u 021 u2

du
dx

, u 0.
d
dx

sech 1 u
1

u21 u2

du
dx

, 0 6 u 6 1,

d
dx

coth 1 u
1

1 u2

du
dx

, 0u 0 7 1,
d
dx

tanh 1 u
1

1 u2

du
dx

,  0u 0 6 1,

d
dx

cosh 1 u
1

2u2 1

du
dx

, u 7 1,
d
dx

senh 1 u
1

2u2 1

du
dx

,

por la primera fórmula en (30) por (14) de la sección 4.8
T T

ex 2

x21 x2
2xex 2

sech 1 x.

dy

dx
ex 2a 1

x21 x2
b 2xex 2

sech 1 x



Fundamentos

1. Si senh x � - , encuentre los valores de las funciones
hiperbólicas restantes.

2. Si cosh x � 3, encuentre los valores de las funciones
hiperbólicas restantes.

En los problemas 3-26, encuentre la derivada de la función
dada.

27. Encuentre una ecuación de la recta tangente a la gráfica
de y �senh 3x en x � 0.

28. Encuentre de la recta tangente a la gráfica de y = cosh x

en x = 1.

En los problemas 29 y 30, encuentre el o los puntos sobre la
gráfica de la función dada donde la tangente es horizontal.

En los problemas 31 y 32, encuentre para la función
dada.

31. 32.

En los problemas 33 y 34, C1, C2, C3, C4 y k son constan-
tes reales arbitrarias. Demuestre que la función satisface la
ecuación diferencial dada.

y � sech xy � tanh x

d2y>dx2

1
2
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4.11 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-13.

FIGURA 4.11.4 Catenaria en a);
catenoide en b)

FIGURA 4.11.5 Círculo en a);
hipérbola en b)

a) cables colgantes

b) película de jabón

y

P

O

t
x

(1, 0)

a) sector circular

P

O

y

x
(1, 0)

b) sector hiperbólico

NOTAS DESDE EL AULA

i) Como se mencionó en la introducción de esta sección, la gráfica de cualquier función de
la forma f (x) = k cosh cx, k y c constantes, se denomina catenaria. La forma que asume
un alambre flexible o una cuerda pesada que cuelgan entre dos postes básicamente es la
misma que la de la función coseno hiperbólico. Además, si dos anillos circulares se man-
tienen juntos en forma vertical y no están muy separados entre sí, entonces una película
jabonosa estirada entre los anillos asume una superficie con área mínima. La superficie
es una porción de una catenoide, que es la superficie que obtenemos al hacer girar una
catenaria alrededor del eje x. Vea la FIGURA 4.11.4.

ii) La semejanza entre las funciones trigonométricas e hiperbólicas va más allá de las
fórmulas de derivadas y las identidades básicas. Si t es un ángulo medido en radianes
cuyo lado terminal es OP, entonces las coordenadas de P sobre una circunferencia uni-
taria son (cos t, sen t). Luego, el área del sector sombreado que se muestra
en la FIGURA 4.11.5a) es y así t 2A. De esta forma, las funciones circulares cos t y
sen t pueden considerarse funciones del área A.

Tal vez usted ya sepa que la gráfica de la ecuación se denomina hipér-

bola. Debido a que cosh t 1 y cosh2 t - senh2 t = 1, se concluye que las coordenadas de
un punto P sobre la rama derecha de la hipérbola son (cosh t, senh t). Además, puede
demostrarse que el área del sector hiperbólico en la figura 4.11.5b) está relacionado con el
número t por t = 2A. Por tanto, vemos el origen del nombre de la función hiperbólica.

x2
� y2

� 1

�A �
1
2t

x2
� y2

� 1

d

dx

.4.3

.6.5

.8.7

.01.9

.21.11

.41.31

.61.51

.81.71

.02.91

.22.12 f (x)
ln x

x2 senh x
f (x)

ex

1 cosh x

f (x) (ln(sech x))2f (x) ln(cosh 4x)

f (x) 14 tanh 6xf (x) (x cosh x)2>3 y cosh41xy senh3 x

y
senh x

x
y x cosh x2

y sech x coth 4xy senh 2x cosh 3x

y tanh(senh x3)y coth(cosh 3x)

y senh ex2

y sech(3x 1)2

y csch
1
x

y tanh1x

y sech 8xy cosh 10x

.42.32

.62.52 w(t)
tanh t

(1 cosh t)2
g(t)

sen t
1 senh 2t

H(t) etecsch t2

F(t) esenh t

29.

30. f (x) cos x cosh x sen x senh x

f (x) (x2 2)cosh x 2 x senh x

33.

34.

y(4) k4y 0
y C1 cos kx C2 sen kx C3 cosh kx C4 senh kx;

y C1 cosh kx C2 senh kx;  y– k2y 0



En los problemas 35-48, encuentre la derivada de la función
dada.

Aplicaciones

49. a) Suponga que k, m y g son constantes reales. Demues-
tre que la función

satisface la ecuación diferencial 

b) La función y representa la velocidad de una masa m
que cae cuando la resistencia del aire se considera
proporcional al cuadrado de la velocidad instantá-
nea. Encuentre la velocidad terminal o limitante
yter = y(t) de la masa.

c) Suponga que un paracaidista de 80 kg retrasa la aper-
tura del paracaídas hasta que alcanza la velocidad ter-
minal. Determine la velocidad terminal si se sabe que
k � 0.25 kg/m.

50. Una mujer, M, se mueve en la dirección positiva del eje
x, empezando en el origen, jalando un bote a lo largo de
la curva C, denominada tractriz, indicada en la FIGURA

4.11.6. El bote, que inicialmente se encuentra sobre el eje

y en (0, a), es jalado por una cuerda de longitud cons-
tante a que se mantiene durante todo el movimiento.
Una ecuación de la tractriz está dada por

a) Vuelva a escribir esta ecuación usando una función
hiperbólica.

b) Use diferenciación implícita para demostrar que la
ecuación de la tractriz satisface la ecuación diferencial

c) Interprete geométricamente la ecuación diferencial
del inciso b).

Piense en ello

En los problemas 51 y 52, encuentre el valor numérico
exacto de la cantidad dada.

51. cosh(ln 4) 52. senh(ln 0.5)

En los problemas 53 y 54, exprese la cantidad dada como
una función racional de x.

53. senh(ln x) 54. tanh(3 ln x)

55. Demuestre que para cualquier entero positivo n,

(cosh x � senh x)n
� cosh nx � senh nx

FIGURA 4.11.6 Tractriz en el problema 50

y

(0, a)
(x, y)

x

a

M

C

dy

dx
� �

y

2a2
� y2

.

x � a ln aa � 2a2
� y2

y
b � 2a2

� y2.

lím
tSq

m 
dy
dt

� mg � ky2.

y(t) � A
mg

k
 tanh aA kg

m
 tb
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Competencia final de la unidad 4
Las respuestas de los problemas impares comienzan en la página RES-13.

A. Falso/verdadero _____________________________________________________

En los problemas 1-20, indique si la afirmación dada es falsa (F) o verdadera (V).

1. Si es continua en un número a, entonces hay una recta tangente a la gráfica de
f en _____

2. Si f es diferenciable en cualquier número real x, entonces f es continua en todas partes.
_____

3. Si y � f(x) tiene una recta tangente en (a, f(a)), entonces f necesariamente es diferencia-
ble en x � a. _____

4. La razón de cambio instantánea de y � f(x) con respecto a x en x0 es la pendiente de la
recta tangente a la gráfica en _____

5. En x � �1, la recta tangente a la gráfica de es paralela a la recta
y � 2. _____

6. La derivada de un producto es el producto de las derivadas. _____
7. Una función polinomial tiene una recta tangente en todo punto de su gráfica. _____

f (x) � x3
� 3x2

� 9x

(x0, f (x0)).

(a, f (a)).
y �  f (x)

.63.53

.83.73

.04.93

.24.14

.44.34

.64.54

.84.74 y
1

(tanh 1 2x)3
y (cosh 1 6x)1>2 y x tanh 1 x ln21 x2y ln(sech 1 x)

y
coth 1 e2x

e2x
y

sech 1 x
x

y x2 csch 1 xy x senh 1 x3

y senh 1(sen x)y coth 1(cscx)

y coth 1 1
x

y tanh 1(1 x2)

y cosh 1 x
2

y senh 1 3x



8. Para una ecuación de la recta tangente es _____

9. La función es diferenciable sobre el intervalo _____

10. Si entonces _____

11. Si m es la pendiente de una recta tangente a la gráfica de f(x) � sen x, entonces
_____

12. Para para toda x. _____

13.

14. La función tiene una inversa. _____

15. Si sobre el intervalo entonces _____

16. Si f es una función creciente diferenciable sobre un intervalo, entonces f �(x) también es
creciente sobre el intervalo. _____

17. La única función para la cual es _____

18. _____

19.

20. Toda función hiperbólica inversa es un logaritmo. _____

B. Llene los espacios en blanco __________________________________________

En los problemas 1-20, llene los espacios en blanco.

1. Si y � f(x) es una función polinomial de grado 3, entonces __________.

2. La pendiente de la recta tangente a la gráfica de

3. La pendiente de la recta normal a la gráfica de f(x) � tan x en es __________.

4. entonces __________.

5. Una ecuación de la recta tangente a la gráfica de en x � 0 es
__________.

6. Para la razón de cambio instantánea de f � con respecto a x en x � 0
es __________.

7. Si y entonces la pendiente de la recta tangente a la gráfica de
en x 4 es __________.

8. Si g(2) = 2 y entonces __________.

9. Si f ¿(2) = 4 y entonces 

__________.

10. Si entonces __________.

11. Si F es una función diferenciable, entonces

12. La función f(x) � cot x no es diferenciable sobre el intervalo porque __________.

13. La función

es diferenciable en x � 3 cuando a � __________ y b � __________.

14. Si f ¿(x) = sec2 2x, entonces f(x) � __________.

15. La recta tangente a la gráfica de es horizontal en el punto
__________.

f (x) � 5 � x � ex�1

f (x) � eax � b, x � 3
x2, x 7 3

[0, p ]

d
dx

 f (x3) �f ¿(x) � x2,

d 2

dx2
 f (g(x)) `

x�1
�f –(2) � 3,g–(1) � �1,g¿(1) � 3,g(1) � 2,

d
dx

 
x2f (x)
g(x)

`
x�2

�g¿(2) � �3,f ¿(2) � 5,f (2) � 1,

�y � 2 f (x) � 5g(x)
g ¿(4) � 3,f ¿(4) � 6

f (x) � 1>(1 � 3x)

y � (x � 3)>(x � 2)

f ¿(x) �f (x) �
xn�1

n � 1
, n � �1,

x � p>3
d 4

dx4
 f (x) �

d
dx

 ln 0x 0 � 10x 0 f (x) � ex.f ¿(x) � f (x)

f (3) 7 f (5).[2, 8] ,f ¿(x) 6 0

f (x) � x5
� x3

� x

dy>dx 7 0y � tan�1x,

�1 � m � 1.

f (x) � g(x).f ¿(x) � g ¿(x),
[�3, 3] .f (x) � x>(x2

� 9)
f ¿(x) � �2x � 5.f (x) � �x2

� 5x � 1
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_____
d
dx

 cos 1x sen 1x

_____
d
dx

 cosh2 x
d
dx

 senh2 x

es __________.y ln 0x 0  en x
1
2

__________.
d 2

dx2
 F (sen  4x)



16. _________.

18. Si el dominio de f �(x) es _________.

19. La gráfica de y � cosh x se denomina ________.

20. _______.

C. Ejercicios __________________________________________________________

En los problemas 1-28, encuentre la derivada de la función dada.

1. 2.

3. 4.

5. 6.

En los problemas 29-34, encuentre la derivada indicada.

35. Use primero las leyes de los logaritmos para simplificar

y luego encuentre dy�dx.

36. Encuentre dy�dx para

37. Dado que es una función uno a uno, encuentre la pendiente de la recta tan-
gente a la gráfica de la función inversa en x 1.

38. Dado que es una función uno a uno, encuentre f �1 y ( f 
�1) ¿.f (x) � 8>(1 � x3)

�

y � x3
� x

y � ln ` (x � 5)4(2 � x)3

(x � 8)1023 6x � 4
` ,

g(u) � A6u � 1
u � 7

y � 24 x4
� 16 23 x3

� 8

h(u) � u1.5(u2
� 1)0.5F (t) � At � 2t2

� 1 B10

y �
1

x3
� 4x2

� 6x � 11
f (x) �

4x0.3

5x0.2

cosh�1
 1 �

f (x) � ln 02x � 4 0 ,
d
dx

 2x
�
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.01.9

.21.11

.41.31

.61.51

.81.71

.02.91

.22.12

.42.32

.62.52

.82.72 y (tanh 5x) 1y senh  ex3

y senh 12x2 1y xex cosh 1
 x

y (tan 1 x)(tanh 1 x)y senh 1(sen 1 x)

y Aln cos2 xB2y ln Ax14x 1 B y (ex 1) ey x7 7x 7p e7x

y (e e2)xy xe x e x

y x2 tan 12x2 1y 2 cos 1 x 2x21 x2

y arc sec(2x 1)y (cot 1x) 1

y cos x cos 1 xy sen 1
 

3
x

y tan2(cos 2x)f (x) x3 sen2 5x

.03.92

.23.13

.43.33 f‡(x)f (x) x2
 ln  x;

d 2y

dx2
y esen  2x;

d 3W

dy3
W

y 1
y 1

;
d 4s

dt 4
s t 2 1

t 2
;

d 2y

dx2
y sen(x3 2x);

d 3y

dx3
y (3x 1)5>2;

y 5x2

xsen  2x.

17. _________.
d
dx

 log10 
x

.8.7 y 10 cot 8xy
cos  4x
4x 1



En los problemas 39 y 40, encuentre dy�dx.

39. 40.

41. Encuentre una ecuación de una recta tangente a la gráfica de que sea perpen-
dicular a la recta y � �3x.

42. Encuentre el o los puntos sobre la gráfica de donde
a) y b)

43. Encuentre ecuaciones para las rectas que pasan por (0, �9) que son tangentes a la grá-
fica de y � x2.

44. a) Encuentre la intersección con el eje x de la recta tangente a la gráfica de en x � 1.
b) Encuentre una ecuación de la recta con la misma intersección con el eje x que es per-

pendicular a la recta tangente en el inciso a).
c) Encuentre el o los puntos donde la recta del inciso a) corta la gráfica de 

45. Encuentre el punto sobre la gráfica de donde la recta tangente es paralela a la
recta secante que pasa por y 

46. Si ¿cuál es la pendiente de la recta tangente a la gráfica de f – en x � 2?

47. Encuentre las coordenadas x de todos los puntos sobre la gráfica de f (x) = 2 cos x + cos 2x,
donde la recta tangente es horizontal.

48. Encuentre el punto sobre la gráfica de y � ln 2x tal que la recta tangente pase por el origen.

49. Suponga que un circuito en serie contiene un capacitor y un resistor variable. Si la resis-
tencia en el instante t está dada por donde k1 y k2 son constantes positivas
conocidas, entonces la carga q(t) sobre el capacitor está dada por

donde C es una constante denominada capacitancia y es la tensión aplicada.
Demuestre que q(t) satisface la condición inicial y

50. Suponga que C1 y C2 son constantes reales arbitrarias. Demuestre que la función

satisface la ecuación diferencial

En los problemas 51 y 52, C1, C2, C3 y C4 son constantes reales arbitrarias. Demuestre que la
función satisface la ecuación diferencial dada.

53. a) Encuentre los puntos sobre la gráfica de correspondientes a x � 2.
b) Encuentre las pendientes de las rectas tangentes en los puntos que se encontraron en

el inciso a).

54. Trace la gráfica de f � a partir de la gráfica de f dada en la FIGURA 4.R.1.

y

1

1
x

y �ƒ(x)

FIGURA 4.R.1 Gráfica para el problema 54

y3
� y � x2

� 4 � 0

(1 � x2)y– � 2xy ¿ � 2y � 0.

y � C1x � C2 c x2 ln ax � 1
x � 1

b � 1 d
(k1 � k2t) 

dq

dt
�

1
C

 q � E0.

q(0) � q0

E(t) � E0

q(t) � E0C � (q0 � E0C ) a k1

k1 � k2t
b1>Ck2

,

R � k1 � k2t,

0 � x � 2p,

f (x) � (1 � x)>x,

(9, f (9)).(1, f (1))
f (x) � 1x

y � x2.

y � x2

f –(x) � f ¿(x).f –(x) � f (x)
f (x) �

1
2  
x2

� 5x � 1

f (x) � x3

y � ln(xy)xy2
� ex

� ey
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51.

52. y C1 cos x C2 sen x C3 x cos x C4 x sen x; y(4) 2y– y 0

y C1e
x C2e

x C3xe x C4xex; y(4) 2y– y 0



55. La gráfica de que se muestra en la FIGURA 4.R.2, se denomina hipocicloide.*

Encuentre ecuaciones de las rectas tangentes a la gráfica en los puntos correspondientes
a 

56. Encuentre para la ecuación del problema 55.

57. Suponga

Encuentre f �(x) para Use la definición de derivada, (2) de la sección 4.2, para deter-
minar si f �(0 ) existe.

En los problemas 58-61, encuentre la pendiente de la recta tangente a la gráfica de la función
en el valor dado de x. Encuentre una ecuación de la recta tangente en el punto correspondiente.

58. 59.

60. 61.

62. Encuentre una ecuación de la recta que es perpendicular a la recta tangente en el punto
(1, 2) sobre la gráfica de 

63. Suponga que y Encuentre un que garantice que
cuando Al encontrar d, ¿qué límite se ha demostrado?0 6 0x � 1 0 6 d.0 f (x) � 7 0 6 e

d 7 0e � 0.01.f (x) � 2x � 5

f (x) � �4x2
� 6x.

f (x) � x � 41x, x � 4f (x) �
�1
2x2

, x �
1
2

f (x) � x3
� x2, x � �1f (x) � �3x2

� 16x � 12, x � 2

x � 0.

f (x) � e x2,1x,
x � 0
x 7 0.

d 2y>dx2

FIGURA 4.R.2 Hipocicloide en el problema 55

y

x

x2/3
� y2/3 

� 1

x �
1
8.

x2>3
� y2>3

� 1,
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*Ir a la página http://mathworld.wolfram.com/Hypocycloid.html para ver varios tipos de hipocicloides y sus propiedades.



Aplicaciones de la derivada

En esta unidad Las derivadas primera y segunda de una función f pueden usarse para deter-
minar la forma de su gráfica. Si imagina la gráfica de una función como una curva que sube y
baja, entonces los puntos alto y bajo de la gráfica o, con más precisión, los valores máximo y
mínimo de la función, podemos encontrarlos usando la derivada. Como ya vimos, la derivada
también proporciona una razón de cambio. En la sección 4.1 vimos brevemente que la razón
de cambio con respecto al tiempo t de una función que proporciona la posición de un objeto
en movimiento es la velocidad del objeto.

Encontrar los valores máximo y mínimo de una función junto con el problema de determinar
razones de cambio son dos de los temas centrales de estudio de esta unidad.

211

Unidad 5

x
cóncava hacia abajo

y

cóncava hacia
arriba

Competencia específica

Aplicar el concepto de la derivada para la solución de problemas de optimización
y variación de funciones, y el de diferencial en problemas que requieren aproxi-
maciones.



5.1 Movimiento rectilíneo
Introducción En la sección 4.1 se definió que el movimiento de un objeto en una línea

recta, horizontal o vertical, es un movimiento rectilíneo. Una función s � s(t) que propor-
ciona la coordenada del objeto sobre una recta horizontal o vertical se denomina función posi-
ción. La variable t representa el tiempo y el valor de la función s(t) representa una distancia
dirigida, que se mide en centímetros, metros, pies, millas, etc., a partir de un punto de refe-
rencia s � 0 sobre la recta. Recuerde que sobre una escala horizontal, consideramos la direc-
ción s positiva a la derecha de s � 0, y sobre una escala vertical, la dirección s positiva la
consideramos hacia arriba.

EJEMPLO  1 Posición de una partícula en movimiento

Una partícula se mueve sobre una recta horizontal según la función posición s(t) � �t2 � 4t

� 3, donde s se mide en centímetros y t en segundos. ¿Cuál es la posición de la partícula a
0, 2 y 6 segundos?

Solución Al sustituir en la función posición obtenemos

Como se muestra en la FIGURA 5.1.1, significa que la posición de la partícula
está a la izquierda del punto de referencia s 0.

Velocidad y aceleración Si la velocidad media de un cuerpo en movimiento sobre un
intervalo de tiempo de longitud es

entonces la razón de cambio instantánea, o velocidad del cuerpo, está dada por

Así, tenemos la siguiente definición.

¢t

�10 �5 0 5 10

s(6) s(0) s(2)
s

FIGURA 5.1.1 Posición de una partícula en varios instantes en el ejemplo 1

�

s(6) � �9 6 0

s(0) � 3, s(2) � 7, s(6) � �9.
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Definición 5.1.1 Función velocidad

Si s(t) es una función posición de un objeto en movimiento rectilíneo, entonces su función
velocidad y(t) en el instante t es

La rapidez del objeto en el instante t es .0y(t) 0

Definición 5.1.2 Función aceleración

Si y(t) es la función velocidad de un objeto en movimiento rectilíneo, entonces su función
aceleración a(t) en el instante t es

La velocidad se mide en centímetros por segundo (cm/s), metros por segundo (m/s), pies
por segundo (pies/s), kilómetros por hora (km/h), millas por hora (mi/h), etcétera.

También es posible calcular la razón de cambio de la velocidad.

cambio en posición
cambio en tiempo

s(t ¢t) s(t)
¢t

,

y(t) lím
¢tS0

 

s(t ¢t) s(t)
¢t

.

y(t)
ds
dt

.

a(t)
dy
dt

d 
2s

dt 
2
.



Las unidades típicas para medir la aceleración son metros por segundo por segundo (m/s2),
pies por segundo por segundo (pies/s2), millas por hora por hora (mi/h2), etcétera. A menudo,
las unidades de la aceleración se leen literalmente “metros por segundo al cuadrado”.

Significado de los signos algebraicos En la sección 4.1 vimos que siempre que la deri-
vada de una función f es positiva sobre un intervalo I, entonces f es creciente sobre I.
Geométricamente, la gráfica de una función creciente sube cuando x crece. En forma semejante,
si la derivada de una función f es negativa sobre I, entonces f es decreciente, lo cual significa
que su gráfica baja cuando x crece. Sobre un intervalo de tiempo para el cual 
es posible afirmar que s(t) es creciente. Por tanto, el objeto se mueve hacia la derecha sobre
una recta horizontal, o hacia arriba sobre una recta vertical. Por otra parte, 
implica que s(t) es decreciente y que el movimiento es hacia la izquierda sobre una recta hori-
zontal o hacia abajo sobre una recta vertical. Vea la FIGURA 5.1.2. Si sobre un
intervalo de tiempo, entonces la velocidad y(t) del objeto es creciente, mientras 
indica que la velocidad y(t) del objeto es decreciente. Por ejemplo, una aceleración de -25 m/s2

significa que la velocidad decrece por 25 m/s cada segundo. No confunda los términos “velo-
cidad decreciente” y “velocidad creciente” con los conceptos “desaceleración” o “aceleración”.
Por ejemplo, considere una roca que se deja caer desde la parte superior de un edificio alto. La
aceleración de la gravedad es una constante negativa, -32 pies/s2. El signo negativo significa
que la velocidad de la roca disminuye a partir de cero. Una vez que la roca choca contra el
suelo, su rapidez es bastante grande, pero y(t) 6 0. En específico, un objeto en movi-
miento rectilíneo sobre, por ejemplo, una recta horizontal desacelera cuando y(t) 7 0 (mo-
vimiento hacia la derecha) y a(t) 6 0 (velocidad decreciente), o cuando y(t) 6 0 (movimiento
hacia la izquierda) y a(t) 7 0 (velocidad creciente). En forma semejante, un objeto en movi-
miento rectilíneo sobre una recta horizontal acelera cuando y(t) 7 0 (movimiento hacia la dere-
cha) y a(t) 7 0 (velocidad creciente), o cuando y(t) 6 0 (movimiento hacia la izquierda) y
a(t) 6 0 (velocidad decreciente). En general,

Un objeto en movimiento rectilíneo

• desacelera cuando su velocidad y aceleración tienen signos algebraicos opuestos, y
• acelera cuando su velocidad y aceleración tienen el mismo signo algebraico.

De manera alterna, un objeto desacelera cuando su rapidez es decreciente y acelera
cuando su rapidez es creciente.

EJEMPLO  2 Otro repaso al ejemplo 1

En el ejemplo 1 las funciones velocidad y aceleración de la partícula son, respectivamente,

En los instantes 0, 2 y 6 s, las velocidades son y(0) � 4 cm/s, y(2) � 0 cm/s y y(6) � �8
cm/s, respectivamente. Puesto que la aceleración siempre es negativa, la velocidad siempre es
decreciente. Observe que para t 6 2 y para
t 7 2. Si se deja que el tiempo t sea negativo y también positivo, entonces la partícula se mueve
hacia la derecha para el intervalo de tiempo y se mueve hacia la izquierda para el
intervalo de tiempo El movimiento puede representarse por la gráfica que se muestra
en la FIGURA 5.1.3a). Puesto que el movimiento en realidad se lleva a cabo sobre la recta hori-
zontal, usted debe imaginar el movimiento de un punto P que corresponde a la proyección de
un punto en la gráfica sobre la recta horizontal. Vea la figura 5.1.3b).

(2, q).
(�q, 2)

y(t) � 2 (�t � 2) 6 0y(t) � 2 (�t � 2) 7 0

0y(t) 0

0y(t) 0

a(t) � y¿(t) 6 0
a(t) � y¿(t) 7 0

y(t) � s¿(t) 6 0

y(t) � s¿(t) 7 0,

5.1 Movimiento rectilíneo 213

FIGURA 5.1.2 Significado del
signo de la función velocidad

FIGURA 5.1.3 Representación del movimiento de la partícula en el ejemplo 2

s(t)

a)

s

y(t) � 0 movimiento
hacia la derecha

s(t)

b)

s

y(t) � 0 movimiento
hacia la izquierda

a) s(t) � �t2
� 4t � 3

t � 2, s � 7
y y� 0

s
�5 0 5 10

b) la partícula en el punto P
 se mueve sobre el eje s

s

P P

y(t)
ds
dt

2t 4  y  a(t)
dy
dt

2.



EJEMPLO  3 Partícula que desacelera/acelera

Una partícula se mueve sobre una recta horizontal según la función posición 
Determine los intervalos de tiempo sobre los cuales la partícula desacelera y los intervalos de
tiempo sobre los cuales acelera.

Solución Los signos algebraicos de las funciones velocidad y aceleración

se muestran sobre la escala de tiempo en la FIGURA 5.1.4. Puesto que y(t) y a(t) tienen signos
opuestos sobre y (0, 1), la partícula desacelera sobre estos intervalos de tiempo;
y(t) y a(t) tienen el mismo signo algebraico sobre (-1, 0) y , de modo que la partícula
acelera sobre estos intervalos de tiempo.

En el ejemplo 2 verifique que la partícula desacelera sobre el intervalo de tiempo 
y acelera sobre el intervalo de tiempo 

EJEMPLO  4 Movimiento de una partícula

Un objeto se mueve sobre una recta horizontal según la función posición s(t) � t4 - 18t2 + 25,
donde s se mide en centímetros y t en segundos. Use una gráfica para representar el movi-
miento durante el intervalo de tiempo 

Solución La función velocidad es

y la función aceleración es

Luego, a partir de las soluciones de y(t) � 0 podemos determinar los intervalos de tiempo
para los cuales s(t) es creciente o decreciente. A partir de la información que se muestra en
las tablas siguientes, se construye la función mostrada en la FIGURA 5.1.5. Al inspeccionar las
tablas observamos que la partícula desacelera sobre los intervalos de tiempo (- 4, - 3), (- , 0),
( , 3) (se muestran en color claro en la figura) y acelera sobre los intervalos de tiempo

(se muestran en oscuro en la figura).A�3, �13 B, A0, 13 B, (3, 4)
13

13

a(t) �
d 

2s

dt 
2

� 12t 
2

� 36 � 12 At � 13 B At � 13bB.
y(t) �

ds
dt

� 4t3
� 36t � 4t (t � 3)(t � 3)

[�4, 4] .

(2, q).
(�q, 2)

(1, q)
(�q, �1)

s(t) �
1
3 t3

� t.
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FIGURA 5.1.4 Signos de y(t) y
a(t) en el ejemplo 3

FIGURA 5.1.5 Movimiento de una partícula en el ejemplo 4

a � 0 a � 0

y� 0 y� 0 y� 0

t
�1 0 1

�50 �40 �30 �20 �10 0 10 20 30
s

t � 3

y� 0, a � 0

y� 0, a � 0 y� 0, a � 0

y� 0, a � 0y� 0, a � 0

y� 0, a � 0t � �3

t � 3

t � �

t � �4

t � 0

t � 4

3

y(t) t2 1 (t 1)(t 1)  y  a(t) 2t

Tiempo Posición Velocidad Aceleración

�4 �7 �112 156

�3 �56 0 72
0 25 0 �36
3 �56 0 72
4 �7 112 156

Intervalo
de tiempo

Signo
de y(t)

Dirección de
movimiento

(�4, �3) � a la izquierda
(�3, 0) � a la derecha
(0, 3) � a la izquierda
(3, 4) � a la derecha

Intervalo
de tiempo

Signo
de a (t) VelocidadA�4, �13 B � crecienteA�13, 13 B � decrecienteA13, 4B � creciente



Fundamentos
En los problemas 1-8, s(t) es una función posición de una
partícula que se mueve sobre una recta horizontal. Encuentre
la posición, velocidad, rapidez y aceleración de la partícula
en los instantes indicados.

1.

2.

3.

4.

5.

6.

En los problemas 9-12, s(t) es una función posición de una
partícula que se mueve sobre una recta horizontal.

9.

a) ¿Cuál es la velocidad de la partícula cuando s(t) = 0?
b) ¿Cuál es la velocidad de la partícula cuando s(t) = 7?

10.

a) ¿Cuál es la velocidad de la partícula cuando s(t) =
y(t)?

b) ¿Cuál es la velocidad de la partícula cuando y(t) =
�a(t)?

11.

a) ¿Cuál es la aceleración de la partícula cuando y(t) = 2?
b) ¿Cuál es la posición de la partícula cuando a(t) = 18?
c) ¿Cuál es la velocidad de la partícula cuando s(t) = 0?

12.

a) ¿Cuál es la posición de la partícula cuando y(t) = 0?
b) ¿Cuál es la posición de la partícula cuando a(t) = 0?
c) ¿Cuándo desacelera la partícula? ¿Cuándo acelera?

En los problemas 13 y 14, s(t) es una función posición de
una partícula que se mueve sobre una recta horizontal.
Determine los intervalos de tiempo sobre los cuales la par-
tícula desacelera y los intervalos de tiempo sobre los cuales
la partícula acelera.

13. 14.
En los problemas 15-20, s(t) es una función posición de una
partícula que se mueve sobre una recta horizontal. Encuentre
las funciones de velocidad y de aceleración. Determine los
intervalos de tiempo sobre los cuales la partícula desacelera
y los intervalos de tiempo sobre los cuales la partícula ace-
lera. Represente el movimiento durante el intervalo de
tiempo indicado con una gráfica.

15.
16.
17.

18.
19.
20.

En los problemas 21-28, s(t) es una función posición de una
partícula que se mueve sobre una recta horizontal. Encuentre
las funciones de velocidad y de aceleración. Represente el
movimiento durante el intervalo de tiempo indicado con una
gráfica.

21.

22.

23.

24.

27.

29. En la FIGURA 5.1.6 se muestra la gráfica en el plano st de
una función posición s(t) de una partícula que se mueve
rectilíneamente. Complete la tabla siguiente si y(t) y a(t)
son positivas, negativas o cero. Proporcione los interva-
los de tiempo sobre los cuales la partícula desacelera
y los intervalos sobre los cuales acelera.

30. En la FIGURA 5.1.7 se muestra la gráfica de la función velo-
cidad y de una partícula que se mueve sobre una recta
horizontal. Elabore una gráfica de una función posición
s con esta función velocidad.

s(t) � t 
3e�t; [0, q)

s(t) � 1 � cos pt; [�1
2, 

5
2]

s(t) � t � 41t; [1, 9]

s(t) � t 
4

� 4t 
3

� 8t 
2

� 60; [�2, 5]

s(t) � 3t 
4

� 8t 
3; [�1, 3]

s(t) � (t � 1)2(t � 2); [�2, 3]
s(t) � 2t 

3
� 6t 

2; [�2, 3]
s(t) � (t � 3)(t � 1); [�3, 1]

s(t) � t 
2

� 4t � 2; [�1, 5]
s(t) � t 

3; [�2, 2]
s(t) � t 

2; [�1, 3]

s(t) � t 
4

� t 
3s(t) � t 

3
� 27t

s(t) � t 
3

� 3t 
2

� 8

s(t) � t 
3

� 4t

s(t) � t 
2

� 6t � 10

s(t) � t 
2

� 4t � 5

s(t) �
t

t � 2
; t � �1, t � 0

s(t) � t �
1
t
; t �

1
4

, t � 1

s(t) � t4
� t3

� t; t � �1, t � 3

s(t) � �t3
� 3t2

� t; t � �2, t � 2

s(t) � (2t � 6)2; t � 1, t � 4

s(t) � 4t2
� 6t � 1; t �

1
2

, t � 3
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5.1 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-13.

y� s�(t)y

a b c
t

FIGURA 5.1.7 Gráfica para el problema 30

7. s(t) t senpt; t 1, t
3
2

25.

26. s(t) senpt cospt; [0, 2]

s(t) sen
p

2
t; [0, 4]

FIGURA 5.1.6 Gráfica para el problema 29

s � s(t)

a b c d e g
t

s

ƒ

Intervalo y(t) a(t)

(a, b)

(b, c)

(c, d )

(d, e)

(e, f )

( f, g)

8. s(t) t cos pt; t
1
2

, t 1
28. s(t) t 2 12 ln(t 1); [0, q)



Aplicaciones
31. La altura (en pies) de un proyectil disparado vertical-

mente hacia arriba desde un punto a 6 pies por arriba
del nivel del suelo la proporciona s(t) � �16t2 � 48t � 6,
0 t T, donde T es el instante en que el proyectil
choca contra el suelo. Vea la FIGURA 5.1.8.

a) Determine el intervalo de tiempo para el cual y > 0
y el intervalo de tiempo para el cual y < 0.

b) Encuentre la altura máxima alcanzada por el proyectil.

32. Una partícula se mueve sobre una recta horizontal según
la función posición donde s se
mide en centímetros y t en segundos. Determine la dis-
tancia total recorrida por la partícula durante el intervalo
de tiempo [1, 6].

En los problemas 33 y 34, use la siguiente información.
Cuando se ignora la fricción, la distancia s (en pies) que un
cuerpo se mueve hacia abajo sobre un plano inclinado cuya
inclinación es u está dada por s(t) � 16t2 sen u, [0, t1], donde
s(0) = 0, s(t1) = L y t se mide en segundos. Vea la FIGURA

5.1.9.

33. Un objeto se desliza por una colina de 256 pies de lon-
gitud con una inclinación de 30�. ¿Cuáles son la veloci-
dad y aceleración del objeto en la parte superior de la
colina?

34. Un participante en una carrera de automóviles de
juguete desciende la colina mostrada en la FIGURA 5.1.10.
¿Cuáles son la velocidad y aceleración del automóvil en
la parte inferior de la colina?

35. Un cubo, atado con una cuerda a un molinete circular,
se deja caer libremente en línea recta. Si se ignora la
inercia rotacional del molinete, entonces la distancia que
recorre el cubo es igual a la medida en radianes del
ángulo indicado en la FIGURA 5.1.11; es decir,
donde g 32 pies/s2 es la aceleración debida a la gra-
vedad. Encuentre la razón a la que cambia la coorde-
nada y de un punto P sobre la circunferencia del moli-
nete en Interprete el resultado.

36. En mecánica, la fuerza F que actúa sobre un cuerpo se
define como la razón de cambio de su cantidad de movi-
miento: Cuando m es constante, a partir
de esta fórmula obtenemos la conocida fórmula denomi-
nada segunda ley de Newton F � ma, donde la acelera-
ción es a � dy�dt. Según la teoría de la relatividad de
Einstein, cuando una partícula con masa en reposo m0 se
mueve rectilíneamente a gran velocidad (como en un ace-
lerador lineal), su masa varía con la velocidad y según la
fórmula donde c es la velocidad
constante de la luz. Demuestre que en la teoría de la rela-
tividad la fuerza F que actúa sobre la partícula es

donde a es la aceleración.

F �
m 0 

a

2(1 � y2/c 
2)3

,

m � m0>21 � y2/c 2,

F � (d>dt)(my).

�

�
1

P(x, y)

FIGURA 5.1.11 Cubo en
el problema 35

t � 1p>4 s.

�

u �
1
2gt 

2,

400 pies

300 pies

FIGURA 5.1.10 Plano inclinado
en el problema 34

FIGURA 5.1.9 Plano inclinado

�

L s

s (t) � �t 
2

� 10t � 20,

6 pies

s (t)

FIGURA 5.1.8 Proyectil
en el problema 31

��
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5.2 Extremos de funciones
Introducción Ahora abordaremos el problema de encontrar los valores máximo y mínimo

de una función f sobre un intervalo I. Veremos que al encontrar estos extremos de f (en caso de
haber alguno) en muchos casos es posible trazar fácilmente su gráfica. Al encontrar los extre-
mos de una función también es posible resolver ciertos tipos de problemas de optimización. En
esta sección establecemos algunas definiciones importantes y mostramos cómo puede encontrar
los valores máximo y mínimo de una función f que es continua sobre un intervalo cerrado I.



Los extremos absolutos también se denominan extremos globales.
A partir de su experiencia al graficar funciones debe serle fácil, en algunos casos, ver

cuándo una función posee un máximo o un mínimo absoluto. En general, una función cuadrá-
tica f (x) = ax2 + bx + c tiene un máximo absoluto o un mínimo absoluto. La función

tiene el máximo absoluto f(0) = 4. Una función lineal no
tiene extremos absolutos. Las gráficas de las funciones conocidas y = 1 x, y = x3, y = tan x,
y = ex y y = ln x muestran que éstas no tienen extremos absolutos. Las funciones trigonomé-
tricas y = sen x y y = cos x tienen un máximo absoluto y un mínimo absoluto.

EJEMPLO  1 Extremos absolutos

Para f(x) � sen x, f(p�2) = 1 es su máximo absoluto y es su mínimo absoluto.
Por periodicidad, los valores máximo y mínimo también ocurren en y

respectivamente.

El intervalo sobre el que la función está definida es muy importante en la consideración
de extremos.

EJEMPLO  2 Funciones definidas sobre un intervalo cerrado

a) definida sólo sobre el intervalo cerrado [1, 2], tiene el máximo absoluto
f(2) = 4 y el mínimo absoluto f(1) = 1. Vea la FIGURA 5.2.2a).

b) Por otra parte, si f(x) = x2 está definida sobre el intervalo abierto (1, 2), entonces f

no tiene extremos absolutos. En este caso, f(1) y f(2) no están definidos.
c) f(x) = x2 definida sobre tiene el máximo absoluto f(2) = 4, pero ahora el

mínimo absoluto es f(0) = 0. Vea la figura 5.2.2b).
d) f(x) = x2 definida sobre (-1, 2), tiene un mínimo absoluto f(0) = 0, pero no un

máximo absoluto.

Los incisos a) y c) del ejemplo 2 ilustran el siguiente resultado general.

[�1, 2] ,

f (x) � x2,

x � 3p>2 � 2np, n � �1, �2, . . . ,
x � p>2 � 2np

f (3p>2) � �1

>f (x) � ax � b, a � 0,f (x) � 4 � x 2
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x

y

ƒ(c
1
) �ƒ(x) �ƒ(c

2
)

para a � x � b
ƒ(c1)

ƒ(c2)

a bc1 c2

FIGURA 5.2.3 La función f tiene
un máximo absoluto y un mínimo
absoluto

a) ƒ definida sobre [1, 2]

máximo
absoluto

mínimo
absoluto

y

x
1 2

máximo
absoluto

mínimo
absoluto

y

x
2�1

b) ƒ definida sobre [�1, 2]

FIGURA 5.2.2 Gráficas de
funciones en el ejemplo 2

Teorema 5.2.1 Teorema del valor extremo

Una función f continua sobre un intervalo cerrado [a, b] siempre tiene un máximo absolu-
to y un mínimo absoluto sobre el intervalo.

En otras palabras, cuando f es continua sobre [a, b], hay números f(c1) y f(c2) tales que
para toda x en [a, b]. Los valores f(c2) y f(c1) son el máximo absoluto y

el mínimo absoluto, respectivamente, sobre el intervalo cerrado [a, b]. Vea la FIGURA 5.2.3.

Extremos de un punto frontera Cuando un extremo absoluto de una función ocurre en un
punto frontera de un intervalo I, como en los incisos a) y c) del ejemplo 2, decimos que se
trata de un extremo de un punto frontera. Cuando I no es un intervalo cerrado; es decir,
cuando I es un intervalo como (a, b], ( o entonces aunque f sea continua no
hay garantía de que exista un extremo absoluto. Vea la FIGURA 5.2.4.

[a, q),�q, b ]

f (c1) � f (x) � f (c2)

y

x

10
8
6

4
2

1�1 2 3 4

mínimo absoluto

y � x2 � 3x � 4

FIGURA 5.2.1 Mínimo absoluto
de una función

Definición 5.2.1 Extremos absolutos

i) Un número f(c1) es un máximo absoluto de una función f si para toda x en
el dominio de f.

ii) Un número f(c1) es un mínimo absoluto de una función f si para toda x en
el dominio de f.

f (x) 	 f (c1)

f (x) � f (c1)

Extremos absolutos En la FIGURA 5.2.1 se ha ilustrado la gráfica de la función cuadrática
. A partir de esta gráfica debe resultar evidente que el valor de la función

es la coordenada y del vértice, y como la parábola se abre hacia arriba, en el rango
de f no hay número menor que . Decimos que el extremo es el mínimo absoluto de f.
A continuación se definen los conceptos de máximo absoluto y mínimo absoluto de una función.

f  A32B � 7
4

7
4

f  A32B � 7
4

f (x) � x2
� 3x � 4



Extremos relativos En la FIGURA 5.2.5a) se ha ilustrado la gráfica de 
Debido a que el comportamiento final de f es el de cuando y

cuando Con base en esta observación es posible concluir que esta fun-
ción polinomial no tiene extremos absolutos. No obstante, suponga que centramos la atención
en valores de x próximos a, o en una vecindad de, los números c1 y c2. Como se muestra en
la figura 5.2.5b), f(c1) es el valor mayor o máximo de la función f cuando se compara con
todos los demás valores de la función en el intervalo abierto (a1, b1); en forma semejante, f(c2)
es el valor mínimo de f en el intervalo (a2, b2). Estos extremos relativos, o locales, se defi-
nen como sigue.

x S �q.f (x) S �q
x S qy � x 3, f (x) S q

f (x) � x3
� 5x � 8.
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x

y

y � 3x4
� 4x3

� 12x2
� 10

�3 �2 �1

10

�10

�20

1

a) Mínimo relativo próximo a x � �2
 Máximo relativo próximo a x � 0
 Mínimo relativo próximo a x �1

x

y � x ln x

y

1

1

�1

b) Mínimo relativo próximo a x � 0.4

FIGURA 5.2.6 Ubicación aproximada de extremos relativos

Como consecuencia de la definición 5.2.2 podemos concluir que

• Todo extremo absoluto, con excepción de un extremo de un punto frontera,
también es un extremo relativo.

Un extremo absoluto de un punto frontera se excluye de ser un extremo relativo con base en
el tecnicismo de que alrededor de un punto frontera del intervalo no puede encontrarse un
intervalo abierto contenido en el dominio de la función.

Hemos llegado al planteamiento de una pregunta evidente:

• ¿Cómo se encuentran los extremos de una función?

Incluso cuando tenemos gráficas, para la mayor parte de las funciones la coordenada x en que
ocurre un extremo no es evidente. Con ayuda de la herramienta para acercar o alejar una página
de un dispositivo para graficar, es posible buscar y, por supuesto, aproximar tanto la ubicación
como el valor de un extremo. Vea la FIGURA 5.2.6. A pesar de lo anterior, resulta aconsejable
poder encontrar la ubicación exacta y el valor exacto de un extremo.

Definición 5.2.2 Extremos relativos

i) Un número f(c1) es un máximo relativo de una función f si para toda x
en algún intervalo abierto que contiene a c1.

ii) Un número f(c1) es un mínimo relativo de una función f si para toda x
en algún intervalo abierto que contiene a c1.

f (x) 	 f (c1)

f (x) � f (c1)

y

x
c1 c2

y � ƒ(x)

a)

y

x
a1 c1 b1 a2 c2 b2

y �ƒ(x)
máximo
relativo

mínimo
relativo

ƒ(c1)

ƒ(c2 )

b)

a c b
x

y

no hay
máximo

absoluto de
punto frontera

no es un
extremo de
punto frontera

mínimo
absoluto
a) ƒ definida sobre (a, b]

b
x

y

mínimo
absoluto de
punto frontera

b) ƒ definida sobre (�	, b]

x

y

no hay extremo absoluto

c) ƒ definida sobre [0, 	)

FIGURA 5.2.4 Una función f continua sobre un intervalo que no tiene ningún extremo absoluto

FIGURA 5.2.5 Máximo relativo
en c1 y mínimo relativo en c2



En algunos textos un número crítico x = c se denomina punto crítico.

EJEMPLO  3 Determinación de números críticos

Encuentre los números críticos de f (x) � x ln x.

Solución Por la regla del producto,

La única solución de o ln x � �1 es Hasta dos cifras decimales, el número
crítico de f es

EJEMPLO  4 Determinación de números críticos

Encuentre los números críticos de

Solución Al diferenciar y factorizar se obtiene

Por tanto, observamos que para x � 0, x � �2 y x � 1. Los números críticos de f
son 0, 2 y 1.

EJEMPLO  5 Determinación de números críticos

Encuentre los números críticos de

Solución Por la regla de potencias para funciones,

En este caso observamos que f 
(x) no existe cuando x � �4. Puesto que �4 está en el domi-
nio de f, concluimos que éste es su número crítico.

EJEMPLO  6 Determinación de números críticos

Encuentre los números críticos de 

Solución Por la regla del cociente, después de simplificar encontramos,

Ahora, f 
(x) � 0 cuando el numerador de f es 0. Al resolver la ecuación x(x � 2) � 0 obte-
nemos x � 0 y x � 2. Además, cuando se inspecciona el denominador de f se encuentra que
f 
(x) no existe cuando x � 1. No obstante, al analizar f se observa que x � 1 no está en su
dominio, y así los únicos números críticos son 0 y 2.

f ¿(x) �
x (x � 2)

(x � 1)2
.

f (x) �
x2

x � 1
.

f ¿(x) �
2
3

 (x � 4)�1>3
�

2
3(x � 4)1>3.

f (x) � (x � 4)2>3.
�

f ¿(x) � 0

f ¿(x) � 12x3
� 12x2

� 24x � 12x (x � 2)(x � 1).

f (x) � 3x4
� 4x3

� 12x2
� 10.

e�1
� 0.36.

x � e�1.f ¿(x) � 0
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En la figura 5.2.6a) se plantea que un mínimo relativo ocurre cerca de x = -2. Con las
herramientas de una calculadora o un SAC es posible convencernos de que este mínimo rela-
tivo es realmente un mínimo absoluto o global, pero con las herramientas del cálculo es posi-
ble demostrar en verdad que éste es el caso.

Números críticos El análisis de la FIGURA 5.2.7 junto con las figuras 5.2.5 y 5.2.6 sugiere
que si c es un número en el que la función f tiene un extremo relativo, entonces la tangente
es horizontal en el punto correspondiente a x � c o no es diferenciable en x � c. Es decir,
una de las dos: f 
(c) � 0 o f 
(c) no existe. Este número c recibe un nombre especial.

Definición 5.2.3 Número crítico

Un número crítico de una función f es un número c en su dominio para el cual f 
(c) � 0 o
f 
(c) no existe.

y

x

máximo
relativo

mínimo
relativo

mínimo
relativo

y � ƒ(x)
ƒ(c2)

ƒ(c3)ƒ(c1)

c1 c2 c3

FIGURA 5.2.7 f no es diferencia-
ble en c1; f 
 es 0 en c2 y c3

f ¿(x) x . 1
x

1 . ln  x 1 ln x.



DEMOSTRACIÓN Suponga que f (c) es un extremo relativo.

i) Si f 
(c) no existe, entonces, por la definición 5.2.3, c es un número crítico.
ii) Si f 
(c) existe, entonces hay tres posibilidades: f ¿(c) 7 0, f ¿(c) 6 0 o f ¿(c) � 0. Para aho-

rrar argumentos, también se supondrá que f(c) es un máximo relativo. Así, por la defini-
ción 5.2.2 hay algún intervalo abierto que contiene a c donde

(1)

donde el número h es suficientemente pequeño en valor absoluto. Entonces, la desigual-
dad en (1) implica que

(2)

Pero como [ f (c � h) � f (c)]�h existe y es igual a f ¿(c), las desigualdades en (2)

muestran que y respectivamente. La única forma en que esto puede
ocurrir es cuando f ¿(c) = 0. El caso en que f(c) es un mínimo relativo se demuestra en forma
semejante.

Extremos de funciones definidos sobre un intervalo cerrado Se ha visto que una función
f que es continua sobre un intervalo cerrado tiene tanto un máximo absoluto como un mínimo
absoluto. El siguiente teorema indica dónde ocurren estos extremos.

f ¿(c) 	 0,f ¿(c) � 0
lím
hS0

f (c � h) � f (c)
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Teorema 5.2.3 Determinación de extremos absolutos

Si f es continua sobre un intervalo cerrado [a, b], entonces un extremo absoluto ocurre ya
sea en un punto frontera del intervalo o en un número crítico c en el intervalo abierto (a, b).

El teorema 5.2.3 se resume como sigue:

EJEMPLO  7 Determinación de extremos absolutos

Encuentre los extremos absolutos de sobre el intervalo

a) b)

Solución Debido a que f es continua, sólo es necesario evaluar f en los puntos frontera de
cada intervalo y en los números críticos dentro de cada intervalo. A partir de la derivada

vemos que los números críticos de la función f son �2 y 4.
a) A partir de los datos que se muestran en la tabla siguiente resulta evidente que el

máximo absoluto de f sobre el intervalo es f(�2) = 30, y que el mínimo abso-
luto es el extremo de un punto frontera f(1) = -24.

[�3, 1]

f ¿(x) � 3x2
� 6x � 24 � 3 (x � 2)(x � 4)

[�3, 8] .[�3, 1]

f (x) � x3
� 3x2

� 24x � 2

Directrices para encontrar extremos sobre un intervalo cerrado

i) Evalúe f en los puntos frontera a y b del intervalo [a, b].
ii) Encuentre todos los números críticos en el intervalo abierto (a, b).

iii) Evalúe f en todos los números críticos.
iv) Los valores mayor y menor en la lista

son el máximo absoluto y el mínimo absoluto, respectivamente, de f sobre el inter-
valo [a, b].

f (a), f (c1), f (c2), . . . , f (cn), f (b),

c1, c2, . . . , cn

f (c h) f (c)
h

0 para h 7 0  y  
f (c h) f (c)

h
0 para h 6 0.

Teorema 5.2.2 Los extremos relativos ocurren en números críticos

Si una función f tiene un extremo relativo en x � c, entonces c es un número crítico.



Fundamentos

En los problemas 1-6, use la gráfica de la función dada como
ayuda para determinar cualquier extremo absoluto sobre los
intervalos indicados.
1.

a) b) [3, 7] c) (2, 5) d) [1, 4]

2.
a) b) [3, 7] c) (2, 5) d) [1, 4]

3.
a) [1, 4] b) [1, 3] c) d) (4, 5]

4.
a) b) c) d)

5. f (x) = tan x
a) b)
c) d)

6. f (x) = 2 cos x
a) b)
c) d)

En los problemas 7-22, encuentre los números críticos de las
funciones dadas.

7. 8.
9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

En los problemas 23-36, encuentre los extremos absolutos de
la función dada sobre el intervalo indicado.

25.
26.
27. f (x) � x 3

� 6x2
� 2; [�3, 2]

f (x) � x 2>3(x2
� 1); [�1, 1]

f (x) � x 2>3; [�1, 8]

f (x) �
x � 4

13 x � 1
f (x) � (x � 1)213 x � 2

f (x) � x2>3
� xf (x) � (4x � 3)1>3

f (x) �
x2

x2
� 2

f (x) �
1 � x

1x

f (x) � x2(x � 1)3f (x) � (x � 2)2(x � 1)
f (x) � x4

� 4x3
� 7f (x) � 2x3

� 15x2
� 36x

f (x) � x3
� x � 2f (x) � 2x2

� 6x � 8

[�p>2, 3p>2][p>3, 2p>3]
[�p>2, p>2][�p, p ]

[0, p ][0, p>3]
[�p>4, p>4][�p>2, p>2]

[�1, 1][0, 3)(�3, 3)[�3, 3]
f (x) � 29 � x2

(�1, 3)
f (x) � x2

� 4x

[�1, 2]
f (x) � 0x � 4 0[�1, 2]
f (x) � x � 4
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b) Sobre el intervalo a partir de la tabla siguiente observamos que f(4) � �78
es un mínimo absoluto y que f(8) 130 es un máximo absoluto de un punto frontera.�

[�3, 8]

a)

y

x

y � x3

x

y
y � x1�3

b)

FIGURA 5.2.8 0 es un número
crítico para ambas funciones,
pero ninguna tiene extremos

5.2 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-14.

Sobre [�3, 8]

x �3 �2 4 8

f (x) 20 30 -78 130

Sobre [�3, 1]

x �3 �2 1

f (x) 20 30 -24

NOTAS DESDE EL AULA

i) Una función puede, por supuesto, asumir sus valores máximo y mínimo más de una vez
sobre un intervalo. Usted debe comprobar, con ayuda de un dispositivo para graficar,
que la función f(x) � sen x alcanza su valor de función máximo 1 cinco veces y su valor
de función mínimo �1 cuatro veces en el intervalo

ii) El converso del teorema 5.2.2 no necesariamente es cierto. En otras palabras:

Un número crítico de una función f no necesita corresponder a un extremo relativo.

Considere y Las derivadas y muestran
que 0 es un número crítico de ambas funciones. Pero a partir de las gráficas de f y g en
la FIGURA 5.2.8 vemos que ninguna función posee algún extremo sobre el intervalo

iii) Hemos indicado cómo encontrar los extremos absolutos de una función f que es conti-
nua sobre un intervalo cerrado. En las secciones 5.4 y 5.5 usamos la primera y segun-
da derivada para encontrar los extremos relativos de una función.

(�q, q).

g¿(x) �
1
3  
x�2>3f ¿ (x) � 3x2g(x) � x1>3.f (x) � x3

[0, 9p ] .

f ¿(x)

.02.91

.22.12

.42.32 f (x) (x 1)2; [2, 5]f (x) x2 6x; [1, 4]

f (x) e x 2xf (x) x2 8 ln x

f (x) cos 4xf (x) x sen x



28.
29.
30.
31.

32.

En los problemas 37 y 38, encuentre todos los números crí-
ticos. Distinga entre extremos absolutos, extremos de un
punto frontera y extremos relativos.

37.

38.

39. Considere la función f continua definida sobre [a, b] que
se muestra en la FIGURA 5.2.9. Dado que de c1 a c10 son
números críticos:

a) Enumere los números críticos en los cuales f 
(x) � 0.
b) Enumere los números críticos en los cuales f 
(x) no

está definida.
c) Distinga entre los extremos absolutos y los extremos

absolutos de un punto frontera.
d) Distinga entre los máximos relativos y los mínimos

relativos.
40. Considere la función Demuestre que el

mínimo relativo es mayor que el máximo relativo.

Aplicaciones
41. La altura de un proyectil lanzado desde el nivel del suelo

está dada por donde t se mide en
segundos y s en pies.

a) está definida sólo en el intervalo [0, 20]. ¿Por qué?
b) Use los resultados del teorema 5.2.3 para determinar

la altura máxima alcanzada por el proyectil.

42. El físico francés Jean Louis Poiseuille descubrió que la
velocidad y(r) (en cm/s) del flujo sanguíneo que circula
por una arteria con sección trasversal de radio R está
dada por donde P, n y l son
constantes positivas. Vea la FIGURA 5.2.10.

a) Determine el intervalo cerrado sobre el que está defi-
nida y.

b) Determine las velocidades máxima y mínima del
flujo sanguíneo.

Piense en ello
43. Elabore una gráfica de una función continua f que no

tenga extremos absolutos pero sí un máximo relativo y
un mínimo relativo que tengan el mismo valor.

44. Proporcione un ejemplo de una función continua, defi-
nida sobre un intervalo cerrado [a, b], para el cual el
máximo absoluto es el mismo que el mínimo absoluto.

45. Sea la función entero mayor. Demuestre que
todo valor de x es un número crítico.

46. Demuestre que no tiene
números críticos cuando ¿Qué ocurre
cuando

47. Sea f(x) � xn, donde n es un entero positivo. Determine
los valores de n para los cuales f tiene un extremo relativo.

48. Analice: ¿por qué una función polinomial de grado n

puede tener a lo sumo n � 1 números críticos?
49. Suponga que f es una función par continua tal que f(a) es

un mínimo relativo. ¿Qué puede afirmarse sobre f(�a)?
50. Suponga que f es una función impar continua tal que f(a)

es un máximo relativo. ¿Qué puede afirmarse sobre f(�a)?
51. Suponga que f es una función par continua que es dife-

renciable en todas partes. Demuestre que x � 0 es un
número crítico de f.

52. Suponga que f es una función diferenciable que tiene
sólo un número crítico c. Si k 0, encuentre los núme-
ros críticos de:
a) b) c) d)

Problemas con calculadora/SAC
53. a) Use una calculadora o un SAC para obtener la grá-

fica de f (x) = -2 cos x + cos 2x.
b) Encuentre los números críticos de f en el intervalo

c) Encuentre los extremos absolutos de f en el intervalo

54. En el estudio del crecimiento de los copos de nieve, la
fórmula 

es un modelo matemático para la variación diaria en la
intensidad de radiación solar que penetra la superficie
de la nieve. Aquí t representa el tiempo medido en horas
después del amanecer (t � 0) y 

a) Use una calculadora o un SAC para obtener la grá-
fica de I sobre el intervalo [0, 24]. Use b � 1.

b) Encuentre los números críticos de I en el intervalo
[0, 24].

� � 2p>24.

[0, 2p ] .

[0, 2p ] .

f (kx)f (x � k)kf (x)k � f (x)

ad � bc � 0?
ad � bc � 0.

f (x) � (ax � b)>(cx � d )

f (x) � :x ;

R
r

Sección transversal circular

FIGURA 5.2.10 Arteria para el problema 42   

y(r) � (P>4nl )(R2
� r 2),

s(t)

s(t) � �16t2
� 320t,

f (x) � x � 1>x.

f (x) � e 4x � 12, �5 � x � �2
x2, �2 6 x � 1

f (x) � x2
� 2 0x 0 ; [�2, 3]

f (x) �
1x

x2
� 1

 ; [1
4, 

1
2]

f (x) � x4(x � 1)2; [�1, 2]
f (x) � x4

� 4x3
� 10; [0, 4]

f (x) � x 3
� 3x2

� 3x � 1; [�4, 3]
f (x) � �x 3

� x2
� 5x; [�2, 2]
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I (t)
b
p

b
2

 sen  t
2b
3p

 cos 2 t

y

x

y �ƒ(x)

c4 c7

c1a c2c3 c5 c6 c8 c9 c10 b

FIGURA 5.2.9 Gráfica para el problema 39

33.

34.

35.

36. f (x) 2x tan x; [ 1, 1.5]
f (x) 3 2 sen2 24x; [0, p ]
f (x) 1 5 sen 3x; [0, p>2]
f (x) 2 cos 2x cos 4x; [0, 2p ]



DEMOSTRACIÓN Ocurre que f es una función constante sobre el intervalo [a, b] o no lo es. Si
f es una función constante sobre [a, b], entonces debe tenerse f 
(c) � 0 para todo número c en
(a, b). Luego, si f no es una función constante sobre [a, b], entonces debe haber un número x
en (a, b) donde o Suponga que Puesto que f es continua sobre
[a, b], por el teorema del valor extremo sabemos que f alcanza un máximo absoluto en algún
número c en [a, b]. Pero por y f(x) > 0 para alguna x en (a, b), concluimos que
el número c no puede ser un punto frontera de [a, b]. En consecuencia, c está en (a, b). Puesto
que f es diferenciable sobre (a, b), es diferenciable en c. Entonces, por el teorema 5.2.2 tenemos

. La demostración para el caso en que se concluye en forma semejante.

EJEMPLO  1 Comprobación del teorema de Rolle

Considere la función definida sobre La gráfica de f se muestra en la
FIGURA 5.3.2. Puesto que f es una función polinomial, es continua en y diferenciable
sobre (-1, 1). También, Por tanto, se cumplen las hipótesis del teorema de
Rolle. Concluimos que debe haber por lo menos un número en ( 1, 1) para el cual f ¿(x) =
-3x2 + 1 es cero. Para encontrar este número, se resuelve f ¿(c) = 0 o 
Esta última conduce a dos soluciones en el intervalo: y c2 = 3 
0.57.

En el ejemplo 1, observe que la función f dada satisface las hipótesis del teorema de Rolle
sobre [0, 1], así como sobre . En el caso del intervalo [0, 1], 
produce la única solución 

EJEMPLO  2 Comprobación del teorema de Rolle

a) La función que se muestra en la FIGURA 5.3.3, es continua sobre y
satisface f( 8) = f(8) = 0. Pero no es diferenciable sobre (-8, 8), puesto que en el origen
hay una tangente vertical. No obstante, como sugiere la figura, hay dos números c1 y c2 en
(-8, 8) donde f 
(x) � 0. Usted debe comprobar que y 
Tenga en cuenta que las hipótesis del teorema de Rolle son condiciones suficientes pero no
necesarias. En otras palabras, si no se cumple una de estas tres hipótesis: continuidad sobre
[a, b], diferenciabilidad sobre (a, b) y f(a) � f(b)�0, la conclusión de que en (a, b) hay
un número c tal que f ¿(c) � 0 puede cumplirse o no.

b) Considere otra función Esta función es continua sobre y
Pero como la función f anterior, g no es diferenciable en x = 0 y por

tanto no es diferenciable sobre el intervalo abierto (-1, 1). En este caso, sin embargo, en
(-1, 1) no hay algún c para el cual f 
(c) = 0. Vea la FIGURA 5.3.4.

La conclusión del teorema de Rolle también se cumple cuando la condición f(a) = f(b) = 0
se sustituye por f(a) = f(b). La validez de este hecho se ilustra en la FIGURA 5.3.5.

Teorema del valor medio El teorema de Rolle es de utilidad para demostrar el siguiente
resultado importante denominado teorema del valor medio. Este teorema establece que

f (�1) � f (1) � 0.
[�1, 1]g(x) � 1 � x2>3.

f ¿A813>9B � 0.f ¿A�813>9B � 0

�

[�8, 8]f (x) � x � 4x1>3,
c � 13>3.

f ¿(c) � �3c2
� 1 � 0[�1, 1]

>13c1 � �13>3 � �0.57
�3c2

� 1 � 0.
�

f (�1) � f (1) � 0.
[�1, 1]

[�1, 1] .f (x) � �x3
� x

f (x) 6 0f ¿(c) � 0

f (a) � f (b) � 0

f (x) 7 0.f (x) 6 0.f (x) 7 0
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5.3 El teorema del valor medio
Introducción Suponga que una función y � f(x) es continua y diferenciable sobre un inter-

valo cerrado [a, b] y que f(a) � f(b) � 0. Estas condiciones significan que los números a y b
son las coordenadas x de las intersecciones x de la gráfica de f. En la FIGURA 5.3.1a) se muestra
una gráfica típica de una función f que satisface estas condiciones. A partir de la figura 5.3.1b)
parece válido que debe haber por lo menos un número c en el intervalo abierto (a, b) corres-
pondiente a un punto sobre la gráfica de f donde la tangente es horizontal. Esta observación
conduce a un resultado denominado teorema de Rolle. Usaremos este teorema para demostrar
el resultado más importante de esta sección: el teorema del valor medio para derivadas.

b)

y

a b
x

y � ƒ(x)

c1

c2

tangente horizontal

tangente horizontal

FIGURA 5.3.1 Dos puntos donde
la tangente es horizontal

y

a)

x
ba

y � ƒ(x)

y

x

y � �x3
� x

� 1

�1

1

1

FIGURA 5.3.2 Gráfica de la
función en el ejemplo 1

y

x

y � x � 4x1/3

FIGURA 5.3.3 Gráfica de la
función f en el ejemplo 2

y

x

y � 1 � x2/3

�1 1

1

FIGURA 5.3.4 Gráfica de la
función g en el ejemplo 2

Teorema 5.3.1 Teorema de Rolle

Sea f una función continua sobre [a, b] y diferenciable sobre (a, b). Si
entonces hay un número c en (a, b) tal que f 
(c) � 0.

f (a) � f (b) � 0,

FIGURA 5.3.5 El teorema
de Rolle se cumple cuando
f (a) � f (b)

y

a

tangente horizontal
ƒ(a) ƒ(b) � ƒ(a)

b
x



DEMOSTRACIÓN Como se muestra en la FIGURA 5.3.6, sea d(x) la distancia vertical entre un
punto sobre la gráfica de y � f(x) y la recta secante que pasa por y Puesto
que la ecuación de la recta secante es

tenemos, como se muestra en la figura, o bien,

Puesto que y d(x) es continua sobre [a, b] y diferenciable sobre (a, b), el
teorema de Rolle implica que en (a, b) existe un número c para el cual d¿(c) 0. Entonces,

y así es lo mismo que

Como se indica en la FIGURA 5.3.7, en (a, b) puede haber más de un número c para el que
las rectas tangente y secante son paralelas.

f ¿(c) �
f (b) � f (a)

b � a
.

d ¿(c) � 0

d ¿(x) � f ¿(x) �
f (b) � f (a)

b � a

�

d (a) � d (b) � 0

d (x) � f (x) � c f (b) �
f (b) � f (a)

b � a
 (x � b) d .d (x) � y2 � y1,

y � f (b) �
f (b) � f (a)

b � a
 (x � b)

(b, f (b)).(a, f (a))
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EJEMPLO  3 Comprobación del teorema del valor medio

Dada la función definida sobre el intervalo cerrado , ¿existe un
número c en el intervalo abierto ( 1, 3) que cumple la conclusión del teorema del valor medio?

Solución Puesto que f es una función polinomial, es continua sobre y diferenciable
sobre (�1, 3). Entonces, 

Así, debe tenerse
f (3) � f (�1)

3 � (�1)
�

�20
4

� 3c2
� 12.

f (3) � �9, f (�1) � 11,
[�1, 3]

�

[�1, 3]f (x) � x3
� 12x

FIGURA 5.3.7 Las tangentes son paralelas a la recta secante que pasa por (a, f (a)) y (b, f (b))

y

x

msec �

mtan � ƒ�(c)

ƒ(b) � ƒ(a)
b � a

y � ƒ(x)

bc

a) Una tangente

a

y

x

mtan � ƒ�(c1)

mtan � ƒ�(c2)

y �ƒ(x)

a b

b) Dos tangentes

c1 c2

msec �
ƒ(b) � ƒ(a)

b � a

f ¿(x) 3x 2 12  y  f ¿(c) 3c2 12.

Teorema 5.3.2 Teorema del valor medio para derivadas

Sea f una función continua sobre [a, b] y diferenciable sobre (a, b). Entonces en (a, b) existe
un número c tal que

f ¿(c)
f (b) f (a)

b a
.

y

x

(x, y2)

d(x)

(x, y1)

y � ƒ(x)

(a, ƒ(a))

a b

(b, ƒ(b))

FIGURA 5.3.6 Recta secante que
pasa por (a, f (a)) y (b, f (b))

cuando una función f es continua sobre [a, b] y diferenciable sobre (a, b), entonces debe haber
por lo menos un punto sobre la gráfica donde la pendiente de la recta tangente es la misma
que la pendiente de la recta secante que pasa por los puntos (a, f(a)) y (b, f(b)). La palabra
medio se refiere aquí a un promedio; es decir, al valor de la derivada en algún punto es el
mismo que la razón de cambio media de la función sobre el intervalo.



DEMOSTRACIÓN Sean x1 y x2 dos números arbitrarios en [a, b] tales que Por el teo-
rema del valor medio, en el intervalo (x1, x2) hay un número c tal que

Pero por hipótesis, f 
(x) � 0. Entonces, o Puesto que x1 y x2

se escogen de manera arbitraria, la función f tiene el mismo valor en todos los puntos en el
intervalo. Así, f es constante.

Funciones crecientes y decrecientes Suponga que una función y � f(x) está definida sobre
un intervalo I y que x1 y x2 son dos números cualesquiera en el intervalo tales que
En la sección 2.3 vimos que f es creciente sobre I si , y decreciente sobre I si

Vea la figura 2.3.4. Intuitivamente, la gráfica de una función creciente sube

cuando x crece (es decir, la gráfica asciende cuando se lee de izquierda a derecha) y la grá-
fica de una función decreciente baja cuando x crece. Por ejemplo, crece sobre
y decrece sobre Por supuesto, una función f puede ser creciente sobre cier-
tos intervalos y decreciente sobre intervalos diferentes. Por ejemplo, y = sen x crece sobre

y decrece sobre 
La gráfica en la FIGURA 5.3.8 ilustra una función f que es creciente sobre los intervalos [b, c]

y [d, e] y decreciente sobre [a, b], [c, d] y [e, h].

[p>2, 3p>2].[�p>2, p>2]

(�q, q).y � e�x
(�q, q)y � e x

f (x1) 7 f (x2).
f (x1) 6 f (x2)

x1 6 x2.

f (x1) � f (x2).f (x2) � f (x1) � 0

f (x2) � f (x1)
x2 � x1

� f ¿(c).

x1 6 x2.
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ycreciente
ƒ(x1) � ƒ(x2)

decreciente
ƒ(x3) � ƒ(x4)

y � ƒ(x)

edcba hx3 x4x1 x2
x

FIGURA 5.3.8 Una función puede crecer sobre algunos intervalos
y decrecer en otros

El siguiente teorema es una prueba de la derivada para crecimiento/decrecimiento.

Teorema 5.3.3 Función constante

Si f 
(x) � 0 para toda x en un intervalo [a, b], entonces f(x) es una constante sobre el intervalo.

Teorema 5.3.4 Prueba para crecimiento/decrecimiento

Sea f una función continua sobre [a, b] y diferenciable sobre (a, b).

i) Si para toda x en (a, b), entonces f es creciente sobre [a, b].
ii) Si para toda x en (a, b), entonces f es decreciente sobre [a, b].f ¿(x) 6 0

f ¿(x) 7 0

Por tanto, Aunque la última ecuación tiene dos soluciones, la única solución en el
intervalo (�1, 3) es

El teorema del valor medio es muy útil para demostrar otros teoremas. Recuerde de la
sección 4.3 que si f(x) � k es una función constante, entonces f 
(x) � 0. El converso de este
resultado se demuestra en el siguiente teorema.

c � 17>3 � 1.53.
3c2

� 7.

DEMOSTRACIÓN i) Sean x1 y x2 dos números arbitrarios en [a, b] tales que Por el
teorema del valor medio, en el intervalo (x1, x2) hay un número c tal que

Pero por hipótesis. Entonces, o 
Puesto que x1 y x2 se escogen de manera arbitraria, concluimos que f es cre-
ciente sobre [a, b].

f (x1) 6 f (x2).f (x2) � f (x1) 7 0f ¿(c) 7 0

f ¿(c) �
f (x2) � f (x1)

x2 � x1
.

x1 6 x2.



EJEMPLO  5 Prueba de la derivada para creciente/decreciente

Determine los intervalos sobre los cuales es creciente y los intervalos sobre
los cuales f es decreciente.

Solución Primero observe que el dominio de f está definido por Luego, la derivada

es cero en 1 y está indefinida en 0. Puesto que 0 está en el dominio de f y ya que
cuando , concluimos que la gráfica de f tiene una tangente vertical (el eje y) en (0, 0).
Además, debido a que para x 7 0, sólo es necesario resolver

para determinar dónde y , respectivamente. Los resultados se muestran en
la tabla siguiente.

f ¿(x) 6 0f ¿(x) 7 0

e�x>2>21x 7 0
x S 0�

f ¿(x) S q

f ¿(x) � x1>2e�x>2a�1
2
b �

1
2  

x�1>2e�x>2
�

e�x>2
21x

 (1 � x)

x 	 0.

f (x) � 1x e�x>2
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y
1

1 2 3 4 5
x

y � x e�x�2

  

FIGURA 5.3.10 Gráfica de la
función en el ejemplo 5

Con ayuda de un dispositivo para graficar obtenemos la gráfica de f que se observa en la FIGURA

5.3.10.

Intervalo Signo de f ¿(x) y � f (x)

(�q, �2) � creciente sobre (�q, �2]

(�2, 4) � decreciente sobre [�2, 4]

(4, q) � creciente sobre [4, )q

Intervalo Signo de f ¿(x) y � f (x)

(0, 1) � creciente sobre [0, 1]

(1, )q � decreciente sobre [1, )q

1 x 7 0  y  1 x 6 0

La información obtenida a partir de la figura 5.3.9 se resume en la tabla siguiente.

ii) Si , entonces o Puesto que x1

y x2 se escogen de manera arbitraria, concluimos que f es decreciente
sobre [a, b].

EJEMPLO  4 Prueba de la derivada para crecimiento/decrecimiento

Determine los intervalos sobre los cuales es creciente y los intervalos
sobre los cuales f es decreciente.

Solución La derivada es

Para determinar cuándo y es necesario resolver

respectivamente. Una manera de resolver estas desigualdades es analizar los signos algebrai-
cos de los factores (x � 2) y (x � 4) sobre los intervalos de la recta numérica determinada
por los puntos críticos �2 y 4: Vea la FIGURA 5.3.9.(�q, �2] , [�2, 4] , [4, q).

f ¿(x) 6 0f ¿(x) 7 0
f ¿(x) � 3x 2

� 6x � 24 � 3 (x � 2)(x � 4).

f (x) � x3
� 3x2

� 24x

f (x1) 7 f (x2).f (x2) � f (x1) 6 0f ¿(c) 6 0

4�2
x

El signo
de ƒ' (x) es �

El signo
de ƒ' (x) es �

El signo
de ƒ' (x) es �

(x � 2)(x � 4)
(�)(�)

(x � 2)(x � 4)
(�)(�)

(x � 2)(x � 4)
(�)(�)

FIGURA 5.3.9 Signos de f (x) en tres intervalos en el ejemplo 4

(x 2)(x 4) 7 0 y  (x 2)(x 4) 6 0,

En precálculo, este procedi-
miento para resolver desigual-
dades no lineales se denomina
método de la tabla de signos.



Fundamentos

En los problemas 1-10, determine si la función dada satis-
face las hipótesis del teorema de Rolle sobre el intervalo
indicado. En caso afirmativo, encuentre todos los valores de
c que satisfacen la conclusión del teorema.

1.

2.

3.

4.

5.

6.

8.

9.

10.

En los problemas 11 y 12, establezca por qué la función f

cuya gráfica se proporciona no satisface las hipótesis del teo-
rema de Rolle sobre [a, b].

11. 12.

En los problemas 13-22, determine si la función dada satis-
face las hipótesis del teorema del valor medio sobre el inter-
valo indicado. En caso afirmativo, encuentre todos los valo-
res de c que satisfacen la conclusión del teorema.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

En los problemas 23 y 24, establezca por qué la función f

cuya gráfica se proporciona no satisface las hipótesis del teo-
rema del valor medio sobre [a, b].

23. 24.

f (x) � x1>3
� x; [�8, 1]

f (x) �
x � 1
x � 1

; [�2, �1]

f (x) � 14 x � 1; [2, 6]

f (x) � 1 � 1x; [0, 9]

f (x) � x �
1
x

; [1, 5]

f (x) � 1>x; [�10, 10]

f (x) � x4
� 2x2; [�3, 3]

f (x) � x3
� x � 2; [2, 5]

f (x) � �x2
� 8x � 6; [2, 3]

f (x) � x2; [�1, 7]

f (x) � x2>3
� 3x1>3

� 2; [1, 8]

f (x) � x2>3
� 1; [�1, 1]

f (x) � tan x; [0, p ]

f (x) � x (x � 1)2; [0, 1]

f (x) � x3
� x2; [�1, 0]

f (x) � x3
� 5x2

� 4x; [0, 4]

f (x) � x3
� 27; [�3, �2]

f (x) � x2
� 6x � 5; [1, 5]

f (x) � x2
� 4; [�2, 2]
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5.3 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-14.

x

y

y � ƒ(x)

a b

x

y

y �ƒ(x)

a b

FIGURA 5.3.11 Gráfica
para el problema 11

FIGURA 5.3.12 Gráfica
para el problema 12

x

y
y �ƒ(x)

a b
x

y

y �ƒ(x)

a b

FIGURA 5.3.13 Gráfica
para el problema 23

FIGURA 5.3.14 Gráfica
para el problema 24

NOTAS DESDE EL AULA

i) Como ya se mencionó, las hipótesis planteadas en el teorema de Rolle, así como las hipóte-
sis del teorema del valor medio, son condiciones suficientes pero no necesarias. En el teore-
ma de Rolle, por ejemplo, si una o más de las hipótesis: continuidad sobre [a, b], diferencia-
bilidad sobre (a, b) y f (a) � f (b) � 0 no se cumple, entonces la conclusión de que en el
intervalo abierto (a, b) existe un número c tal que f ¿(c) � 0 puede cumplirse o no.

ii) El converso de los incisos i) y ii) del teorema 5.3.4 no necesariamente son ciertos. En otras
palabras, cuando f es una función creciente (o decreciente) sobre un intervalo, no se con-
cluye que f ¿(x) 7 0 (o f ¿(x) 6 0) sobre el intervalo. Una función puede ser creciente sobre
un intervalo e incluso no ser diferenciable sobre ese intervalo.

f ¿(x)

7. f (x) sen x; [ p, 2p ]

Si una función f es discontinua en uno o en ambos puntos extremos de [a, b], entonces
(o sobre (a, b) implica que f es creciente (o decreciente) sobre el inter-

valo abierto (a, b).

Posdata: Un poco de historia Michel Rolle (1652-1719), francés, maestro de escuela ele-
mental, estaba profundamente interesado en las matemáticas, y a pesar de que su educación
fue bastante deficiente resolvió varios teoremas de importancia. Pero, curiosamente, Rolle no
demostró el teorema que lleva su nombre. De hecho, fue uno de los primeros críticos rotundos
del, entonces, nuevo cálculo. A Rolle también se le acredita la invención del simbolismo 
para denotar la raíz n-ésima de un número x.

1n x

f ¿(x) 6 0)f ¿(x) 7 0



En los problemas 25-46, determine los intervalos sobre los
cuales la función dada f es creciente y los intervalos sobre
los cuales es decreciente.

25. 26.
27. 28.

29. 30.

31. 32.
33. 34.

35. 36.

37. 38.

39. 40.

41. 42.
43. f (x) = sen x 44. f (x) = -x + tan x
45. 46.

En los problemas 47 y 48, demuestre, sin graficar, que la
función dada no tiene extremos relativos.
47. 48.

Aplicaciones
49. Un motociclista entra a una carretera de peaje y en el

comprobante de pago la hora indicada es 1:15 p.m. Luego
de 70 millas, cuando el motociclista paga en la caseta de
peaje a las 2:15 p.m., también recibe un comprobante
de pago. Explique esto por medio del teorema del valor
medio. Suponga que la velocidad límite es 65 mi/h.

50. En el análisis matemático de la tos humana se supone que
la tráquea o tubo respiratorio es un tubo cilíndrico. Un
modelo matemático para el volumen de aire (en cm3/s)
que fluye a través de la tráquea durante su contracción es

donde k es una constante positiva y r0 es su radio cuando
no hay diferencia de presión en los extremos del tubo res-
piratorio. Determine un intervalo para el cual V sea cre-
ciente y un intervalo para el cual V sea decreciente. ¿Con
qué radio obtiene el volumen máximo de flujo de aire?

Piense en ello
51. Considere la función Use esta

función y el teorema de Rolle para demostrar que la
ecuación tiene por lo menos una
raíz en .

52. Suponga que las funciones f y g son continuas sobre
[a, b] y diferenciables sobre (a, b) de modo que 

y para toda x en (a, b). Demuestre que f + g

es una función creciente sobre [a, b].

53. Suponga que las funciones f y g son continuas sobre
[a, b] y diferenciables sobre (a, b) de modo que 
y para toda x en (a, b). Proporcione una con-
dición sobre f (x) y g(x) que garantice que el producto
fg es creciente sobre [a, b].

54. Demuestre que la ecuación ax3 + bx + c = 0, a 7 0,
b 7 0, no puede tener dos raíces reales. [Sugerencia:
Considere la función Suponga que
hay dos números r1 y r2 tales que 

55. Demuestre que la ecuación tiene a lo
sumo una raíz real. [Sugerencia: Considere la función

Suponga que hay tres números
distintos r1, r2 y r3 tales que 

56. Para una función polinomial cuadrática f (x) = ax2 +
bx + c demuestre que el valor de x3 que satisface la con-
clusión del teorema del valor medio sobre cualquier
intervalo [x1, x2] es 

57. Suponga que la gráfica de una función polinomial f tiene
cuatro intersecciones x distintas. Analice: ¿cuál es el
número mínimo de puntos en los cuales una recta tan-
gente a la gráfica de f es horizontal?

58. Como se mencionó después del ejemplo 2, la hipótesis
f (a) = f (b) = 0 en el teorema de Rolle puede sustituirse
por la hipótesis f (a) = f (b).

a) Encuentre una función explícita f definida sobre un
intervalo [a, b] tal que f sea continua sobre el inter-
valo, diferenciable sobre (a, b) y f (a) = f (b).

b) Encuentre un número c para el que 

59. Considere la función f (x) = x sen x. Use f y el teorema
de Rolle para demostrar que la ecuación cot x = -1 x

tiene una solución sobre el intervalo 

Problemas con calculadora/SAC

60. a) Use una calculadora o un SAC para obtener la grá-
fica de 

b) Compruebe que todas las hipótesis, excepto una del
teorema de Rolle, se cumplen en el intervalo [-8, 8].

c) Determine si en (-8, 8) existe un número c para el
cual f ¿(c) = 0.

En los problemas 61 y 62, use una calculadora para encon-
trar un valor de c que satisfaga la conclusión del teorema del
valor medio.

f (x) � x � 4x1>3.

(0, p).
>

f ¿(c) � 0.

x3 � (x1 � x2)>2.

f (r1) � f (r2) � f (r3) � 0.]
f (x) � ax2

� bx � c.

ax2
� bx � c � 0

f (r1) � f (r2) � 0.]
f (x) � ax3

� bx � c.

g¿(x) 7 0
f ¿(x) 7 0

g¿(x) 7 0

f ¿(x) 7 0

[�1, 1]
4x3

� 3x2
� 1 � 0

f (x) � x4
� x3

� x � 1.

V (r) � kr 4(r0 � r), r0>2 � r � r0,

f (x) � �x � 12 � xf (x) � 4x3
� x

f (x) � x2e�xf (x) � x � e�x

f (x) � (x2
� 1)3f (x) � x(x � 3)2

f (x) �
x2

x � 1
f (x) �

5
x2

� 1

f (x) �
x � 1

2x2
� 1

f (x) � x28 � x2

f (x) �
1
x

�
1
x2

f (x) � x �
1
x

f (x) � x2>3
� 2x1>3f (x) � 1 � x1>3 f (x) � 4x5
� 10x4

� 2f (x) � x4
� 4x3

� 9

f (x) �
1
3

x3
� x2

� 8x � 1f (x) � x3
� 3x2

f (x) � �x2
� 10x � 3f (x) � x2

� 6x � 1
f (x) � x3f (x) � x2

� 5
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61.

62. f (x) 1 sen x; [p>4, p>2]

f (x) cos 2x; [0, p>4]

5.4 Criterio de la primera derivada
Introducción Saber que una función tiene, o no, extremos relativos es de gran ayuda al tra-

zar su gráfica. En la sección 5.2 (teorema 5.2.2) vimos que cuando una función tiene un
extremo relativo debe ocurrir en un número crítico. Al encontrar los números críticos de una
función, tenemos una lista de candidatos para las coordenadas x de los puntos que correspon-
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den a extremos relativos. A continuación se combinarán las ideas de las primeras secciones de
esta unidad para establecer dos pruebas para determinar cuándo un número crítico es en rea-
lidad la coordenada x de un extremo relativo.

Prueba de la primera derivada Suponga que f es continua sobre el intervalo cerrado [a, b]
y diferenciable sobre un intervalo abierto (a, b), excepto tal vez en un número crítico c den-
tro del intervalo. Si para toda x en (a, c) y para toda x en (c, b), entonces
la gráfica de f sobre el intervalo (a, b) puede ser como se muestra en la FIGURA 5.4.1a); es decir,
f (c) es un máximo relativo. Por otra parte, cuando para toda x en (a, c) y 
para toda x en (c, b), entonces, como se muestra en la figura 5.4.1b), f (c) es un mínimo rela-
tivo. Se han demostrado dos casos especiales del siguiente teorema.

f ¿(x) 7 0f ¿(x) 6 0

f ¿(x) 6 0f ¿(x) 7 0

FIGURA 5.4.1 Máximo relativo en
a); mínimo relativo en b)

x
a

f creciente f decreciente

bc

f �(x) � 0 f �(x) � 0

a)

x
a

f �(x) � 0 f �(x) � 0

bc

f decreciente f creciente

b)

Teorema 5.4.1 Criterio de la primera derivada

Sea f continua sobre [a, b] y diferenciable sobre (a, b) excepto tal vez en el número crítico c.

i) Si f ¿(x) cambia de positiva a negativa en c, entonces f (c) es un máximo relativo.
ii) Si f ¿(x) cambia de negativa a positiva en c, entonces f (c) es un mínimo relativo.

iii) Si f ¿(x) tiene el mismo signo algebraico a cada lado de c, entonces f (c) no es un
extremo.

Las conclusiones del teorema 5.4.1 pueden resumirse en una frase:

• Una función f tiene un extremo relativo en un número crítico c donde f ¿(x) cambia
de signo.

En la FIGURA 5.4.2 se ilustra cuál sería el caso cuando f ¿(c) no cambia de signo en un número
crítico c. En las figuras 5.4.2a) y 5.4.2b) se muestra una tangente horizontal en (c, f (c)) y
f ¿(c) = 0 pero f (c) no es ni máximo ni mínimo relativo. En la figura 5.4.2c) se muestra una
tangente vertical en (c, f (c)) y así f ¿(c) no existe, pero de nuevo f (c) no es un extremo rela-
tivo porque f ¿(c) no cambia de signo en el número crítico c.

x
a c b

ƒ�(x) � 0

ƒ�(x) � 0(c, ƒ(c))

a) ƒ�(c) � 0

ƒ�(x) � 0

ƒ�(x) � 0 (c, ƒ(c))

x
a c b

b) ƒ�(c) � 0

ƒ�(x) � 0

ƒ�(x) � 0

(c, ƒ(c))

x
a c b

c) ƒ�(c) � no existe

FIGURA 5.4.2 No hay extremo porque f �(x) no cambia de signo en el número crítico c

En los cinco ejemplos siguientes se ilustra la utilidad del teorema 5.4.1 para trazar a mano
la gráfica de una función f. Además del cálculo:

• Encuentre la derivada de f y factorice f ¿ tanto como sea posible.
• Encuentre los números críticos de f.
• Aplique el criterio de la primera derivada a cada número crítico.

También resulta útil preguntar:

• ¿Cuál es el dominio de f ?

• La gráfica de f, ¿tiene alguna intersección?

• La gráfica de f, ¿tiene alguna simetría?

• La gráfica de f, ¿tiene alguna asíntota?

d determine si
f (-x) = f (x) o bien,
f (-x) = -f (x)

intersecciones x: resuelva
para f (x) � 0

d intersección y: encuentre f (0)



1
2

 A5 121 B 0.21  y  1
2

 A5 121 B 4.79.

Las funciones consideradas en los ejemplos 1 y 2 son polinomiales. Observe que estas
funciones constan de potencias pares e impares de x; esto es suficiente para concluir que las
gráficas de estas funciones no son simétricas con respecto al eje y o al origen.

EJEMPLO  1 Función polinomial de grado 3

Grafique 

Solución La primera derivada

(1)

produce los números críticos �1 y 3. Luego, el criterio de la primera derivada es esencialmente
el procedimiento que se usó para encontrar los intervalos sobre los cuales f es creciente o decre-
ciente. En la FIGURA 5.4.3a) vemos que para y para

En otras palabras, f ¿(x) cambia de positiva a negativa en -1 y así por el inciso i)
del teorema 5.4.1 concluimos que f (-1) = 7 es un máximo relativo. En forma semejante, 
para y para Debido a que f ¿(x) cambia de negativa a posi-
tiva en 3, el inciso ii) del teorema 5.4.1 indica que f(3) = -25 es un mínimo relativo. Luego, como
f (0) = 2, el punto (0, 2) es la intersección y para la gráfica de f . Además, al buscar si la ecua-
ción tiene raíces positivas se encuentra que x = -2 es una raíz real.
Luego, al dividir entre el factor x + 2 obtenemos (x + 2)(x2 - 5x + 1) = 0. Cuando la fórmula
cuadrática se aplica al factor cuadrático se encuentran dos raíces reales adicionales:

Entonces, las intersecciones x son (-2, 0), y Al reunir toda esta infor-
mación se llega a la gráfica mostrada en la figura 5.4.3b):

(5
2 �

121
2 , 0).(5

2
121

2 , 0)

x3
� 3x2

� 9x � 2 � 0

3 6 x 6 q.f ¿(x) 7 0�1 6 x 6 3
f ¿(x) 6 0

�1 6 x 6 3.
f ¿(x) 6 0�q 6 x 6 �1f ¿(x) 7 0

f ¿(x) � 3x2
� 6x � 9 � 3(x � 1)(x � 3)

f (x) � x3
� 3x2

� 9x � 2.
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Vea las MRS para un breve
repaso de cómo encontrar las
raíces de ecuaciones polino-
miales.

FIGURA 5.4.3 Gráfica de la función en el ejemplo 1

ƒ(�1) es un
máximo relativo

ƒ(3) es un
mínimo relativo

a) Criterio de la primera derivada

número
crítico

número
crítico

3�1
x

b) Observe las intersecciones x y y

x

y

y � x3
� 3x2

� 9x � 2

�10

10

5

EJEMPLO  2 Función polinomial de grado 4

Grafique 

Solución La derivada

muestra que los números críticos son 0 y 3. Luego, como se observa en la FIGURA 5.4.4a), f ¿ tiene el
mismo signo algebraico negativo en los intervalos adyacentes y (0, 3). Entonces f (0) = 10
no es un extremo. En este caso f ¿(0) = 0 significa que en la intersección y

hay una sola tangente horizontal. Sin embargo, por el criterio de la primera derivada resulta evi-
dente que f(3) = -17 es un mínimo relativo. En efecto, la información de que f es decreciente
por el lado izquierdo y creciente por el lado derecho del número crítico 3 (la gráfica de f no
puede retroceder) permite concluir que f (3) = -17 también es un mínimo absoluto. Por último,
vemos que la gráfica de f tiene dos intersecciones x. Con ayuda de una calculadora o un SAC
se encuentra que las intersecciones x son aproximadamente (1.61, 0) y (3.82, 0).

(0, f (0)) � (0, 10)
(�q, 0)

f ¿(x) � 4x3
� 12x2

� 4x2(x � 3)

f (x) � x4
� 4x3

� 10.
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FIGURA 5.4.4 Gráfica de la función en el ejemplo 2

 ƒ�(x) � 0
 ƒ decreciente

 ƒ�(x) � 0
ƒ decreciente

a) Criterio de la primera derivada

ƒ�(x) � 0
 ƒ creciente

ƒ(0) no es
un extremo

ƒ(3) es un
mínimo relativo

número
crítico

número
crítico

0 3
x

x

y

5

10

�10

y � x4
� 4 x3

� 10

b) ƒ' (0) � 0 pero ƒ(0) � 10
no es un extremo

lím
xSq

 
x2 3
x2 1

h
lím
xSq

 
2x
2x

lím
xSq

 
2
2

1,

EJEMPLO  3 Gráfica de una función racional

Grafique 

Solución La lista que se muestra a continuación resume algunos hechos que es posible des-
cubrir sobre la gráfica de esta función racional f antes de graficarla realmente.

intersección y: f (0) = �3; en consecuencia, la intersección y es (0, �3).
intersecciones x: f (x) = 0 cuando Por tanto, y Las
intersecciones x son y 
Simetría: Con respecto al eje y, puesto que 
Asíntotas verticales: Ninguna, puesto que para todos los números reales.
Asíntotas horizontales: Puesto que el límite en el infinito es la forma indeterminada

, podemos aplicar la regla de L’Hôpital para demostrar que

y así la recta y � 1 es una asíntota horizontal (ver sección 5.9).

Derivada: Con la regla del cociente obtenemos 

Números críticos: f ¿(x) = 0 cuando x = 0. En consecuencia, 0 es el único número crítico.
Criterio de la primera derivada: Vea la FIGURA 5.4.5a); f (0) = -3 es un mínimo relativo.
Grafique: Vea la figura 5.4.5b).

f ¿(x) �
8x

(x2
� 1)2

.

q>q x2
� 1 � 0

f (�x) � f (x).
(13, 0).(�13, 0)

x � 13.x � �13x2
� 3 � 0.

f (x) �
x2

� 3
x2

� 1
.

FIGURA 5.4.5 Gráfica de la función en el ejemplo 3

número
crítico

ƒ(0) es un
mínimo relativo

a) Criterio de la primera derivada

ƒ�(x) � 0
ƒ decreciente

ƒ�(x) � 0
ƒ creciente

x
0

y � 1

�3 �2 �1
�1

�2

�3

1 2 3
x

y

b) y � 1 es una asíntota horizontal

y �
x2

� 3

x2
� 1

EJEMPLO  4 Gráfica con una asíntota vertical

Grafique 

Solución Primero observe que el dominio de f es Luego, al igualar a cero
el denominador de la derivada

f ¿(x) � 2x � 1 �
1
x

�
2x2

� x � 1
x

�
(2x � 1)(x � 1)

x

(�q, 0) ´ (0, q).

f (x) � x2
� x � ln 0x 0 .
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FIGURA 5.4.6 Gráfica de la función en el ejemplo 4

 ƒ�(x) � 0
 ƒ decreciente

 ƒ�(x) � 0
 ƒ creciente

 ƒ�(x) � 0
 ƒ decreciente

 ƒ�(x) � 0
 ƒ creciente

número
crítico

ƒ( �1) es un
mínimo relativo

x � 0 es una
asíntota vertical

número
crítico

0�1
x

  ƒ        es un
mínimo relativo

1

a) Criterio de la primera derivada

2

1
2

x

y

1

1�1
b) x � 0 es una asíntota vertical

se observa que �1 y son números críticos. Aunque f no es diferenciable en x = 0, 0 no es
un número crítico puesto que 0 no está en el dominio de f. De hecho, x = 0 es una asíntota
vertical para y también es una asíntota vertical para la gráfica de f. Los números críticos
y 0 se escriben en la recta numérica porque el signo de la derivada a la izquierda y a la dere-
cha de 0 indica el comportamiento de f. Como se observa en la FIGURA 5.4.6a), para

y para Concluimos que f (-1) = 0 es un mínimo
relativo (al mismo tiempo, f (-1) = 0 muestra que x = -1 es la coordenada x de una intersec-
ción x). Al continuar, para y para muestra que

es otro mínimo relativo.
Como se observó, f no está definida en x � 0, de modo que no hay intersección y. Por

último, no hay simetría con respecto al eje y o con respecto al origen. La gráfica de la fun-
ción f se muestra en la figura 5.4.6b).

f (1
2) 3

4 ln 
1
2 1.44

1
2 6 x 6 qf ¿(x) 7 00 6 x 6 1

2f ¿(x) 6 0

�1 6 x 6 0.f ¿(x) 7 0�q 6 x 6 �1
f ¿(x) 6 0

ln 0x 0
1
2

EJEMPLO  5 Gráfica con una cúspide

Grafique 

Solución La derivada es

Observe que f ¿ no existe en 0 pero 0 está en el dominio de la función puesto que f (0) = 0. Los
números críticos son 0 y 2. El criterio de la primera derivada, ilustrado en la FIGURA 5.4.7a), mues-
tra que f (0) = 0 es un mínimo relativo y que f (2) = - (2)5�3 + 5(2)2�3 4.76 es un máximo rela-
tivo. Además, puesto que cuando y cuando en (0, 0) hay
una cúspide. Por último, al escribir vemos que f (x) = 0 y que x = 5. Las
intersecciones x son los puntos (0, 0) y (5, 0). La gráfica de f se muestra en la figura 5.4.7b).

f (x) � x2>3(�x � 5),
x S 0�f ¿(x) S �qx S 0�f ¿(x) S q

f ¿(x) � �
5
3

 x2>3
�

10
3

 x�1>3
�

5
3

 
(�x � 2)

x1>3 .

f (x) � �x5>3
� 5x2>3.

Verifique que f (-x) Z f (x)
y f (-x) Z -f (x).

FIGURA 5.4.7 Gráfica de la función en el ejemplo 5

 ƒ�(x) � 0

 ƒ decreciente

 ƒ�(x) �0

 ƒ creciente

ƒ�(x) � 0

 ƒ decreciente

número
crítico

a) Criterio de la primera derivada

ƒ(2) es un
máximo relativo

número
crítico

ƒ(0) es un
mínimo relativo

20
x

x

y

y � � x5/3
� 5x2/3

b) Cúspide en (0, 0)

Algunas veces resulta conveniente saber antes de graficar, e incluso antes de molestarse
en graficar, si un extremo relativo f (c) es un extremo absoluto. El siguiente teorema es algo
útil. Usted debe trazar algunas gráficas y convencerse sobre la validez del teorema.
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Teorema 5.4.2 Prueba del único número crítico

Suponga que c es el único número crítico de una función f dentro de un intervalo I. Si se
demuestra que f (c) es un extremo relativo, entonces f (c) es un extremo absoluto.

Fundamentos

En los problemas 1-32, use el criterio de la primera derivada
para encontrar los extremos relativos de la función dada.
Grafique. Encuentre las intersecciones cuando sea posible.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

En los problemas 33-36, trace una gráfica de la función f

cuya derivada f ¿ tiene la gráfica dada.

33. 34.

35. 36.

En los problemas 37 y 38, trace la gráfica de f ¿ a partir de
la gráfica de f.

37. 38.

En los problemas 39-42, trace una gráfica de una función f
que tenga las propiedades dadas.

FIGURA 5.4.13 Gráfica
para el problema 38

y

x

y �ƒ(x)

FIGURA 5.4.12 Gráfica
para el problema 37

a b c
x

y
y �ƒ(x)

FIGURA 5.4.11 Gráfica
para el problema 36

x

y
y �ƒ�(x)

FIGURA 5.4.10 Gráfica
para el problema 35

x

y

a b

y �ƒ�(x)

FIGURA 5.4.9 Gráfica
para el problema 34

y

x
ba

y �ƒ�(x)

FIGURA 5.4.8 Gráfica
para el problema 33

y

x
a

y �ƒ�(x)

f (x) � 8x2e�x2

f (x) � (x � 3)2e�x

f (x) �
ln x
x

f (x) � x3
� 24 ln 0x 0 f (x) � x4>3

� 32x1>3f (x) � x � 12x1>3 f (x) � x(x2
� 5)1>3f (x) � x21 � x2

f (x) � (x2
� 1)1>3f (x) � (x2

� 4)2>3
f (x) �

x2

x4
� 1

f (x) �
10

x2
� 1

f (x) �
x2

x2
� 4

f (x) �
1
x

�
1
x3

f (x) � x �
25
x

f (x) �
x2

� 3
x � 1

f (x) � (x � 2)2(x � 3)3f (x) � 4x5
� 5x4

f (x) � �3x4
� 8x3

� 6x2
� 2f (x) � �x2(x � 3)2

f (x) � 2x4
� 16x2

� 3f (x) �
1
4

x4
�

4
3

x3
� 2x2

f (x) � (x2
� 1)2f (x) � x4

� 4x

f (x) � x3
� 3x2

� 3x � 3f (x) � x3
� x � 3

f (x) � �x3
� 3x2

� 9x � 1f (x) � x (x � 2)2

f (x) �
1
3

x3
�

1
2

 x2
� 1f (x) � x3

� 3x

f (x) � (x � 1)(x � 3)f (x) � �x2
� 2x � 1

5.4 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-15.

En el ejemplo 3, mediante el criterio de la primera derivada se demostró que f (0) � 0 es
un mínimo relativo. También se hubiera podido concluir de inmediato que este valor de la fun-
ción es un mínimo absoluto. Este hecho se concluye por el teorema 5.4.2 porque 0 es el único
número crítico en el intervalo (�q, q).

39.

no existe, 
y

40.

41.

42.

f ¿(x) 6 0, x 7 4
f ¿(x) 6 0, x 6 1

lím
xS3

 f (x) q, f ¿(4) 0
f (1) 2, f (0) 1

f ¿(x) 7 0, x 7 2
f ¿(x) 6 0, 0 6 x 6 2
f (2) 3
f ( x) f (x)

f ¿(x) 7 0, 0 6 x 6 1, x 7 1
f ¿(x) 6 0, x 6 1, 1 6 x 6 0
f ¿( 1) 0, f ¿(0) 0, f ¿(1) 0
f (0) 0

f ¿(x) 6 0, 3 6 x 6 5
x 7 5f ¿(x) 7 0, x 6 3

f ¿(5) 0f ¿(3)
f ( 1) 0, f (0) 1



En los problemas 43 y 44, determine dónde la pendiente de
la tangente a la gráfica de la función dada tiene un máximo
relativo o un mínimo relativo.

43. 44.

45. a) A partir de la gráfica de g(x) � sen 2x determine los
intervalos para los cuales g(x) 7 0 y los intervalos
para los cuales g(x) 6 0.

b) Encuentre los números críticos de f (x) � sen2 x. Use
el criterio de la primera derivada y la información en el
inciso a) para encontrar los extremos relativos de f.

c) Trace la gráfica de la función f en el inciso b).

46. a) Encuentre los números críticos de f (x) � x � sen x.
b) Demuestre que f no tiene extremos relativos.
c) Trace la gráfica de f.

Aplicaciones

47. La media aritmética, o promedio, de n números a1,
a2, . . . , an está dada por

a) Demuestre que es un número crítico de la función

.

b) Demuestre que es un mínimo relativo.

48. Cuando el sonido pasa de un medio a otro, puede per-
der algo de su energía debido a una diferencia en las
resistencias acústicas de los dos medios. (La resistencia
acústica es el producto de la densidad y la elasticidad.)
La fracción de la energía transmitida está dada por

donde r es la razón de las resistencias acústicas de los
dos medios.

a) Demuestre que Explique el signifi-
cado físico de esta expresión.

b) Use el criterio de la primera derivada para encontrar
los extremos relativos de T.

c) Trace la gráfica de la función T para 

Piense en ello
49. Encuentre valores de a, b y c tales que f (x) � ax2

� bx

� c tenga un máximo relativo 6 en x � 2 y la gráfica
de f tenga intersección y igual a 4.

50. Encuentre valores de a, b, c y d tales que f (x) � ax3
�

bx2
� cx � d tenga un mínimo relativo �3 en x � 0 y

un máximo relativo 4 en x � 1.

51. Suponga que f es una función diferenciable cuya gráfica es
simétrica con respecto al eje y. Demuestre que f ¿(0) � 0.
¿Tiene f necesariamente un extremo relativo en x � 0?

52. Sean m y n enteros positivos. Demuestre que f (x) �

xm(x � 1)n siempre tiene un mínimo relativo.

53. Suponga que f y g son diferenciables y que tienen máxi-
mos relativos en el mismo número crítico c.

a) Demuestre que c es un número crítico para las f � g,
f � g y fg.

b) ¿Se concluye que las f � g, f � g y fg tienen máxi-
mos relativos en c? Demuestre sus aseveraciones o
dé un contraejemplo.

r � 0.

T (r) � T(1>r).

T (r) �
4r

(r � 1)2
,

f (x)

f (x) � (x � a1)
2

� (x � a2)
2

� p � (x � an)
2

x

x �
a1 � a2 � p � an

n
.

f (x) � x4
� 6x2f (x) � x3

� 6x2
� x
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5.5 Criterio de la segunda derivada
Introducción En el siguiente análisis el objetivo es relacionar el concepto de concavidad

con la segunda derivada de una función. Así, la segunda derivada constituye otra manera para
probar si un extremo relativo de una función f ocurre en un número crítico.

Concavidad Tal vez usted tiene una idea intuitiva del significado de concavidad. En las
FIGURAS 5.5.1a) y 5.5.1b) se ilustran formas geométricas cóncavas hacia arriba y cóncavas hacia
abajo, respectivamente. Por ejemplo, el Arco de San Luis Missouri es cóncavo hacia abajo;
los cables entre los soportes verticales del puente Golden Gate son cóncavos hacia arriba. A
menudo decimos que una forma cóncava hacia arriba “contiene agua”, mientras una forma
cóncava hacia abajo “derrama agua”. No obstante, la definición precisa de concavidad se pro-
porciona en términos de la derivada.

cóncava
hacia arriba

a) “Contiene agua”

cóncava
hacia abajo

b) “Derrama agua”
FIGURA 5.5.1 Concavidad

Definición 5.5.1 Concavidad

Sea f una función diferenciable sobre un intervalo (a, b).

i) Si f ¿ es una función creciente sobre (a, b), entonces la gráfica de f es cóncava hacia
arriba sobre el intervalo.

ii) Si f ¿ es una función decreciente sobre (a, b), entonces la gráfica de f es cóncava hacia
abajo sobre el intervalo.
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EJEMPLO  1 Prueba para concavidad

Determine los intervalos sobre los cuales la gráfica de es cóncava hacia arriba
y los intervalos sobre los cuales la gráfica es cóncava hacia abajo.

Solución A partir de obtenemos

Se observa que cuando o y que cuando 
o Por el teorema 5.5.1 concluimos que la gráfica de f es cóncava hacia abajo sobre
el intervalo y cóncava hacia arriba sobre el intervalo 

Punto de inflexión La gráfica de la función en el ejemplo 1 cambia de concavidad en el
punto que corresponde a Cuando x crece a través de la gráfica de f cambia de cón-
cava hacia abajo a cóncava hacia arriba en el punto Un punto sobre la gráfica de una
función donde la concavidad cambia de arriba abajo o viceversa tiene un nombre especial.

A�3
2, 

27
4 B. �

3
2,x � �

3
2.

A�3
2, q B.A�q, �3

2Bx 7 �
3
2.

6 Ax �
3
2B 7 0f –(x) 7 0x 6 �

3
26 Ax �

3
2B 6 0f –(x) 6 0

f –(x) � 6x � 9 � 6 Ax �
3
2B.f ¿(x) � 3x2

� 9x

f (x) � x3
�

9
2   
x2

cóncava
hacia arriba

a) ƒ� crece 
    de � a �

y

x
a b

las rectas tangentes
giran en sentido

contrario al de las
manecillas del reloj

cóncava
hacia abajo

x

y

a b

las rectas
tangentes giran

en el sentido de las
manecillas del reloj

b) ƒ� decrece
    de � a �

x

y

a c b

rectas
tangentes

rectas
tangentes

c) ƒ� decrece sobre (a, c)
     ƒ� crece sobre (c, b)

cóncava
hacia abajo

cóncava
hacia arriba

FIGURA 5.5.2 Concavidad sobre intervalos

En otras palabras, si las pendientes de las rectas tangentes a la gráfica de f crecen (decre-
cen) cuando x crece sobre (a, b), entonces la gráfica de f es cóncava hacia arriba (abajo) sobre
el intervalo. Si las pendientes crecen (decrecen) cuando x crece, entonces esto significa que
las rectas tangentes giran en sentido contrario al de las manecillas del reloj sobre el intervalo.
La validez de la definición 5.5.1 se ilustra en la FIGURA 5.5.2. Una manera equivalente de con-
siderar la concavidad también resulta evidente a partir de la figura 5.5.2. La gráfica de una
función f es cóncava hacia arriba (hacia abajo) sobre un intervalo si la gráfica en cualquier
punto se encuentra por arriba (abajo) de las rectas tangentes.

Concavidad y la segunda derivada En el teorema 5.3.4 de la sección 5.3 vimos que el
signo algebraico de la derivada de una función indica cuándo la función es creciente o decre-
ciente sobre un intervalo. En específico, si la función referida en la oración precedente es la
derivada f ¿, entonces podemos concluir que el signo algebraico de la derivada de f ¿, es decir,
f –, indica cuándo f ¿ es creciente o decreciente sobre un intervalo. Por ejemplo, si
sobre (a, b), entonces f ¿ es creciente sobre (a, b). Debido a la definición 5.5.1, si f ¿ es cre-
ciente sobre (a, b), entonces la gráfica de f es cóncava hacia arriba sobre el intervalo. En con-
secuencia, se llega a la siguiente prueba para concavidad.

f –(x) 7 0

Teorema 5.5.1 Prueba para concavidad

Sea f una función para la cual f – existe sobre (a, b).

i) Si para toda x en (a, b), entonces la gráfica de f es cóncava hacia arriba sobre
(a, b).

ii) Si para toda x en (a, b), entonces la gráfica de f es cóncava hacia abajo sobre
(a, b).

f –(x) 6 0

f –(x) 7 0
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Definición 5.5.2 Punto de inflexión

Sea f continua sobre un intervalo (a, b) que contiene al número c. Un punto es un
punto de inflexión de la gráfica de f si en hay una recta tangente y la gráfica cam-
bia de concavidad en este punto.

(c, f (c))
(c, f (c))

Teorema 5.5.2 Punto de inflexión

Si es un punto de inflexión para la gráfica de una función f, entonces o f –(c)
no existe.

f –(c) � 0(c, f (c))

Teorema 5.5.3 Criterio de la segunda derivada

Sea f una función para la cual f – existe sobre un intervalo (a, b) que contiene al número crítico c.

i) Si entonces f (c) es un mínimo relativo.
ii) Si entonces f (c) es un máximo relativo.

iii) Si entonces la prueba falla y f (c) puede ser o no un extremo relativo. En este
caso usamos el criterio de la primera derivada.

f –(c) � 0,
f –(c) 6 0,
f –(c) 7 0,

x

y

cóncava
hacia abajo

cóncava
hacia arriba

�
3

y � x3
�     

9
x2

2

a) ƒ� �      � 0
3
2

2

x

y

cóncava
hacia abajo

cóncava
hacia arriba

y � x
1�3

b) ƒ�(x) no existe en 0

FIGURA 5.5.3 Puntos de inflexión

x

y

y � ƒ(x)
ƒ�(c1) � 0

ƒ�(c2 ) � 0

punto de
inflexión máximo

relativo

mínimo relativo

c
1

c
2

FIGURA 5.5.4 Criterio de la
segunda derivada

Al volver a examinar el ejemplo 1 se observa que es continua en , tiene
una recta tangente en y cambia de concavidad en este punto. Por tanto, es un
punto de inflexión. También observe que . Vea la FIGURA 5.5.3a). También sabemos
que la función es continua en 0 y tiene una tangente vertical en (0, 0) (vea el ejem-
plo 10 de la sección 4.2). A partir de se observa que para x 6 0 y
que para x 7 0. Por tanto, (0, 0) es un punto de inflexión. Observe que en este caso

no está definida en x 0. Vea la figura 5.5.3b). Estos dos casos se ilustran
en el siguiente teorema.

�f –(x) � �
2
9   
x�5>3f –(x) 6 0

f –(x) 7 0f –(x) � �
2
9   
x�5>3f (x) � x1>3 f –A�3

2B � 0
A�3

2, 
27
4 BA�3

2, 
27
4 B �

3
2f (x) � x3

�
9
2  
x2

Criterio de la segunda derivada Si c es un número crítico de una función y = f (x) y, por
ejemplo, entonces la gráfica de f es cóncava hacia arriba sobre algún intervalo
abierto (a, b) que contiene a c. Entonces, necesariamente f (c) es un mínimo relativo. En forma
semejante, en un valor crítico c implica que f (c) es un máximo relativo. Este teo-
rema se denomina criterio de la segunda derivada y se ilustra en la FIGURA 5.5.4.

f –(c) 6 0

f –(c) 7 0,

En este punto podría plantearse la pregunta: ¿por qué se requiere otra prueba para extre-
mos relativos cuando ya se cuenta con el criterio de la primera derivada? Si la función f en
consideración es un polinomio, es muy sencillo calcular la segunda derivada. Al usar el teo-
rema 5.5.3 sólo necesitamos determinar el signo algebraico de f –(x) en el número crítico.
Compare esto con el teorema 5.4.1, donde es necesario determinar el signo de f ¿(x) en los
números a la derecha y a la izquierda del número crítico. Si no es fácil factorizar f ¿, el último
procedimiento puede ser algo difícil. Por otra parte, puede resultar igualmente tedioso usar el
teorema 5.5.3 en el caso de algunas funciones que impliquen productos, cocientes, potencias,
etcétera. Por tanto, los teoremas 5.4.1 y 5.5.3 pueden tener ventajas y desventajas,

EJEMPLO  2 Criterio de la segunda derivada

Grafique 

Solución A partir de se observa que la gráfica de f
tiene las intersecciones ( 1, 0), (0, 0) y (1, 0). Además, puesto que f es un polinomio que sólo
tiene potencias pares, concluimos que su gráfica es simétrica con respecto al eje y (función
par). Así, las derivadas primera y segunda son

A partir de f ¿ vemos que los números críticos de f son 0, - �2 y El criterio de la
segunda derivada se resume en la tabla siguiente.

12>2.12

 f –(x) � 48x2
� 8 � 8 A16 x � 1B A16 x � 1B. f ¿(x) � 16x3
� 8x � 8x A12 x � 1B A12 x � 1B

�

f (x) � 4x2(x2
� 1) � 4x2(x � 1)(x � 1)

f (x) � 4x4
� 4x2.
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y

x

1

1

�1

�1

puntos de inflexión

y � 4x4
� 4x2

FIGURA 5.5.5 Gráfica de la
función en el ejemplo 2

y

x
1

1

�1

y � x4
� 1

FIGURA 5.5.6 Gráfica de la
función en el ejemplo 3

y

x

�1
�� � 2� 3�

�2

�3

y � 2 cos x � cos 2 x

1

2

FIGURA 5.5.7 Gráfica de la
función en el ejemplo 4

La gráfica de f es la extensión con periodo de la porción más gruesa que se muestra en la
FIGURA 5.5.7 sobre el intervalo .[0, 2p ]

2p

f ¿(x) 6 0 para x 6 0  y  f ¿(x) 7 0 para x 7 0.

f ¿(x) 2  sen  x 2 sen  2x  y  f –(x) 2 cos x 4 cos 2x.

x Signo de f �(x) f (x) Conclusión

0 � 0 máximo relativo

12>2 � �1 mínimo relativo

�12>2 � �1 mínimo relativo

Por último, a partir de la forma factorizada de f – observamos que f –(x) cambia de signo en
y en Por tanto, la gráfica de f tiene dos puntos de inflexión:

y  Vea la FIGURA 5.5.5.

EJEMPLO  3 Fracaso del criterio de la segunda derivada

Considere la función simple A partir de vemos que 0 es un número
crítico. Pero por la segunda derivada obtenemos Por tanto, el criterio
de la segunda derivada no conduce a ninguna conclusión. No obstante, a partir de la primera
derivada vemos lo siguiente:

El criterio de la primera derivada indica que f (0) � 1 es un mínimo relativo. La FIGURA 5.5.6

muestra que f (0) � 1 es realmente un mínimo absoluto.

EJEMPLO  4 Criterio de la segunda derivada

Grafique f(x) = 2 cos x - cos 2x.

Solución Debido a que cos x y cos 2x son pares, la gráfica de f es simétrica con respecto al
eje y. También, f (0) � 1 produce la intersección (0, 1). Así, las derivadas primera y segunda son

Al usar la identidad trigonométrica sen 2x � 2 sen x cos x es posible simplificar la ecuación f ¿(x)
� 0 a sen x(1 � 2 cos x) � 0. Las soluciones de sen x � 0 son y las solucio-
nes de cos x = son p 3, 5p 3, . . . Pero como el periodo de f es (¡demuéstrelo!), es sufi-
ciente considerar sólo los números críticos en , a saber, 0, p 3, p, 5p 3 y . En la tabla
siguiente se resume la aplicación del criterio de la segunda derivada a estos valores.

2p>>[0, 2p ]
2p>>1

2

0, �p, �2p, p

f ¿(x) � 4x3

f –(0) � 0.f –(x) � 12x2
f ¿(x) � 4x3f (x) � x4

� 1.

A16>6, �5
9B.A�16>6, �5

9B x � 16>6.x � �16>6

x Signo de f �(x) f (x) Conclusión

0 � 1 mínimo relativo

p>3 � 3
2

máximo relativo

p � �3 mínimo relativo

5p>3 � 3
2

máximo relativo

2p � 1 mínimo relativo

NOTAS DESDE EL AULA

i) Si (c, f (c)) es un punto de inflexión, entonces o f –(c) no existe. El converso de
esta afirmación no necesariamente es verdadero. No es posible concluir, simplemente a
partir del hecho de que cuando o f –(c) no existe, que es un punto de
inflexión. En este sentido, en el ejemplo 3 vimos que para . Pero
a partir de la figura 5.5.6 resulta evidente que no es un punto de inflexión.(0, f (0))

f (x) � x4
� 1f –(0) � 0

(c, f (c))f –(c) � 0

f –(c) � 0

f �(x)
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5.5 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-16.

También, para , vemos que está indefinida en x 0 y que la grá-
fica de f cambia de concavidad en x 0:

No obstante, x � 0 no es la coordenada x de un punto de inflexión porque f no es con-
tinua en 0.

ii) Usted no debe pensar que la gráfica de una función debe tener concavidad. Hay fun-
ciones perfectamente bien diferenciables cuyas gráficas no poseen concavidad. Vea el
problema 60 en la sección “Desarrolle su competencia 5.5”.

iii) Usted debe estar al tanto de que los libros de texto no coinciden respecto a la definición
precisa de punto de inflexión. Esto no es algo por lo cual deba preocuparse, pero si usted
tiene interés, vea el problema 65 en la sección “Desarrolle su competencia 5.5”.

�

�f –(x) � 2>x3f (x) � 1>x
f –(x) 6 0 para x 6 0  y  f –(x) 7 0 para x 7 0.

.02.91

.22.12

.42.32

.62.52 f (x) xe x2

f (x) x xe x

f (x) tan xf (x) x sen x

f (x) cos xf (x) sen x

f (x) x 5>3 4xf (x) x4 12x2 x 1

.82.72

.03.92

.23.13

.43.33

.63.53

.83.73

.04.93

41.

42.

.44.34 f (x) ln (x2 2)f (x) 2x x ln  x

f (x) 2 sen x sen 2x, [0, 2p ]
f (x) cos x sen x, [0, 2p ]

f (x) 2 sen  2x, [0, 2p ]f (x) cos 3x, [0, 2p ]

f (x) x1>2 1
4

 xf (x) x1>3(x 1)

f (x) x1x 6f (x) 29 x2

f (x) x2 1
x2

f (x)
x

x2 2

f (x) x3(x 1)2f (x) 6x5 10x3

f (x)
1
4

 x4 2x2f (x) x3 3x2 3x 1

f (x)
1
3

 x3 2x2 12xf (x) (2x 5)2

.64.54

.84.74 f (x) (1 sen  4x)3; p>8f (x) tan2 x; p
f (x) x sen  x; 0f (x) sen  x cos x; p>4

Fundamentos

En los problemas 1-12, use la segunda derivada para deter-
minar los intervalos sobre los cuales la gráfica de la función
dada es cóncava hacia arriba y los intervalos sobre los cua-
les es cóncava hacia abajo. Grafique.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

En los problemas 13-16, a partir de la gráfica de la función
dada f calcule los intervalos sobre los cuales f ¿ es creciente
y los intervalos sobre los cuales f ¿ es decreciente.

17. Demuestre que la gráfica de f (x) = sec x es cóncava
hacia arriba sobre los intervalos donde cos x 7 0 y cón-
cava hacia abajo sobre los intervalos donde cos x 6 0.

18. Demuestre que la gráfica de f (x) � csc x es cóncava
hacia arriba sobre los intervalos donde sen x 7 0 y cón-
cava hacia abajo sobre los intervalos donde sen x 6 0.

En los problemas 19-26, use la segunda derivada para loca-
lizar todos los puntos de inflexión.

En los problemas 27-44, use el criterio de la segunda deri-
vada, cuando sea pertinente aplicarlo, para encontrar los
extremos relativos de la función dada. Grafique y encuentre
todos los puntos de inflexión cuando sea posible.

En los problemas 45-48, determine si la función dada tiene
un extremo relativo en el número crítico indicado.

En los problemas 49-52, trace una gráfica de una función
que tenga las propiedades dadas.

f (x) �
x � 1
x � 2

f (x) �
1

x2
� 3

f (x) � 2x2
� 10f (x) � x �

9
x

f (x) � x8>3
� 20x2>3f (x) � x1>3

� 2x

f (x) � 6x4
� 2x3

� 12x2
�3f (x) � x (x � 4)3

f (x) � (x � 5)3f (x) � �x3
� 6x2

� x � 1

f (x) � �(x � 2)2
� 8f (x) � �x2

� 7x

13. 14.y

x
y � ƒ(x)

y

x

y � ƒ(x)

FIGURA 5.5.8 Gráfica
para el problema 13

FIGURA 5.5.9 Gráfica
para el problema 14

15. 16.

FIGURA 5.5.10 Gráfica
para el problema 15

FIGURA 5.5.11 Gráfica
para el problema 16

y

x

y � ƒ(x) y

x

y � ƒ(x)
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Piense en ello

53. Encuentre valores de a, b y c tales que la gráfica de
pase por (�1, 0) y tenga un

punto de inflexión en (1, 1).
54. Encuentre valores de a, b y c tales que la gráfica de

tenga una tangente horizontal en
el punto de inflexión en (1, 1).

55. Use el criterio de la segunda derivada como ayuda para
graficar f (x) � sen(1�x). Observe que f es discontinua
en x � 0.

56. Demuestre que la gráfica de una función polinomial
general

puede tener cuando mucho n - 2 puntos de inflexión.

57. Sea , donde n es un entero positivo.
a) Demuestre que (x0, 0) es un punto de inflexión de la

gráfica de f si n es un entero impar.

b) Demuestre que (x0, 0) no es un punto de inflexión de
la gráfica de f, sino que corresponde a un mínimo
relativo cuando n es un entero par.

58. Demuestre que la gráfica de una función polinomial cua-
drática es cóncava hacia
arriba sobre el eje x cuando a 7 0 y cóncava hacia abajo
sobre el eje x cuando a 6 0.

59. Sea f una función para la cual f – existe sobre un inter-
valo (a, b) que contiene al número c. Si f –(c) � 0 y

¿qué puede afirmarse sobre (c, f (c))?

60. Proporcione un ejemplo de una función diferenciable
cuya gráfica no tenga concavidad. No piense demasiado.

61. Demuestre o refute lo siguiente. Un punto de inflexión
para una función f debe ocurrir en un valor crítico de f ¿.

62. Sin graficar, explique por qué la gráfica de 
no puede tener un punto de infle-

xión.

63. Demuestre o refute lo siguiente. La función

tiene un punto de inflexión en (0, 0).

64. Suponga que f es una función polinomial de grado 3 y
que c1 y c2 son números críticos distintos.

a) f (c1) y f (c2), ¿son necesariamente extremos relativos
de la función? Demuestre su respuesta.

b) ¿Cuál considera que es la coordenada x del punto de
inflexión para la gráfica de f ? Demuestre su respuesta.

Proyecto

65. Puntos de inflexión Encuentre otros libros de texto de
cálculo y anote cómo definen el punto de inflexión.
Luego, investigue en internet acerca de la definición de
punto de inflexión. Escriba un breve artículo en que
compare estas definiciones. Ilustre su artículo con gráfi-
cas idóneas.

f (x) � e4x2
� x, x 	 0

�x3, x 7 0

10x2
� x � 40 � ex

f (x)�

f ‡(c) � 0,

f (x) � ax2
� bx � c, a � 0,

f (x) � (x � x0)
n

f (x) � anxn
� an�1xn�1

� p � a1x � a0, an � 0

f (x) � ax3
� bx2

� cx

f (x) � ax3
� bx2

� cx

49.

f –(x) 7 0, 1 6 x 6 2

f –(x) 6 0, x 6 1, x 7 2

f ¿(3) 0, f –(1) 0, f –(2) 0

f ( 2) 0, f (4) 0 50.

no
existe

f –(x) 6 0, x 7 3

f –(x) 7 0, x 6 3

f ¿(2) 0, f –(3)

f (0) 5, f (2) 0

51.

para toda x

, n par

, n impar

52.

asíntota vertical

f –(x) 7 0, x 7 2

f –(x) 6 0, 0 6 x 6 2

x 2, lím
xSq

 f (x) 0

f ( x) f (x)

f –(x) 6 0, (2n 1) 

p

2
6 x 6 (2n 1) 

p

2

f –(x) 7 0, (2n 1) 

p

2
6 x 6 (2n 1) 

p

2

f ¿(x) 0

f (0) 1, f (p>2) 7 0

5.6 Razones de cambio
Introducción En esta sección abordaremos las razones de cambio. La derivada dy�dx de

una función y � f(x) es su razón de cambio instantánea con respecto a la variable x. En la
sección 5.1 vimos que cuando una función s � s(t) describe la posición de un objeto que se
mueve sobre una recta horizontal o vertical, la razón de cambio con el tiempo ds�dt se inter-
preta como la velocidad del objeto. En general, una razón de cambio con el tiempo es la res-
puesta a la pregunta: ¿cuán rápido cambia la cantidad? Por ejemplo, si V representa el volu-
men que cambia con el tiempo, entonces dV dt es la razón, o cuán rápido cambia el volumen
con respecto al tiempo t. Una razón de, por ejemplo, dV�dt � 5 pies3/s significa que el volu-
men aumenta 5 pies cúbicos cada segundo. Vea la FIGURA 5.6.1. En forma semejante, si una per-
sona camina hacia el poste mostrado en la FIGURA 5.6.2 a razón constante de 3 pies/s, entonces
sabemos que dx�dt � �3 pies/s. Por otra parte, si la persona se aleja del poste, entonces dx�dt

� 3 pies/s. Las razones negativa y positiva significan, por supuesto, que la distancia x de la
persona al poste disminuye (3 pies cada segundo) y aumenta (3 pies cada segundo), respecti-
vamente.

>
El radio r

crece cuando el
volumen V crece

He

V
r

FIGURA 5.6.1 A medida que un
globo esférico se llena con gas,
su volumen, radio y área superfi-
cial cambian con el tiempo
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x

a) dx � dt � 0

x

b) dx � dt � 0

FIGURA 5.6.2 x decreciente en a); x creciente en b)

Regla de potencias para funciones Recuerde por (6) de la sección 4.7 que si y denota una
función de x, entonces con la regla de potencias para funciones obtenemos

(1)

donde n es un número real. Por supuesto, (1) es aplicable a cualquier función; por ejemplo r,
x o z, que dependa de la variable t:

(2)

EJEMPLO  1 Uso de (2)

Un globo esférico se expande con el tiempo. ¿Cómo se relaciona la razón a que aumenta el
volumen con la razón a la que aumenta el radio?

Solución En el instante t, el volumen V de una esfera es una función del radio r; es decir,
Por tanto, obtenemos las razones relacionadas a partir de la derivada con respecto

al tiempo de esta función. Con ayuda del primer resultado en (2), vemos que

es lo mismo que

Debido a que los problemas de esta sección se describen con palabras, usted debe inter-
pretar el planteamiento en términos de símbolos matemáticos. La clave para resolver proble-
mas planteados en lenguaje coloquial consiste en la organización. A continuación se presen-
tan algunas sugerencias.

dV
dt

�
4
3

 p . d
dt

 r3
�

4
3

 p a3r 2 
dr
dt
b

V �
4
3pr3.

d
dx

 yn
� nyn�1 

dy

dx
,

Directrices para resolver problemas relacionados

i) Lea varias veces con cuidado el problema. Si le es posible, trace un esquema.
ii) Identifique con símbolos todas las cantidades que cambian con el tiempo.

iii) Escriba todas las razones que se proporcionan. Use notación de derivadas para escri-
bir la razón que desea encontrar.

iv) Escriba una ecuación o una función que relacione todas las variables que haya intro-
ducido.

v) Diferencie con respecto al tiempo t la ecuación o la función encontrada en el paso iv).
Este paso puede requerir el uso de diferenciación implícita. La ecuación resultante des-
pués de la diferenciación relaciona las razones de cambio con el tiempo de la variable.

d
dt

rn nrn 1 dr
dt

,  d
dt

xn nxn 1 dx
dt

,  d
dt

zn nzn 1 dz

dt
.

dV
dt

4pr 2 dr
dt

.

T
razones relacionadas

T

EJEMPLO  2 Otro repaso al ejemplo 1

Un globo esférico se infla con aire a razón de 20 pies3/min. ¿A qué razón cambia el radio
cuando éste es de 3 pies?

Solución Como se muestra en la figura 5.6.1, denotamos el radio del globo con r y su volu-
men con V. Ahora, las interpretaciones de “Un globo esférico se infla … a razón de 20
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pies3/min” y “¿A qué razón cambia el radio cuando es de 3 pies?” son, respectivamente, la
razón que tenemos

y la razón que se busca

Debido a que por el ejemplo 1 ya sabemos que

es posible sustituir la razón constante dV�dt � 20; es decir, . Al despejar
dr�dt en la última ecuación obtenemos

Por tanto,

EJEMPLO  3 Uso del teorema de Pitágoras

Una mujer que corre a razón constante de 10 km/h cruza un punto P en dirección al norte.
Diez minutos después, un hombre que corre a razón constante de 9 km/h cruza por el mismo
punto P en dirección al este. ¿Cuán rápido cambia la distancia entre los corredores 20 minu-
tos después de que el hombre cruza por el punto P?

Solución Sea el tiempo t medido en horas desde el instante en que el hombre cruza el punto
P. Como se muestra en la FIGURA 5.6.3, a sean el hombre H y la mujer M que están en x
y y km, respectivamente, a partir del punto P. Sea z la distancia correspondiente entre los dos
corredores. Así, dos razones son

(3)

y se busca

En la figura 5.6.3 vemos que el triángulo HPM es un triángulo rectángulo, así que por el
teorema de Pitágoras, las variables x, y y z están relacionadas por

(4)

Al diferenciar (4) con respecto a t,

(5)

Al usar las dos razones proporcionadas en (3), entonces con la última ecuación de (5) obtenemos

Cuando usamos distancia � razón * tiempo para obtener la distancia que ha
corrido el hombre: Debido a que la mujer ha corrido (10 min) más, la
distancia que ella ha recorrido es En se concluye que

Por último,z � 232
� 52 � 234 km.

t �
1
3 h,y � 10 . (1

3 �
1
6) � 5 km.

1
6 hx � 9 . A13B � 3 km.

t �
1
3 h

z 
dz

dt
� 9x � 10y.

z2
� x2

� y2.

t 7 0

dr
dt

�
20

4pr 2
�

5
pr 2

.

20 � 4pr2 (dr>dt)

dV
dt

� 4pr 2
 

dr
dt

FIGURA 5.6.3 Corredores en el
ejemplo 3
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Sur

 Dado: 
dV
dt

20 pies3/min

 Encontrar: 
dr
dt
`
r 3

.

dr
dt
`
r 3

5
9p

 pies/min 0.18 pies/min

Dado: 
dx
dt

9 km/h y 
dy

dt
10 km/h

d 20 min 1
3  
h

Encontrar: 
dz

dt
`
t 1>3

d
dt

 z2 d
dt

 x 2 d
dt

 y2 
 

proporciona  2z 
dz

dt
2x 

dx
dt

2y 
dy

dt
.

234 

dz

dt
`
t 1>3 9 . 3 10 . 5  o bien,  dz

dt
`
t 1>3 77

234
13.21 km/h.



EJEMPLO  4 Uso de trigonometría

Un faro está situado en una isla pequeña a 2 mi de la costa. La baliza del faro gira a razón
constante de 6 grados/s. ¿Cuán rápido se mueve el haz del faro a lo largo de la costa en un
punto a 3 mi del punto sobre la costa que es el más próximo al faro?

Solución Primero se introducen las variables u y x como se muestra en la FIGURA 5.6.4. Además,
se cambia la información sobre u a radianes al recordar que 1o es equivalente a radia-
nes. Así,

A partir de la trigonometría de un triángulo rectángulo, por la figura vemos que

Al diferenciar la última ecuación con respecto a t y usar la razón dada obtenemos

En el instante en que , tan , de modo que por la identidad trigonométrica 1 +
tan2 u = sec2 u obtenemos sec2 u = . Por tanto, 

En el siguiente ejemplo es necesario usar la fórmula para el volumen de un cono circular
recto de altura H y radio en la base R:

(6)

EJEMPLO  5 Uso de triángulos semejantes

Desde la parte superior del reloj de arena que se muestra en la FIGURA 5.6.5, la arena cae a razón
constante de 4 cm3/s. Exprese la razón a que crece la altura de la pila inferior en términos de
la altura de la arena.

Solución Primero, como sugiere la figura 5.6.5, se establece la hipótesis de que la pila de
arena en la parte inferior del reloj de arena tiene la forma del frustrum de un cono. En el ins-
tante t > 0, sean V el volumen de la pila de arena, h su altura y r el radio de su superficie
plana inferior. Así,

Necesitamos encontrar el volumen V de la pila de arena en el instante t > 0. Esto puede
lograrse como se muestra a continuación:

V � volumen de todo el cono inferior – volumen del cono que no es arena.

Al usar la figura 5.6.5 y (6) con R � 6 y H � 12, 

o (7)

Podemos eliminar la variable r de la última ecuación al usar triángulos semejantes. Como
se muestra en la FIGURA 5.6.6, el triángulo rectángulo claro es semejante al triángulo rectángulo
oscuro, y así las proporciones de lados correspondientes son iguales:

 V � pQ144 � 4r2
�

1
3

r 2hR. V �
1
3  
p62 (12) �

1
3  pr 2 (12 � h)

V �
p

3
 R2H.

dx
dt
`
x�3

�
p

15
. 13

4
�

13p
60

 mi/s.

13
4

u �
3
2x � 3

p>180
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FIGURA 5.6.4 Faro en el
ejemplo 4

FIGURA 5.6.5 Reloj de arena en
el ejemplo 5
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FIGURA 5.6.6 En sección trans-
versal, el cono inferior del reloj
de arena en el ejemplo 5 es un
triángulo
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`
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.

x
2
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dt

dx
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du

dt

dx
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2sec2 u . du
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p
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Dado:
dV
dt

4 cm3/s  Encontrar:
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.
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r

12
6
  o bien,  r 6

h
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.
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La última expresión se sustituye en (7) y se simplifica.

(8)

Al diferenciar (8) con respecto a t obtenemos

Por último, al usar la razón dada es posible despejar dh�dt:

(9)

Observe en (9) del ejemplo 5 que la altura de la pila de arena en el reloj de arena crece
más rápido cuando la altura h de la pila está próxima a 12 cm.

dh
dt

�
16

p(h � 12)2
.

dV>dt � 4

dV
dt

� p a1
4

h2 
dh
dt

� 6h 
dh
dt

� 36 
dh
dt
b � p a1

4  h
2

� 6 h � 36b dh
dt

.

V � p a 1
12  

h3
� 3h2

� 36hb.

Fundamentos

En los siguientes problemas, una solución puede requerir una
fórmula especial que usted tal vez no conozca. En caso de
ser necesario, consulte la lista de fórmulas que se encuentra
en las páginas de recursos, al final de esta obra.

1. Un cubo se expande con el tiempo. ¿Cómo está relacio-
nada la razón a la cual crece el volumen con la razón a
la que aumenta la arista?

2. El volumen de una caja rectangular es V � xyz. Dado
que cada lado se expande a una razón constante de
10 cm/min, encuentre la razón a la cual se expande el
volumen cuando x � 1 cm, y � 2 cm y z � 3 cm.

3. Una placa en forma de triángulo equilátero se expande
con el tiempo. La longitud de un lado aumenta a razón
constante de 2 cm/h. ¿A qué razón crece el área cuando
un lado mide 8 cm?

4. En el problema 3, ¿a qué razón crece el área en el ins-
tante en que el área es 

5. Un rectángulo se expande con el tiempo. La diagonal del
rectángulo aumenta a razón de 1 pulg/h y la longitud
crece a razón de pulg/h. ¿Cuán rápido crece el ancho
cuando éste mide 6 pulg y la longitud mide 8 pulg?

6. Las longitudes de las aristas de un cubo aumentan a
razón de 5 cm/h. ¿A qué razón crece la longitud de la
diagonal del cubo?

7. Un velero se dirige hacia el acantilado vertical mostrado
en la FIGURA 5.6.7. ¿Cómo están relacionadas las razones
a las que cambian x, s y u?

8. Un escarabajo se mueve a lo largo de la gráfica de
donde x y y se miden en centímetros.

Si la coordenada x de la posición del escarabajo (x, y)
cambia a razón constante de 3 cm/min, ¿cuán rápido

cambia la coordenada y cuando el escarabajo está en el
punto (2, 13)? ¿Cuán rápido cambia la coordenada y

cuando el escarabajo está 6 cm arriba del eje x?
9. Una partícula se mueve sobre la gráfica de de

modo que ¿Cuál es dy dt cuando x 8?
10. Una partícula en movimiento continuo se mueve sobre la

gráfica de Encuentre el punto (x, y) sobre
la gráfica en el que la razón de cambio de la coordenada
x y la razón de cambio de la coordenada y son iguales.

11. La coordenada x del punto P mostrado en la FIGURA 5.6.8

aumenta a razón de ¿Cuán rápido crece el área
del triángulo rectángulo OPA cuando las coordenadas de
P son (8, 2)?

12. Una maleta está sobre la banda transportadora mostrada
en la FIGURA 5.6.9 que se mueve a razón de 2 pies/s. ¿Cuán
rápido aumenta la distancia vertical de la maleta a par-
tir de la parte inferior de la banda?

13. Una persona de 5 pies de estatura se aleja caminando de
un poste de 20 pies de altura a razón constante de 3
pies/s. Vea la FIGURA 5.6.10.

40 pies
10 pies

Suelo

s

FIGURA 5.6.9 Banda transportadora en el problema 12

x � y
3y

x
A

P

O

FIGURA 5.6.8 Triángulo en el problema 11

1
3 cm/h.

4y � x2
� x.

�>dx>dt � 4x � 4.
y2

� x � 1

y � x2
� 4x � 1,

sAcan-
tilado

x

�

FIGURA 5.6.7 Velero en el problema 7

1
4

175 cm2?

5.6 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-17.



a) ¿A qué razón crece la sombra de la persona?
b) ¿A qué razón se aleja la punta de la sombra desde la

base del poste?

14. Una roca arrojada a un estanque tranquilo provoca una
onda circular. Suponga que el radio de la onda se
expande a razón constante de 2 pies/s.
a) ¿Cuán rápido crece el diámetro de la onda circular?
b) ¿Cuán rápido crece la circunferencia de la onda

circular?
c) ¿Cuán rápido se expande el área de la onda circular

cuando el radio es de 3 pies?
d) ¿Cuán rápido se expande el área de la onda circular

cuando el área es 8p pies2?

15. Una escalera de 15 pies está apoyada contra el muro de
una casa. La parte inferior de la escalera se aleja de la base
del muro a razón constante de 2 pies/min. ¿A qué razón
desciende la parte superior de la escalera en el instante en
que la parte inferior de la escalera está a 5 pies del muro?

16. Una escalera de 20 pies está apoyada contra el muro de
una casa. La parte superior de la escalera se desliza hacia
abajo sobre el muro a razón constante de pie/min. ¿A
qué razón se aleja del muro la parte inferior de la escale-
ra en el instante en que la parte superior de la escalera
está a 18 pies por arriba del suelo?

17. Considere la escalera cuya parte inferior se desliza ale-
jándose de la base del muro vertical mostrado en la
FIGURA 5.6.11. Demuestre que la razón a la cual crece u1
es la misma que la razón a la cual decrece u2.

18. La cuerda de un cometa se suelta a razón constante de
3 pies/s. Si el viento se lleva al cometa horizontalmente
a una altitud de 200 pies, ¿cuán rápido se mueve el
cometa cuando se han soltado 400 pies de cuerda?

19. Dos buques tanque zarpan de la misma terminal petro-
lera. Uno se dirige hacia el este a mediodía a una velo-
cidad de 10 nudos. (1 nudo � 1 milla náutica/h. Una
milla náutica mide 6 080 pies o 1.15 milla estándar.) El
otro buque se dirige hacia el norte a la 1:00 p.m. a razón

de 15 nudos. ¿A qué razón cambia la distancia entre los
dos buques a las 2:00 p.m.?

20. A las 8:00 a.m., el barco S1 está a 20 km dirección norte
del barco S2. El barco S1 navega hacia el sur a razón de
9 km/h y el barco S2 se dirige hacia el oeste a razón
de 12 km/h. A las 9:20 a.m., ¿a qué razón cambia la dis-
tancia entre los dos barcos?

21. Una polea está asegurada a una orilla de un muelle
situado a 15 pies por arriba de la superficie del agua.
Un bote pequeño es jalado hacia el muelle por medio de
una cuerda en la polea. La cuerda está unida a la proa
del bote a 3 pies antes de la línea del agua. Vea la FIGURA

5.6.12. Si la cuerda se jala a razón constante de 1 pie/s,
¿cuán rápido se aproxima el bote al muelle cuando se
encuentra a 16 pies de éste?

22. Un bote se jala hacia un muelle por medio de un cabres-
tante. El cabrestante está situado al final del muelle y se
encuentra a 10 pies por arriba del nivel al que la cuerda
de arrastre está atada a la proa del bote. La cuerda se jala
a razón constante de 1 pie/s. Use una función trigonomé-
trica inversa para determinar la razón a la cual cambia el
ángulo de elevación entre la proa del bote y el final del
muelle cuando se han soltado 30 pies de cuerda.

23. Un reflector en un bote patrulla que está a km de la
costa sigue un buque de dunas de arena que se mueve
en forma paralela al agua a lo largo de una playa recta.
El buque se desplaza a razón constante de 15 km/h. Use
una función trigonométrica inversa para determinar la
razón a la cual gira el reflector cuando el buque está a

km del punto sobre la playa más próximo al bote.
24. Un diamante de beisbol es un cuadrado de 90 pies por

lado. Vea la FIGURA 5.6.13. Un jugador golpea la pelota y
corre hacia la primera base a razón de 20 pies/s. ¿A qué
razón cambia la distancia del corredor a segunda base
en el instante en que el corredor está a 60 pies de home?
¿A qué razón cambia la distancia del corredor a tercera
base en ese mismo instante?

Segunda base

Tercera
base

Primera
base

90 pies

Home

FIGURA 5.6.13 Diamante de beisbol en el problema 24

1
2

1
2

Polea

15 pies

3 pies

FIGURA 5.6.12 Bote y muelle en el problema 21

Escalera

�1

�2

18 pies

FIGURA 5.6.11 Escalera en el problema 17

1
2

Sombra

FIGURA 5.6.10 Sombra en el problema 13
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25. Un avión que se mueve en forma paralela al nivel del
suelo a razón constante de 600 mi/h se aproxima a una
estación de radar. Si la altitud del avión es de 2 mi,
¿cuán rápido disminuye la distancia entre el avión y la
estación de radar cuando la distancia horizontal entre
ambos es 1.5 mi? Vea la FIGURA 5.6.14.

26. En el problema 25, en el punto directamente por arriba
de la estación de radar, el avión asciende formando un
ángulo de 30� sin aminorar su velocidad. ¿Cuán rápido
aumenta la distancia entre el avión y la estación 1 minuto
después? [Sugerencia: Use la ley de los cosenos.]

27. Un avión a una altitud de 4 km pasa directamente por
arriba de un telescopio de rastreo ubicado en tierra.
Cuando el ángulo de elevación es de 60�, se observa que
el ángulo decrece a razón de 30 grados/min. ¿Cuán
rápido se mueve el avión?

28. Una cámara de rastreo, ubicada a 1 200 pies del punto
de lanzamiento, sigue a un globo de aire caliente con
ascenso vertical. En el instante en que el ángulo de ele-
vación u de la cámara es , el ángulo u crece a razón
de 0.1 rad/min. Vea la FIGURA 5.6.15. ¿A qué razón sube el
globo en ese instante?

29. Un cohete se desplaza a razón constante de 1 000 mi/h a
un ángulo de 60� con respecto a la horizontal. Vea la FIGU-

RA 5.6.16.

a) ¿A qué razón crece su altitud?
b) ¿Cuál es la velocidad del cohete con respecto a tie-

rra?

30. Un tanque de agua en forma de cilindro circular recto
de 40 pies de diámetro se drena de modo que el nivel
del agua disminuye a razón constante de pies/min.
¿Cuán rápido decrece el volumen del agua?

31. Un tanque de aceite en forma de cilindro circular recto
de 8 m de radio se llena a razón constante de 10 m3/min.
¿Cuán rápido sube el volumen del aceite?

32. Como se muestra en la FIGURA 5.6.17, un tanque rectangu-
lar de agua de 5 pies de ancho está dividido en dos tan-
ques por medio de una separación que se mueve en la
dirección indicada a razón de 1 pulg/min cuando al tan-
que frontal se bombea agua a razón de 1 pie3/min.

a) ¿A qué razón cambia el nivel del agua cuando el
volumen de agua en el tanque frontal es de 40 pies3

y x � 4 pies?
b) En ese instante, el nivel del agua ¿sube o baja?

33. Por la parte inferior de un tanque cónico se fuga agua a
razón de 1 pie3/min, como se muestra en la FIGURA 5.6.18.

a) ¿A qué razón cambia el nivel del agua cuando el agua
tiene 6 pies de profundidad?

b) ¿A qué razón cambia el radio del agua cuando el agua
tiene 6 pies de profundidad?

c) Suponga que el tanque estaba lleno en t � 0. ¿A qué
razón cambia el nivel del agua en t � 6 min?

34. Un canal de agua con extremos verticales en forma de
trapezoides isósceles tiene las dimensiones mostradas en
la FIGURA 5.6.19. Si se bombea agua a razón constante de

m3/s, ¿cuán rápido sube el nivel del agua cuando la
profundidad del agua es de m?1

4

1
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FIGURA 5.6.18 Tanque en el problema 33
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FIGURA 5.6.14 Avión en el problema 25



35. Cada uno de los extremos verticales de un canal de agua
de 20 pies de longitud es un triángulo equilátero con el
vértice hacia abajo. Se bombea agua a razón constante
de 4 pies3/min.

a) ¿Cuán rápido sube el nivel h del agua cuando la pro-
fundidad del agua es de 1 pie?

b) Si h0 es la profundidad inicial del agua en el canal,
demuestre que

[Sugerencia: Considere la diferencia de volumen des-
pués de t minutos.]

c) Si h0 � pie y la altura del extremo triangular es 5
pies, determine el instante en que el canal está lleno.
¿Cuán rápido sube el nivel del agua cuando el canal
está lleno?

36. El volumen V entre dos esferas concéntricas está en
expansión. El radio de la esfera exterior crece a razón
constante de 2 m/h, mientras el radio de la esfera inte-
rior disminuye a razón constante ¿A qué razón
cambia V cuando el radio exterior es 3 m y el radio inte-
rior es 1 m?

37. Muchos objetos esféricos, como las gotas de lluvia, las
bolas de nieve y las bolas de naftalina se evaporan a una
razón proporcional a su área superficial. En este caso,
demuestre cómo el radio del objeto decrece a razón
constante.

38. Si la razón a la cual cambia el volumen de una esfera
es constante, demuestre que la razón a la cual cambia
su área superficial es inversamente proporcional al radio.

39. Suponga que un cubo de hielo se derrite de modo que
siempre conserva su forma cúbica. Si el volumen del
cubo decrece a razón de pulg3/min, ¿cuán rápido cam-
bia el área superficial del cubo cuando el área superfi-
cial es de 54 pulg2?

40. La rueda de la fortuna mostrada en la FIGURA 5.6.20 gira
una vuelta completa en sentido contrario al movimiento
de las manecillas del reloj cada 2 minutos. ¿Cuán rápido
sube una pasajera en el instante en que está 64 pies por
arriba del suelo? ¿Cuán rápido se mueve horizontal-
mente en el mismo instante?

41. Suponga que la rueda de la fortuna en el problema 40
está equipada con reflectores de colores fijos situados en
varios puntos a lo largo de su circunferencia. Considere
el reflector ubicado en el punto P en la FIGURA 5.6.21. Si
los haces de luz son tangentes a la rueda en el punto P,
¿a qué razón se aleja el reflector en Q en tierra del punto
R en el instante en que ?

42. Un clavadista salta desde una plataforma elevada con
velocidad inicial hacia abajo de 1 pie/s hacia el centro
de un gran tanque circular de agua. Vea la FIGURA 5.6.22.
Por física, la altura del clavadista por arriba del nivel del
suelo está dada por donde

es el tiempo medido en segundos.

a) Use una función trigonométrica inversa para expresar
u en términos de s.

b) Encuentre la razón a la cual el ángulo u subtendido
por el tanque circular, según lo ve el clavadista, crece
en t � 3 s.

c) ¿Cuál es el valor de u cuando el clavadista golpea el
agua?

d) ¿Cuál es la razón de cambio de u cuando el clava-
dista golpea el agua?

Modelos matemáticos

43. Resistencia La resistencia total R en un circuito para-
lelo que contiene dos resistores de resistencias R1 y R2

está dada por Si cada resistencia
cambia con el tiempo t, entonces ¿cómo están relacio-
nadas dR�dt, dR1�dt y dR2�dt?

1>R � 1>R1 � 1>R2.
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FIGURA 5.6.22 Clavadista en el problema 42
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FIGURA 5.6.21 Rueda de la fortuna en el problema 41
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FIGURA 5.6.20 Rueda de la fortuna en el problema 40
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44. Presión En la expansión adiabática del aire, la presión
P y el volumen V están relacionados por
donde k es una constante. En cierto instante, la presión
es 100 lb/pulg2 y el volumen es 32 pulg3. ¿A qué razón
cambia la presión en ese instante si el volumen dismi-
nuye a razón de 2 pulg3/s?

45. Cangrejos de río Un estudio acerca de cangrejos de
río (Orconectes virilis) indica que el caparazón de lon-
gitud C está relacionado con la longitud total T según la
fórmula donde C y T se miden en
milímetros. Vea la FIGURA 5.6.23.
a) A medida que el cangrejo de río crece, la razón R de

la longitud del caparazón a la longitud total, ¿aumen-
ta o disminuye?

b) Si el cangrejo de río crece en longitud a razón de
1 mm por día, ¿a qué razón cambia la relación del
caparazón a la longitud total cuando el caparazón es
un tercio de la longitud total?

46. Peso del cerebro Según estudios de alometría, el peso
del cerebro E en los peces está relacionado con el

peso corporal P por y el peso corporal está
relacionado con la longitud del cuerpo por P 0.12L2.53,
donde E y P se miden en gramos y L se mide en centí-
metros. Suponga que la longitud de cierta especie de pez
evolucionó a razón constante desde 10 cm hasta 18 cm a
lo largo de 20 millones de años. ¿A qué razón, en gramos
por millones de años, creció el cerebro de esta especie
cuando el pez pesaba la mitad de su peso corporal final?

47. Cantidad de movimiento En física, la cantidad de
movimiento p de un cuerpo de masa m que se mueve en
línea recta con velocidad y está dada por p � my.
Suponga que un avión de masa 105 kg vuela en línea recta
mientras en los bordes de entrada de sus alas se acumula
hielo a razón constante de 30 kg/h. Vea la FIGURA 5.6.24.

a) ¿A qué razón cambia la cantidad de movimiento del
avión si vuela a razón constante de 800 km/h?

b) ¿A qué razón cambia la cantidad de movimiento del
avión en t � 1 h si en ese instante su velocidad es
750 km/h y aumenta a razón de 20 km/h?

Hielo

FIGURA 5.6.24 Avión en el problema 47

�

E � 0.007P2>3,

T

C

T

C

FIGURA 5.6.23 Cangrejo de río en el problema 45

C � 0.493T � 0.913,

PV 
1.4

� k,

5.7 Optimización
Introducción En ciencia, ingeniería y negocios a menudo tenemos interés en los valores

máximo y mínimo de una función; por ejemplo, una empresa tiene interés natural en maximi-
zar sus ganancias a la vez que minimiza los costos. La próxima vez que vaya al supermercado,
observe que todas las latas que contienen, por ejemplo, 15 oz de alimento (0.01566569 pies3)
tienen el mismo aspecto físico. El hecho de que todas las latas de un volumen específico ten-
gan la misma forma (mismos radio y altura) no es coincidencia, puesto que hay dimensiones
específicas que minimizan la cantidad de metal usado y, entonces, reducen los costos de cons-
trucción de la lata a una empresa. En el mismo tenor, muchos de los denominados automóvi-
les económicos comparten muchas características extraordinariamente semejantes. Esto no es
tan simple como el que una empresa copie el éxito de otra empresa, sino, en vez de ello, que
un gran número de ingenieros buscan el diseño que minimice la cantidad de material usado.

Jugar con algunos números Se empezará con un problema simple:

Encontrar dos números no negativos cuya suma sea 5 tales que el producto
de uno y el cuadrado del otro sea el más grande posible.

(1)

En el ejemplo 1 de la sección 2.7 presentamos el problema:

La suma de dos números no negativos es 5. Exprese el producto de uno
y el cuadrado del otro como una función de uno de los números.

(2)

En este punto se recomienda
bastante repasar la sección 2.7.
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Al comparar (1) y (2) se observa que (2), donde simplemente se pide establecer una función,
está contenido en el problema de cálculo (1). La parte de cálculo de (1) requiere encontrar
números no negativos de modo que su producto sea máximo. Al revisar los ejemplos 1 y 2 de
la sección 2.7 se indica que el producto descrito en (1) es

(3)

El dominio de la función P(x) en (3) es el intervalo [0, 5]. Este hecho proviene de la combi-
nación de las dos desigualdades y o del reconocimiento de que si se
permite que x fuese más grande que 5, entonces y sería negativo, contradiciendo la hipótesis
inicial. Hay una cantidad infinita de pares de números reales no negativos (racionales e irra-
cionales) cuya suma es 5. ¡Observe que no dijimos enteros no negativos! Por ejemplo

y � 5 � x � 0x � 0

P x (5 x)2  o bien,  P (x) 25x 10x2 x3.

Números: x, y Producto: P xy2

1, 4 P 1 . 42 16
2, 3 P 2 . 32 18

1
2

,  

9
2 P

1
2

. a9
2
b2

10.125

p, 5 p P p . (5 p)2 10.85

Pares de números como -1 y 6, cuya suma es 5, se rechazan porque ambos números deben
ser no negativos. ¿Cómo saber cuándo se han descubierto los números x y y que proporcio-
nan el valor más grande; es decir, el máximo óptimo, de P? La respuesta reside en darse cuenta
que el dominio de la función P(x) es el intervalo cerrado [0, 5]. Por el teorema 5.2.3
sabemos que la función continua P(x) tiene un extremo absoluto ya sea en el punto frontera
del intervalo o en un número crítico en el intervalo abierto (0, 5). Por (3) vemos que

de modo que el único número crítico en el inter-
valo abierto (0, 5) es Resulta evidente que los valores de la función P(0) = 0 y P(5) = 0

representan el producto mínimo, de modo que el producto máximo absoluto es

. En otras palabras, los dos números son y 

Terminología En general, la función que describe la cantidad que se quiere optimizar, al
encontrar su valor máximo o mínimo, se denomina función objetivo. La función en (3) es la
función objetivo para el problema dado en (1). Una relación entre las variables en un problema
de optimización, como la ecuación entre los números x y y en el análisis anterior,
se denomina restricción. La restricción permite eliminar una de las variables en la construc-
ción de la función objetivo, como P(x) en (3), así como impone una limitación sobre la forma
en que variables como x y y pueden variar en realidad. Vimos que las limitaciones y

fueron de utilidad para inferir que el dominio de la función P(x) en (3) era el
intervalo [0, 5]. Usted debe considerar que el tipo de problemas coloquiales en esta sección
pueden o pueden no tener una restricción.

Sugerencias En los ejemplos y problemas siguientes se proporciona una función objetivo
y es necesario traducir el lenguaje coloquial a símbolos matemáticos y construir una función
objetivo. Éstos son los tipos de problemas coloquiales que muestran el poder del cálculo y
constituyen una de muchas respuestas posibles a la vieja pregunta: ¿para qué es bueno?
Mientras no se garantice nada, hay algunas sugerencias que es necesario tomar en cuenta al
resolver un problema de optimización. Primero y lo más importante:

Desarrolle una actitud positiva y analítica. Trate de ser claro y organizado.

y � 5 � x � 0
x � 0

x � y � 5

y 5 5
3

10
3 .x 5

3A53B2 500
27 18.52

P A53B 5
3  
A5B5

3.
P¿(x) � 25 � 20x � 3x2

� (3x � 5)(x � 5)

Directrices para resolver problemas de optimización

i) Lea el problema con atención; luego léalo de nuevo.
ii) Elabore un dibujo cuando sea posible; hágalo sencillo.
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R (u)
y2

0

g
 sen 2u,

iii) Introduzca variables (en su dibujo, en caso de haber alguna) y observe cualquier restric-
ción entre las variables.

iv) Use todas las variables necesarias para establecer la función objetivo. Si usa más de una
variable, aplique la restricción para reducir la función a una variable.

v) Note el intervalo en que está definida la función. Determine todos los números críticos.
vi) Si la función objetivo es continua y está definida sobre un intervalo cerrado [a, b],

entonces compruebe los extremos en puntos frontera. Si el extremo deseado no ocurre
en un punto frontera, debe ocurrir en un número crítico en el intervalo abierto (a, b).

vii) Si la función objetivo está definida sobre un intervalo que no es cerrado, entonces es
necesario aplicar una prueba de la derivada en cada número crítico en ese intervalo.

FIGURA 5.7.1 Bala de cañón en
el ejemplo 1

y
y0

x
R

�

En el primer ejemplo se analiza un modelo matemático que proviene de física.

EJEMPLO  1 Alcance máximo

Cuando se ignora la resistencia del aire, el alcance horizontal R de un proyectil está dado por

(4)

donde y0 es la velocidad inicial constante, g es la aceleración de la gravedad y u es el ángulo
de elevación o salida. Encuentre el alcance máximo del proyectil.

Solución Como modelo físico del problema puede imaginarse que el proyectil es una bala
de cañón. Vea la FIGURA 5.7.1. Para ángulos u mayores que la bala de cañón mostrada en
la figura debe salir hacia atrás. Por tanto, tiene sentido físico restringir la función en (4) al
intervalo cerrado A partir de

se observa que cuando cos 2u = 0 o de modo que el único número crí-
tico en el intervalo abierto es Al evaluar la función en los puntos finales y el
número crítico obtenemos

Puesto que es continua sobre el intervalo cerrado estos valores indican que el
alcance mínimo es y que el alcance máximo es En otras
palabras, para lograr la distancia máxima, el proyectil debe ser lanzado a un ángulo de 
con respecto a la horizontal.

Si las balas de cañón en el ejemplo 1 se disparan con la velocidad inicial y0 pero con
ángulos de elevación variables u diferentes de , entonces sus alcances horizontales son
menores que Rmáx = y0

2 g. Al analizar la función en (4) se observa que obtenemos el mismo
alcance horizontal para ángulos complementarios como y 70°, y 30° y 60°. Vea la FIGURA

5.7.2. Si se toma en cuenta la resistencia del aire, el alcance de todos los proyectiles es más
corto que , aunque se hayan disparado a un ángulo de elevación de .

EJEMPLO  2 Volumen máximo

Un canalón para agua de 20 pies de longitud tiene extremos en forma de triángulos isósceles
cuyos lados miden 4 pies de longitud. Determine la dimensión a través del extremo triangular
de modo que el volumen del canalón sea máximo. Encuentre el volumen máximo.

Solución El canalón con la dimensión desconocida x se muestra en la FIGURA 5.7.3. El volu-
men V del canalón es

V � (área del extremo triangular) * (longitud).

45°y2
0>g 20°

> 45°

45°
R(p>4) � y2

0>g.R (0) � R (p>2) � 0
[0, p>2],R (u)

R (0) � 0, R(p>4) �
y2

0

g
, R(p>2) � 0.

p>4.(0, p>2)
2u � p>2,dR>du � 0

[0, p>2].

p>2,

dR
du

y2
0

g
 2 cos 2u

 70�

60�

45�

30�

20�

y2
0�g

FIGURA 5.7.2 Mismo alcance
para ángulos complementarios

x

20 pies4 pies 4 pies

FIGURA 5.7.3 Canalón de agua
en el ejemplo 2



Por la FIGURA 5.7.4 y el teorema de Pitágoras, el área del extremo triangular como una función

de x es En consecuencia, el volumen del canalón como una función de x, la
función objetivo, es

.

La función V(x) sólo tiene sentido sobre el intervalo cerrado [0, 8]. (¿Por qué?)
Al tomar la derivada y simplificar se obtiene

.

Aunque para el único número crítico en el intervalo abierto (0, 8) es
Puesto que la función V(x) es continua sobre [0, 8], sabemos por el teorema 5.2.3 que

debe ser su mínimo absoluto. Entonces, el máximo absoluto de V(x) debe
ocurrir cuando el ancho a través de la parte superior del canalón es 5.66 pies. El volu-
men máximo es V( ) = 160 pies3.

Nota: A menudo un problema puede resolverse en más de una forma. En retrospectiva, usted
debe comprobar que la solución del ejemplo 2 es ligeramente “más limpia” si la dimensión a
través de la parte superior del extremo del canalón se identifica como 2x en vez de como x.
En efecto, como se muestra en el siguiente ejemplo, el ejemplo 2 puede resolverse usando una
variable completamente distinta.

EJEMPLO  3 Solución alterna del ejemplo 2

Como se muestra en la FIGURA 5.7.5, u denota el ángulo entre la vertical y uno de los lados. A
partir de trigonometría de triángulos rectángulos, la altura y la base del extremo triangular son
4 cos u y 8 sen u, respectivamente. Cuando V se expresa como una función de u obtenemos
( · base · altura) * (longitud), o bien,

donde Al proceder como en el ejemplo 1, encontramos que el valor máximo
V = 160 pies3 ocurre en La dimensión a través de la parte superior del canalón, o
la base del triángulo isósceles, es 8 sen(p 4) = pies.

Problemas con restricciones A menudo es más conveniente plantear una función en tér-
minos de dos variables en lugar de una. En este caso es necesario encontrar una relación entre
estas variables que pueden usarse para eliminar una de las variables de la función en conside-
ración. Como se analizó junto con (1), esta relación suele ser una ecuación denominada res-
tricción. Este concepto lo ilustran los dos siguientes ejemplos.

EJEMPLO  4 Punto más próximo

Encuentre el punto en el primer cuadrante sobre el círculo más próximo a (2, 4).

Solución Sea (x, y), x 7 0, y 7 0 el punto sobre el círculo más próximo al punto (2, 4). Vea
la FIGURA 5.7.6.

Como se muestra en la figura, la distancia d entre (x, y) y (2, 4) es

Luego, el punto que minimiza el cuadrado de la distancia d2 también minimiza la distancia d.
Se escribirá D � d2. Al desarrollar y y usar la restricción en
la forma encontramosy � 11 � x2,

x2
� y2

� 1(y � 4)2(x � 2)2

x2
� y2

� 1

412>u � p>4.
0 � u � p>2.

1
2

412
412

V(0) � V(8) � 0
412.

x � �412,V¿(x) � 0

V¿(x) � �10 

x2
� 32

264 � x2

V(x) � 20 . a1
2

 x A16 �
1
4

 x2b � 5x264 � x2

1
2  
x216 � x2>4.
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d fórmula de ángulo doble 160 sen  2u,

 160 (2 sen  u cos u)

 320 sen  u cos u

 V(u) 1
2(4 cos u)(8 sen  u) . 20

x

altura �

1 6 � x2�4
4 pies

2

FIGURA 5.7.4 Extremo triangular
del canalón en el ejemplo 2

�
4 pies

FIGURA 5.7.5 Extremo triangular
del canalón en el ejemplo 3

FIGURA 5.7.6 Círculo y punto en
el ejemplo 4

(x, y)

x2
�y2

� 1

(2, 4)
y

d

x

.d 2(x 2)2 (y 4)2  o bien,   d 2 (x 2)2 (y 4)2

y2 y

 4x 821 x2 21.

 D(x) x2 4x 4 (1 x2) 821 x2 16

     
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Debido a que se ha supuesto que x y y son positivos, el dominio de la función anterior es
el intervalo abierto (0, 1). No obstante, la solución del problema no es afectada de ninguna
manera si se supone que el dominio es el intervalo cerrado [0, 1].

Al diferenciar obtenemos

Luego, D�(x) � 0 sólo si o Después de elevar al cua-
drado ambos miembros y simplificar, encontramos que es el único número crítico en
el intervalo (0, 1). Debido a que D(x) es continua sobre [0, 1], a partir de los valores de la
función

concluimos que D y, por consiguiente, la distancia d son mínimos cuando Al usar
la restricción , de manera correspondiente encontramos que Esto sig-
nifica que es el punto sobre el círculo más próximo a (2, 4).

EJEMPLO  5 Cerca mínima

Un granjero intenta delimitar un terreno rectangular que tenga un área de 1 500 m2. El terreno
estará cercado y dividido en dos partes iguales por medio de una cerca adicional paralela a
dos lados. Encuentre las dimensiones del terreno que requiere la menor cantidad de cerca.

Solución Como se muestra en la FIGURA 5.7.7, x y y denotan las dimensiones del terreno cercado.
La función que queremos minimizar es la cantidad total de cerca; es decir, la suma de las lon-
gitudes de las cinco porciones de cerca. Si esta suma se denota por el símbolo L, tenemos

(5)

Debido a que el área del terreno cercado debe ser de 1 500 m2, x y y deben estar relaciona-
dos por el requisito de que xy � 1 500. Usamos esta restricción en la forma y � 1 500/x para
eliminar y en (5) y escribir la función objetivo L como una función de x:

(6)

Puesto que x representa una dimensión física que satisface xy � 1 500, concluimos que
es positiva. Pero aparte de esta restricción, sobre x no hay ninguna otra restricción. Por tanto,
a diferencia de los ejemplos anteriores, la función en consideración no está definida sobre un
intervalo cerrado; L(x) está definida sobre el intervalo no acotado 

Al igualar a cero la derivada

y despejar x, encontramos que el único número crítico es Puesto que es fácil calcu-
lar la segunda derivada, usamos el criterio de la segunda derivada. A partir de

observamos que Por el teorema 5.5.3 concluimos que 2A15B + 4 500 A15 B = 60 m es la cantidad mínima requerida de cerca. Volviendo a la res-
tricción y = 1 500/x, encontramos que el valor correspondiente de y es En consecuen-
cia, las dimensiones del terreno deben ser 

Si un objeto se mueve a razón constante, entonces la distancia, la razón y el tiempo están
relacionados por distancia = razón * tiempo. Este resultado se usará en el último ejemplo en
la forma

(7)

15110 m 	 10110 m.
10110.

110110> 110L A15110 B �L–  A15110 B 7 0.

15110.

(0, q).

L � 2x � 3y.

(15>5, 215>5)
y � 215>5.x2

� y2
� 1

x � 15>5.

25>52x � 21 � x2.�421 � x2
� 8x � 0

D¿(x) � �4 � 4(1 � x2)�1>2(�2x) �
�421 � x2

� 8x

21 � x2
.

D (0) 13,  D A25>5B 21 425 12.06 y  D (1) 17

.tiempo
distancia

razón

FIGURA 5.7.7 Terreno rectangular
en el ejemplo 5

x

y

L (x) 2x
4 500

x

L–(x)
9 000

x3

L¿(x) 2
4 500

x2



EJEMPLO  6 Tiempo mínimo

Una mujer en el punto P sobre una isla desea llegar a una población situada en el punto S

sobre una playa recta en tierra firme. El punto P está a 9 millas del punto más próximo Q

sobre la playa y la población en el punto S está a 15 millas de Q. Vea la FIGURA 5.7.8. Si la mujer
rema un bote a razón de 3 mi/h hacia un punto R en tierra, luego camina el resto del camino
hacia S a razón de 5 mi/h, determine dónde debe desembarcar en la playa a fin de minimizar
el tiempo total de viaje.

Solución Como se muestra en la figura, si x denota la distancia del punto Q en la playa al
punto R donde la mujer desembarca en la playa, entonces por el teorema de Pitágoras, la dis-
tancia que ella rema es La distancia que camina es 15 � x. Por (7), el tiempo total
del viaje desde P hasta S es

Puesto que la función T(x) está definida sobre el intervalo cerrado [0, 15].
La derivada de T es

Igualamos esta derivada a cero y despejamos x:

Es decir, es el único número crítico en [0, 15]. Puesto que T(x) es continua sobre el
intervalo, a partir de los tres valores de la función

el tiempo de viaje mínimo ocurre cuando . En otras palabras, la mujer desem-
barca en el punto R, a 6.75 millas del punto Q, y luego camina las 8.25 millas restantes hacia
el punto S.

x �
27
4 � 6.75

27
4

 x �
27
4

.

 16x2
� 729

 
x2

81 � x2
�

9
25

 
x

3281 � x2
�

1
5

dT
dx

�
1
6

 (81 � x2)�1>2(2x) �
1
5

�
x

3281 � x2
�

1
5

.

0 � x � 15,

281 � x2.
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T tiempo de remado tiempo caminando,  o bien, T (x)
281 x2

3
15 x

5
.

T (0) 6 h, T A27
4 B 5.4 h  y  T (15) 5.83 h

FIGURA 5.7.8 Mujer que se
desplaza en el ejemplo 6

Isla

Playa

9 mi

15 mi

Q SR

x

Población

P

NOTAS DESDE EL AULA

Un lector perspicaz podría cuestionar por lo menos dos aspectos del ejemplo 5.

i) En la solución, ¿dónde entra la hipótesis de que el terreno sea dividido en dos partes
iguales? De hecho, no lo hace. Lo importante es que la cerca divisoria sea paralela a los
dos extremos. Pregúntese cuál sería L(x) si éste no fuera el caso. No obstante, la ubicación
real de la cerca divisoria entre los extremos es irrelevante en tanto sea paralela a éstos.

ii) En un problema aplicado, por supuesto que tenemos interés sólo en los extremos absolu-
tos. En consecuencia, otra pregunta podría ser: puesto que la función L en (6) no está
definida sobre un intervalo cerrado y como el criterio de la segunda derivada no garanti-
za extremos absolutos, ¿cómo puede tenerse la certeza de que es un mínimo
absoluto? Cuando se tengan dudas, siempre es posible trazar una gráfica. La FIGURA 5.7.9

responde la pregunta para L(x). También, observe de nuevo el teorema 5.4.2 en la sección
5.4. Debido a que es el único número crítico en el intervalo que y ya que
se demostró que es un mínimo relativo, el teorema 5.4.2 garantiza que el valor
de la función es un mínimo absoluto.L (15110) � 60110

L (15110)
(0, q)15110

L (15110)

f ¿(x)

FIGURA 5.7.9 Gráfica de la fun-
ción objetivo en el ejemplo 5

L(x) � 2x � 4 500�x, x � 0

mínimo 
absoluto

L 15 

15

L

x

  10

  10



5.7 Optimización 253

Fundamentos

1. Encuentre dos números no negativos cuya suma sea 60
y cuyo producto sea máximo.

2. Encuentre dos números no negativos cuyo producto sea
50 y cuya suma sea mínima.

3. Encuentre un número que exceda su cuadrado por la
mayor cantidad.

4. Sean m y n enteros positivos. Encuentre dos números no
negativos cuya suma sea S de modo que el producto de
la m-ésima potencia de uno y la n-ésima potencia del
otro sea máximo.

5. Encuentre dos números no negativos cuya suma sea 1
de modo que la suma del cuadrado de uno y el doble
del cuadrado del otro sea mínima.

6. Encuentre el valor mínimo de la suma de un número no
negativo y su recíproco.

7. Encuentre el o los puntos sobre la gráfica de 
más próximo(s) a (5, 0), más próximo(s) a (3, 0).

8. Encuentre el punto sobre la gráfica de más
próximo a (2, 3).

9. Determine el punto sobre la gráfica de en
que la recta tangente tiene pendiente mínima.

10. Determine el punto sobre la gráfica de 
en que la recta tangente tiene pendiente máxima.

En los problemas 11 y 12, encuentre las dimensiones de la
región sombreada de modo que su área sea máxima.

11. 12.

13. Encuentre los vértices (x, 0) y (0, y) de la región trian-
gular sombreada en la FIGURA 5.7.12 tal que su área sea
mínima.

14. Encuentre la distancia vertical máxima d entre las grá-
ficas de y para Vea
la FIGURA 5.7.13.

15. Un granjero tiene 3 000 pies de cerca a la mano.
Determine las dimensiones de un corral rectangular que
contenga el área máxima.

16. Un terreno rectangular ha de cercarse en tres porciones
iguales al dividir cercas paralelas a dos lados. Vea la
FIGURA 5.7.14. Si el área a encerrar es de 4 000 m2, encuen-
tre las dimensiones de terreno que requiere la cantidad
mínima de cerca.

17. Si la cantidad total de cerca usada es 8 000 m, encuen-
tre las dimensiones de terreno encerrado en la figura
5.7.14 que tenga el área máxima.

18. Se piensa cercar un patio rectangular sujetando la cerca
a una casa de 40 pies de ancho. Vea la FIGURA 5.7.15. La
cantidad de cerca es 160 pies. Describa cómo debe usar
la cerca de modo que se abarque la mayor área.

19. Resuelva el problema 18 si la cantidad de cerca a usar
mide 80 pies.

20. Un granjero desea construir un corral rectangular de
128 000 pies2 con un lado a lo largo de un acantilado
vertical. El cercado a lo largo del acantilado cuesta
$1.50 por pie, mientras que a lo largo de los otros tres
lados cuesta $2.50 por pie. Encuentre las dimensiones
del corral, de modo que el costo del cercado sea mínimo.

Patio

Casa

40 pies

FIGURA 5.7.15 Casa y patio en el problema 18

FIGURA 5.7.14 Terreno rectangular en el problema 16

FIGURA 5.7.13 Gráfica
para el problema 14
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FIGURA 5.7.12 Gráfica
para el problema 13
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FIGURA 5.7.10 Gráfica
para el problema 11
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5.7 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-17.



21. Se desea construir una caja rectangular cerrada con base
cuadrada y volumen de 32 000 cm3. Encuentre las
dimensiones de la caja que requiera la menor cantidad
de material.

22. En el problema 21, encuentre las dimensiones de una
caja cerrada que requiera la menor cantidad de material.

23. Se producirá una caja, abierta por la parte superior, de
una pieza cuadrada de cartón cortando un cuadrado
de cada esquina y doblando los lados. En la FIGURA 5.7.16,
los cuadrados blancos se han cortado y el cartón se ha
doblado a lo largo de las líneas discontinuas. Dado que
la pieza de cartón mide 40 cm por lado, encuentre las
dimensiones de la caja con que se obtiene el volumen
máximo. ¿Cuál es el volumen máximo?

24. Se producirá una caja, abierta por la parte superior, de una
pieza rectangular de cartón que mide 30 pulg de largo por
20 pulg de ancho. La caja puede cerrarse al cortar un cua-
drado en cada esquina, al cortar sobre las líneas sólidas
interiores y doblar luego el cartón por las líneas discon-
tinuas. Vea la FIGURA 5.7.17. Exprese el volumen de la caja
como una función de la variable indicada x. Encuentre las
dimensiones de la caja con que se obtiene el volumen
máximo. ¿Cuál es el volumen máximo?

25. Se producirá un canalón con sección transversal rectan-
gular al doblar cantidades iguales de los extremos de una
plancha de aluminio de 30 cm de ancho. ¿Cuáles son las
dimensiones de la sección transversal de modo que el
volumen sea máximo?

26. Se producirá un canalón cuya sección transversal es un
trapezoide isósceles con dimensiones indicadas en la
FIGURA 5.7.18. Determine el valor de u tal que maximice
el volumen.

27. Dos astabanderas están aseguradas con cables sujetos a
un solo punto entre las astas. Vea la FIGURA 5.7.19. ¿Dónde
debe ubicarse el punto a fin de minimizar la cantidad de
cable usado?

28. La pista de carreras que se muestra en la FIGURA 5.7.20

debe constar de dos partes rectas paralelas y dos partes
semicirculares. La longitud de la pista debe medir 2 km.
Encuentre el diseño de la pista de modo que el terreno
rectangular encerrado por la pista sea máximo.

29. Una ventana normanda es un rectángulo con un semi-
círculo arriba de éste. Encuentre las dimensiones de la
ventana con mayor área si su perímetro mide 10 m. Vea
la FIGURA 5.7.21.

30. Vuelva a trabajar el problema 29 dado que el rectángulo
está arriba de un triángulo equilátero.

31. Un muro de 10 pies de altura está a 5 pies de un edifi-
cio, como se muestra en la FIGURA 5.7.22. Encuentre la lon-
gitud L de la escalera más corta, apoyada en el muro,
que llega desde el suelo hasta el edificio.

x

y

5 pies

L

Escalera
Muro

SueloEdificio

10
pies

FIGURA 5.7.22 Escalera en el problema 31

FIGURA 5.7.21 Ventana
normanda en el problema 29

FIGURA 5.7.20 Pista de carreras en el problema 28

pista de
carreras

CALIFORNIA   REPUBLIC

20 pies

30 pies

10 piesCables

Suelo

FIGURA 5.7.19 Astabanderas en el problema 27

FIGURA 5.7.18 Canalón en el problema 26

10 pulg

�10 pulg

FIGURA 5.7.17 Caja abierta en el problema 24

Corte

Doblez

x

x x x
a) b)

x

x

FIGURA 5.7.16 Caja abierta en el problema 23

a) b)

40 cm
Doblez
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32. Las regulaciones del servicio postal estadounidense esta-
blecen que una caja rectangular enviada por servicio de
cuarta clase debe satisfacer el requerimiento de que su
longitud más su circunferencia (perímetro de un extremo)
no debe exceder 108 pulg. Dado que se elaborará una
caja con base cuadrada, encuentre las dimensiones de
la caja que tenga volumen máximo. Vea la FIGURA 5.7.23.

33. Encuentre las dimensiones del cilindro circular recto con
volumen máximo que puede inscribirse en un cono circu-
lar recto de 8 pulg de radio y 12 pulg de altura. Vea la
FIGURA 5.7.24.

34. Encuentre la longitud máxima L de una lámina delgada
que puede transportarse horizontalmente alrededor de
una esquina en ángulo recto mostrada en la FIGURA 5.7.25.
[Sugerencia: Utilice triángulos similares.]

35. Se producirá una lata para jugo en forma de cilindro
circular recto con volumen de 32 pulg3. Vea la FIGURA

5.7.26. Encuentre las dimensiones de la lata de modo que
para hacerla se use la menor cantidad de material. [Suge-

rencia: Material � área superficial total de la lata � área
de la parte superior � área de la parte inferior � área de
lado lateral. Si las partes circulares superior e inferior se
retiran y el cilindro se corta en forma recta por el lado
y se aplana, el resultado es el rectángulo mostrado en la
figura 5.7.26c).]

36. En el problema 35, suponga que las partes circulares
superior e inferior se cortan de láminas metálicas cua-
dradas como se muestra en la FIGURA 5.7.27. Si se desper-
dicia el metal cortado de las esquinas de la lámina cua-
drada, encuentre las dimensiones de la lata de modo que
para elaborarla se use la menor cantidad de material
(incluyendo el desperdicio).

37. Algunas aves vuelan más lentamente sobre agua que
sobre tierra. Un ave vuela a razones constantes de
6 km/h sobre agua y 10 km/h sobre tierra. Use la infor-
mación de la FIGURA 5.7.28 para encontrar la trayectoria a
la cual el ave debe seguir para minimizar el tiempo total
de vuelo entre la costa de una isla y su nido ubicado en
la costa de otra isla. [Sugerencia: Use distancia � razón

* tiempo.]

38. Se va a construir una tubería desde una refinería a tra-
vés de un pantano hasta tanques de almacenamiento. Vea
la FIGURA 5.7.29. El costo de construcción es $25 000 por
milla sobre el pantano y $20 000 por milla sobre tierra.
¿Cómo debe construirse la tubería para que el costo de
producción sea mínimo?

Isla Isla

Nido

3 km

20 km

FIGURA 5.7.28 Ave en el problema 37

r
Metal de
desecho

FIGURA 5.7.27 Partes superior e
inferior de la lata en el problema 36

a) Cilindro circular b) Las partes superior e
 inferior son circulares

c) El lado es rectangular

r

r

hh

2pr

FIGURA 5.7.26 Lata de jugo en el problema 35
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8 pies

x

L � x
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FIGURA 5.7.25 Lámina en el problema 34

h

r 12 pulg

8 pulg

FIGURA 5.7.24 Cilindro inscrito
en el problema 33

x

Longitud

Circunferencia
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FIGURA 5.7.23 Caja en el problema 32



39. Vuelva a trabajar el problema 38 dado que el costo por
milla a través del pantano es el doble del costo por milla
sobre tierra.

40. A medianoche, el barco A está a 50 km al norte del
barco B. El barco A se dirige hacia el sur a 20 km/h y
el barco B se dirige al oeste a 10 km/h. ¿En qué instante
es mínima la distancia entre los barcos?

41. Un contenedor que transporta desechos peligrosos se
fabrica de plástico pesado y se forma al unir dos hemis-
ferios a los extremos de un cilindro circular recto como
se muestra en la FIGURA 5.7.30. El volumen total del con-
tenedor es de 30p pie3. El costo por pie cuadrado para
los extremos es una vez y media el costo por pie cua-
drado del plástico usado en la parte cilíndrica. Encuentre
las dimensiones del contenedor de modo que su costo
de producción sea mínimo. [Sugerencia: El volumen de
una esfera es y su área superficial es ]

42. Una página impresa debe tener márgenes izquierdo y
derecho de 2 pulg de espacio en blanco y márgenes
superior e inferior de 1 pulg de espacio en blanco. Vea
la FIGURA 5.7.31. El área de la porción impresa es 32 pulg2.
Determine las dimensiones de la página de modo que se
use la menor cantidad de papel.

43. Una esquina de una hoja de papel de 8.5 pulg * 11 pulg
se dobla sobre el otro borde del papel como se muestra
en la FIGURA 5.7.32. Encuentre el ancho x del doblez de
modo que la longitud L del pliegue sea mínima.

44. El marco de una cometa consta de seis partes de plástico
ligero. Como se muestra en la FIGURA 5.7.33, el marco exte-
rior de la cometa consta de cuatro piezas precortadas, dos
piezas de 2 pies de longitud y dos piezas de 3 pies de lon-
gitud. Las partes restantes en forma de cruz, identificadas
por x en la figura, deben cortarse de longitudes tales que
la cometa sea lo más grande posible. Encuentre estas lon-
gitudes.

45. Encuentre las dimensiones del rectángulo de área máxi-
ma que puede circunscribirse alrededor de un rectángulo
de longitud a y ancho b. Vea el rectángulo grande en la
FIGURA 5.7.34.

46. Una estatua se coloca sobre un pedestal como se mues-
tra en la FIGURA 5.7.35. ¿A qué distancia del pedestal debe
pararse una persona para maximizar el ángulo de visión
u? [Sugerencia: Revise la identidad trigonométrica para

También es suficiente maximizar tan u más
que u. ¿Por qué?]
tan(u2 � u1).

rectángulo

b

a
�

FIGURA 5.7.34 Rectángulo en el problema 45

2 pies

3 pies 3 pies

2 pies

x x

FIGURA 5.7.33 Cometa en el problema 44

11 pulg L

x

8.5 pulg

FIGURA 5.7.32 Pieza de papel
en el problema 43
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FIGURA 5.7.31 Página impresa en el problema 42
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FIGURA 5.7.30 Contenedor en el problema 41
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FIGURA 5.7.29 Tubería en el problema 38
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47. La sección transversal de una viga de madera cortada de
un tronco circular de diámetro d mide x de ancho y y

de profundidad. Vea la FIGURA 5.7.36. La resistencia de la
viga varía directamente con el producto del ancho y el
cuadrado de la profundidad. Encuentre las dimensiones
de la sección transversal de máxima resistencia.

48. El contenedor que se muestra en la FIGURA 5.7.37 se cons-
truirá al unir un cono invertido (abierto en la parte supe-
rior) con la parte inferior de un cilindro circular recto
(abierto en sus partes superior e inferior) de radio 5 pies.
El contenedor debe tener un volumen de 100 pies3.
Encuentre el valor del ángulo indicado de modo que el
área superficial total del contenedor sea mínima. ¿Cuál
es el área superficial mínima? [Sugerencia: Vea el pro-
blema 38 en la parte C de la revisión de la unidad 2.]

Modelos matemáticos
49. La iluminancia E debida a una fuente de luz o intensi-

dad I a una distancia r de la fuente está dada por
La iluminancia total proveniente de dos focos

de intensidades e es la suma de las
iluminancias. Encuentre el punto P entre los dos focos
a 10 m de distancia de éstos en que la iluminancia total
es mínima. Vea la FIGURA 5.7.38.

50. La iluminancia E en cualquier punto P sobre el borde
de una mesa redonda originada por una luz colocada
directamente arriba del centro de la mesa está dada por
E = (i cos u) r2. Vea la FIGURA 5.7.39. Dado que el radio
de la mesa es 1 m y que I = 100, encuentre la altura en
que debe colocarse la luz de modo que E sea máxima.

51. El principio de Fermat en óptica establece que la luz
se desplaza del punto A (en el plano xy) en un medio
hasta el punto B en otro medio siguiendo una trayecto-
ria que requiere tiempo mínimo. Si c1 es la rapidez de
la luz en el medio que contiene al punto A y c2 es la
rapidez de la luz en el medio que contiene al punto B,
demuestre que el tiempo de recorrido de A a B es
mínimo cuando los ángulos y que se muestran en
la FIGURA 5.7.40, cumplen la ley de Snell:

52. La sangre es transportada por el cuerpo mediante el
tejido vascular, que consta de vasos capilares, venas, arte-
riolas y arterias. Una consideración de los problemas de
minimización de la energía utilizada para mover la san-
gre a través de varios órganos consiste en encontrar un
ángulo óptimo u para la ramificación vascular de modo
que sea mínima la resistencia total de la sangre a lo largo
de una trayectoria de un vaso capilar más grande a un
vaso capilar más pequeño. Vea la FIGURA 5.7.41. Use la ley
de Poiseuille, que establece que la resistencia R de un
vaso capilar de longitud l y radio r es donde
k es una constante, para demostrar que la resistencia total

R � k a x

r4
1

b � k a y

r4
2

b
R � kl>r4,

x

x

a

b

d
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A
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FIGURA 5.7.40 Dos medios en el problema 51
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a lo largo de la trayectoria P1P2P3 es mínima cuando
cos u = r2

4 r1
4. [Sugerencia: Exprese x y y en términos

de u y a.]

53. La energía potencial entre dos átomos en una molécula
diatómica está dada por Encuentre
la energía potencial mínima entre los dos átomos.

54. La altitud de un proyectil lanzado con una velocidad ini-
cial constante y0 a un ángulo de elevación está dada

por , donde x es su des-

plazamiento horizontal medido desde el punto de lanza-
miento. Demuestre que la altitud máxima alcanzada por
el proyectil es h � (y2

0/2g) sen2 u0.
55. Una viga de longitud L se incrusta en muros de concreto

como se muestra en la FIGURA 5.7.42. Cuando una carga
constante w0 se distribuye uniformemente a lo largo de
su longitud, la curva de desviación y(x) para la viga está
dada por

donde E e I son constantes (E es el módulo de elasti-
cidad de Young e I es el momento de inercia de una
sección transversal de la viga). La curva de desviación
aproxima la forma de la viga.

a) Determine la deflexión máxima de la viga.
b) Trace la gráfica de y(x).

56. La relación entre la altura h y el diámetro d de un árbol
puede aproximarse por la expresión cuadrática h = 137 +
ad - bd2, donde h y d se miden en centímetros, y a y b

son parámetros positivos que dependen del tipo de árbol.
Vea la FIGURA 5.7.43.

a) Suponga que el árbol alcanza una altura máxima
de H centímetros a un diámetro de D centímetros. De-
muestre que

b) Suponga que cierto árbol alcanza su altura máxima
posible (según la fórmula) de 15 m a un diámetro de
0.8 m. ¿Cuál es el diámetro del árbol cuando mide
10 m de alto?

57. Los huesos largos en los mamíferos pueden represen-
tarse como tubos cilíndricos huecos, llenos con médula,
de radio exterior R y radio interior r. Se piensa fabricar
huesos ligeros pero capaces de soportar ciertos momen-
tos de flexión. Para resistir un momento de flexión M,
puede demostrarse que la masa m por longitud unitaria
del hueso y médula está dada por

donde r es la densidad del hueso y K es una constante
positiva. Si demuestre que m es mínima
cuando r = 0.63R (aproximadamente).

58. La razón P (en mg de carbono/m3/h) a la cual se lleva
a cabo la fotosíntesis para ciertas especies de fitoplanc-
ton está relacionada con la intensidad de la luz I (en 103

pies-candela) por la función

.

¿A qué intensidad de la luz se cumple que P es máxima?

Piense en ello

59. Un clásico matemático Una persona desea cortar una
pieza de 1 m de longitud de alambre en dos partes. Una
parte debe doblarse en forma de círculo y la otra en
forma de cuadrado. ¿Cómo debe cortarse el alambre de
modo que la suma de las áreas sea máxima?

60. En el problema 59, suponga que una parte del alambre
se dobla en forma de círculo y que la otra se dobla en
forma de triángulo equilátero. ¿Cómo debe cortarse el
alambre de modo que la suma de las áreas sea mínima?
¿Y máxima?

61. Un vaso cónico se elabora a partir de una pieza circular
de papel de radio R al cortar un sector circular y luego
unir los bordes sombreados como se muestra en la
FIGURA 5.7.44.

a) Determine el valor de r indicado en la figura 5.7.44b)
de modo que el volumen del vaso sea máximo.

b) ¿Cuál es el volumen máximo del vaso?
c) Encuentre el ángulo central u del sector circular de

modo que el volumen del vaso cónico sea máximo.
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FIGURA 5.7.43 Árbol en el problema 56
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FIGURA 5.7.41 Ramificación vascular en el problema 52
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62. Se piensa elaborar la cara lateral de un cilindro a partir
de un rectángulo de lámina de plástico ligero. Debido a
que el material plástico no puede sostenerse por sí
mismo, en el material se incrusta un delgado alambre
rígido, como se muestra en la FIGURA 5.7.45a). Encuentre
las dimensiones del cilindro de volumen máximo que
puede elaborarse si el alambre tiene una longitud fija L.
[Sugerencia: En este problema hay dos restricciones. En
la figura 5.7.45b), la circunferencia de un extremo circu-
lar del cilindro es y.]

63. En el problema 27, demuestre que cuando se usa la can-
tidad óptima de alambre (la cantidad mínima) entonces
el ángulo que el alambre del asta bandera izquierda
forma con el suelo es el mismo que el ángulo que el
alambre del asta bandera derecha forma con el suelo.
Vea la figura 5.7.19.

64. Encuentre una ecuación de la recta tangente L a la grá-
fica de en tal que el triángulo en el
primer cuadrante acotado por los ejes coordenados y L

tenga área mínima. Vea la FIGURA 5.7.46.

Problemas con calculadora/SAC
65. En una carrera, a una mujer se le solicita que nade desde

un muelle flotante A hacia la playa y, sin detenerse, que
nade de la playa hacia otro muelle flotante C. Las dis-
tancias se muestran en la FIGURA 5.7.47a). La mujer calcula
que puede nadar del muelle A a la playa y luego al mue-
lle C a razón constante de 3 mi/h y luego del muelle C

a la playa a una razón de 2 mi/h. ¿Dónde debe tocar la
playa a fin de minimizar el tiempo total de natación de
A a C? Introduzca un sistema de coordenadas xy como
se muestra en la figura 5.7.47b). Use una calculadora o
un SAC para encontrar los números críticos.

66. Una casa de dos pisos en construcción consta de dos
estructuras A y B con secciones transversales rectangu-
lares como se muestra en la FIGURA 5.7.48. Para elaborar
el armazón de la estructura B se requieren sostenes tem-
porales de madera desde el nivel del suelo apoyados
contra la estructura A como se muestra.

a) Exprese la longitud L del sostén como una función
del ángulo u indicado.

b) Encuentre 
c) Use una calculadora o un SAC para encontrar la grá-

fica de sobre el intervalo Use esta grá-
fica para demostrar que L sólo tiene un número crí-
tico en Use esta gráfica para determinar
el signo algebraico de para y el
signo algebraico de para ¿Cuál
es su conclusión?

d) Encuentre la longitud mínima de un sostén.

67. Considere los tres cables mostrados en la FIGURA 5.7.49.

a) Exprese la longitud total L de los tres cables mostra-
dos en la figura 5.7.49a) como una función de la lon-
gitud L del cable AB.

b) Use una calculadora o un SAC para comprobar que
la gráfica de L tiene un mínimo.

c) Exprese la longitud del cable AB de modo que la lon-
gitud total L de las longitudes de los tres cables sea
mínima.

d) Exprese la longitud total L de los tres cables mostra-
dos en la figura 5.7.49b) como una función de la lon-
gitud del cable AB.

e) Use una calculadora o un SAC para comprobar que
la gráfica de L tiene un mínimo.

� �

10 pies
2 pies 2 pies

A

B

Contrafuerte

10 pies

FIGURA 5.7.48 Casa en el problema 66
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5.8 Linealización y diferenciales
Introducción Empezamos el análisis de la derivada con el problema de encontrar la recta tan-

gente a la gráfica de una función y � f (x) en un punto (a, f (a)). Intuitivamente, es de esperar que
una recta tangente esté muy próxima a la gráfica de f siempre que x esté cerca del número a. En
otras palabras, cuando x está en una pequeña vecindad de a, los valores de la función f (x) están
muy próximos al valor de las coordenadas y de la recta tangente. Así, al encontrar una ecuación
de la recta tangente en (a, f (a)) podemos usar esa ecuación para aproximar f (x).

Una ecuación de la recta tangente mostrada en la FIGURA 5.8.1 está dada por

(1)

Al usar notación funcional estándar, la última ecuación en (1) se escribirá como
Esta función lineal recibe un nombre especial.L (x) � f (a) � f ¿(a)(x � a).

y f (a) f ¿(a)(x a)  o bien,  y f (a) f ¿(a)(x a).
FIGURA 5.8.1 Cuando x está
próximo a a, el valor L(x) está
cerca de f (x)

y

x
xarecta

tangente

(a, ƒ(a))

(x, ƒ(x))

(x, L(x))

y � L(x) y �ƒ(x)

f ) Use la gráfica obtenida en el inciso e) o un SAC
como ayuda en la aproximación de la longitud del
cable AB que minimiza la función L obtenida en el
inciso d).

Proyecto

68. Interferencia de frecuencia Cuando la Administra-
ción Federal de Aviación (FAA, por sus siglas en inglés)
asigna numerosas frecuencias para un radiotransmisor en
un aeropuerto, bastante a menudo los transmisores cerca-
nos usan las mismas frecuencias. Como consecuencia, la
FAA intenta minimizar la interferencia entre estos trans-
misores. En la FIGURA 5.7.50, el punto (xt, yt) representa la
ubicación de un transmisor cuya jurisdicción radial está
indicada por el círculo C de radio con centro en el origen.
Un segundo transmisor se encuentra en (xi, 0) como se
muestra en la figura. En este problema, usted desarrolla y
analiza una función para encontrar la interferencia entre
dos transmisores.

a) La intensidad de la señal de un transmisor a un punto
es inversamente proporcional al cuadrado de la dis-
tancia entre ambos. Suponga que un punto (x, y) está
ubicado sobre la porción superior del círculo C como
se muestra en la figura 5.7.50. Exprese la intensidad
primaria de la señal en (x, y) desde un transmisor en
(xt, yt) como una función de x. Exprese la intensidad
secundaria en (x, y) desde el transmisor en (xi, 0)
como una función de x. Luego defina una función
R(x) como un cociente de la intensidad primaria de

la señal entre la intensidad secundaria de la señal.
Puede considerarse que R(x) es una razón señal a

ruido. Para garantizar que la interferencia perma-
nezca pequeña es necesario demostrar que la razón
señal a ruido mínima es mayor que el umbral mínimo
de la FAA de �0.7.

b) Suponga que xt = 760 m, yt = -560 m, r = 1.1 km
y xi � 12 km. Use un SAC para simplificar y luego
trazar la gráfica de R(x). Use la gráfica para estimar
el dominio y el rango de R(x).

c) Use la gráfica en el inciso b) para estimar el valor de
x donde ocurre la razón mínima R. Estime el valor
de R en ese punto. Este valor de R, ¿excede el umbral
mínimo de la FAA?

d) Use un SAC para diferenciar R(x). Use un SAC para
encontrar la raíz de R�(x) � 0 y para calcular el valor
correspondiente de R(x). Compare sus respuestas
aquí con las estimaciones en el inciso c).

e) ¿Cuál es el punto (x, y) sobre el círculo C?
f ) Se supuso que el punto (x, y) estaba en el semiplano

superior cuando (xt, yt) estaba en el semiplano infe-
rior. Explique por qué esta suposición es correcta.

g) Use un SAC para encontrar el valor de x donde
ocurre la interferencia mínima en términos de los
símbolos xt, yt, xi y r.

h) ¿Dónde está el punto que minimiza la razón señal a
ruido cuando el transmisor en (xt, yt) está sobre el
eje x? Proporcione un argumento convincente y jus-
tifique su respuesta.

FIGURA 5.7.50 Radiotransmisores en el problema 68
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No es necesario memorizar (2); es simplemente la forma punto-pendiente de una recta tan-
gente en (a, f (a)).

EJEMPLO  1 Linealización de sen x

Encuentre una linealización de f (x) � sen x en a � 0.

Solución Al usar f (0) � 0, f ¿(x) � cos x y f ¿(0) � 1, la recta tangente a la gráfica de f (x) =
sen x en (0, 0) es En consecuencia, la linealización de f (x) = sen x en a = 0
es L(x) = x. Como se observa en la FIGURA 5.8.2, la gráfica de f (x) = sen x y su linealización en
a = 0 son casi indistinguibles cerca del origen. La aproximación lineal local de f
en a = 0 es

sen x x. (4)

Errores En el ejemplo 1 se recalca algo que usted ya sabe por trigonometría. La aproxima-
ción lineal local (4) muestra que el seno de un ángulo pequeño x (medido en radianes) es apro-
ximadamente el mismo que el ángulo. Para efectos de comparación, si se escoge x � 0.1, enton-
ces (4) indica que o sen(0.1) 0.1. Para efectos de comparación, con una
calculadora se obtiene (redondeado hasta cinco cifras decimales) f (0.1) = sen(0.1) = 0.09983.
Luego, un error en el cálculo se define por

error � valor verdadero � valor aproximado. (5)

No obstante, en la práctica

(6)

suele ser más importante que el error. Además (error relativo) . 100 se denomina error porcen-
tual. Así, con ayuda de una calculadora se encuentra que el error porcentual en la aproximación

es sólo alrededor de 0.2%. En la figura 5.8.2 se muestra claramente que cuando
x se aleja de 0, la precisión de la aproximación sen x x disminuye. Por ejemplo, para el núme-
ro 0.9, con una calculadora obtenemos f (0.9) � sen(0.9) � 0.78333, mientras que L(0.9) � 0.9.
En esta ocasión el error porcentual es aproximadamente 15%.

También hemos visto el resultado del ejemplo 1 presentado de manera ligeramente distinta
en la sección 3.4. Si la aproximación lineal local sen x x la dividimos entre x, obtenemos 

1 para valores de x próximos a 0. Esto lleva de regreso al límite trigonométrico impor-

tante � 1.

EJEMPLO  2 Linealización y aproximación

a) Encuentre una linealización de en a � 3.
b) Use una aproximación lineal local para aproximar y 

Solución
a) Por la regla de potencias para funciones, la derivada de f es

f ¿(x) �
1
2

 (x � 1)�1>2
�

1
21x � 1

.

14.01.13.95
f (x) � 1x � 1

sen x
x

lím
xS0

sen x
x

f (0.1) � L (0.1)

f (0.1) � L (0.1)

f (x) � L(x)

y � 0 � 1 . (x � 0).

error relativo 
error

valor verdadero 

Definición 5.8.1 Linealización

Si una función y � f (x) es diferenciable en un número a, entonces decimos que la función

(2)

es una linealización de f en a. Para un número x próximo a a, la aproximación

(3)

se denomina aproximación lineal local de f en a.

FIGURA 5.8.2 Gráfica de función
y linealización en el ejemplo 1

y

x

y � sen x

y � x

1

10.5

0.5

�1

�0.5�1

(0, 0)

�0.5

f (x) L(x)

L (x) f (a) f ¿(a)(x a)



Cuando ambas se evalúan en a = 3 obtenemos:

Así, por la forma punto-pendiente de la ecuación de la recta, la linealización de f en
a � 3 está dada por , o bien

(7)

Las gráficas de f y L se muestran en la FIGURA 5.8.3. Por supuesto, L puede expresarse en
la forma punto-pendiente , pero para efectos de cálculo es más conve-
niente la forma proporcionada en (7).

b) Al usar (7) del inciso a), tenemos la aproximación lineal local , o bien

(8)

siempre que x esté cerca de 3. Luego, al hacer x � 2.95 y x � 3.01 en (8) obtenemos,
a su vez, las aproximaciones:

y

Diferenciales La idea fundamental de linealización de una función originalmente fue expre-
sada en la terminología de diferenciales. Suponga que y � f (x) es una función diferenciable en
un intervalo abierto que contiene al número a. Si x1 es un número diferente sobre el eje x, enton-
ces los incrementos y son las diferencias

Pero ya que , el cambio en la función es

Para valores de que están próximos a 0, el cociente diferencial

es una aproximación del valor de la derivada de f en a:

Las cantidades y se denominan diferenciales y se denotan por los símbolos dx y dy,
respectivamente. Es decir,

Como se muestra en la FIGURA 5.8.4, para un cambio dx en x la cantidad dy � f ¿(a)dx representa
el cambio en la linealización (el ascenso en la recta tangente en (a, f (a)).* Y cuando dx 0, el
cambio en la función es aproximadamente el mismo que el cambio en la linealización dy:

(9)

¢y

f ¿(a)¢x¢x

f (a � ¢x) � f (a)
¢x

�
¢y

¢x

¢x

¢y � f (a � ¢x) � f (a).

x1 � a � ¢x

¢y¢x

1x � 1 � 2 �
1
4

 (x � 3),

f (x) � L (x)

L (x) �
1
4x �

5
4

L (x) � 2 �
1
4

 (x � 3).

y � 2 �
1
4(x � 3)

FIGURA 5.8.3 Gráficas de
función y linealización en el
ejemplo 2

x

y
3

2

1

�1 1 2 3 4 5

(3, 2)
y �  

y �
1

x �

x �1

4
5
4

FIGURA 5.8.4 Interpretaciones
geométricas de dx, ¢y y dy

dy

�y

�x � dx

a � �x
x

y

a

(a, ƒ(a))

(a � �x, ƒ(a � �x))

y � ƒ(x)

* Por esta razón, la notación dy�dx de Leibniz para la derivada parece un cociente.

d la pendiente de la tangente en (3, 2) es 1
4 f ¿(3)

1
214

1
4

.

d el punto de tangencia es (3, 2) f (3) 14 2

¢x x1 a  y  ¢y f (x1) f (a).

¢y

¢x
f ¿(a)  o bien,   ¢y f ¿(a)¢x.

¢x dx  y  dy f ¿(a) dx.

¢y dy.

14.01 2
1
4

 (3.01 3) 2
0.01

4
2.0025.

13.95 2
1
4

 (2.95 3) 2
0.05

4
1.9875.

f (2.95) L (2.95)

f (3.01) L (3.01)

            

            

  

  
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EJEMPLO  3 Diferenciales

a) Encuentre y dy para .
b) Compare los valores de y dy para , .

Solución
a)

Luego, puesto que , por (11) de la definición 5.8.2 tenemos

(12)

Al volver a escribir como y usar , se obser-
va que y difieren por la cantidad

.
b) Cuando , 

mientras

Por supuesto, la diferencia en las respuestas es 

En el ejemplo 3, el valor es la cantidad exacta por la cual la función
cambia cuando x cambia de 6 a 6.02. La diferencial dy = 1.28 representa

una aproximación de la cantidad por la cual cambia la función. Como se muestra en (9), para un
cambio o incremento pequeño en la variable independiente, el cambio correspondiente 
en la variable dependiente puede aproximarse por la diferencial dy.

Otro repaso a la aproximación lineal Las diferenciales pueden usarse para aproximar el
valor . A partir de , obtenemos

Pero debido a (9), para un cambio pequeño en x puede escribirse como

Con la línea precedente es exactamente la misma que

(13)

La fórmula en (13) ya se ha visto bajo otra forma. Si se hace x � a y enton-
ces (13) se vuelve

(14)

El miembro derecho de la desigualdad en (14) se identifica como L(x) y (13) se vuelve
, que es el resultado proporcionado en (3).

EJEMPLO  4 Aproximación por diferenciales

Use (13) para aproximar (2.01)3.

Solución Primero se identifica la función Deseamos calcular el valor aproximado de
cuando x = 2 y Así, por (11),¢x � 0.01.f (x � ¢x) � (x � ¢x)3

f (x) � x3.

f (x) � L (x)

f (x) � f (a) � f ¿(a)(x � a).

dx � ¢x � x � a,

dy � f ¿(x) dx � f ¿(x)¢x

 f (x � ¢x) � f (x) � dy.

 f (x � ¢x) � f (x) � ¢y.

¢y � f (x � ¢x) � f (x)f (x � ¢x)

¢y¢x

f (x) � 5x2
� 4x � 1

¢y � 1.282

5 (¢x)2
� 5 (0.02)2

� 0.002.

dy � (10 (6) � 4)(0.02) � 1.28.

¢y � 10 (6)(0.02) � 4 (0.02) � 5 (0.02)2
� 1.282

¢x � 0.02:x � 6
5 (¢x)2

¢y � (10x � 4)¢x � 5 (¢x)2dy � (10x � 4)¢x
dx � ¢x¢y � (10x � 4)¢x � 5 (¢x)2¢y

dy � (10x � 4) dx.

f ¿(x) � 10x � 4

 � 10x¢x � 4¢x � 5 (¢x)2.

 � [5 (x � ¢x)2
� 4 (x � ¢x) � 1] � [5x2

� 4x � 1]

 ¢y � f (x � ¢x) � f (x)

¢x � dx � 0.02x � 6¢y
f (x) � 5x2

� 4x � 1¢y

Definición 5.8.2 Diferenciales

La diferencial de la variable independiente x es el número diferente de cero y se denota
por dx; es decir,

(10)

Si f es una función diferenciable en x, entonces la diferencial de la variable dependiente y se
denota por dy; es decir,

(11)

¢x

dy f ¿(x)¢x f ¿(x) dx.

dx ¢x.

 f (x ¢x) f (x) f ¿(x) dx.



Por tanto, (13) proporciona

Con x � 2 y , la fórmula precedente proporciona la aproximación

EJEMPLO  5 Aproximación por diferenciales

La arista de un cubo mide 30 cm con un error posible de . ¿Cuál es el máximo error
posible aproximado en el volumen del cubo?

Solución El volumen de un cubo es , donde x es la longitud de la arista. Si repre-
senta el error en la longitud de la arista, entonces el error correspondiente en el volumen es

Para simplificar la situación se utiliza la diferencial como una aproxima-
ción a Así, para x = 30 y el máximo error aproximado es

En el ejemplo 5, un error de alrededor de 54 cm3 en el volumen para un error de 0.02 cm en
la longitud de la arista parece considerable. Sin embargo, observe que si el error relativo (6) es

entonces el error relativo aproximado es dV/V. Cuando x = 30 y V = (30)3 = 27 000, el
error porcentual máximo es 54 27 000 = 1 500, y el error porcentual máximo es aproxima-
damente de sólo .

Reglas para diferenciales Las reglas para diferenciación consideradas en esta unidad pue-
den volver a plantearse en términos de diferenciales; por ejemplo, si u = f (x) y y = g(x) y y =
f (x) + g(x), entonces . Por tanto, dy = [f ¿(x) + g¿(x)] dx = f ¿(x) dx + g¿(x) dx

= du + dy. A continuación se resumen los equivalentes diferenciales de las reglas de la suma, el
producto y el cociente:

(15)

(16)

(17)

Como se muestra en el siguiente ejemplo, casi no es necesario memorizar las expresiones
(15), (16) y (17).

EJEMPLO  6 Diferencial de y

Encuentre dy para y = x2 cos 3x.

Solución Para encontrar la diferencial de una función, simplemente puede multiplicar su deri-
vada por dx. Así, por la regla del producto,

de modo que (18)

Solución alterna Al aplicar (16) obtenemos

(19)

Al factorizar dx en (19) obtenemos (18).

dy>dx � f ¿(x) � g¿(x)

�0.2%
>>¢V>V,

dV � 3(30)2(�0.02) � �54 cm3.

¢x � �0.02¢V.
dV � 3x2

 dx � 3x2¢x

¢V � (x � ¢x)3
� x3.

¢xV � x3

�0.02 cm

(2.01)3
� 23

� 3(2)2(0.01) � 8.12.

¢x � 0.01

(x � ¢x)3
� x3

� 3x2¢x.

dy � 3x2
 dx � 3x2¢x.
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 d (u>y) y du u dy

y2
.

 d (uy) u dy y du

 d (u y) du dy

 x2( sen  3x . 3 dx) cos 3x(2x dx).

 dy x2d (cos 3x) cos 3x d(x2)

 dy Qdy

dx
R . dx ( 3x2 sen  3x 2x cos 3x) dx.

 
dy

dx
x2( sen  3x . 3) cos 3x (2x)
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Fundamentos

En los problemas 1-8, encuentre una linealización de la fun-
ción dada en el número indicado.

1. 2.

3. 4.

5. 6.

7. 8.

En los problemas 9-16, use una linealización en a � 0 para
establecer la aproximación lineal local dada.
9. 10.

11. 12.

13. 14.

15. 16.

En los problemas 17-20, use un resultado idóneo de los proble-
mas 1-8 para encontrar una aproximación de la cantidad dada.

17. 18. 19. 20.

En los problemas 21-24, use un resultado idóneo de los proble-
mas 9-16 para encontrar una aproximación de la cantidad dada.

21. 22. (1.02)10 23. (0.88)1/3 24.

En los problemas 25-32, use una función idónea y una apro-
ximación lineal local para encontrar una aproximación de la
cantidad dada.
25. (1.8)5 26.

27. 28.

29. 30. sen 1°

31. sen 33° 32.

En los problemas 33 y 34, encuentre una linealización L(x) de
f en el valor dado de a. Use L(x) para aproximar el valor de la
función dado.
33. 34.

En los problemas 35-42, encuentre y dy.
35. 36.
37. 38.

39. 40.

41. y = sen x 42.

En los problemas 43 y 44, complete la tabla siguiente para
cada función.

43. 44.

45. Calcule la cantidad aproximada por la cual la función
cambia cuando x cambia de:

a) 4 a 4.03 b) 3 a 2.9.
46. a) Encuentre una ecuación de la recta tangente a la grá-

fica de en x � 1.
b) Encuentre la coordenada y del punto sobre la recta

tangente en el inciso a) que corresponde a x � 1.02.
c) Use (3) para encontrar una aproximación a f (1.02).

Compare su respuesta con la del inciso b).

47. El área de un círculo con radio r es .

a) Dado que el radio de un círculo cambia de 4 cm a 5
cm, encuentre el cambio exacto en el área.

b) ¿Cuál es el cambio aproximado en el área?

Aplicaciones
48. Según Poiseuille, la resistencia R de un vaso capilar de

longitud l y radio r es donde k es una constan-
te. Dado que l es constante, encuentre el cambio aproxi-
mado en R cuando r cambia de 0.2 mm a 0.3 mm.

49. Muchas pelotas de golf constan de una cubierta esférica
sobre un núcleo sólido. Encuentre el volumen exacto de
la cubierta si su grosor es t y el radio del núcleo es r.
[Sugerencia: El volumen de una esfera es
Considere esferas concéntricas cuyos radios son r y

.] Use diferenciales para encontrar una aproxima-
ción al volumen de la cubierta. Vea la FIGURA 5.8.7. En-
cuentre una aproximación al volumen de la cubierta si
r � 0.8 y t � 0.04 pulg.

FIGURA 5.8.7 Pelota de golf en el problema 49

Núcleo sólido

t

r � ¢r

V �
4
3 
pr3.

R � kl>r4,

A � pr2

f (x) � x3
� 3x2

f (x) � 4x2
� 5x � 8

y � 1>xy � 5x2

y � � 4 cos 2x

y �
1
x2

y �
3x � 1

x

y � x3y � (x � 1)2

y � 3x2
� 5x � 6y � x2

� 1
¢y

FIGURA 5.8.6 Gráfica
para el problema 34
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FIGURA 5.8.5 Gráfica
para el problema 33
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21�1

a � �2; f (�1.98)a � 1; f (1.04)

tan Qp
4

� 0.1Rcos Qp
2

� 0.4R (1.1)3
� 6 (1.1)2(0.9)4

(0.9) � 1

(7.9)2>3

14.11
1

(1.1)3

ln 0.9810.5 � e0.119.05(1.01)�2

13 1 � 4x � 1 �
4
3

 x
1

3 � x
�

1
3

�
1
9

 x

2x2
� x � 4 � 2 �

1
4

 x11 � x � 1 �
1
2

 x

(1 � 2x)�3
� 1 � 6x(1 � x)10

� 1 � 10x

tan x � xex
� 1 � x

f (x) �
1

13 � x
; a � 6f (x) � 11 � x; a � 3

f (x) � 5x � ex�2; a � 2f (x) � ln x; a � 1

f (x) � cos x; a � p>2f (x) � tan x; a � p>4 f (x) �
1
x2

; a � 1f (x) � 1x ; a � 9

x ¢x ¢y dy ¢y � dy

2 1

2 0.5

2 0.1

2 0.01

5.8 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-17.



50. Un tubo de metal hueco mide 1.5 m de longitud. En-
cuentre una aproximación al volumen del metal si el
radio interior mide 2 cm y el grosor del metal es 0.25 cm.
Vea la FIGURA 5.8.8.

51. El lado de un cuadrado mide 10 cm con un error posible
de . Use diferenciales para encontrar una aproxi-
mación al error máximo en el área. Encuentre el error
relativo aproximado y el error porcentual aproximado.

52. Un tanque de almacenamiento de petróleo en forma de
cilindro circular mide 5 m de altura. El radio mide 8 m
con un error posible de Use diferenciales para
estimar el error máximo en el volumen. Encuentre el error
relativo aproximado y el error porcentual aproximado.

53. En el estudio de ciertos procesos adiabáticos, la presión
P de un gas está relacionada con el volumen V que ocupa
por donde c y g son constantes. Demuestre
que el error relativo aproximado en P es proporcional al
error relativo aproximado en V.

54. El alcance de un proyectil R con velocidad inicial y0 y
ángulo de elevación u está dado por R = (y2

0�g)sen 2u,
donde g es la aceleración de la gravedad. Si y0 y u se man-
tienen constantes, demuestre entonces que el error porcen-
tual en el alcance es proporcional al error porcentual en g.

55. Use la fórmula en el problema 54 para determinar el
alcance de un proyectil cuando la velocidad inicial es
256 pies/s, el ángulo de elevación es 45� y la aceleración
de la gravedad es 32 pies/s2. ¿Cuál es el cambio aproxi-
mado en el alcance del proyectil si la velocidad inicial se
incrementa a 266 pies/s?

56. La aceleración debida a la gravedad g no es constante, ya
que varía con la altitud. Para efectos prácticos, en la
superficie terrestre, g se considera igual a 32 pies/s2, 980
cm/s2 o 9.8 m/s2.

a) A partir de la ley de la gravitación universal, la fuerza
F entre un cuerpo de masa m1 y la Tierra de masa m2

es donde k es una constante y r es
la distancia al centro de la Tierra. En forma alterna, la
segunda ley de movimiento de Newton implica

Demuestre que
b) Use el resultado del inciso a) para demostrar que

.
c) Sea r = 6 400 km en la superficie de la Tierra. Use el

inciso b) para demostrar que el valor aproximado de g
a una altitud de 16 km es 9.75 m/s2.

57. La aceleración debida la gravedad g también cambia con
la latitud. La International Geodesy Association ha defi-
nido g (a nivel del mar) como una función de la latitud u
como sigue:

g = 978.0318 (1 + 53.024 * 10-4 sen2 u - 5.9 * 10-6 sen2 2u),

donde g se mide en cm/s2.

a) Según este modelo matemático, ¿dónde es mínima g?
¿Dónde es máxima?

b) ¿Cuál es el valor de g a latitud 60� N?
c) ¿Cuál es el cambio aproximado en g cuando u cambia

de 60� N a 61� N? [Sugerencia: Recuerde usar medida
en radianes.]

58. El periodo (en segundos) de un péndulo simple de longi-
tud L es , donde g es la aceleración debida
a la gravedad. Calcule el cambio exacto en el periodo si
L se incrementa de 4 m a 5 m. Luego use diferenciales
para encontrar una aproximación al cambio en periodo.
Suponga g � 9.8 m/s2.

59. En el problema 58, dado que L es fijo a 4 m, encuentre
una aproximación al cambio en el periodo si el péndulo
se mueve a una altitud donde g � 9.75 m/s2.

60. Puesto que casi todas las placas de circulación son del
mismo tamaño (12 pulg de largo), un detector óptico
computarizado montado en la parte frontal del automóvil
A puede registrar la distancia D al automóvil B directa-
mente enfrente del automóvil A para medir el ángulo u
subtendido por la placa de circulación del automóvil B.
Vea la FIGURA 5.8.9.

a) Exprese D como una función del ángulo subtendido u.
b) Encuentre la distancia al automóvil de enfrente si el

ángulo subtendido u es 30 minutos de arco (es decir,
).

c) Suponga en el inciso b) que u decrece a razón de
2 minutos de arco por segundo, y que el automóvil A
se mueve a razón de 30 mi/h. ¿A qué razón se mueve
el automóvil B?

d) Demuestre que el error relativo aproximado al medir
D está dado por

donde es el error aproximado (en radianes) al
medir u. ¿Cuál es el error relativo aproximado en D
en el inciso b) si el ángulo subtendido u se mide con
un error posible de minuto de arco?

Piense en ello

61. Suponga que la función es diferenciable en un
número a. Si un polinomio tiene las pro-
piedades de que y demuestre
entonces que p(x) = L(x), donde L se define en (2).

62. Sin usar trigonometría, explique por qué para valores
pequeños de x, cos x � 1.

p¿(a) � f ¿(a),p(a) � f (a)
p(x) � c1x � c0

y � f (x)

�1

du

1
2°

FIGURA 5.8.9 Automóviles en el problema 60

Placa de
circulación

a)

b)

A B

D

D

� 1 pie

�

T � 2p1L>g

dg>g � �2dr>r g � km2>r2.F � m1g.

F � km1m2>r2,

P � c>Vg,
�0.25 m.

�0.3 cm

0.25 cm

1.5 m

2
cm

FIGURA 5.8.8 Tubo en el problema 50
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dD
D

du
sen u

,
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5.9 La regla de L’Hôpital
Introducción En las unidades 3 y 4 vimos cómo el concepto de límite conduce a la idea

de derivada de una función. En esta sección se invierte la situación. Vemos cómo la derivada
puede usarse para calcular ciertos límites con formas indeterminadas.

Terminología Recuerde que en la unidad 3 se consideraron límites de cocientes como

(1)

El primer límite en (1) tiene la forma indeterminada 0�0 en x = 1, mientras que el segundo
tiene la forma indeterminada . En general, decimos que el límite

tiene la forma indeterminada 0�0 en x � a si

y la forma indeterminada ��� en x � a si

Los signos de valor absoluto aquí significan que cuando x tiende a a es posible tener, por ejem-
plo,

; o bien,

; o bien,

,

y así sucesivamente. Un límite también puede tener una forma indeterminada como

Límites de la forma

donde k es una constante diferente de cero, no son formas indeterminadas. Merece la pena
recordar que:

• El valor de un límite cuya forma es 0�k o k�q es 0. (2)

• Un límite cuya forma es k�0 o q�k no existe. (3)

Al establecer si límites de cocientes como los que se muestran en (1) existen, usamos
manipulaciones algebraicas de factorización, cancelación y división. No obstante, recuerde que
en la demostración de (sen x)�x � 1 se usó un razonamiento geométrico elaborado. Sinlím

xS0

f (x) S �q, g (x) S �q

f (x) S �q, g (x) S q

f (x) S q, g (x) S �q

q>q
.lím

xS1
 
x2 3x 4

x 1
  y  lím

xSq 

2x2 x

3x2 1

lím
xSa

 
f (x)
g(x)

 f (x)S 0 y g (x)S 0 cuando xS a

 0 f (x) 0 Sq y 0g (x) 0 S q cuando xS a.

.xS a , xS a , xS q, o bien, xSq

63. Suponga que una función f y f ¿ son diferenciables en un
número a y que L(x) es una linealización de f en a.
Analice: Si para toda x en algún intervalo
abierto que contiene a a, L(x) ¿sobrestima o subestima
f (x) para x próximo a a?

64. Suponga que es un punto de inflexión para la grá-
fica de y = f(x) tal que y suponga también que
L(x) es una linealización de f en c. Describa a qué se pare-
ce la gráfica de en una vecindad de c.

65. El área de un cuadrado cuyo lado mide x es 
Suponga, como se muestra en la FIGURA 5.8.10, que cada

lado del cuadrado se incrementa por una cantidad En
la figura 5.8.10, identifique las áreas ¢A, dA y 

FIGURA 5.8.10 Cuadrado en el problema 65

�x

�x

x

x

¢A � dA.
¢x.

A � x2.

y � f (x) � L (x)

f –(c) � 0
(c, f (c))

f –(x) 7 0

Nota



embargo, la intuición algebraica y geométrica fracasan lamentablemente cuando intentan abor-
dar un problema del tipo

que tiene una forma indeterminada 0�0. El siguiente teorema es de utilidad cuando se demues-
tra una regla de suma importancia en la evaluación de muchos límites que tienen una forma
indeterminada.

Observe que el teorema 5.9.1 se reduce al teorema del valor medio cuando g(x) = x. Aquí
no se proporciona ninguna demostración de este teorema, que evoca la demostración del teo-
rema 5.3.2.

La siguiente regla se denomina así en honor del matemático francés G. F. A. L’Hôpital.

DEMOSTRACIÓN DEL CASO 0�0 Sea (r, s) el intervalo abierto. Como se supone que

también puede asumirse que f (a) = 0 y g(a) � 0. Concluimos que f y g son continuas en a.
Además, puesto que f y g son diferenciables, éstas son continuas sobre los intervalos abiertos
(r, a) y (a, s). En consecuencia, f y g son continuas en el intervalo (r, s). Luego, para cual-
quier en el intervalo, el teorema 5.9.1 es aplicable a [x, a] o [a, x]. En cualquier caso,
entre x y a existe un número c tal que

Al hacer implica , y entonces

EJEMPLO  1 Forma indeterminada 

Evalúe .

Solución Puesto que el límite dado tiene la forma indeterminada 0�0 en x � 0, por (4) es
posible escribir

0>0
c S ax S a

f (x) � f (a)
g (x) � g (a)

�
f (x)
g (x)

�
f ¿(c)
g¿(c)

.

x � a

Teorema 5.9.1 Teorema del valor medio ampliado

Sean f y g continuas sobre [a, b] y diferenciables sobre (a, b) y para toda x en (a, b).
Entonces en (a, b) existe un número c tal que

g¿  (x) � 0

Teorema 5.9.2 Regla de L’Hôpital

Suponga que f y g son diferenciables sobre un intervalo abierto que contiene al número a,
excepto posiblemente en a mismo, y que para toda x en el intervalo salvo posible-
mente en a. Si f (x) g(x) es una forma indeterminada, y f ¿(x) g ¿(x) = L o 
entonces

(4)

�q,>lím
xSa

>lím
xSa

g¿(x) � 0

lím
xS0

 
sen x

ex e x ,

f (b) f (a)
g (b) g (a)

f ¿(c)
g¿(c)

.

lím
xSa

  

f (x)
g (x)

lím
xSa

  

f ¿(x)
g¿(x)

.

,lím
xSa  

f (x) 0  y  lím
xSa

 g (x) 0

lím
xSa

 
f (x)
g (x)

lím
xSa

 
f ¿(c)
g¿(c)

lím
cSa

 
f ¿(c)
g¿(c)

lím
xSa

 
f ¿(x)
g¿(x)

.
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La letra h en cursiva arriba de la
primera desigualdad indica que
los dos límites son iguales como
resultado de aplicar la regla de
L’Hôpital.

lím
xS0

 
sen x

x

 lím
xS0

 
cos x

1
1
1

1.

lím
xS0

 
sen  x

x

h
lím
xS0

 

d
dx

 sen x

d
dx

 x
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EJEMPLO  2 Forma indeterminada 

Evalúe .

Solución Puesto que el límite dado tiene la forma indeterminada 0�0 en x � 0, se aplica (4):

El resultado proporcionado en (4) sigue siendo válido cuando se sustituye por límites
por un lado o por . La demostración para el caso puede obtenerse al
usar la sustitución en f (x) g(x) y al observar que es equivalente a .

EJEMPLO  3 Forma indeterminada 

Evalúe .

Solución Puesto que el límite dado tiene la forma indeterminada Así, por la regla de
L’Hôpital tenemos

En este último límite, cuando , mientras 1 permanece constante. En conse-
cuencia, por (2),

Al resolver un problema puede ser necesario aplicar varias veces la regla de L’Hôpital.

EJEMPLO  4 Aplicaciones sucesivas de la regla de L’Hôpital

Evalúe

Solución Resulta evidente que la forma indeterminada es de modo que por (4),

Puesto que el nuevo límite sigue teniendo la forma indeterminada aplicamos (4) por
segunda vez:

Hemos demostrado que

.

EJEMPLO  5 Aplicaciones sucesivas de la regla de L’Hôpital

Evalúe .

q>q,

q>q,

x S qxex S q

q>q.

q>q
t S 0�x S q>lím

xSq
x � 1>t x S qx S q, x S �q

x S a

lím
xS0

0>0
sen x

ex e x

 lím
xS0

 
cos x

ex e x
1

1 1
1
2

.

 lím
xS0

  
sen x

ex e x

h
lím
xS0

  

d
dx

 sen x

d
dx

 (ex e x)

lím
xSq

 
ln x
ex

.

lím
xSq

 
ln x
ex lím

xSq
 

1
xex 0

lím
xSq

 
ln x
ex

h
lím
xSq

 
1>x
ex lím

xSq
 

1
xex

lím
xSq

6x2 5x 7
4x2 2x

.

lím
xSq

 

12x 5
8x 2

h
lím
xSq

 

12
8

3
2

.

lím
xSq

 

6x2 5x 7
4x2 2x

h
lím
xSq

 

12x 5
8x 2

.

lím
xSq

6x2 5x 7
4x2 2x

3
2

lím
xSq

 

e3x

x2



Solución El límite dado y el límite obtenido después de una aplicación de la regla de
L’Hôpital tienen la forma indeterminada :

Después de la segunda aplicación de (4), observamos que mientras el denominador
permanece constante. A partir de ello concluimos que

En otras palabras, el límite no existe.

EJEMPLO  6 Aplicaciones sucesivas de la regla de L’Hôpital

Evalúe .

Solución Aplicamos (4) cuatro veces:

En aplicaciones sucesivas de la regla de L’Hôpital, algunas veces es posible cambiar un
límite de una forma indeterminada a otra; por ejemplo, a 0�0.

EJEMPLO  7 Forma indeterminada 

Evalúe 

Solución Se observa que tan t S - q y tan 3t S - q cuando t S p�2+. Entonces, por (4),

EJEMPLO  8 Límite por un lado

Evalúe .

Solución El límite dado tiene la forma indeterminada 0�0 en x = 1. Así, por la regla de L’Hôpital,

lím
xS1�

lím
t S p�2+

q>q q>q

lím
xS0

e3x S q

q>q
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.lím
xSq

 

e3x

x2

h
lím
xSq

3e3x

2x

h
lím
xSq

9e3x

2

.lím
xSq

e3x

x2
q

q

x4

e2x

 
h

lím
xSq

 
6

4e2x
0.

 
h

lím
xSq

 
6x

2e2x
 (q>q)

 
h

lím
xSq

 
12x2

4e2x
 (q>q)

 lím
xSq

 
x4

e2x

h
lím
xSq

 
4x3

2e2x
 (q>q)

tan t
tan 3t

.

 
h

lím
tSp>2  

6 cos 6t
2 cos 2t

6
2

3.

(0>0) lím
tSp>2  

sen 6t
sen 2t

 lím
tSp>2  

2 sen 3t cos 3t
2 sen  t cos  t

 
h

lím
tSp>2  

2 cos 3t ( 3 sen 3t)
6 cos  t ( sen t)

(0>0) lím
tSp>2  

cos2
 3t

3 cos2 t

(q>q) lím
tSp>2  

tan  t
tan  3t

h
lím

tSp>2  
sec2

 t

3 sec2
 3t

se vuelve a escribir usando la fórmula
del ángulo doble en el numerador
y en el denominador

d

se vuelve a escribir usando sec  t 1>cos td

ln x

2x 1

lím
xS1

ln x

1x 1

h
lím

xS1
 

1>x
1
2  
(x 1) 1>2 lím

xS1

21x 1
x

0
1

0.
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Otras formas indeterminadas Hay cinco formas indeterminadas adicionales:

(5)

Por medio de una combinación de álgebra y un poco de astucia a menudo es posible conver-
tir una de estas nuevas formas de límites ya sea a 0 0 o a .

La forma � � � El siguiente ejemplo ilustra un límite que tiene la forma indeterminada
. Este ejemplo debe anular cualquier convicción garantizada de que .

EJEMPLO  9 Forma indeterminada 

Evalúe .

Solución Se observa que (3x � 1) sen x S q y cuando . No obstante, des-
pués de escribir la diferencia como una fracción simple, se identifica la forma 0 0:

La forma Si

entonces f (x)g(x) tiene la forma indeterminada . Un límite que tiene esta forma puede

cambiarse a uno con la forma 0 0 o al escribir, a su vez,

EJEMPLO  10 Forma indeterminada 

Evalúe .

Solución Puesto que , tenemos sen(1 x) S 0 cuando . Por tanto, el límite
tiene la forma indeterminada . Al escribir

ahora tenemos la forma 0 0. Entonces,

En la última línea se usó el hecho de que cuando y cos 0 � 1.

Las formas 00, �0 y 1� Suponga que tiende a 00, o cuando . Al
tomar el logaritmo natural de y:

observamos que el miembro derecho de

ln y � g (x)ln f (x)lím
xSa

lím
xSa

x S a1qq0y � f (x)g (x)

x S q1>x S 0

>
0 . q

x S q>1>x S 0

0 . q

q>q> 0 . qlím
xSa

0 .

>x S 0�1>x S q>lím
xS0�

q�q

q�q � 0q�q

q>q>
q q, 0 . q, 00, q0 y 1q.

c 3x 1
sen x

1
x
d

f (x)S 0  y  0g (x) 0 Sq cuando xS a,

 
6 0
0 2

3.

 
h

lím
xS0

 

6 sen x
x sen  x 2 cos x

 
h

lím
xS0

6x 1 cos x
x cos x sen x

 lím
xS0
c 3x 1

sen x
1
x
d lím

xS0

3x2 x sen x
x sen x común denominadord

f (x) g(x)
f (x)

1>g(x)
  o bien,  f (x) g (x)

g(x)

1>f (x)
.

lím
xSq

 x sen  

1
x

 lím
xSq 

cos 

1
x

1.

 lím
xSq

 
sen  (1>x)

1>x h
lím
xSq

 
( x 2) cos (1>x)

( x 2)

lím
xSq

sen  (1>x)

1>x

ln y ln f (x)g (x) g (x)ln f (x)



tiene la forma . Si se supone que ln y � ln( y) � L, entonces

Por supuesto, el procedimiento que acaba de presentarse es aplicable a límites que implican

lím
xSa

lím
xSa

0 . q
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.xS a , xS a , xSq  o bien, xS q

lím
xSa  

y eL  o bien,  lím
xSa  

f (x)g (x) eL.

lím
xS0

ln y lím
xS0

1 1  o bien,  ln Q lím
xS0  

yR 1.

Q1 3
x
R2x

.

y Q1 3
x
R2x

  entonces  ln y 2x ln Q1 3
x
R.

lím
xSq

2  

ln(1 3>x)

1>x h
lím
xSq

2  

3>x2

(1 3>x)

1>x2
lím
xSq

  

6
(1 3>x)

6.

lím
xSq

 

2 ln Q1 3
x
R

1
x

.lím
xSq

 Q1 3
x
R2x

e 6

EJEMPLO  11 Forma indeterminada 00

Evalúe x1�ln x.

Solución Ya que cuando por (2) concluimos que Así, el
límite dado tiene la forma indeterminada 00. Luego, si se hace , entonces

Observe que en este caso no es necesaria la regla de L’Hôpital, ya que

Por tanto, y � e1 o de manera equivalente, x1�ln x
� e.lím

xS0�
lím
xS0�

ln y �
1

ln x
 ln x � 1.

y � x1>ln x
1>ln x S 0.x S 0�,ln x S �q

lím
xS0�

EJEMPLO  12 Forma indeterminada 

Evalúe 

Solución Ya que cuando , la forma indeterminada es . Si

Observe que la forma de 2x ln(1 � 3 x) es , mientras la forma de

es 0 0. Al aplicar (4) al último límite y simplificar obtenemos

A partir de ln y � lnA yB � �6 concluimos que y � e�6 olím
xSq

lím
xSq

lím
xSq

>

q . 0>lím
xSq

1qx S q1 � 3>x S 1

lím
xSq

1
q

Posdata: Un poco de historia Es cuestionable si el matemático francés Mar-
quis Guillaume François Antoine de L’Hôpital (1661-1704) descubrió la regla
que lleva su nombre. El resultado se debe probablemente a Johann Bernoulli. Sin
embargo, L’Hôpital fue el primero en publicar la regla en su texto Analyse des

Infiniment Petits. Este libro fue publicado en 1696 y es considerado como el pri-
mer libro de texto de cálculo.L’Hôpital
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Fundamentos

En los problemas 1-40, use la regla de L’Hôpital donde sea
idóneo para encontrar el límite dado, o concluya que no existe.

En los problemas 41-74, identifique el límite dado como una
de las formas indeterminadas proporcionadas en (5). Use la
regla de L’Hôpital donde sea idóneo para encontrar el límite
dado, o concluya que no existe.

5.9 DESARROLLE SU COMPETENCIA Las respuestas de los problemas impares comienzan en la página RES-18.

NOTAS DESDE EL AULA

i) En la aplicación de la regla de L’Hôpital, los estudiantes a veces interpretan mal

Recuerde que en la regla de L’Hôpital se utiliza el cociente de derivadas y no la deriva-

da del cociente.
ii) Analice un problema antes de saltar a su solución. El límite (cos x) x es de la forma

1 0 y, en consecuencia, no existe. La falta de previsión matemática al escribir

es una aplicación incorrecta de la regla de L’Hôpital. Por supuesto, la “respuesta” carece
de significado.

iii) La regla de L’Hôpital no es un remedio para todas las formas indeterminadas. Por ejem-
plo, ex�ex2

es ciertamente de la forma , pero

no es de ayuda práctica.
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En los problemas 75 y 76, identifique el límite dado.

Problemas con calculadora/SAC

En los problemas 77 y 78, use una calculadora o un SAC
para obtener la gráfica de la función dada para el valor de n
sobre el intervalo indicado. En cada caso, conjeture el valor
de f (x).

En los problemas 79 y 80, use 

,

donde n es un entero positivo, y la regla de L’Hôpital para
encontrar el límite.

Aplicaciones

81. Considere el círculo que se muestra en la FIGURA 5.9.1.

a) Si el arco ABC mide 5 pulg de longitud, exprese el
área A de la región oscura como una función del
ángulo indicado u. [Sugerencia: El área de un sector
circular es y la longitud del arco de un círculo
es ru, donde u se mide en radianes.]

b) Evalúe A(u)

c) Evalúe dA du

82. En ausencia de fuerzas de amortiguamiento, un modelo
matemático para el desplazamiento x(t) de una masa en
un resorte (vea el problema 60 en la sección “Desarrolle
su competencia 3.5”) cuando el sistema es activado sinu-
soidalmente por una fuerza externa de amplitud F0 y fre-
cuencia es

donde es la frecuencia de las vibraciones libres
(no excitadas) del sistema.

a) Cuando se dice que el sistema masa-resorte
está en resonancia pura, y el desplazamiento de la
masa se define por

Determine x(t) al encontrar este límite.
b) Use un dispositivo para graficar y analice la gráfica de

x(t) encontrada en el inciso a) en el caso en que
Describa el comportamiento del

sistema masa-resorte en resonancia pura cuando 

83. Cuando un gas ideal se expande a partir de la presión
p1 y volumen y1 hasta la presión p2 y volumen y2 tal
que (constante) durante toda la expansión, si

, entonces el trabajo realizado está dado por

a) Demuestre que

b) Encuentre el trabajo realizado en el caso en que
(constante) durante toda la expansión al hacer

en la expresión en el inciso a).

84. La retina es más sensible a fotones que penetran al ojo
cerca del centro de la pupila y menos sensible a la luz
que entra cerca del borde de la pupila. (Este fenómeno
se denomina efecto Stiles-Crawford del primer tipo.) El
porcentaje de fotones que llegan a los fotopigmentoss
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d .
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FIGURA 5.9.1 Círculo en el problema 81
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está relacionado con el radio de la pupila p (medido en
radianes) por el modelo matemático

Vea la FIGURA 5.9.2.

a) ¿Qué porcentaje de fotones llega a los fotopigmentos
cuando p � 2 mm?

b) Según la fórmula, ¿cuál es el porcentaje limitante
cuando el radio de la pupila tiende a cero? ¿Puede
explicar por qué parece ser más de 100%?

Piense en ello

85. Suponga que una función f tiene segunda derivada. Evalúe

86. a) Use una calculadora o un SAC para obtener la grá-
fica de

b) A partir de la gráfica en el inciso a), conjeture el
valor de f (x).

c) Explique por qué la regla de L’Hôpital no es válida
para f (x).lím

xSq

lím
xSq

s �
1 � 10�0.05p2

0.115p2
� 100.

Retina

Lente

Pupila
p

FIGURA 5.9.2 Ojo en el problema 84
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hS0

 

f (x h) 2 f (x) f (x h)
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x sen x
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.

Competencia final de la unidad 5
Las respuestas de los problemas impares comienzan en la página RES-18.

A. Falso/verdadero _____________________________________________________

En los problemas 1-20, indique si la afirmación dada es falsa (F) o verdadera (V).

1. Si f es creciente sobre un intervalo, entonces sobre el intervalo. _____

2. Una función f tiene un extremo en c cuando _____

3. Una partícula en movimiento rectilíneo desacelera cuando su velocidad y(t) disminuye. _____

4. Si la posición de una partícula en movimiento rectilíneo sobre una recta horizontal es
entonces la partícula acelera para t 7 1. _____

5. Si para toda x en el intervalo (a, b), entonces la gráfica de f es cóncava hacia abajo
sobre el intervalo. _____

6. Si entonces es un punto de inflexión. _____

7. Si f (c) es un máximo relativo, entonces y para x 6 c y para
x 7 c. _____

8. Si f (c) es un mínimo relativo, entonces _____

9. Una función f que es continua sobre un intervalo cerrado [a, b] tiene tanto un máximo abso-
luto como un mínimo absoluto sobre el intervalo. _____

10. Todo extremo absoluto también es un extremo relativo. _____

11. Si c 7 0 es una constante y , entonces es un punto de inflexión. _____

12. x � 1 es un número crítico de la función . _____

13. Si y sobre un intervalo I, entonces f � g es creciente sobre I. _____

14. Si sobre un intervalo I, entonces sobre I. _____

15. Un límite de la forma siempre tiene valor 0. _____

16. Un límite de la forma siempre es 1. _____

17. Un límite de la forma es indeterminado. _____

18. Un límite de la forma es indeterminado. _____

19. Si y son ambos de la forma entonces el primer límite no existe.

_____

q>q,lím
xSq

f ¿(x)
g¿(x)

lím
xSq

f (x)
g(x)

0>qq>q1q

q � q

f –(x) 7 0f ¿(x) 7 0

g¿(x) 7 0f ¿(x) 7 0

f (x) � 2x2
� 2x

(c, f (c))f (x) �
1
3  
x3

� cx2

f –(c) 7 0.

f ¿(x) 6 0f ¿(x) 7 0f ¿(c) � 0

(c, f (c))f –(c) � 0,

f –(x) 6 0

s (t) � t2
� 2t,

f ¿(c) � 0.

f ¿(x) 7 0



20. Para una forma indeterminada, la regla de L’Hôpital establece que el límite de un cociente
es lo mismo que la derivada del cociente. _____

B. Llene los espacios en blanco ___________________________________________

En los problemas 1-10, llene los espacios en blanco.

1. Para una partícula que se mueve rectilíneamente, la aceleración es la primera derivada de
__________.

2. La gráfica de un polinomio cúbico puede tener a lo sumo __________ punto(s) de inflexión.

3. Un ejemplo de una función y � f (x) que es cóncava hacia arriba sobre cóncava
hacia abajo sobre (0, q) y creciente sobre es ________.

4. Dos números no negativos cuya suma es 8 tales que la suma de sus cuadrados es máximo
son ________.

5. Si f es continua sobre [a, b], diferenciable sobre (a, b) y entonces en (a, b)
existe algún c tal que ________.

6. = para todo entero n.

7. La suma de un número positivo y su recíproco siempre es mayor que o igual a __________.

8. Si f (1) � 13 y entonces una linealización de f en a � 1 es __________ y
__________.

9. Si entonces __________.

10. Si entonces dy = __________.

C. Ejercicios __________________________________________________________

En los problemas 1-4, encuentre los extremos absolutos de la función dada sobre el intervalo
indicado.

1. 2.

3. 4.

5. Trace la gráfica de una función continua que tenga las propiedades:

6. Use las derivadas primera y segunda como ayuda para comparar las gráficas de

7. La posición de una partícula que se mueve sobre una línea recta está dada por

a) Grafique el movimiento sobre el intervalo de tiempo 
b) ¿En qué instante la función velocidad es máxima?
c) ¿Corresponde este instante a la rapidez máxima?

8. La altura por arriba del nivel del suelo alcanzada por un proyectil disparado verticalmente
es donde s se mide en metros y t en segundos.
a) ¿Cuál es la altura máxima alcanzada por el proyectil?
b) ¿A qué velocidad choca el proyectil contra el suelo?

9. Suponga que f es una función polinomial con ceros de multiplicidad 2 en x � a y x � b; es
decir,

donde g es una función polinomial.

f (x) � (x � a)2(x � b)2g(x)

s(t) � �4.9t 2
� 14.7t � 49,

[�1, 5] .
s (t) � �t3

� 6t2.

f (x) � (x2
� 3x � 5)1>2; [1, 3]f (x) �

x2

x � 4
; [�1, 3]

f (x) � 4x2
�

1
x

; [1
4, 1]f (x) � x3

� 75x � 150; [�3, 4]

y � x3e�x,

¢y �
.

y � x2
� x,

f (1.1) �

f ¿(x) � 5x2

,

lím
xSq

xn

ex

f ¿(c) �
.

f (a) � f (b) � 0,

(�q, q)
(�q, 0),
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.y x sen x  y  y x sen 2x

f ¿(x) 6 0,  x 7 2.

f ¿(x) 7 0,  06 x 6 2

f ¿(x) 7 0,  x 6 0

f ¿(0) 0,  f ¿(2) no existe

f (0) 1,  f (2) 3



a) Demuestre que f ¿ tiene por lo menos tres ceros en el intervalo cerrado [a, b].
b) Si g(x) es constante, encuentre los ceros de f ¿ en [a, b].

10. Demuestre que la función no satisface las hipótesis del teorema del valor medio
sobre el intervalo , aunque es posible encontrar un número c en (-1, 8) tal que

. Explique.

En los problemas 11-14, encuentre los extremos relativos de la función dada f. Grafique.

11. 12.

13. 14.

En los problemas 15-18, encuentre los extremos relativos y los puntos de inflexión de la función
dada f. No grafique.
15. 16.
17. 18.

En los problemas 19-24, relacione cada figura con una o más de las siguientes afirmaciones.
Sobre el intervalo correspondiente a la porción de la gráfica de y � f (x) mostrada:

a) f tiene una primera derivada positiva.
b) f tiene una segunda derivada negativa.
c) La gráfica de f tiene un punto de inflexión.
d) f es diferenciable.
e) f tiene un extremo relativo.
f ) Las pendientes de las rectas tangentes crecen cuando x crece.

19. 20.

21. 22.

23. 24.

25. Sean a, b y c números reales. Encuentre la coordenada x del punto de inflexión para la grá-
fica de

f (x) � (x � a)(x � b)(x � c).

x

y

y �ƒ(x)

FIGURA 5.R.6 Gráfica
para el problema 24

x

y

y �ƒ(x)

FIGURA 5.R.5 Gráfica
para el problema 23

x

y

y �ƒ(x)

FIGURA 5.R.4 Gráfica
para el problema 22

x

y

y �ƒ(x)

FIGURA 5.R.3 Gráfica para
el problema 21

x

y

y �ƒ(x)

FIGURA 5.R.2 Gráfica
para el problema 20

x

y

y �ƒ(x)

FIGURA 5.R.1 Gráfica
para el problema 19

f (x) � x(x � 1)5>2f (x) � 10 � (x � 3)1>3 f (x) � x6
� 3x4

� 5f (x) � x4
� 8x3

� 18x2

f (x) �
x2

� 2x � 2
x � 1

f (x) � 4x � 6x2>3
� 2

f (x) � x5
�

5
3

x3
� 2f (x) � 2x3

� 3x2
� 36x

f ¿(c) � [ f (b) � f (a)]>(b � a)
[�1, 8]

f (x) � x1>3
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26. Un triángulo se expande con el tiempo. El área del triángulo crece a razón de 15 pulg2/min,
mientras la longitud de su base decrece a razón de pulg/min. ¿A qué razón cambia la altu-
ra del triángulo cuando la altura mide 8 pulg y la base mide 6 pulg?

27. Un cuadrado está inscrito en un círculo de radio r, como se muestra en la FIGURA 5.R.7. ¿A qué
razón cambia el área del cuadrado en el instante en que el radio del círculo mide 2 pulg y
crece a razón de 4 pulg/min?

28. De un tanque hemisférico de 10 m de radio gotea agua a razón de , y ésta sale por
un orificio en la parte inferior del tanque a razón de Es posible demostrar que el
volumen del agua en el tanque en t es Vea la FIGURA 5.R.8.

a) La profundidad del agua, ¿aumenta o disminuye?
b) ¿A qué razón cambia la profundidad del agua cuando la profundidad es de 5 m?

29. Dos bobinas que conducen la misma corriente producen en el punto Q sobre el eje x un
campo magnético de intensidad

donde m0, r0 e I son constantes. Vea la FIGURA 5.R.9. Demuestre que el valor máximo de B ocu-
rre en x = 0.

30. Una batería con fem constante E y resistencia interna constante r está conectada en serie con
un resistor cuya resistencia es R. Entonces, la corriente en el circuito es 
Encuentre el valor de R para el que la potencia disipada en la carga externa es
máxima. Esto se denomina comparación de impedancia.

31. Cuando en el lado de un cilindro lleno de agua se perfora un orificio, la corriente resultan-
te choca contra el piso a una distancia x de la base, donde Vea la FIGURA

5.R.10.

a) ¿En qué punto debe hacerse el orificio de modo que la corriente alcance una distancia
máxima de la base?

b) ¿Cuál es la distancia máxima?

x � 21y (h � y).

P � RI 2
I � E>(r � R).

r0r0

x
0

Q

r0

2
r0

2
FIGURA 5.R.9 Bobinas en el problema 29

B �
1
2

 m0 
r 2

0 I e c r2
0 � ax �

1
2

 r0b2 d�3>2
� c r2

0 � ax �
1
2

 r0b2 d�3>2 f ,

10 m

h

FIGURA 5.R.8 Tanque en el problema 28

V � 10ph2
� (p>3)h3.

1
5 m

3/min.

1
10 m

3/min

FIGURA 5.R.7 Círculo
en el problema 27

1
2
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32. El área de un sector circular de radio r y longitud de arco s es Vea la FIGURA 5.R.11.
Encuentre el área máxima de un sector limitado por un perímetro de 60 cm.

33. Un chiquero, junto a un granero, se delimita usando cerca en dos lados, como se muestra en
la FIGURA 5.R.12. La cantidad de cerca que se usará mide 585 pies. Encuentre los valores de x
y y indicados en la figura de modo que se delimite la mayor área.

34. Un granjero desea usar 100 m de cerca para construir una valla diagonal que conecte dos
muros que se encuentran en ángulo recto. ¿Cómo debe proceder el granjero de modo que el
área limitada por los muros y la valla sea máxima?

35. Según el principio de Fermat, un rayo de luz que se origina en un punto A y se refleja en
una superficie plana hacia el punto B recorre una trayectoria que requiere el menor tiempo.
Vea la FIGURA 5.R.13. Suponga que la rapidez de la luz c, así como h1, h2 y d, son constantes.
Demuestre que el tiempo es mínimo cuando tan u1 = tan u2. Puesto que y

se concluye que En otras palabras, el ángulo de incidencia es igual
al ángulo de reflexión. [Nota: La figura 5.R.13 es inexacta a propósito.]

normal a la superficie

superficie
x

d

h2

h1

�1
�2

B

A

FIGURA 5.R.13 Rayos de luz reflejados en el problema 35

u1 � u2.0 6 u2 6 p>2,
0 6 u1 6 p>2

y

x

gr
an

ero

cerca

135°

FIGURA 5.R.12 Chiquero en el problema 33

s

r

A

FIGURA 5.R.11 Sector circular en el problema 32

A �
1
2rs.

h

Suelo

y

x

FIGURA 5.R.10 Tanque perforado en el problema 31
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36. Determine las dimensiones de un cono circular recto que tiene volumen mínimo V que cir-
cunscribe una esfera de radio r. Vea la FIGURA 5.R.14. [Sugerencia: Use triángulos semejantes.]

37. Un contenedor en forma de cilindro circular recto tiene un volumen de 100 pulg3. La parte
superior del contenedor cuesta tres veces por unidad de área que la parte inferior y los lados.
Demuestre que la dimensión con que se obtiene el menor costo de construcción es una altu-
ra igual a cuatro veces el radio.

38. Se va a elaborar una caja con cubierta hecha de una pieza rectangular de cartón de 30 pulg
de longitud y 15 pulg de ancho al cortar un cuadrado en un extremo del cartón y cortando
un rectángulo de cada esquina del otro extremo, como se muestra en la FIGURA 5.R.15.
Encuentre las dimensiones de la caja con que se obtiene el volumen máximo. ¿Cuál es el
volumen máximo?

En los problemas 39-48, use la regla de L’Hôpital para encontrar el límite.

corte

doblez doblez

a) b)

corte

FIGURA 5.R.15 Caja en el problema 38

A

B

C
D

Er

r

FIGURA 5.R.14 Esfera y cono
en el problema 36
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Sucesiones y series

En este apéndice La experiencia cotidiana brinda un sentimiento intuitivo de la noción
de una sucesión. Las palabras sucesión de eventos o sucesión de números sugiere un arreglo
en el que los eventos E o los números n se establecen en algún orden: o n1, n2,
n3, . . .

Cualquier estudiante de matemáticas también está familiarizado con el hecho de que
cualquier número real puede escribirse como un decimal. Por ejemplo, el número racional

donde los misteriosos tres puntos (una elipsis) significan que los tres dígitos se
repiten eternamente. Esto quiere decir que el decimal 0.333… es una suma infinita o la serie

infinita

En este apéndice se observará que los conceptos de sucesión y serie infinita están relacio-
nados.

1
3 � 0.333 p ,

E1, E2, E3, p

281

Apéndice

L � �

L � �

L

N

an

n
1 2 3 …

3

10

3

100

3

1 000

3

10 000
p .

A.1 Sucesiones
A.2 Sucesiones monótonas
A.3 Series
A.4 Prueba de la integral
A.5 Pruebas de comparación
A.6 Pruebas de las proporciones y de la raíz
A.7 Series alternantes
A.8 Series de potencias
A.9 Representación de funciones mediante series de potencias
A.10 Serie de Taylor
A.11 Serie del binomio



Notación y términos En lugar de la notación de función usual f (n), una sucesión suele deno-
tarse mediante o El entero n algunas veces recibe el nombre de índice de an. Los tér-
minos de la sucesión se forman dejando que el índice n tome los valores 1, 2, 3, . . . ; el número a1

es el primer término, a2 es el segundo término, y así en lo sucesivo. El número an se denomina el
término n-ésimo o el término general de la sucesión. De tal modo, {an} es equivalente a

Por ejemplo, la sucesión definida en el ejemplo 1 sería escrita 
En algunas circunstancias es conveniente tomar el primer término de una sucesión como a0

y la sucesión es entonces

EJEMPLO  2 Términos de una sucesión

Escriba los primeros cuatro términos de las sucesiones

a) b) c)

Solución Al sustituir n � 1, 2, 3, 4 en el término general respectivo de cada sucesión, obtenemos

a) b) 2, 6, 12, 20, c)

Sucesión convergente Para la sucesión del inciso a) del ejemplo 2, se ve que como el índi-
ce n se vuelve progresivamente más grande, los valores no se incrementan sin límite. En
realidad, observamos que cuando los términos

se aproximan al valor límite 0. Se afirma que la sucesión converge a 0. En contraste, los tér-
minos de las sucesiones en los incisos b) y c) no se aproximan a un valor límite cuando 
En general se tiene la siguiente definición.

n S q.
{ 1

2n}

1
2

, 
1
4

, 
1
8

, 
1
16

, 
1
32

, 
1
64

, p

n S q,
an �

1
2n

�1, 1, �1, 1, pp
1
2

, 
1
4

, 
1
8

, 
1
16

, p

{(�1)n}.{n2
� n}e 1

2n f

{(1 � 1>n)n}.

{an}
q
n�1.{an}

A.1 Sucesiones
Introducción Si el dominio de una función f es el conjunto de enteros positivos, entonces los

elementos f (n) en el rango pueden arreglarse en un orden correspondiente a los valores crecien-
tes de n:

En la discusión que sigue sólo se considerarán funciones cuyo dominio es el conjunto de ente-
ros positivos y cuyos elementos del rango son números reales.

EJEMPLO  1 Función con los enteros positivos como dominio

Si n es un entero positivo, entonces los primeros elementos en el rango de la función
son

Una función cuyo dominio es el conjunto completo de enteros positivos recibe un nombre
especial.

f(n) � (1 � 1>n)n

f(1),  f(2),  f(3), p ,  f(n), p
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Algunos textos utilizan las pala-
bras sucesión infinita. Cuando
el dominio de la función es un
subconjunto finito del conjunto
de los enteros positivos, obtene-
mos una sucesión finita. Todas
las sucesiones en este apéndice
serán infinitas.

Definición A.1.1 Sucesión

Una sucesión es una función cuyo dominio es el conjunto de enteros positivos.

1 2 3 n
cccc

a1, a2, a3, p , an, p números en el rangod

números en el dominiod

a0, a1, a2, a3, p , an, p

f(1) 2,  f(2)
9
4

,  f(3)
64
27

, p



EJEMPLO  3 Sucesión convergente

Use la definición A.1.2 para demostrar que la sucesión converge a 0.

Solución Intuitivamente, es posible ver a partir de los términos

que cuando el índice n aumenta sin límite los términos tienden al valor límite 0. Para probar la
convergencia, suponemos primero que está dado. Puesto que los términos de la sucesión
son positivos, la desigualdad es la misma que

1
1n

6 e.

0an � 0 0 6 e
e 7 0

1, 
1
12

, 
1
13

, 
1
2

, 
1
15

, p

{1>1n}
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Compare esta definición con la
redacción en la definición 3.6.5.

L � e

L � e

L

N

an

n
1 2 3 …

para n � N toda an

está en (L � e, L � e)

a)

L � e

L � e

L

N

an

n
1 2 3 …

b)

L � e

L � e

L

N

an

n
1 2 3 …

c)

L � e

L � e

L

N

an

n
1 2 3 …

d)

FIGURA A.1.1 Cuatro maneras en las que una sucesión puede converger a L

Definición A.1.2 Sucesión convergente

Se dice que una sucesión {an} converge a un número real L si para todo existe un
entero positivo N tal que

(1)

El número L se llama el límite de la sucesión.

e 7 0

Si una sucesión {an} converge, entonces su límite L es único.

Sucesión convergente Si {an} es una sucesión convergente, (1) significa que los términos
an pueden hacerse arbitrariamente cercanos a L para n suficientemente grande. Se indica que una
sucesión converge a un número L escribiendo

an = L.

Cuando {an} no converge, esto es, cuando an no existe, la sucesión diverge.
La FIGURA A.1.1 ilustra varias maneras en las cuales una sucesión {an} puede converger a un

número L. Las partes a), b), c) y d) de la figura A.1.1 muestran que para cuatro sucesiones con-
vergentes diferentes {an}, al menos un número finito de términos de an están en el intervalo

Los términos de la sucesión {an} que están en para se
representan por medio de puntos en la figura.

n 7 N(L � e, L � e)(L � e, L � e).

lím
nSq

lím
nSq

0an L 0 6 e siempre que n 7 N.



Esto es equivalente a 7 1 e o n 7 1 e2. En consecuencia, sólo se necesita elegir N como el
primer entero positivo mayor o igual que Por ejemplo, si se elige entonces

siempre que n 7 10 000.  Esto es, se elige N = 10 000.

En la práctica, para determinar si una sucesión {an} converge o diverge, debemos trabajar
directamente con an y proceder igual que al examinar el f (x). Si an aumenta o disminu-

ye sin límite cuando entonces {an} es necesariamente divergente y escribimos, respec-
tivamente,

(2)

En el primer caso en (2) afirmamos que {an} diverge a infinito y en el segundo que {an} diver-
ge a infinito negativo. Una sucesión tal vez diverja de manera distinta a la que se indica en (2).
El siguiente ejemplo ilustra dos sucesiones; cada una diverge de un modo diferente.

EJEMPLO  4 Sucesiones divergentes

a) La sucesión diverge a infinito, ya que (n2
� n) = q.

b) La sucesión es divergente puesto que (�1)n no existe. El término general
de la sucesión no se aproxima a una constante cuando como puede verse en el
inciso c) del ejemplo 2, el término (-1)n se alterna entre 1 y -1 cuando

EJEMPLO  5 Determinación de la convergencia

Determine si la sucesión converge o diverge.

Solución Al dividir el numerador y el denominador del término general entre n se obtiene

Aunque 3 (1 + 1 n) S 3 cuando n S q, el límite anterior sigue sin existir. Debido al factor
(-1)n, se observa que cuando 

La sucesión diverge.

Una sucesión, como aquella del inciso b) del ejemplo 4 y la del ejemplo 5, para la cual

se dice que diverge por oscilación.

Sucesión  de constantes Una sucesión de constantes

se escribe {c}. El sentido común indica que esta sucesión converge y que su límite es c. Vea la
figura A.1.1d). Por ejemplo, la sucesión {p} converge a p.

Al determinar el límite de una sucesión resulta muchas veces útil sustituir la variable discre-
ta n por una variable continua x. Si una función es f tal que cuando y el valor
de f en los enteros positivos, concuerda con los términos de

esto es,

entonces necesariamente la sucesión {an} converge al número L. La validez de este resultado se
ilustra en la FIGURA A.1.2.

f(1) � a1,  f(2) � a2,  f(3) � a3, p ,

{an},
a1, a2, a3, pf(1), f(2), f(3), p ,

x S qf (x) S L

L � 0,

n S q,
>>

e 3n(�1)n

n � 1
f

n S q.
n S q;

lím
nSq

{(�1)n}

lím
nSq

{n2
� n}

n S q,
lím
nSq

lím
nSq

01>1n � 0 0 � 1>1n 6 0.01
e � 0.01,1>e2.

>>1n
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x
1 2 3 4 5 …

y � ƒ(x)

ƒ(1) � a1

ƒ(2) � a2
ƒ(3) � a3

y

L

…

FIGURA A.1.2 Si cuando
entonces 

cuando n S q
f(n) � an S Lx S q,
f(x) S L

lím
nSq

an q   o  lím
nSq

an q.

lím
nSq

3n( 1)n

n 1
lím

nSq

3( 1)n

1 1>n .

anS 3, n par,  y  anS 3, n impar.

y lím
nSq

a2n 1 L,lím
nSq

a2n L

c, c, c, p



EJEMPLO  6 Empleo de la regla de L’Hôpital

Muestre que la sucesión converge.

Solución Si definimos entonces reconocemos que f (x) tiene la forma

indeterminada q0 cuando x S q. Por tanto, y utilizando la regla de L’Hôpital,

Esto demuestra que ln f (x) = ln[ f (x)] = 0 y que f (x) = e0 = 1. Por tanto, por (3)

tenemos (n + 1)1�n = e0 = 1. La sucesión converge a 1.

EJEMPLO  7 Sucesión convergente

Demuestre que la sucesión converge.

Solución Si entonces f (x) tiene la forma

indeterminada Por la regla de L’Hôpital,

De (3) del teorema A.1.1, la sucesión dada converge a 

EJEMPLO  8 Determinación de convergencia

Determine si la sucesión converge.

Solución Se continúa con la aplicación de la regla de L’Hôpital, se divide el numerador y el
denominador entre x y resulta que x (9x + 1) S cuando x S q. De tal modo, podemos escribir

La sucesión converge a 

Propiedades Las siguientes propiedades de sucesiones son análogas a las que se indicaron
en los teoremas 3.2.1, 3.2.2 y 3.2.3.

1
3
.

1
9>

eA n
9n � 1

f

10
3

.

q>q.

lím
nSq

f(x) �
x(4x � 1)(5x � 3)

6x3
� 2

�
20x3

� 17x2
� 3x

6x3
� 2

,

e n(4n � 1)(5n � 3)

6n3
� 2

f
lím
nSq

lím
nSq

lím
nSq

lím
nSq

lím
nSq

f (x) � (x � 1)1>x,
{(n � 1)1>n}
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Teorema A.1.1 Límite de una sucesión

Suponga que {an} es una sucesión y f es una función tal que para Si

(3)

n � 1.f(n) � an

Vea la sección 5.5 para un
repaso de cómo manejar la
forma q0.

lím
xSq

f(x) L  entonces  lím
nSq

an L.

lím
xSq

ln f(x) lím
xSq

ln(x 1)
x

h
lím
xSq

1
x 1

1
lím
xSq

1
x 1

0.

h
lím
xSq

120
36

10
3

.

h
lím
xSq

120x 34
36x

h
lím
xSq

60x2 34x 3
18x2

 lím
xSq

x(4x 1)(5x 3)

6x3 2
lím
xSq

20x3 17x2 3x

6x3 2

lím
nSqA n

9n 1 A lím
nSq

n
9n 1 A1

9
1
3
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EJEMPLO  10 Aplicaciones de los teoremas A.1.3 y A.1.4

a) La sucesión {e�n} converge a 0 por el teorema A.1.3, ya que y 

b) La sucesión diverge por el teorema A.1.3, ya que

c) La sucesión converge a 0 por el teorema A.1.2ii) y el teorema A.1.4, ya que

es un número racional positivo.

EJEMPLO  11 Determinación de convergencia

Del teorema A.1.2iii) y el teorema A.1.4 observamos que la sucesión converge a 10. e 10 �
4

n3>2 f
r �

5
2

e 4
n5>2 f

r �
3
2 7 1.e Q3

2
Rn fr � 1>e 6 1.

e�n
� Q1

e
Rn
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Teorema A.1.2 Límite de una sucesión

Sean {an} y {bn} sucesiones convergentes. Si an � L1 y bn � L2, entonces

i)

ii)

iii)

iv)

v)

lím
nSq

lím
nSq

Revise la sección 2.6, específi-
camente la figura 2.6.2.

Teorema A.1.3 Sucesiones de la forma {rn}

Suponga que r es una constante distinta de cero. La sucesión {rn} converge a 0 si y
diverge si 0r 0 7 1.

0r 0 6 1

Teorema A.1.4 Sucesiones de la forma {1/nr}

La sucesión converge a 0 para r cualquier número racional positivo.e 1
nr f

EJEMPLO  9 Determinación de convergencia

Determine si la sucesión converge.

Solución Observe que y cuando De acuerdo con el
teorema A.1.2v), tenemos

La sucesión converge a 

El primero de los siguientes dos teoremas debe ser verosímil de acuerdo con su conocimien-
to del comportamiento de la función exponencial. Recuerde que, para cuan-
do en tanto que para cuando x S q.b 7 1, bx S qx S q,

0 6 b 6 1, bx S 0

1
3
.

n S q.6 � 4e�n S 6 � 02 � 3e�n S 2

e 2 � 3e�n

6 � 4e�n f

nSq

an

bn

lím
nSq

an

lím
nSq

bn

L1

L2
, L2 0.

lím
nSq

anbn lím
nSq

an
. lím

nSq
bn L1

. L2

lím
nSq

(an bn) lím
nSq

an lím
nSq

bn L1 L2

lím
nSq

kan k lím
nSq

an kL1, k un número real

lím
nSq

c c, c un número real

lím

lím
nSq

2 3e n

6 4e n

lím
nSq

(2 3e n)

lím
nSq

(6 4e n)
2
6

1
3

.



Sucesión definida recursivamente Como el siguiente ejemplo indica, una sucesión puede
definirse especificando el primer término a1 junto con una regla para obtener los términos sub-
secuentes a partir de los términos precedentes. En este caso se dice que la sucesión está defini-
da recursivamente. La regla de definición se denomina fórmula de recursión. Vea los proble-
mas 59 y 60 en los ejercicios A.1.

EJEMPLO  12 Una sucesión definida recursivamente

Suponga que una sucesión se define recursivamente mediante an�1 � 3an � 4, donde a1 � 2.
Sustituyendo entonces n = 1, 2, 3, . . . se obtiene

y así sucesivamente.

Teorema de compresión El siguiente teorema es el equivalente de la sucesión del teorema 3.4.1.
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Teorema A.1.5 Teorema de compresión

Suponga que {an}, {bn} y {cn} son sucesiones tales que

para todos los valores de n mayores que algún índice N (esto es, n 7 N ). Si y con-
vergen a un límite común L, entonces {cn} también converge a L.

{bn}{an}

an � cn � bn

Factorial Antes de presentar un ejemplo que ilustre el teorema A.1.5, necesitamos revisar un
símbolo que aparece con frecuencia en esta unidad. Si n es un entero positivo, el símbolo n!, que
se lee “n factorial”, es el producto de los primeros n enteros positivos:

(4)

Por ejemplo, 5! . Una propiedad importante del factorial está dada por

n! !n.

Para ver esto, considere el caso cuando n � 6:

Enunciada de una manera un poco diferente, la propiedad n! !n es equivalente a

(5)

Un último punto: por propósitos de conveniencia y para asegurar que la fórmula 
es válida cuando n � 1, se define 0! � 1.

EJEMPLO  13 Determinación de convergencia

Determine si la sucesión converge.

Solución La convergencia o divergencia de la sucesión dada no es evidente ya que y
cuando Aun cuando la forma límite de (2n n!) es no es posible que

utilicemos la regla de L’Hôpital puesto que no hemos estudiado ninguna función f (x) = x! Sin
embargo, podemos recurrir al teorema A.1.5 manipulando algebraicamente el término general de
la sucesión. En vista de (4), el término general puede escribirse

q>q>lím
nSq

n S q.n! S q
2n S q

e 2n

n!
f

n! � (n � 1)!n

� (n � 1)

� (n � 1)

� 1 . 2 . 3 . 4 . 5 � 120

a4 3a3 4 3(34) 4 106

a3 3a2 4 3(10) 4 34

a2 3a1 4 3(2) 4 10
T

el número está dado como 2

n! 1 . 2 . 3 . . . (n 1) . n.

5!

.6!!6 1 . 2 . 3 . 4 . 5 . 6 (1 . 2 . 3 . 4 . 5) 6 5

⎞ ⎪ ⎬ ⎪ 

(n 1)! n!(n 1).

n factores de 2 n fracciones

2n

n!
2 . 2 . 2 . 2 . . . 2
1 . 2 . 3 . 4 . . . n

2
1

. 2
2

. 2
3

. 2
4

. . . 2
n

⎞ ⎪ ⎪ ⎬ ⎪ ⎪  ⎞ ⎪ ⎪ ⎬ ⎪ ⎪ 



De la línea anterior se obtiene la desigualdad

(6)

Las n � 2 fracciones de en el lado derecho de (6) resultan del hecho de que después del segun-
do factor en el producto de n fracciones, 3 es el denominador más pequeño que hace más
grande que más grande que y así sucesivamente hacia abajo hasta el último factor Por las
leyes de los exponentes (6) es lo mismo que

donde se han identificado las sucesiones y La
sucesión {an} es una de ceros y por ello converge a 0. La sucesión también con-
verge a 0 al invocar el teorema A.1.2ii) y el teorema A.1.3 con De tal manera que por
el teorema A.1.5, también debe converger a 0.

La sucesión en el ejemplo anterior también puede definirse recursivamente. Para n = 1,
Entonces por (5) y las leyes de los exponentes,

Así, es lo mismo que

(7)

Es posible usar la fórmula de recursión (7) como un medio alterno de encontrar el límite L de la
sucesión Puesto que se mostró que la sucesión es convergente tenemos an = L. Este

último enunciado es equivalente también a an+1 = L. Haciendo que en (7) y usando
las propiedades de límites podemos escribir

(8)

En la última línea se ve que L � 0 · L, lo cual implica que el límite de la sucesión es L � 0.
El último teorema para esta sección es una consecuencia inmediata del teorema A.1.5.

n S qlím
nSq

lím
nSq

{2n>n!}.

an�1 �
2

n � 1
an,  a1 � 2.

{2n>n!}

a1 � 21>1! � 2.

{cn} � {2n>n!}
r �

2
3 6 1.
{bn} � {9

2   
A23Bn}{cn} � {2n>n!}.{bn} {9

2 A23Bn}{an} � {0},

2
n.

2
5,

2
4,

2
3

2
3
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El resultado 

muestra que n! crece mucho
más rápido que 2n cuando
n S q. Por ejemplo, para
n � 10, 210

� 1 024, en tanto
que 10! � 3 628 800.

lím
nSq

2n

n!
0

Teorema A.1.6 Sucesión de valores absolutos

Si la sucesión converge a 0, entonces {an} converge a 0.{ 0an 0 }
DEMOSTRACIÓN Por la definición de valor absoluto, si y si

Se sigue que

(9)

Por suposición, converge a 0 y por ello 0an0 = 0. De la desigualdad (9) y el teorema
A.1.5 se concluye que an = 0. Por tanto, {an} converge a 0.

EJEMPLO  14 Empleo del teorema A.1.6

La sucesión converge a 0 puesto que ya se ha demostrado en el ejemplo 3 que la suce-

sión de valores absolutos converge a 0.{0 (�1)n>1n 0 } � {1>1n}
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Fundamentos

En los problemas 1-10, liste los primeros cuatro términos de
la sucesión cuyo término general es an.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

En los problemas 11-14, emplee la definición A.1.2 para
demostrar que cada sucesión converge al número dado L.

11. 12.

13. 14.

En los problemas 15-46, determine si la sucesión dada con-
verge. Si la sucesión converge, entonces encuentre su límite.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. {cos np} 30. {sen np}

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

En los problemas 47-52, encuentre una fórmula para el térmi-
no general an de la sucesión. Determine si la sucesión dada con-
verge. Si la sucesión converge, entonces encuentre su límite.

47.

48.

49.

50.

51.

En los problemas 53-56, para la sucesión dada definida recur-
sivamente, escriba los siguientes cuatro términos después del
(de los) término(s) inicial(es) indicado(s).

53.

54.

55.

56.

En los problemas 57 y 58, se sabe que la sucesión definida
recursivamente converge para un valor inicial dado 
Suponga que an = L, y proceda como en (8) de esta sec-
ción para encontrar el límite L de la sucesión.

57. 58.

En los problemas 59 y 60, encuentre una fórmula de recursión
que defina la sucesión dada.

59.

60.

En los problema 61-64, utilice el teorema de compresión para
establecer la convergencia de la sucesión dada.

61. 62.

64.

65. Demuestre que para cualquier número real x, la sucesión
converge a ex.{(1 � x>n)n}
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PROBLEMAS A.1 Las respuestas de los problemas impares comienzan en la página RES-18.
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66. Se sabe que la sucesión

converge a un número llamado constante de Euler.
Calcule los primeros 10 términos de la sucesión.

Aplicaciones

67. Una pelota se deja caer desde una altura inicial de 15 pies
sobre una plancha de concreto. Cada vez que rebota,
alcanza una altura de de su altura precedente. ¿A qué
altura llegará en su tercer rebote? ¿En su n-ésimo rebote?
Vea la FIGURA A.1.3.

68. Una pelota, que cae desde una gran altura, recorre 16 pies
durante el primer segundo, 48 pies durante el segundo, 80
pies durante el tercero, y así en lo sucesivo. ¿Cuál es la
distancia recorrida por la pelota durante el sexto segundo?

69. Un paciente toma 15 mg de un fármaco cada día. Su-
ponga que 80% del fármaco acumulado es excretado
cada día por las funciones corporales. Escriba los prime-
ros seis términos de la sucesión {An}, donde An es la can-
tidad de fármaco presente en el cuerpo del paciente inme-
diatamente después de la dosis n-ésima.

70. Se deposita un dólar en una cuenta de ahorros que paga
una tasa de interés anual r. Si no se extrae dinero, ¿cuál
es la cantidad de dinero acumulado en la cuenta después
del primero, segundo y tercer años?

71. Cada persona tiene dos padres. Determine cuántos tatata-
tarabuelos tiene cada persona.

72. La sucesión definida recursivamente

se denomina ecuación logística discreta. Una sucesión
de este tipo se utiliza a menudo para modelar una pobla-
ción pn en un ambiente; aquí p0 es la población inicial
en el ambiente. Determine la capacidad de transporte
K = pn del ambiente. Calcule los siguientes nueve
términos de la sucesión y demuestre que estos términos
oscilan alrededor de K.

Piense en ello

73. Considere la sucesión {an} cuyos primeros cuatro térmi-
nos son

a) Con a1 = 1, encuentre una fórmula de recursión que
defina a la sucesión.

b) ¿Cuáles son el quinto y el sexto términos de la suce-
sión?

c) Se sabe que la sucesión {an} converge. Encuentre el
límite de la sucesión.

74. Conjeture respecto al límite de la sucesión convergente

75. Si converge la sucesión {an}, ¿diverge la sucesión {an
2}?

Apoye su respuesta con argumentos matemáticos sólidos.
76. En la FIGURA A.1.4 el primer cuadrado que se muestra es de

1 unidad por lado. Un segundo cuadrado se construye
dentro del primer cuadrado conectando los puntos
medios del primero. Un tercer cuadrado se construye
conectando los puntos medios de los lados del segundo
cuadrado, y así en lo sucesivo.
a) Encuentre una fórmula para el área An del n-ésimo

cuadrado inscrito.
b) Considere la sucesión {Sn}, donde Sn = A1 + A2

+ Calcule los valores numéricos de los pri-
meros 10 términos de esta sucesión.

c) Conjeture acerca de la convergencia de {Sn}.

Proyectos

77. Un clásico matemático Considere un triángulo equilá-
tero con lados de longitud 1 como se muestra en la FIGU-

RA A.1.5a). Como se muestra en la figura A.1.5b), sobre
cada uno de los tres lados del triángulo se construye otro
triángulo equilátero con lados de longitud Como se
señala en las figuras A.1.5c) y A.1.5d), se continúa esta
construcción: se construyen triángulos equiláteros sobre
los lados de cada nuevo triángulo previo de modo tal que
la longitud de los lados del nuevo triángulo es la longi-
tud de los lados del triángulo anterior. Considere que el
perímetro de la primera figura es P1, el perímetro de la
segunda figura P2, y así en lo sucesivo.
a) Encuentre los valores de P1, P2, P3 y P4.
b) Encuentre la fórmula para el perímetro Pn de la

n-ésima figura.
c) ¿Cuál es el Pn? El perímetro de la región similar

a un copo de nieve que se obtuvo dejando se
llama curva del copo de nieve de Koch y fue inven-
tada en 1904 por el matemático sueco Helge von
Koch (1870-1924). La curva de Koch aparece en la
teoría de fractales.
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FIGURA A.1.4 Cuadrados
incrustados del problema 76
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78. Un poco de historia: ¿Cuántos conejos? Además de
su famosa torre inclinada, la ciudad de Pisa, Italia, se

conoce también como el lugar natal de
Leonardo Pisano, alias Leonardo
Fibonacci (1170-1250). Fibonacci fue
el primero en Europa en introducir el
sistema de lugares decimales hindú-
árabe y el uso de los numerales arábi-
gos. Su libro Liber Abacci, publicado

en 1202, es básicamente un texto acerca de cómo hacer
aritmética en este sistema decimal. Sin embargo, en
el capítulo 12 de Liber Abacci, Fibonacci plantea y
resuelve el siguiente problema sobre la reproducción de
conejos:

¿Cuántos pares de conejos se reproducirán en un año empe-

zando con un solo par, si cada mes cada par tiene un

nuevo par que se vuelve fértil a partir del segundo mes en

adelante?

Distinga el patrón de la solución de este problema y com-
plete la siguiente tabla.

79. Escriba cinco términos, después de los dos iniciales, de la
sucesión definida recursivamente por medio de Fn+1 = Fn

+ Fn-1, Reexamine el problema 78.

80. Razón áurea Si la fórmula de recursión del problema
79 se divide entre Fn, entonces

Si se define entonces la sucesión {an} se
define recursivamente por medio de

Se sabe que la sucesión {an} converge en la razón áurea
f = an.

a) Encuentre f.
b) Escriba un pequeño informe acerca del significado del

número f que incluya la relación entre este número y
la forma del caparazón de cámaras múltiples del nau-
tilo. Vea la foto en el inicio de este apéndice.

lím
nSq

an � 1 �
1

an�1
, a1 � 1, n � 2.

an � Fn�1>Fn,

Fn�1
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FIGURA A.1.5 Regiones de copos de
nieve del problema 77
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A.2 Sucesiones monótonas
Introducción En la sección anterior se demostró que una sucesión {an} convergía al deter-

minar an. Sin embargo, no siempre es fácil o incluso posible determinar si una sucesión {an}

converge buscando el valor exacto de an. Por ejemplo, ¿la sucesión

converge? Resulta que es posible demostrar que esta sucesión converge, pero no utilizando las
ideas básicas de la última sección. En esta sección se considera un tipo especial de sucesión cuya
convergencia puede establecerse sin determinar el valor de {an}.

Empezamos con una definición.

e1 �
1
2

�
1
3

 � p � 
1
n

� ln n f
lím
nSq

lím
nSq

Inicios Después de cada mes

1 2 3 4 5 6 7 8 9 10 11 12

Parejas
adultas 1 1 2 3 5 8 13 21

Parejas
de bebés 0 1 1 2 3 5 8 13

Total de
parejas 1 2 3 5 8 13 21 34



En otras palabras, sucesiones del tipo

son crecientes y decrecientes, respectivamente. Mientras,

son sucesiones no decrecientes y no crecientes, respectivamente. Las nociones de no decrecien-

te y no creciente permiten que algunos términos adyacentes en una sucesión resulten iguales.

EJEMPLO  1 Monótona/no monótona

a) Las tres sucesiones

son monótonas. Éstas son, respectivamente, creciente, decreciente y no creciente.
b) La sucesión es no monótona.

No siempre resulta evidente si una sucesión es creciente, decreciente, y así en lo sucesivo.
Las siguientes guías ilustran algunas de las maneras en que puede demostrarse la monotonía.

�1, 12, �
1
3, 

1
4, �

1
5, p

a1 � a2 � a3 � p � an � an�1 � p ,

a1 � a2 � a3 � p � an � an�1 � p

a1 7 a2 7 a3 7 p 7 an 7 an�1 7 p ,

a1 6 a2 6 a3 6 p 6 an 6 an�1 6 p
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Definición A.2.1 Sucesión monótona

Una sucesión {an} se dice que será

i) creciente si an+1 7 an para toda n � 1,
ii) no decreciente si an+1 � an para toda n � 1,

iii) decreciente si an+1 6 an para toda n � 1,
iv) no creciente si an+1 � an para toda n � 1,

Si una sucesión {an} es de alguno de los tipos anteriores, se dice entonces que es monótona.

Guías para demostrar la monotonía

i) Formar una función f (x) tal que f (n) � an. Si entonces {an} es cre-
ciente. Si entonces {an} es decreciente.

ii) Formar el cociente an�1 an donde para toda n. Si para toda
n, entonces {an} es creciente. Si para toda n, entonces {an} es
decreciente.

iii) Formar la diferencia an�1 � an. Si para toda n, entonces {an} es
creciente. Si para toda n, entonces {an} es decreciente.an�1 � an 6 0

an�1 � an 7 0

an�1>an 6 1
an�1>an 7 1an 7 0>f ¿(x) 6 0,

f ¿(x) 7 0,

EJEMPLO  2 Una sucesión monótona

Demuestre que es una sucesión monótona.

Solución Si se define f (x) � x�ex, entonces f (n) � an. En este caso,

para implica que f es decreciente sobre De ese modo se concluye que

Por la definición A.2.1, la sucesión dada es decreciente.

f (n � 1) � an�1 6 f (n) � an.

[1, q).x 7 1

f ¿(x) �
1 � x

ex 6 0

e n
en f
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, p   y  5, 5, 4, 4, 4, 3, 3, 3, 3, p



Solución alterna Del cociente

vemos que an+1 6 an para toda n � 1. Esto demuestra que la sucesión es decreciente.

EJEMPLO  3 Una sucesión monótona

La sucesión o parece ser creciente. De

se concluye que an+1 7 an para toda n � 1. Eso demuestra que la sucesión es creciente.

an�1 � an �
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Definición A.2.2 Sucesión acotada

i) Una sucesión {an} se dice que está acotada por arriba si hay un número positivo M
tal que para toda n.

ii) Una sucesión {an} se dice que está acotada por abajo si hay un número positivo m

tal que para toda n.
iii) Una sucesión {an} se dice que está acotada si está acotada por arriba y acotada por abajo.

an � m

an � M

Teorema A.2.1 Condición suficiente para la convergencia

Una sucesión monótona acotada {an} converge.

En realidad, del ejemplo 3
advertimos que los términos de
la sucesión están acotados por
abajo por el primer término de
la sucesión.

Desde luego, si una sucesión {an} no está acotada, entonces se afirma que es no acotada.
Una sucesión no acotada es divergente. La sucesión de Fibonacci (vea los problemas 78 y 79 en
los ejercicios A.1)

es no decreciente y es un ejemplo de una sucesión no acotada.
La sucesión en el ejemplo 1 es acotada puesto que para toda n.

Cualquier número más pequeño que una cota inferior m de una sucesión también es una cota
inferior y cualquier número mayor que una cota superior M es una cota superior; en otras pala-
bras, los números m y M en la definición A.2.2 no son únicos. Para la sucesión es
igualmente cierto que para toda .

EJEMPLO  4 Una sucesión acotada

La sucesión está acotada por arriba por 2, ya que la desigualdad

muestra que para Además,

para muestra que la sucesión está acotada por abajo por 0. De tal modo, para
toda n implica que la sucesión está acotada.

El siguiente resultado será útil en las secciones subsecuentes de este apéndice.

0 � an � 2n � 1

an �
2n � 1
n � 1

� 0

n � 1.an � 2

2n � 1
n � 1

�
2n � 2
n � 1

�
2(n � 1)

n � 1
� 2

e 2n � 1
n � 1

f
n � 1�2 � an � 2

1, 12, 
1
4, 

1
8, p

0 � an � 11, 12, 
1
4, 

1
8, p

1, 1, 2, 3, 5, 8, 13, 21, p



DEMOSTRACIÓN Demostraremos el teorema en el caso de una sucesión no decreciente. Por
suposición, {an} está acotada y por ello para toda n. A su vez, esto significa que el
conjunto infinito de términos está acotado por arriba y por tanto tiene
una cota superior mínima o más pequeña L. La sucesión en realidad converge a L. Para
sabemos que y consecuentemente no es una cota superior de S (no hay cotas
superiores más pequeñas que la cota superior mínima). En consecuencia, existe un entero posi-
tivo N tal que Pero, puesto que {an} es no decreciente,

Se concluye que para o De la definición A.1.2 deter-
minamos que an = L.

EJEMPLO  5 Acotada y monótona

Se demostró que la sucesión es monótona (ejemplo 3) y acotada (ejemplo 4). Por

consiguiente, por el teorema A.2.1 la sucesión es convergente.

EJEMPLO  6 Determinación de convergencia

Demuestre que la sucesión converge.

Solución Primero, el cociente

muestra que para toda n. La sucesión es monótona puesto que es decreciente. Luego,
de la desigualdad

se observa que la sucesión está acotada. Se concluye del teorema A.2.1 que la sucesión es con-
vergente.

El teorema A.2.1 es útil para probar que la sucesión {an} converge, esto es, an = L, pero
el teorema no brinda el número específico L. Sin embargo, el siguiente ejemplo muestra cómo
determinar L cuando la sucesión se define recursivamente.

EJEMPLO  7 Determinación de convergencia

Demuestre que la sucesión {an} definida por la fórmula de recursión 
converge.

Solución Primero, la sucesión {an} está acotada. Puede demostrarse que an 6 8, para toda n.
Este hecho se sugiere al calcular an para 

Como para toda n, se tiene que 0 6 an 6 8 para toda n. De tal modo, {an} está acotada.
Luego, demostraremos que la sucesión {an} es monótona. Debido a que necesaria-

mente Por tanto, de la fórmula de recursión,

Esto demuestra que para toda n, y por ello la sucesión es creciente.an�1 7 an
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1
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�an � L� 6 e.n 7 N, L � e � an � L � e

L � e � aN � aN�1 � aN�2 � aN�3 � p � L � e.

aN 7 L � e.

L � eL � e 6 L,
e 7 0

S � {a1, a2, a3, p , an, p}
m � an � M
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La existencia de una cota supe-

rior mínima, esto es, una cota
superior que es más pequeña
que todas las demás cotas supe-
riores de la sucesión, es uno de
los axiomas básicos en matemá-
ticas. Recibe el nombre de pro-
piedad de completitud del sis-
tema de números reales (ver
unidad 1).

Esto puede probarse utilizando
un método llamado inducción

matemática.

¿Por qué el producto

es

menor que 1?

1
2

. 3
4

. 5
6

. 7
8

 . . . 2n 1
2n



Como {an} es acotada y monótona, se sigue del teorema A.2.1 que la sucesión converge.
Puesto que debemos tener an � L y an�1 � L, el límite de la sucesión se determina a
partir de la fórmula de recursión:

Al resolver la última ecuación para L encontramos que L � 6 o L � 8.3
4

lím
nSq

lím
nSq
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Fundamentos

En los problemas 1-12, determine si la sucesión dada es
monótona. Si es así, indique si es creciente, decreciente o no
decreciente o no creciente.

1. 2.

3. 4.

5. 6.

7.

9. 10.

11. {(sen 1)(sen 2) . . . (sen n)} 12.

En los problemas 13-24, utilice el teorema A.2.1 para demos-
trar que la sucesión dada converge.

13. 14.

15. 16. 5n5�n6e 3n

1 � 3n f
e 6 � 4n2

1 � n2
fe 4n � 1

5n � 2
f

e ln an � 2
n�1

b f
5n2

� (�1)nn6en �
1
n
f

e 2n

n!
f

e en

n5
fe en

n
f {(n � 1)(n � 2)}{(�1)n1n}

e 10 � n
n
fe n

3n � 1
f

NOTAS DESDE EL AULA

i) Toda sucesión convergente {an} está necesariamente acotada. Vea el problema 31 en los
ejercicios A.2. No obstante, no se concluye que toda sucesión acotada es convergente. Se
le pedirá que dé un ejemplo que ilustre este último enunciado en el problema 30 de los
ejercicios A.2.

ii) Algunas sucesiones {an} no exhiben comportamiento monótono hasta algún punto en la
sucesión, esto es, hasta que el índice satisface donde N es algún entero positivo.
Por ejemplo, los términos de la sucesión para son:

(1)

Para observar mejor lo que está ocurriendo en (1), se aproximarán los términos utilizan-
do números redondeados hasta dos decimales:

(2)

En (2) vemos que los primeros cuatro términos de aumentan de manera eviden-
te, pero empezando con el cuarto término los términos parecen empezar a no crecer. Esto
se prueba a partir de la versión definida recursivamente de la sucesión. Procediendo
como se hizo al obtener la fórmula de recurrencia en (7) en la sección A.1, es la 

misma que Puesto que para observamos que

esto es, es no creciente sólo para De la misma manera, es fácil
demostrar que se vuelve a la larga no creciente sólo cuando Tomando
el límite de la fórmula de recursión como como en el ejemplo 7, es posible
demostrar que tanto como convergen a 0.{100n>n!}{5n>n!}

n S q,
n � 99.{100n>n!}

n � 4.{5n>n!}an�1 � an,

n � 4
5

n � 1
� 1an�1 �

5
n � 1

 an, a1 � 5.

{5n>n!}

{5n>n!}

n � 1, 2, 3, 4, 5, 6, p55n>n!6n � N,

a

PROBLEMAS A.2 Las respuestas de los problemas impares comienzan en la página RES-19.

L
1
4

L 6.

 lím
nSq

an 1
1
4

lím
nSq

an 6

 lím
nSq

an 1 lím
nSq
a1

4
an 6b

5,
25
2

,
125
6

,
625
24

,
625
24

,
3 125
144

, p

5, 12.5, 20.83, 26.04, 26.04, 21.70, p

.8 e 22n(n!)2

(2n)!
f



17. 18.

19. 20.

21. 22.

23.

24.

En los problemas 25 y 26, use el teorema A.2.1 para demos-
trar que la sucesión definida recursivamente converge. En-
cuentre el límite de la sucesión.

25. 26.

27. Exprese

como una sucesión {an} definida recursivamente. Utilice
el hecho de que la sucesión está acotada, 
para toda n, para demostrar que {an} es creciente. En-
cuentre el límite de la sucesión.

28. Recurra al teorema A.2.1 para demostrar que la sucesión
definida recursivamente

es acotada y monótona y en consecuencia converge.
Explique por qué la fórmula de recursión no es de ayuda
para determinar el límite de la sucesión.

Aplicaciones

29. Ciertos estudios en administración pesquera argumentan
que el tamaño de una población de peces no perturbada
cambia de un año al siguiente de acuerdo con la fórmula

donde es la población después de n años, y a y b
son parámetros positivos que dependen de las especies y
de su ambiente. Suponga que el tamaño de una población
p0 se introduce en el año 0.

a) Emplee la fórmula de recursión para demostrar que
los únicos valores límite posibles para la sucesión
{pn] son 0 y b � a.

b) Demuestre que 
c) Utilice el resultado del inciso b) para demostrar que

si entonces la población muere; esto es,
pn = 0.

d) Suponga ahora Demuestre que si 0 6 p0 6 b - a,
entonces la sucesión {pn} es creciente y está acotada
por arriba por b - a. Demuestre que si 0 6 b - a 6 p0,
entonces la sucesión {pn} es decreciente y acotada por
abajo por b - a. Concluya que pn = b - a para

cualquier [Sugerencia: Examine 0b - a - pn+1 0 ,
la cual es la distancia entre pn+1 y 0b - a 0 .]

Piense en ello

30. Proporcione un ejemplo de una sucesión acotada que no
es convergente.

31. Demuestre que toda sucesión convergente {an} está aco-
tada. [Sugerencia: Puesto que {an} es convergente, se
sigue de la definición A.1.2 que existe una N tal que

siempre que 

32. Demuestre que converge. [Sugerencia: Para

33. Un clásico matemático Demuestre que la sucesión

es acotada y monótona, y, en consecuencia, convergente.
El límite de la sucesión se denota por medio de g y se
llama constante de Euler en honor al notable matemáti-
co suizo Leonhard Euler (1707-1783). Del problema 66
del ejercicio A.1, g 0.5772 . . . [Sugerencia: Primero
demuestre la desigualdad

considerando el área bajo la gráfica de y � 1�x sobre el
intervalo [1, n].]

e�x2

� e�x. ]x 7 1,
{�n

1e
�t2

dt}

n 7 N. ]0an � L 0 6 1

p0 7 0.
lím
nSq

a 6 b.

lím
nSq

a 7 b,

pn�1 6 (b>a) pn.

pn 7 0

pn�1 �
bpn

a � pn
, n � 0,

an�1 � a1 �
1
n2
b an, a1 � 2, a2 � 1, n � 2

0 6 an 6 7

17, 2717, 272717, . . .

an�1 � 12 � an, a1 � 0an�1 �
1
2

 an � 5, a1 � 1

13, 213, 2213, p

(0.8), (0.8)2, (0.8)3, p

e ln (n � 3)
n � 3

f{tan 
�1n}

e 2 . 4 . 6 p (2n)
1 . 3 . 5 p (2n � 1)

fe n!
1 . 3 . 5 p (2n � 1)

f
e n!

nn f{e1>n}
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A.3 Series
Introducción El concepto de una serie se relaciona estrechamente con el concepto de suce-

sión. Si {an} es la sucesión entonces la suma de los términos

(1)

se llama serie infinita, o simplemente una serie. Las ak, k � 1, 2, 3, . . . , se denominan los tér-
minos de la serie y an se llama el término general. Escribimos (1) de manera compacta utili-
zando la notación de sumatoria como

o por conveniencia a ak.a
q

k�1
ak

a1, a2, a3, p , an, p ,

a1 a2 a3
p an

p

1
2

1
3
p 1

n 1
1
n
6 ln n 6 1

1
2

1
3
p 1

n 1

e1
1
2

1
3

p 1
n

ln nf



La pregunta que deseamos responder en ésta y en varias de las secciones siguientes es:

• ¿Cuándo una serie infinita de constantes “suma” un número?

EJEMPLO  1 Una serie infinita

En los comentarios de inicio de este apéndice se advirtió que la representación decimal de un
número racional es, de hecho, una serie infinita

De manera intuitiva, esperamos que sea la suma de la serie Sin embargo, de
manera intuitiva, esperamos que una serie infinita tal como

donde los términos se vuelven más y más grandes, no tenga suma. En otras palabras, no se espe-
ra que la serie última “sume” o converja a un número cualquiera. El concepto de convergencia
de una serie infinita se define en términos de la convergencia de un tipo especial de sucesión.

Sucesión de sumas parciales Asociada con toda serie finita existe una sucesión de
sumas parciales {Sn} cuyos términos están definidos por

El término general de esta sucesión se denomina la suma
parcial n-ésima de la serie.

EJEMPLO  2 Una serie infinita

La sucesión de sumas parciales {Sn} para la serie es

En el ejemplo 2, cuando n es muy grande, Sn dará una buena aproximación a de modo que
parece razonable escribir

Esto lleva a la siguiente definición.

1
3,

gq
k�1

3
10k

Sn � a1 � a2 � p � an � g n
k�1ak

o

 Sn � a1 � a2 � a3 � p � an

o

 S3 � a1 � a2 � a3

 S2 � a1 � a2

 S1 � a1

a ak,

gq

k�1
3

10k
.1

3

0.333 p �
3

10
�

3
102

�
3

103
� p �a

q

k�1

3
10k

.

1
3
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1
3

lím
nSq

Sn lím
nSqa

n

k 1

3
10k a

q

k 1

3
10k

.

100 1 000 10 000 100 000 p

3 n

o

Sn
3
10

3
102

3
103

p 3
10n 0.333 p 3

o

S3
3
10

3
102

3
103

0.333

S2
3
10

3
102

0.33

S1
3
10

0.3
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EJEMPLO  3 Empleo de la sucesión de sumas parciales

Demuestre que la serie es convergente.

Solución Por fracciones parciales el término general an de la serie puede escribirse como

De tal modo, la suma parcial n-ésima de la serie es

De la última línea observamos que 1�(n � 5) � 0, y por ello

En consecuencia, la serie converge y se escribe

Serie telescópica Debido a la manera en la cual el término general de la sucesión de sumas
parciales “colapsa” hasta dos términos, la serie en el ejemplo 3 se dice que es una serie telescó-
pica. Vea los problemas 11-14 en los ejercicios A.3.

Serie geométrica Otro tipo de serie que puede probarse como convergente o divergente a
partir directamente de su sucesión de sumas parciales tiene la forma

(2)

donde y r son números reales fijos. Una serie de la forma (2) se llama serie geométrica.
Advierta en (2) que cada término después del primero se obtiene al multiplicar el término pre-
cedente por r. El número r se denomina la razón común y, como se ve en el siguiente teorema,
su magnitud determina si una serie geométrica converge o diverge.

a � 0

a
q

k�1

1
(k � 4)(k � 5)

�
1
5

.

lím
nSq

an �
1

n � 4
�

1
n � 5

.

a
q

k�1

1
(k � 4)(k � 5)
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Definición A.3.1 Serie convergente

La serie infinita se dice que es convergente si su sucesión de sumas parciales
converge; esto es,

El número S se dice que es la suma de la serie. Si Sn no existe, entonces se dice que la
serie es divergente.

lím
nSq

{Sn} � {g n
k�1ak}

gq
k�1ak

lím
nSq

Sn lím
nSqa

n

k 1
ak S.

1
5

1
n 5

.

1
5

1
6

1
6

1
7

1
7

1
8

p 1
n 3

1
n 4

1
n 4

1
n 5

Sn c 1
5

1
6
d c 1

6
1
7
d c 1

7
1
8
d p c 1

n 3
1

n 4
d c 1

n 4
1

n 5
d

0
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c 1
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1
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d 1
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0
1
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DEMOSTRACIÓN La prueba del teorema A.3.1 se dará en dos partes. En cada parte se supone
que

Empezaremos con el caso en el que Para r = 1, la serie es

y por ello la suma parcial n-ésima es simplemente Sn = na. En este caso,
Sn = a . n = q. De tal modo, la serie diverge. Para r = -1, la serie es

y por ello la sucesión de sumas parciales es

la cual es divergente,
Considere ahora el caso el cual significa que 0 r 0 6 1 o 0 r 0 7 1. Considere el término

general de la sucesión de sumas parciales de (2):

(3)

Multiplicando ambos lados de (3) por r, se obtiene

(4)

Después se resta (4) de (3) y se resuelve para Sn:

(5)

Ahora, de acuerdo con el teorema A.1.3 sabemos que r n = 0 para 0 r 0 6 1. En consecuencia,

Si 0 r 0 7 1, entonces r n no existe y por ello el límite de (5) tampoco existe.

EJEMPLO  4 Serie geométrica

a) En la serie geométrica

se identifica a � 1 y la razón común Puesto que la serie
converge. Del teorema A.3.1, la suma de la serie es entonces

a
q

k�1
a�1

3
bk�1

�
1

1 � a�1
3
b �

3
4

.

0r 0 � 0�1
3 0 � 1

3 6 1,r � �
1
3.

a
q

k�1
a�1

3
bk�1

� 1 �
1
3

�
1
9

�
1

27
� p

lím
nSq

lím
nSq

 Sn �
a(1 � rn)

1 � r
, r � 1.

 (1 � r)Sn � a(1 � rn)

 Sn � rSn � a � arn

rSn � ar � ar2
� ar3

� p � arn.

Sn � a � ar � ar2
� p � arn�1.

0 r 0 � 1,

a
q

k�1
a(�1)k�1

� a � (�a) � a � (�a) � p

lím
nSq

lím
nSq

Sn � a � a � p � a

a
q

k�1
a � a � a � a � p

0 r 0 � 1.
a � 0.

A.3 Series 299

Teorema A.3.1 Suma de una serie geométrica

i) Si entonces una serie geométrica converge y su suma es

ii) Si entonces una serie geométrica diverge.0 r 0 � 1,

0 r 0 6 1,

a
q

k 1
ark 1 a

1 r
, a 0.

S1, S2, S3, S4, S5, S6, p   o  a, 0, a, 0, a, 0, p ,

lím
nSq

Sn lím
nSq

a(1 rn)
1 r

a
1 r

, 0r 0 6 1.

n a

⎞ ⎪ ⎪ ⎬ ⎪ ⎪ 



b) La razón común en la serie geométrica

es La serie diverge debido a

Todo número racional p�q, donde p y son enteros, se puede expresar como un deci-

mal interrumpido o como un decimal repetido. De tal modo, la serie en el ejemplo 1

converge puesto que es una serie geométrica con Con encontramos

En general:

• Todo decimal repetido es una serie geométrica convergente.

EJEMPLO  5 Número racional

Exprese el decimal repetido 0.121212 . . . como un cociente de enteros.

Solución Se escribe primero el número dado como una serie geométrica

y se hacen las identificaciones y Por el teorema A.3.1, la serie converge
pues y su suma es

EJEMPLO  6 Observación de una pelota que rebota

Si una pelota se deja caer desde una altura de s pies sobre el suelo, entonces el tiempo t que tarda
en llegar al suelo se relaciona con s por medio de s = gt 2. En otras palabras, la pelota
tarda s para llegar al suelo. Suponga que la pelota rebota siempre hasta cierta frac-
ción fija de su altura previa. Encuentre una fórmula para el tiempo T que la pelo-
ta tarda en llegar al reposo. Vea la FIGURA A.3.1.

Solución El tiempo para caer desde una altura de s pies hasta el suelo es: el tiempo
para ascender bs pies y después caer bs pies hasta el suelo es: el tiempo para ascen-

der b(bs) pies y después caer b(bs) pies hasta el suelo es y así sucesivamente. De
esta manera, el tiempo total T está dado por la serie infinita

Como la serie es una serie geométrica convergente con a = y
r = . En consecuencia, de acuerdo con el teorema A.3.1,1b 1bgq

k�1 A1b B k0 6 b 6 1,

 � 12s>g  c1 � 2a
q

k�1
A1b B k d .

 T � 12s>g � 212bs>g � 222b2s>g � p � 212bns>g � p

222b2s>g;
212bs>g;

12s>g;

b (0 6 b 6 1)
t � 12s>g 1

2

0.121212 p �
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1 �
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33
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3
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�
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.

a �
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1
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k�1 
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r �
3
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s
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FIGURA A.3.1 Pelota que rebota
del ejemplo 6

Foto estroboscópica de una pelota
de basquetbol rebotando
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Serie armónica Una de las series más famosas es también un ejemplo de una serie divergen-
te. La serie armónica es la suma de los recíprocos de los enteros positivos:

(6)

El término general de la sucesión de las sumas parciales para (6) está dado por

De tal modo,

La desigualdad implica que la sucesión de sumas parciales para la serie armónica
no está acotada. Para ver lo anterior, observe que

y así sucesivamente. En consecuencia, se concluye que la serie armónica es divergente.

Una consecuencia de convergencia Si an y Sn son los términos generales de una serie y la
sucesión correspondiente de sumas parciales, respectivamente, entonces de la resta

vemos que En este caso, si la serie converge a un número S, se tiene que
Sn = S y Sn-1 = S. Esto implica que

Hemos establecido el siguiente teorema.

lím
nSq

lím
nSq

aakan � Sn � Sn�1.

Sn � Sn�1 � (a1 � a2 � p � an�1 � an) � (a1 � a2 � p � an�1) � an

 S16 � S8 �
1
2

�
5
2

�
1
2

� 3

 S8 � S4 �
1
2

� 2 �
1
2

�
5
2

 S4 � S2 �
1
2

�
3
2

�
1
2

� 2

 S2 � S1 �
1
2

� 1 �
1
2

�
3
2

S2n � Sn �
1
2
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Teorema A.3.2 Condición necesaria para convergencia

Si la serie converge, entonces an = 0.lím
nSq

gq
k�1 ak

Recuerde esta serie. Será
importante en las secciones
subsecuentes de este apéndice.

Prueba para una serie divergente El teorema A.3.2 establece simplemente que si una serie
infinita converge, es necesario que el término n-ésimo, o general, tienda a cero. De modo equi-
valente, se concluye:

• Si el n-ésimo término an de una serie infinita no tiende a cero cuando n S q, entonces
la serie no converge.

Formalizamos este resultado como una prueba para la divergencia.

1
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1
3

p 1
n

p a
q

k 1

1
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.

términos de n
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2n
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1
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p 1
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Sn n . 1
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1

n 1
1

n 2
p 1
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S2n 1
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1
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p 1
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1
n 1

1
n 2

p 1
2n

Sn 1
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p 1
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El teorema A.3.3 corrobora de inmediato la parte ii) de la prueba del teorema A.3.1, a saber,
una serie geométrica diverge cuando Por ejemplo, cuando r � 1,

ar n-1 = a Z 0.

EJEMPLO  7 Serie divergente

a) Considere la serie De

se concluye del teorema A.3.3 que la serie diverge.

b) Considere la serie

Puesto que an = (-1)n-1 no existe, es posible afirmar que an Z 0.

¿La serie diverge por el teorema A.3.3?

En este momento se le recomienda leer (y recordar) iii) de las Notas desde el aula. Se enun-
cian los siguientes tres teoremas sin demostración.

lím
nSq

lím
nSq

lím
nSq

a
q

k�1
(�1)k�1

� 1 � 1 � 1 � 1 � p .

a
q

k�1

4k � 1
5k � 3

.

lím
nSq

lím
nSq

r � �1.gq
k�1ark�1, a � 0,
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Teorema A.3.3 Prueba del término n-ésimo para divergencia

Si an Z 0, entonces la serie diverge.gq
k�1 aklím

nSq

Teorema A.3.4 Múltiplo constante de una serie

Si c es cualquier constante distinta de cero, entonces las series y convergen
ambas o divergen ambas.

gq
k�1cakgq

k�1ak

Teorema A.3.6 Suma de una serie convergente y una divergente

Si converge y diverge, entonces diverge.gq
k�1(ak � bk)gq

k�1bkgq
k�1ak

Teorema A.3.5 Suma de dos series convergentes

Si y convergen a S1 y S2, respectivamente, entonces

i) converge a S1 � S2, y

ii) converge a S1 � S2.gq
k�1 (ak � bk)

gq
k�1 

(ak � bk)

gq
k�1bkgq

k�1ak

El teorema A.3.5 indica que cuando y convergen, entonces

a
q

k�1
(ak � bk) � a

q

k�1
ak � a

q

k�1
bk.
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NOTAS DESDE EL AULA

i) El término n-ésimo de la sucesión de sumas parciales de la serie armónica a menudo se  
denota mediante Los términos de la sucesión 

se denominan números armónicos. Vea el problema 71 en los ejercicios A.3. 
ii) Cuando se escribe en términos de notación de sumatoria, una serie geométrica quizá no

se reconozca de inmediato, o si lo es, los valores de a y r tal vez no sean manifiestos.
Por ejemplo, para ver si es una serie geométrica es buena idea escribir dos
o tres términos:

Del lado derecho de la última igualdad, es posible hacer las identificaciones a = 4A B5 y 

r = 6 1. En consecuencia, la suma de la serie es Si se desea, aunque no hay

una necesidad real para hacer esto, puede expresarse en la forma más fa-

miliar haciendo El resultado es

iii) Observe con cuidado cómo se enuncian los teoremas A.3.2 y A.3.3. En específico, el teo-
rema A.3.3 no dice si an = 0, entonces g ak converge. En otras palabras, an = 0

no es suficiente para garantizar que g ak converge. De hecho, si an = 0, la serie
puede ser convergente o divergente. Por ejemplo, en la serie armónica an =
1�n y (1�n) = 0, pero la serie diverge.lím

nSq

gq
k�1(1>k),

lím
nSq

lím
nSq

lím
nSq

k � n � 2.gq
k�1ar k�1

gq
n�3 4A12B n�2
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gq
n�3 4 A12B n�2

H3 �
11
6 , p

H2 �
3
2,H1 � 1,Hn � g n

k�1(1>k).

g

EJEMPLO  8 Suma de dos series convergentes

Con la ayuda del teorema A.3.1, se observa que las series geométricas y 
convergen a 2 y respectivamente. En consecuencia, del teorema A.3.5, la serie

converge y

EJEMPLO  9 Suma de dos series

Del ejemplo 3 se sabe que converge. Puesto que es la serie armónica

divergente, se sigue del teorema A.3.6 que la serie

diverge.
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Fundamentos

En los problemas 1-10, escriba los primeros cuatro términos
de cada serie.

1. 2.

3. 4.

5. 6.

7. 8.

10.

En los problemas 11-14, proceda como en el ejemplo 3 para
encontrar la suma de la serie telescópica dada.

11. 12.

13. 14.

En los problemas 15-24, determine si la serie geométrica dada
converge o diverge. Si es convergente, encuentre la suma de
la serie.

15. 16.

17. 18.

19. 20.

23. 24.

En los problemas 25-30, escriba cada número decimal que se
repite como un cociente de enteros.

25. 26.

27. 28.

29. 30.

En los problemas 31 y 32, encuentre la suma de las series
dadas.

31. 32.

En los problemas 33-42, muestre que la serie dada es diver-
gente.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

En los problemas 43-46, determine los valores de x para los
cuales la serie dada converge.

43. 44.

45. 46.

Aplicaciones
47. Se deja caer una pelota desde una altura inicial de 15 pies

sobre una plancha de concreto. Cada vez que la pelota
rebota, alcanza una altura de de su altura precedente.
Recurra a la serie geométrica para determinar la distancia
que la pelota recorre antes de quedar en reposo.

48. En el problema 47 determine el tiempo que tarda la pelo-
ta en llegar al reposo.

49. Para erradicar plagas agrícolas (como la mosca de la
fruta), se liberan moscas macho esterilizadas dentro de
la población general en intervalos de tiempo regulares.
Considere que N0 es el número de moscas liberadas cada
día y que s es la proporción de las que sobreviven en un
día determinado. De los N0 machos esterilizados origina-
les, sobrevivirán en n semanas sucesivas. En conse-
cuencia, el número total de tales machos que sobreviven
n semanas después de que se ha iniciado el programa es

¿A qué se aproxima esta
suma cuando n S q? Suponga s = 0.9 y que se necesi-
tan 10 000 machos esterilizados para controlar la pobla-

N0 � N0s � N0s2
� p � N0sn.
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PROBLEMAS A.3 Las respuestas de los problemas impares comienzan en la página RES-19.

a
q

i 5
i sen

ip

2

a
q

k 1
k sen

1
k

iv) Cuando se determina la convergencia, es posible, y algunas veces conveniente, borrar o
ignorar varios de los primeros términos de la serie. En otras palabras, las series infinitas

y g
q
k=N ak, N 7 1 difieren a lo sumo por un número finito de términos y son ambas

convergentes o ambas divergentes. Desde luego, eliminar los primeros N - 1 términos de
una serie convergente suele no afectar la suma de la serie.

gq
k�1 ak
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ción en cierta área. Determine el número de moscas
macho que debe ser liberado cada día.

50. En algunas circunstancias la cantidad de un fármaco que se
acumularía en el cuerpo de un paciente después de un largo
periodo es donde es
una constante y A0 es la dosis diaria del fármaco. Encuentre
la suma de la serie.

51. Un paciente toma 15 mg de un fármaco diariamente. Si
80% del fármaco acumulado se excreta cada día median-
te las funciones corporales, ¿qué cantidad del fármaco se
acumulará después de un largo periodo, esto es, cuando

(Suponga que la medición de la acumulación se
hace inmediatamente después de cada dosis. Vea el pro-
blema 69 en los ejercicios A.1.)

52. Se aplica una fuerza a una partícula, que se mueve en una
línea recta, de tal manera que después de cada segundo la
partícula sólo se mueve la mitad de la distancia que re-
corrió en el segundo anterior. Si la partícula se mueve 20
cm en el primer segundo, ¿cuánto se desplazará?

Piense en ello

53. Suponga que la sucesión {an} converge a un número
Explique por qué la serie diverge.

54. Determine si la serie

converge o diverge.
55. Determine si la suma de dos series divergentes es necesa-

riamente divergente.

56. Considere la serie Puesto que la n-ésima

suma parcial de la serie es

Explique por qué las siguientes desigualdades son ciertas
y por qué pueden usarse para demostrar que una serie
dada converge:

o

.

57. Encuentre la suma de la serie

58. Encuentre la suma de la serie

59. Encuentre todos los valores de x en para los
cuales

60. Muestre que si f (n � 1) � L, donde L es un núme-

ro, entonces 

61. Determine si converge o diverge.

62. Muestre que la serie es divergente demostrando

que 

63. Vimos que la serie armónica diverge puesto que el

término general Sn de la sucesión de sumas parciales
puede hacerse tan grande como se quiera tomando a n lo
suficientemente grande cuando No
obstante, la serie armónica diverge muy lentamente.
a) Use la gráfica de para a fin de esta-

blecer la desigualdad

b) Emplee una calculadora y la desigualdad del inciso a)
para estimar el valor de n para el cual Estime
el valor de n para el cual 

64. En el problema 77 en los ejercicios A.1 se consideraron
los perímetros de las regiones acotadas por las curvas de
Koch que se muestran en la figura A.1.5. En el inciso c)
del problema usted debe haber demostrado que el perí-
metro de la región límite es infinito. En este problema se
consideran las áreas de las figuras sucesivas. Considere
que el área de la primera figura es A1, el área de la segun-
da figura A2, y así en lo sucesivo.

a) Utilizando el hecho de que el área de un triángulo
equilátero con lados de longitud s es encuen-
tre los valores de A1, A2, A3 y  A4.

b) Demuestre que el área de la figura n-ésima es

c) ¿Cuál es An?

Proyectos

65. Un poco de historia: Muerte por pan En 1972, un
brote de envenenamiento por metilmercurio en Irak pro-

dujo 459 muertes entre 6 530 casos
de envenenados admitidos en hos-
pitales. El brote epidémico fue pro-
vocado por el consumo de pan
casero preparado a partir de trigo
que había sido tratado con un fun-

gicida de metilmercurio. Los primeros síntomas de pares-
tesia (pérdida de sensaciones en la boca, manos y pies)
empezaron a ocurrir cuando el nivel acumulado de mer-
curio alcanzó 25 mg. Los síntomas de ataxia (pérdida de
coordinación al andar) iniciaron con 55 mg, la disartria
(arrastrar las palabras) con 90 mg y la sordera con 170
mg. La muerte se volvió una posibilidad cuando el nivel
de mercurio acumulado superó 200 mg. Se estimó que
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una barra de pan típica elaborada a partir de trigo conta-
minado contenía 1.4 mg de mercurio, y también que el
cuerpo elimina sólo alrededor de 0.9% del mercurio acu-
mulado diariamente.
a) Suponga que una persona recibió una dosis d de mer-

curio al día, y que el cuerpo eliminó una fracción p
del mercurio acumulado diariamente. Encuentre una
fórmula para Ln, el nivel acumulado después de comer
en el n-ésimo día, y una fórmula para el nivel límite,

Ln.

b) Empleando d � 1.4 y p � 0.009, encuentre el valor
límite del mercurio y determine qué día empezaron a
ocurrir los diversos síntomas.

c) ¿Cuál sería la dosis diaria para que la muerte fuera
posible en el día 100? (Utilice p � 0.009.)

66. Un poco de historia: La paradoja de Zenón El filóso-
fo griego Zenón de Elea (c. 490 a.C.) fue discípulo del
filósofo presocrático Parménides, que afirmaba que el
cambio o el movimiento era una ilusión. De las parado-
jas de Zenón que apoyaban esta filosofía, la más famosa
es su argumento acerca de que Aquiles, conocido por su
habilidad de correr rápido, no podría superar a una tortu-
ga en movimiento. La forma usual de la historia es como
se narra a continuación:

Aquiles empieza desde el punto S, y exactamente en el mismo

instante una tortuga empieza desde un punto A adelante de S.

Después de cierta cantidad de tiempo, Aquiles alcanza el

punto de inicio A de la tortuga, pero durante este tiempo la

tortuga ha avanzado a un nuevo punto B. Durante el tiempo

que tarda Aquiles en alcanzar B, la tortuga se ha movido hacia

delante otra vez hasta un nuevo punto C. Al continuar de esta

manera, eternamente, Aquiles nunca alcanzará a la tortuga.

Vea la FIGURA A.3.2. Utilice una serie infinita para resolver
esta aparente paradoja. Suponga que cada uno se mueve
con una velocidad constante. Ayudaría inventar valores
razonables para ubicar en el inicio la cabeza de la tortu-
ga y para las dos velocidades.

67. Números primos Escriba un breve informe en el cual
defina un número primo. Incluya en el informe una
demostración acerca de si la serie de los recíprocos de
primos,

converge o diverge.
68. Longitud de una trayectoria en zigzag En la FIGURA

A.3.3a), el triángulo ABC es un triángulo recto isósceles. El
segmento de línea AP1 es perpendicular a BC, el segmen-
to de línea P1P2 es perpendicular a AC, y así en lo suce-
sivo. Encuentre la longitud de la trayectoria en zigzag
AP1P2P3 . . .

69. Longitud de una trayectoria poligonal En la figura
A.3.3b), hay doce rayos que emanan del origen y el ángu-
lo entre cada par de rayos consecutivos es 30°. El seg-
mento de recta AP1 es perpendicular al rayo L1, el seg-
mento de recta P1P2 es perpendicular al rayo L2, y así en
lo sucesivo. Encuentre la longitud de la trayectoria poli-
gonal AP1P2P3 . . .

70. Una integral impropia En un curso de cálculo integral
se plantea la pregunta de si cuando es un
requisito necesario para la convergencia de una integral
impropia A continuación se presenta la res-
puesta. Observe que la función f cuya grafica está dada
en la FIGURA A.3.4 no se aproxima a 0 cuando
Demuestre que converge.

71. Un problema de apilamiento Tómese su tiempo para
hacer su tarea y efectúe un experimento. Necesitará un
suministro de n objetos rectangulares idénticos, por
ejemplo, libros, aunque también pueden ser tableros, car-
tas, fichas de dominó, etcétera. Suponga que la longitud
de cada libro es L. A continuación encontrará un enuncia-
do burdo del problema:

¿Qué tanto puede sobresalir una pila de n libros colocada

sobre el borde de una mesa sin que se caiga?

Intuitivamente la pila no caerá siempre que su centro de
masa permanezca por arriba de la cubierta de la mesa.
Empleando la regla de apilamiento que se ilustra en la
FIGURA A.3.5, observe que lo que sobresale del libro mos-
trado en la figura A.3.5a) alcanza su máximo 
cuando su centro de masa está ubicado directamente en el
borde de la mesa.
a) Calcule las distancias que sobresalen los libros d2, d3

y d4 del borde de la mesa para la pila de libros de la
figura A.3.5b), A.3.5c) y A.3.5d), respectivamente.

d1 � L>2

�q
0

f(x) dx
x S q.

�q
a

f(x) dx.

x S qf(x) S 0

a
q

n�1

1
pn

�
1
2

�
1
3

�
1
5

�
1
7

�
1

11
� p

lím
nSq

306 APÉNDICE Sucesiones y series

S A B C

FIGURA A.3.2 Aquiles y la tortuga en el problema 66

FIGURA A.3.3 Trayectorias en zigzag y poligonal de los problemas 68 y 69
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Luego demuestre que el centro de masa de cada pila
está en el borde de la mesa. [Sugerencia: Para n libros
ponga el eje x a lo largo de la cubierta horizontal de la
mesa con el origen O en el borde izquierdo del primer
libro, o del fondo, en la pila.]

b) ¿Qué indica el valor de d4 en el inciso a) acerca del
cuarto libro, o superior, en la pila?

c) Siguiendo el patrón de apilamiento que se indica en la
figura A.3.5, para n libros la parte que sobresale del
primer libro desde el borde de la mesa sería L�2n, lo
que sobresale del segundo libro desde el borde del pri-
mer libro sería lo que sobresale del tercer
libro desde el borde del segundo correspondería a

y así en lo sucesivo. Encuentre una
fórmula para dn, lo que sobresalen n libros desde el
borde de la mesa. Demuestre que el centro de masa de
la pila de n libros está en el borde de la mesa.

d) Utilice la fórmula dn para encontrar la distancia que
sobresale un libro en el inciso c) y encuentre el valor
más pequeño de n de manera que lo que sobresalen n
libros apilados en la manera descrita en el inciso c) es
mayor que el doble de la longitud de un libro.

e) En teoría, utilizando la regla de apilamiento del inci-
so c), ¿hay alguna limitación acerca del número de
libros en una pila?

72. Un clásico matemático: Los trenes y la mosca En un
tiempo específico dos trenes T1 y T2, separados por 20
millas sobre el mismo riel, inician un curso de choque a
una velocidad de 10 mph. Suponga que en el preciso ins-
tante en que parten los trenes, una mosca sale del frente
del tren T1, vuela a una velocidad de 20 mph en línea
recta hacia el frente del motor del tren T2, después vuela
de regreso hacia T1 a 20 mph, después regresa a T2, y así
en lo sucesivo. Recurra a una serie geométrica para
encontrar la distancia total recorrida por la mosca cuando
los trenes chocan (y la mosca es aplastada). Después use
el sentido común para determinar la distancia total que
vuela la mosca. Vea la FIGURA A.3.6.

L>2(n � 2),

L>2(n � 1),
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A.4 Prueba de la integral
Introducción A menos que sea una serie telescópica o una serie geométrica, es una

tarea difícil, si no inútil, demostrar la convergencia o divergencia directamente de la sucesión de
sumas parciales. Sin embargo, suele ser posible determinar si una serie converge o diverge por
medio de una prueba que utiliza sólo los términos de la serie. En ésta y en las dos secciones que
siguen se examinarán cinco de tales pruebas que son aplicables a series infinitas de términos

positivos.

Prueba de la integral La primera prueba que se considerará relaciona los conceptos de con-
vergencia y divergencia de una integral impropia con la convergencia y divergencia de una serie
infinita.
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FIGURA A.3.5 Método de apilamiento de libros del problema 71
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Teorema A.4.1 Prueba de la integral

Suponga que es una serie de términos positivos y f es una función continua que es no
negativa y decreciente sobre tal que f (k) = ak para k 1.

i) Si converge, entonces converge.

ii) Si diverge, entonces diverge.gq
k�1ak�q

1 f(x) dx

gq
k�1ak�q

1 f(x) dx

[1, q)
gq

k�1ak



DEMOSTRACIÓN Si la grafica de f está dada como en la FIGURA A.4.1, entonces considerando
las áreas de los rectángulos que se muestran en la figura, observamos que

o

De la desigualdad es claro que Sn existe siempre que exista
μ1

nf (x) dx. Por otro lado, de la desigualdad concluimos que Sn-1 no
existe siempre que diverja.

EJEMPLO  1 Empleo de la prueba de la integral

Demuestre la convergencia de 

Solución La función es continua, no negativa y decreciente para tal

que f (k) = ak para k 1. De

es claro que la integral impropia es convergente. Del teorema A.4.1i) se concluye que la serie
dada también converge.

En la prueba de la integral, si la serie de términos positivos es de la forma usamos
entonces

EJEMPLO  2 Empleo de la prueba de la integral

Solución La función satisface la hipótesis de la prueba de la integral sobre el
intervalo En este caso,

muestra que la integral impropia diverge. Se concluye del teorema A.4.1ii) que la serie dada tam-
bién diverge.

Serie p La prueba de la integral es particularmente útil en cualquier serie de la forma

(1)

[3, q).
f(x) � (ln x)>x

gq
k�N ak,

x � 1f(x) � 1>(1 � x2)

a
q

k�1

1
1 � k2

.

�q
1  f(x) dx

lím
nSq

Sn�1 � �n
1  f(x) dx,lím

nSq

lím
nSq

Sn � a1 � �n
1  f(x) dx,

Sn � a1 � �
n

1

f(x) dx � Sn�1.

0 � a2 � a3 � a4 � p � an � �
n

1

f(x) dx � a1 � a2 � a3 � p � an�1
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FIGURA A.4.1 Rectángulos en la
prueba del teorema A.4.1
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donde p es cualquier número real fijo. La serie infinita (1) se conoce como la serie p o hiperar-
mónica. El siguiente teorema indica los valores de p para los cuales converge (diverge) la serie p.
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Teorema A.4.2 Convergencia de la serie p

La serie p converge si y diverge si p � 1.p 7 1a
q

k�1
 

1
kp

NOTAS DESDE EL AULA

i) Cuando se aplica la prueba de la integral, es necesario tener la seguridad de que el valor
de la integral impropia convergente no se relaciona con la suma real de la serie
infinita correspondiente. De tal modo, la serie en el ejemplo 1 no converge a Vea el
problema 36 en los ejercicios A.4.

ii) Los resultados de la prueba de la integral para se cumplen incluso si la función
no negativa continua f no empieza a decrecer hasta que Para la seriex � N � n.

gq
k�n 

ak

p>4.
�q

1 f(x) dx

PROBLEMAS A.4 Las respuestas de los problemas impares comienzan en la página RES-19.

DEMOSTRACIÓN Se distinguen cuatro casos: p 7 1, p = 1, 0 6 p 6 1 y En el primero y
tercer casos usamos la prueba de la integral con 

i) Si entonces y por ello

La serie p es convergente por el teorema A.4.1i).
ii) Si p � 1, entonces se reconoce a la serie p como la serie armónica divergente.

iii) Si entonces y por ello

La serie p es divergente por el teorema A.4.1ii).
iv) Por último, si entonces y así (1�n p) = n -p Z 0. La serie p es diver-

gente por la prueba del término n-ésimo, teorema A.3.3.

EJEMPLO  3 Serie p

a) Del teorema A.4.2, la serie p diverge, ya que

b) Del teorema A.4.2, la serie p converge, ya que p � 2 7 1.a
q

k�1
 

1
k2

p �
1
2 6 1.a

q

k�1

1
1k

� a
q

k�1
 

1
k1>2

lím
nSq

lím
nSq

�p � 0p � 0,

�p � 1 7 00 6 p 6 1,

p � 1 7 0p 7 1,

f(x) � 1>xp
� x�p.

p � 0.

Fundamentos

En los problemas 1-30, determine si la serie dada converge o
diverge. Recurra a la prueba de la integral en los casos en que
sea apropiado.

1. 2.

3.

4.
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k=1 (ln k)�k la función f (x) = (ln x) x disminuye sobre el intervalo [3, q). De cualquier
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En los problemas 31-34, sin hacer ningún trabajo determine si
la serie dada converge o diverge. Enuncie sus razones.

31. 32.

33. 34.

En los problemas 35 y 36, determine los valores de p para los
cuales la serie dada converge.

Piense en ello

37. Determine los valores de p para los cuales la serie

es convergente.
38. Suponga que f es una función continua que es positiva y

decreciente para tal que para 
Demuestre que

39. Demuestre que

40. Se demostró que la serie armónica es diver-
gente debido a que la sucesión de sumas parciales diver-
ge. Recuerde que cuando
a) Use el resultado del problema 38 para estimar la suma

de los primeros 10 mil millones de términos de la
serie armónica.

b) ¿Cuántos términos de la serie armónica son necesa-
rios para garantizar que 

41. Deje que S denote la suma de la serie de términos positi-
vos y Sn el término general en su sucesión de
sumas parciales. Defina el residuo, o el error, que se
efectúa cuando Sn se aproxima a S, como

Suponga que f es una función continua que es positiva y
decreciente para tal que f (k) � ak para y que

converge. Demuestre que

42. La suma S de la serie p convergente se sabe
que es igual a Recurra al problema 41 para deter-
minar n de manera que Sn dará una aproximación a S que
es exacta hasta tres lugares decimales.

p2>6.
gq
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A.5 Pruebas de comparación
Introducción A menudo es posible determinar la convergencia o divergencia de una serie de

términos positivos comparando sus términos con los términos de una serie de prueba 

que se sabe que es convergente o divergente. En esta sección se considerarán dos pruebas de
comparación para la convergencia y la divergencia.

Prueba de comparación directa La demostración de la siguiente prueba utilizará dos propie-
dades importantes de las sucesiones. Recuerde de la sección A.2 que si una sucesión está acota-
da y es monótona debe converger. También que si los términos de una sucesión se vuelven no
acotados entonces ésta diverge. Aplicamos estos resultados a la sucesión de sumas parciales de
una serie.
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DEMOSTRACIÓN Sea y para k � 1, 2, . . . y considere que

y

son los términos generales de las sucesiones de sumas parciales para y respectivamente.

i) Si es una serie convergente para la cual entonces Puesto que Tn

existe, {Sn} es una sucesión creciente acotada y, en consecuencia, convergente por el teore-
ma A.2.1. Por tanto, es convergente.

ii) Si diverge y entonces Puesto que Tn aumenta sin cota, así lo hace Sn.
Por consiguiente, es divergente.

En general, si y son dos series para las cuales ck � dk para toda k, se afirma que la
serie está dominada por la serie De tal modo que para series de términos positivos, los
incisos i) y ii) del teorema A.5.1 pueden reenunciarse de la siguiente manera:

• Una serie g ak es convergente si está dominada por una serie convergente g bk.

• Una serie g ak diverge si domina a una serie divergente g bk.

Los siguientes dos ejemplos ilustran el método. Desde luego, no señalan que para recurrir a las
series de prueba es necesario estar familiarizado con algunas series que convergen y con
algunas que divergen.

EJEMPLO  1 Empleo de la prueba de comparación directa

Pruebe la convergencia de 

Solución Se observa que al reducirse el denominador en los términos generales se obtiene una
fracción mayor:

Debido a que la serie dada es dominada por una serie p convergente se concluye del
teorema A.5.1i) que la serie dada también es convergente.

EJEMPLO  2 Uso de la prueba de comparación directa

Pruebe la convergencia de 

Solución Puesto que ln (k + 2) 7 1 para k �1, se tiene

En este caso se ha demostrado que la serie dada domina a la serie armónica divergente
En consecuencia, por el teorema A.5.1ii) la serie dada diverge.gq

k�1(1>k).

ln (k � 2)
k

7
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k

.

a
q
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gq
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gdk.gck

gdkgck

gak

Sn 7 Tn.ak 7 bk,gbk

gak

lím
nSq

Sn � Tn.ak � bk,gbk

gbk,gak

Tn � b1 � b2 � p � bnSn � a1 � a2 � p � an

bk 7 0ak 7 0
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Teorema A.5.1 Prueba de comparación directa

Suponga que y son series de términos positivos.

i) Si converge y para todo entero positivo k, entonces converge.

ii) Si diverge y para todo entero positivo k, entonces diverge.gq
k�1akak � bkgq

k�1bk

gq
k�1akak � bkgq

k�1bk

gq
k�1bkgq

k�1ak

Sería buena idea en este punto
revisar la noción de serie p en la
sección A.4.



Prueba de comparación del límite Otro tipo de prueba de comparación implica tomar el
límite del cociente entre el término general de la serie y el término general de la serie de
prueba que se sabe que es convergente o divergente.gbk

gak
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Teorema A.5.2 Prueba de comparación del límite

Suponga que y son series de términos positivos. Si

donde L es finita y entonces las dos series son ya sea ambas convergentes o ambas
divergentes.

L 7 0,

gq
k�1bkgq

k�1ak

DEMOSTRACIÓN Puesto que an�bn = L 7 0, es posible elegir n tan grande, como 
para algún entero positivo N, que

Puesto que la desigualdad implica que para Si converge, se
concluye de la prueba de comparación directa que y, en consecuencia, es con-
vergente. Además, puesto que Lbn an para n N, se observa que si diverge, entonces

y divergen.

La prueba de comparación del límite es aplicable a menudo a series para las cuales no
es conveniente la prueba de comparación directa.

EJEMPLO  3 Uso de la prueba de comparación del límite

El propio lector debe convencerse de que es difícil aplicar la prueba de comparación directa a la

serie Sin embargo, se sabe que es una serie p convergente

En consecuencia, con

tenemos

Del teorema A.5.2 se concluye que la serie dada converge.

Si el término general an de la serie es un cociente ya sea de potencias racionales de n o
de raíces de polinomios en n, es posible distinguir el término general bn de la serie de prueba

examinando el “comportamiento de grado” de an para valores grandes de n. En otras pala-
bras, para encontrar un candidato correspondiente a bn sólo se necesita examinar el cociente de
las potencias más altas de n en el numerador y en el denominador de an.

EJEMPLO  4 Uso de la prueba de comparación del límite

Pruebe la convergencia de 

Solución Para valores grandes de n, el término general de la serie “se com-
porta de manera similar” a un múltiplo constante de

n
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De tal modo, se ensaya la serie p divergente como una serie de prueba:

Así, de acuerdo con el teorema A.5.2, la serie dada diverge.

a
q

k�1
 

1
k 2>3
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Fundamentos

En los problemas 1-14 utilice la prueba de comparación direc-
ta para determinar si la serie dada converge.

1. 2.

3. 4. a
q
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(k � 1)(k � 2)

PROBLEMAS A.5 Las respuestas de los problemas impares comienzan en la página RES-19.

NOTAS DESDE EL AULA

i) La hipótesis en la prueba de comparación directa también puede debilitarse, al conside-
rar un teorema más fuerte. Para una serie con términos positivos, sólo se requiere que

o para k suficientemente grande y no para todos los enteros positivos.
ii) En la aplicación de la prueba de comparación directa, a menudo es fácil alcanzar un

punto en que la serie dada está dominada por una serie divergente. Por ejemplo,

es realmente cierto y diverge. Este tipo de razonamiento no prueba nada acerca

de la serie Desde luego, la última serie converge. ¿Por qué? De manera

similar, no puede llegarse a una conclusión al mostrar que una serie dada domina a una
serie convergente.

La siguiente tabla resume la prueba de comparación directa. Sea una serie
de términos positivos y una serie que se sabe que converge o diverge (una serie de
pruebas).
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11. 12.

13.

14.

En los problemas 15-28, utilice la prueba de comparación del
límite para determinar si la serie dada converge.

En los problemas 29-40, utilice cualquier prueba apropiada
para determinar si la serie dada converge.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Piense en ello

41. Vuelva a leer ii) de las Notas desde el aula en la página
anterior y discuta las razones por las que el siguiente
enunciado es cierto:

Si ak 7 0 para todo k y gak converge, entonces gak
2

converge.

42. Suponga que p y q son funciones polinomiales sin facto-
res comunes de grado n y m, respectivamente, y que

para Discuta: ¿Bajo qué condicio-
nes convergerá la serie ?

43. Analice si el siguiente enunciado es verdadero o falso:

Si ak 6 bk para todo k y gbk converge, entonces gak

converge.

44. Demuestre que si la serie de términos positivos con-
verge, entonces g ln(1 + ak) converge.

En los problemas 45 y 46, determine si la serie dada conver-
ge.

45. 46.

47. La representación decimal de un número real positivo es
una serie infinita:

donde ai representa uno de los 10 enteros no negativos 0,
1, 2, . . . , 9. Demuestre que la serie de la forma

siempre es convergente.

Proyecto

48. ¿Cuán grande es infinito? La prueba de la integral

puede usarse para verificar que converge, en

tanto que diverge. Sin embargo, con la ayuda de

un SAC se observa a partir de las gráficas de 
y = 1 (x ln x) en la FIGURA A.5.1 que

para 2 � k � 15 000. De hecho, la desigualdad anterior
es cierta para 2 � k � 99 999 999 * 1099. ¿Entonces

por qué no converge por la prueba de compara-

ción directa?
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A.6 Pruebas de las proporciones y de la raíz
Introducción En esta sección, como en la anterior, las pruebas que se consideran son aplica-

bles a series infinitas de términos positivos.

Prueba de las proporciones La primera de estas pruebas emplea el límite del cociente entre
el primer término (n � 1) y el término n-ésimo de la serie. Esta prueba es especialmente útil
cuando ak implica factoriales, potencias k-ésimas de una constante y, algunas veces, potencias
k-ésimas de k.
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Teorema A.6.1 Prueba de las proporciones

Suponga que es una serie de términos positivos tal que

i) Si la serie es convergente.
ii) Si o si L = q, la serie es divergente.
iii) Si L = 1, la prueba no es conclusiva.

L 7 1,
L 6 1,

gq
k�1ak

Repase las propiedades del fac-
torial en la sección A.1. Vea (4)
y (5) en esa sección.

DEMOSTRACIÓN
i) Sea r un número positivo tal que Para n suficientemente grande, para

algún entero positivo N, esto es, La última desigualdad
implica

y así sucesivamente. De tal modo la serie converge por comparación con la serie
geométrica convergente Puesto que difiere de a lo sumo un
número finito de términos, se concluye que la primera serie también converge.

ii) Sea r un número finito tal que Entonces para n suficientemente grande,
para algún entero positivo N, o Para esta última desigual-
dad implica , y por ello an Z 0. Del teorema A.3.3 concluimos que
diverge.

En el caso en el que L � 1, debemos aplicar otra prueba a la serie para determinar su con-
vergencia o divergencia.

EJEMPLO  1 Empleo de la prueba de las proporciones

Pruebe la convergencia de 

Solución Se identifica que y por ello Luego se forma el
cociente de an�1 y an, se simplifica y se toma el límite cuando 

Puesto que se concluye del teorema A.6.1i) que la serie es convergente.L � 0 6 1,

n S q:
an�1 � 5n�1>(n � 1)!.an � 5n>n!

a
q

k�1
 

5k

k!
.

gq
k�1aklím

xSq
an�1 7 an

r 7 1an�1 7 ran.an�1>an 7 r
n � N1 6 r 6 L.

gq
k�N�1akgq

k�1akgq
k�1aNr k.

gq
k�N�1ak

aN�3 6 raN�2 6 aN 
r 3,

aN�2 6 raN�1 6 aN 
r 2

aN�1 6 raN

n � N.an�1 6 ran,an�1>an 6 r;
n � N0 � L � r � 1.
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EJEMPLO  2 Empleo de la prueba de las proporciones

Examinar la convergencia de 

Solución En este caso se tiene que y Entonces

Puesto que se concluye del teorema A.6.1ii) que la serie es divergente.

Prueba de la raíz Si los términos de una serie consisten sólo en potencias k-ésimas,
entonces puede aplicarse la siguiente prueba, la cual implica tomar la raíz n-ésima del término
n-ésimo.

gak

L � e 7 1,

an�1 � (n � 1)n�1>(n � 1)!.an � nn>n!

a
q

k�1

kk

k!
.
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Teorema A.6.2 Prueba de la raíz

Suponga que es una serie de términos positivos tal que

i) Si la serie es convergente.
ii) Si o si la serie es divergente.
iii) Si L = 1, la prueba no es conclusiva.

L � q,L 7 1,
L 6 1,

gq
k�1ak

NOTAS DESDE EL AULA

i) La prueba de las proporciones siempre producirá un caso no conclusivo cuando se aplique
a una serie p. Inténtelo con la serie y vea lo que ocurre.

ii) Las pruebas examinadas en ésta y en las dos secciones anteriores indican cuando una serie
tiene una suma, pero ninguna de estas pruebas da alguna pista respecto a lo que es la suma
real. Sin embargo, al saber que una serie converge, es posible sumar cinco, cien o mil tér-
minos en una computadora para obtener una aproximación de la suma.

gq
k�11>k2 

La demostración de la prueba de la raíz es muy similar a la prueba de las proporciones y no
se presentará.

EJEMPLO  3 Empleo de la prueba de la raíz

Examinar la convergencia de 

Solución Se identifica primero y después se calcula el límite cuando de
la raíz n-ésima de an:

Puesto que se concluye del teorema A.6.2i) que la serie converge.L � 0 6 1,

n S qan � (5>n)n,

a
q

k�1
a5

k
bk

.

Este límite es (3) de la sección 2.6.d lím
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Fundamentos

En los problemas 1-16, recurra a la prueba de las proporcio-
nes para determinar si la serie dada converge.

1. 2.

4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

En los problemas 17-24, utilice la prueba de la raíz para deter-
minar si la serie dada converge.

En los problemas 25-32, use cualquier prueba apropiada para
determinar si la serie dada converge.

25. 26.

27. 28.

29. 30.

31. 32.

En los problemas 33 y 34, recurra a la prueba de las propor-
ciones para determinar los valores no negativos de p para los
cuales la serie dada converge.

33. 34.

En los problemas 35 y 36, determine todos los valores reales
de p para los cuales la serie dada converge.

37. En los problemas 78 y 79 de los ejercicios A.1 se vio que
la sucesión de Fibonacci {Fn},

está definida por la fórmula de recursión Fn+1 = Fn + Fn-1,
donde 
a) Verifique que el término general de la sucesión es

mostrando que este resultado satisface la fórmula de
recursión.

b) Utilice el término general en el inciso a) para calcular
F3, F4 y F5.

38. Sea Fn el término general de la sucesión de Fibonacci
dada en el problema 37. Demuestre que

39. Explique cómo el resultado del problema 38 demuestra
que la serie

converge.

40. Un poco de historia En 1985, William Gosper utilizó
la siguiente identidad para calcular los primeros 17
millones de dígitos de p:

Esta identidad fue descubierta en 1920 por el matemá-
tico indio Srinivasa Ramanujan (1887-1920). Rama-
nujan fue notable por su excepcional conocimiento en
el manejo de manipulaciones y cálculos algebraicos ex-
tremadamente complejos.
a) Verifique que la serie infinita converge.
b) ¿Cuántos lugares decimales correctos de p produce el

primer término de la serie?
c) ¿Cuántos lugares decimales correctos de p producen

los dos primeros términos de la serie?
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PROBLEMAS A.6 Las respuestas de los problemas impares comienzan en la página RES-19.
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A.7 Series alternantes
Introducción En las últimas tres secciones se consideraron pruebas para la convergencia que

resultaron aplicables sólo para series con términos positivos. En la presente discusión se consi-
deran series en las cuales los términos se alternan entre números positivos y negativos, esto es,
las series tienen la forma

(1)

o (2)

donde para k � 1, 2, 3, . . . Las series (1) y (2) se dice que son series alternantes. Ya se
encontró un tipo especial de serie alternante en la sección A.3, pero en esta sección se examina-
rán las propiedades de series alternantes generales y las pruebas de su convergencia. Debido a
que la serie (2) es sólo un múltiplo de (1), se confinará la discusión a la última serie.

EJEMPLO  1 Serie alternante

Las series

y

son ejemplos de series alternantes.

Prueba de la serie alternante La primera serie en el ejemplo 1, se
denomina serie armónica alternante. Aunque la serie armónica

es divergente, la introducción de términos positivos y negativos en la sucesión de sumas parcia-
les para la serie armónica alternante es suficiente para producir una serie convergente. Se demos-

trará que converge por medio de la siguiente prueba.a
q

k�1

(�1)k�1

k

a
q

k�1

1
k

� 1 �
1
2

�
1
3

�
1
4

� p

1 �
1
2 �

1
3 �

1
4 � p ,

ak 7 0
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Teorema A.7.1 Prueba de la serie alternante

Si an = 0 y para todo entero positivo k, entonces la serie alternante 

converge.gq
k�1(�1)k�1ak

0 6 ak�1 � aklím
nSq

Una serie geométrica tal como

es una serie alternante. Vea el
ejemplo 4 en la sección A.3.

La condición 0 6 ak+1 � ak

significa que
a1 � a2 � a3 � . . . � ak �

ak+1 � . . .

DEMOSTRACIÓN Considere las sumas parciales que contienen 2n términos:

(3)

Puesto que la suposición implica para tenemos

De tal modo, la sucesión {S2n}, cuyo término general S2n contiene un número par de términos
de la serie, es una sucesión monótona. Al reescribir (3) como

S2n � a1 � (a2 � a3) � p � a2n

S2 � S4 � S6 � p � S2n � p .

k � 1, 2, 3, pak � ak�1 � 00 6 ak�1 � ak

 � (a1 � a2) � (a3 � a4) � p � (a2n�1 � a2n).

 S2n � a1 � a2 � a3 � a4 � p � a2n�1 � a2n

 a1 a2 a3 a4
p ( 1)nan

p a
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demuestre que para todo entero positivo n. En consecuencia, {S2n} está acotada. Por el
teorema A.2.1 se concluye que {S2n} converge a un límite S. Ahora,

implica que S2n�1 = S2n + a2n�1 = S + 0 = S. Esto muestra que la sucesión de sumas
parciales {S2n�1}, cuyo término general S2n�1 contiene un número impar de términos, también
converge a S. Como y {S2n�1} convergen a S, se concluye que {Sn} converge a S.

EJEMPLO  2 Serie armónica alternante

Demuestre que la serie armónica alternante converge.

Solución Con la identificación an � 1�n tenemos de inmediato

Además, puesto que

para se tiene Se concluye del teorema A.7.1 que la serie armónica alter-
nante converge.

EJEMPLO  3 Serie alternante divergente

La serie alternante diverge, ya que

Este último resultado indica que

no existe. Recuerde del teorema A.3.2 que es necesario que el último límite sea 0 para la conver-
gencia de la serie.

Aunque demostrar que quizá sea una tarea directa, éste muchas veces no es el caso.

EJEMPLO  4 Uso de la prueba de la serie alternante

Pruebe la convergencia de 

Solución Para demostrar que los términos de la serie satisfacen las condiciones se
considerará la función para la cual f (k) = ak. De la derivada, se observa que

para

y, en consecuencia, la función f decrece para De tal modo, es cierta para 
Además, la regla de L’Hôpital muestra que

Por consiguiente, la serie dada converge por el método de la serie alternante.

k � 1.ak�1 � akx 7 1.

x 7 1,f ¿(x) � �
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6 0
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Aproximación de la suma de una serie alternante Suponga que la serie alternante
converge al número S. Las sumas parciales

pueden representarse sobre una línea numérica como se muestra en la FIGURA A.7.1. La sucesión
{Sn} converge de la manera ilustrada en la figura A.1.1c); esto es, los términos Sn se acercan a S
cuando aunque oscilan a ambos lados de S. Como se indica en la figura A.7.1, las sumas
parciales con número par son menores que S y las sumas parciales con número impar son mayo-
res que S. De manera aproximada, las sumas parciales numeradas par se incrementan hacia el
número S y, a su vez, las sumas parciales numeradas impar disminuyen hacia S. Debido a ello,
la suma S de la serie debe ubicarse entre sumas parciales consecutivas Sn y Sn�1:

para n par, (4)

y para n impar. (5)

En este caso (4) produce para n par, y (5) implica que
para n impar. De este modo, en cualquier caso 

Pero para n par y para n impar. Así,
para toda n. Se enuncia este resultado como el siguiente teorema.

0Sn � S 0 � an�1Sn�1 � Sn � �an�1Sn�1 � Sn � an�1

0Sn � S 0 � 0Sn�1 � Sn 0 .0 � Sn � S � Sn � Sn�1

0 � S � Sn � Sn�1 � Sn

Sn�1 � S � Sn,

Sn � S � Sn�1,

n S q

S1 � a1, S2 � a1 � a2, S3 � a1 � a2 � a3, S4 � a1 � a2 � a3 � a4, p

gq
k�1(�1)k�1ak
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FIGURA A.7.1 Sumas parciales
sobre la recta numérica

0 S2

a2

a3

a4

a1

S4 S3 S1S

Teorema A.7.2 Cota de error para una serie alternante

Suponga que la serie alternante converge hacia un número S. Si Sn

es la suma parcial n-ésima de la serie y para todo k, entonces

para toda n.

ak�1 � an

ak 7 0,gq
k�1(�1)k�1ak,

El teorema A.7.2 es útil para aproximar la suma de una serie alternante convergente. Señala
que el error entre la n-ésima suma parcial y la serie es menor que el valor absoluto del
primer término (n + 1) de la serie.

EJEMPLO  5 Aproximación de la suma de una serie

Aproxime la suma de la serie convergente hasta cuatro lugares decimales.

Solución Primero, observamos que El teorema A.7.2 indica que debe tenerse

para aproximar la suma de la serie hasta cuatro lugares decimales. Ahora a partir de

se ve que Por tanto,

tiene la exactitud deseada.
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� 0.4597

0S3 � S 0 � a4 6 0.00005.
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Convergencia absoluta y condicional Una serie que contiene signos mezclados tal como

(6)

no es estrictamente de la forma dada en (1) y por ello no se clasifica como una serie alternante.
El teorema A.7.1 no es aplicable a este tipo de serie. No obstante, veremos que la serie (6) es
convergente debido a que la serie de valores absolutos

(7)

es convergente (una serie geométrica con La serie (6) es un ejemplo de una serie
que es absolutamente convergente.

En la siguiente definición se está dejando que el símbolo represente cualquier serie
(los términos ak podrían alternar como en (1) o contener signos mezclados); los signos pueden
seguir cualquier regla (como en (6)) o no.
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Definición A.7.1 Convergencia absoluta

Una serie se dice que es absolutamente convergente si la serie de valores absolutos
converge.gq

k�1 0ak 0 gq
k�1 

ak

Definición A.7.2 Convergencia condicionada

Se dice que una serie es convergente de manera condicional si converge pero
la serie de valores absolutos diverge.gq

k�1 0ak 0 gq
k�1akgq

k�1ak

Teorema A.7.3 La convergencia absoluta implica convergencia

Si converge, entonces converge.gq
k�1akgq

k�1 0ak 0

Dé un vistazo adelante y lea las
dos oraciones que siguen inme-
diatamente al ejemplo 7.

EJEMPLO  6 Convergencia absoluta

La serie alternante es absolutamente convergente, puesto que se mostró que la serie

de valores absolutos

era convergente por la prueba de la integral en el ejemplo 1 de la sección A.4.

a
q

k�1
` (�1)k�1

1 � k2
` � a

q

k�1

1
1 � k2

a
q

k�1

(�1)k�1

1 � k2

EJEMPLO  7 Convergencia condicional

En el ejemplo 2 vimos que la serie armónica alternante es convergente. Pero al tomar

el valor absoluto de cada término se obtiene la serie armónica divergente Por ello,

es convergente de manera condicional.

El siguiente resultado muestra que toda serie absolutamente convergente es también conver-
gente. Por esta razón es que la serie en (6) converge.

a
q

k�1

(�1)k�1

k

a
q

k�1

1
k

.

a
q

k�1

(�1)k�1

k



DEMOSTRACIÓN Si se define entonces Puesto que converge,
se sigue de la prueba de comparación que converge. Además, converge, ya que
tanto como convergen. Pero

Por tanto, converge.

Advierta que es una serie de términos positivos, y por ello las pruebas de la sección
anterior pueden utilizarse para determinar si una serie converge absolutamente.

EJEMPLO  8 La convergencia absoluta implica convergencia

La serie

contiene términos positivos y negativos puesto que

y así sucesivamente. De la trigonometría se sabe que 0 sen k 0 � 1 para todo k. Por tanto,

para todo k. Por la prueba de comparación directa, teorema A.5.1, la serie converge

puesto que es dominada por la serie p convergente Por consiguiente, es abso-

lutamente convergente, y en virtud de ello por el teorema A.7.3 converge.

Pruebas de las proporciones y de la raíz Las siguientes formas modificadas de la prueba de
las proporciones y de la prueba de la raíz se aplican directamente a una serie alternante.

a
q

k 1

sen k

k2a
q

k�1

1
k2

.

a
q

k 1

sen k

k2

g 0ak 0g ak

a
q

k�1
ak � a

q

k�1
(ck � 0ak 0 ).a 0ak 0a ck

a (ck � 0ak 0 )ack

a 0ak 0ck � 2 0ak 0 .ck � ak � 0ak 0 ,
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Teorema A.7.4 Prueba de las proporciones

Suponga que  es una serie de términos distintos de cero tal que:

i) Si la serie es absolutamente convergente.
ii) Si o si  la serie es divergente.
iii) Si L = 1, la prueba no es conclusiva.

L � q,L 7 1,
L 6 1,

gq
k�1ak

EJEMPLO  9 Empleo de la prueba de las proporciones

Examine la convergencia de 

Solución Con observamos que

Puesto que veremos por el teorema A.7.4ii) que la serie alternante diverge.L �
4
3 7 1,

an � (�1)n�1
 22n�1>(n3n),

a
q

k�1

(�1)k�1
 22k�1

k3k
.

a
q

k 1

sen k

k2

sen 1
1
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9
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16

p
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( 1)n 122n 1
`



Rearreglo de términos Cuando trabajamos con una serie finita de términos tales como

(8)

cualquier rearreglo del orden de los términos, tal como

o

tiene la misma suma que la original (8). Este tipo de manipulación despreocupada de términos
no lleva a una serie infinita:

• Si los términos de una serie convergente de manera condicional se escriben en un orden
diferente, la nueva serie puede diverger o converger hacia un número por completo dife-
rente.

De hecho, es posible demostrar que mediante un rearreglo adecuado de sus términos, una serie
convergente de manera condicional puede hacerse converger a un número real r predeterminado.

En contraste, un rearreglo de los términos de una serie absolutamente convergente no efec-
ta su suma:

• Si una serie gak es absolutamente convergente, entonces los términos de la serie pueden
rearreglarse en cualquier manera y la serie resultante convergerá al mismo número que la
serie original.

Por ejemplo, la serie geométrica es absolutamente convergente y su suma

es El rearreglo de la serie geométrica no es una serie geométrica, aun-
que la serie rearreglada converge y su suma es Vea los problemas 53-56 en los ejercicios A.7.3

4.
�

1
3 �

1
1 �

1
27 �

1
9 � p3

4.
1 �

1
3 �

1
9 �

1
27 � p

(a1 � a2) � (a3 � a4) � (a5 � a6)

�a2 � a1 � a4 � a3 � a6 � a5

a1 � a2 � a3 � a4 � a5 � a6,
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Teorema A.7.5 Prueba de la raíz

Suponga que es una serie tal que:

i) Si la serie es absolutamente convergente.
ii) Si o si la serie es divergente.
iii) Si L = 1, la prueba no es conclusiva.

L � q,L 7 1,
L 6 1,

gq
k�1ak

NOTAS DESDE EL AULA

i) La conclusión del teorema A.7.1 sigue siendo válida cuando la hipótesis “ para
todo k positivo” se sustituye con el enunciado “ para k suficientemente grande”.
Para la serie alternante g

q
k=1 (-1)k+1(ln k) k1�3, se muestra de inmediato por medio del

procedimiento utilizado en el ejemplo 4 que para Además, an = 0.
En consecuencia, la serie converge por la prueba de la serie alternante.

ii) Si la serie de valores absolutos resulta divergente, entonces no es posible estable-
cer ninguna conclusión relativa a la convergencia o divergencia de la serie a ak.

a 0ak 0 lím
nSq

k � 21.ak�1 � ak

> ak�1 � ak

ak�1 � ak

Fundamentos

En los problemas 1-14 utilice la prueba de la serie alternante
para determinar si la serie dada converge.

1. 2.

3. 4.

5. 6. a
q

k�1
(�1)k�1

 
3k � 1
k � 5a

q

k�1
(�1)k�1

 
k2

� 2
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� 1a
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k � 1
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q
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(�1)k�1
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PROBLEMAS A.7 Las respuestas de los problemas impares comienzan en la página RES-19.

lím
nSq
2n 0an 0 lím

nSq
0an 0 1>n L.

g



En los problemas 15-34, determine si la serie dada es absolu-
tamente convergente, convergente de manera condicional o
divergente.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

31. 32.

33. 34.

En los problemas 35 y 36, aproxime la suma de la serie con-
vergente al número indicado de lugares decimales.

En los problemas 37 y 38, encuentre el entero positivo n más
pequeño de modo que Sn aproxime la suma de la serie conver-
gente al número indicado de lugares decimales.

En los problemas 39 y 40, aproxime la suma de la serie con-
vergente de manera que el error sea menor que la cantidad
indicada.

39.

40.

En los problemas 41 y 42, estime el error de usar la suma par-
cial indicada como una aproximación a la suma de la serie
convergente.

41. 42.

En los problemas 43-48, indique por qué la prueba de la serie
alternante no es aplicable a la serie dada. Determine si la
serie converge.

44.

45.

46.

47.

[Sugerencia: Considere las sumas parciales S2n para
n = 1, 2, 3, . . .]

48.

En los problemas 49-52, determine si la serie dada converge.

49.

50.

51.

52.

Piense en ello

53. Vuelva a leer la discusión previa a Notas desde el aula de
esta sección. Explique después por qué el siguiente enun-
ciado es cierto:

Si una serie de términos positivos gak es convergente, enton-

ces los términos de la serie pueden rearreglarse de cualquier

manera y la serie que resulta converge al mismo número que la

serie original.

54. Suponga que S es la suma de la serie armónica alternan-
te convergente 

Demuestre que el rearreglo de la serie

produce 

55. Utilice y el resultado
del problema 54 en la forma
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para demostrar que la suma de otro rearreglo de términos
de la serie armónica alternante es

56. La serie es una serie geométrica
absolutamente convergente. Demuestre que su rearreglo

es convergente. Intente con la
prueba de las proporciones y con la prueba de la raíz.
[Sugerencia: Examine 3k+(-1)k

, k = 0, 1, 2, . . .]

57. Si es absolutamente convergente, pruebe que 
converge. [Sugerencia: Para n suficientemente grande,

¿Por qué?]

58. Proporcione un ejemplo de una serie convergente 
para la cual diverge.

59. Proporcione un ejemplo de una serie convergente 
para la cual converge.

60. Dé un ejemplo de una serie divergente para la cual
converge.

61. Explique por qué la serie

converge para todo valor positivo de x.
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Es conveniente definir
(x - a)0 = 1 y x0 = 1
incluso cuando x = a y x = 0,
respectivamente.

e x sen x e 2xsen 2x e 3x sen 3x p

A.8 Series de potencias
Introducción En matemáticas aplicadas es común trabajar con la serie infinita de funciones,

(1)

Los coeficientes ck son constantes que dependen de k y las funciones uk(x) podrían ser diversos
tipos de polinomios o incluso funciones seno y coseno. Cuando se especifica la variable x, por
ejemplo x � 1, entonces la serie se reduce a una serie de constantes. La convergencia de una
serie tal como (1) dependerá, desde luego, de la variable x, con la serie convergiendo usualmen-
te para algunos valores de x mientras que divergirá para otros valores. En ésta y en la siguiente
sección se considerarán series infinitas (1) donde las funciones uk(x) son polinomios (x � a)k.
Estudiaremos las propiedades de este tipo de series y se demostrará cómo determinar los valo-
res de x para los cuales la serie converge.

Series de potencias Una serie que contiene potencias enteras no negativas de (x � a)k,

(2)

recibe el nombre de serie de potencias en x � a. Se dice que la serie de potencias (2) está cen-
trada en a o tiene centro a. Un importante caso especial de (2), cuando a � 0,

(3)

se denomina serie de potencias en x. La serie de potencias en (3) está centrada en 0. Un proble-
ma que enfrentaremos en esta sección es:

• Encontrar los valores de x para los cuales una serie de potencias converge.

Observe que (2) y (3) convergen a c0 cuando x � a y x � 0, respectivamente.

EJEMPLO  1 Serie de potencias centrada en 0

La serie de potencias en x donde los coeficientes ck � 1 para todo k,

se reconoce como una serie geométrica con el mismo cociente común r � x. Por el teorema
A.3.1, la serie converge para aquellos valores de x que satisfacen o La serie

diverge para 0 x 0 1, esto es, para x -1 o x 1.

En general, la prueba de las proporciones, como se establece en el teorema A.7.4, es espe-
cialmente útil al determinar los valores de x para los cuales una serie de potencias converge. La
prueba de la raíz, en la forma del teorema A.7.5, también es útil pero en menor grado.
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EJEMPLO  2 Intervalo de convergencia

Encuentre el intervalo de convergencia para 

Solución Con la identificación de que se usa la prueba de las proporcio-
nes, teorema A.7.4,

Del inciso i) del teorema A.7.4, se tiene convergencia absoluta siempre que este límite sea estric-
tamente menor que 1. De tal modo, la serie es absolutamente convergente para aquellos valores
de x que satisfacen o Puesto que la desigualdad de valor absoluto es
equivalente a advertimos que la serie dada convergerá para cualquier número x en
el intervalo abierto (-2, 2). Sin embargo, si o o cuando o 
entonces la prueba de las proporciones no brinda información. Es necesario efectuar verificacio-
nes independientes de la serie dada para la convergencia en estos puntos extremos. Al sustituir 2
por x la serie se convierte en

que es convergente por comparación directa con la serie p convergente De manera
similar, al sustituir -2 por x se obtiene

que es convergente por la prueba de la serie alternante, teorema A.7.1. Concluimos que la serie
dada converge para toda x en el intervalo cerrado La serie diverge para x 6 -2 y x 7 2,
o equivalentemente, para 

Intervalo de convergencia En la FIGURA A.8.1 se ha ilustrado el conjunto [-2, 2] de todos los
números reales x para los cuales la serie en el ejemplo 2 converge y el conjunto 
de números x para los cuales la serie diverge. El conjunto de números para los cuales la serie
converge es un intervalo centrado en 0 (el centro de la serie). Como se muestra en la figura, el
radio de este intervalo es R � 2. En general, el conjunto de todos los números reales x para los
cuales converge una serie de potencias se dice que es su intervalo de convergen-
cia. El centro del intervalo de convergencia es el centro a de la serie. El radio R del intervalo de
convergencia se denomina radio de convergencia.

El siguiente teorema, que se presenta sin demostración, resume todas las maneras posibles
en las que puede converger una serie de potencias.

�ck 
(x � a)k

(�q, �2) ´ (2, q)

�x� 7 2.
[�2, 2] .

a
q

k�1

(�1)k
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,

gq
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x � �2,x � 2�x� � 2,�x�>2 � 1,
�2 6 x 6 2,
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divergente divergenteconvergente

�2 0 2
R � 2

FIGURA A.8.1 El conjunto de
números x para los cuales la serie
en el ejemplo 2 converge se
muestra entre corchetes.

Teorema A.8.1 Convergencia de una serie de potencias

Para una serie de potencias exactamente uno de los siguientes puntos es cierto:

i) La serie converge sólo en el número x � a.
ii) La serie converge absolutamente para todos los números reales x.

iii) La serie converge absolutamente para los números x en un intervalo finito

y diverge para los números en el conjunto En un
punto extremo del intervalo finito, x = a - R o x = a + R, la serie puede converger abso-
lutamente, converger de manera condicional o divergir.

(�q, a � R) ´ (a � R, q).R 7 0,
(a � R, a � R),

gq
k�0 ck(x � a)k

Desde luego en ii) y en iii), cuando la serie de potencias converge absolutamente a un núme-
ro x, sabemos, por el teorema A.7.3, que converge. En i) del teorema A.8.1 el intervalo de con-
vergencia consiste de un elemento {a} y afirmamos que la serie tiene radio de convergencia
R � 0. En ii) del teorema A.8.1, el intervalo de convergencia es y la serie tiene radio(�q, q)

x
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de convergencia Por último, en iii) del teorema A.8.1, hay cuatro posibilidades para el
intervalo de convergencia con radio de convergencia 

Vea la FIGURA A.8.2.
Como en el ejemplo 1, si debe manejarse la cuestión de convergencia en un punto

extremo al sustituir estos números en la serie dada y reconociendo después la serie
resultante como convergente o divergente o probando la serie que resulta respecto a la conver-
gencia mediante una prueba apropiada diferente a la prueba de las proporciones. Recuerde que:

• La prueba de las proporciones siempre es no conclusiva en un punto extremo x = a ; R.

EJEMPLO  3 Intervalo de convergencia

Encuentre el intervalo de convergencia para 

Solución Por la prueba de las proporciones, teorema A.7.4, se tiene

Puesto que 0x 0�(n + 1) = 0 para cualquier elección de x, la serie converge absolutamente para
todo número real. De tal modo, el intervalo de convergencia es y el radio de conver-
gencia es

EJEMPLO  4 Intervalo de convergencia

Encuentre el intervalo de convergencia para 

Solución Por la prueba de las proporciones, teorema A.7.4, tenemos

La serie converge absolutamente si o Esta desigualdad de valores
absolutos produce el intervalo abierto (2, 8). En y los puntos extremos del interva-
lo, obtenemos, a su vez,

y

La primera serie es un múltiplo de la serie armónica alternante y por ello es convergente, la segun-
da serie es la serie armónica divergente. Consecuentemente, el intervalo de convergencia es [2, 8).
El radio de convergencia es R � 3. La serie diverge si o Vea la FIGURA A.8.3.

EJEMPLO  5 Intervalo de convergencia

Encuentre el intervalo de convergencia para 

Solución De la prueba de las proporciones,

se observa que el límite cuando sólo puede existir si a saber, cuando
x � -10. De tal manera,

�x � 10� � 0,n S q

gq
k�1 k!(x � 10)k.

x � 8.x 6 2

a
q

k�1

1
k

.a
q

k�1

(�1)k

k

x � 8,x � 2
�x � 5� 6 3.�x � 5�>3 6 1

a
q

k�1

(x � 5)k

k3k
.

R � q.
(�q, q)

lím
nSq

a
q

k�0

xk

k!
.

x � a � R
R 7 0,

R � 0:
R � �.
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a � R a � Ra

a � R a � Ra

a � R a � Ra

a � R a � Ra

FIGURA A.8.2 Posibles intervalos
finitos de convergencia con R 7 0

divergente divergenteconvergente

2 5 80
R � 3

FIGURA A.8.3 Intervalo de
convergencia del ejemplo 4

La primera serie es

o

La serie entre corchetes es la
serie armónica alternante
convergente.

(a R, a R), [a R, a R ] , (a R, a R ] o [a R, a R).
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La serie diverge para todo número real x, excepto x = -10. En x = -10, obtenemos una serie con-
vergente que consta sólo de ceros. El intervalo de convergencia es el conjunto {10} y el radio de
convergencia es R � 0.
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Fundamentos

En los problemas 1-24, recurra a la prueba de las proporcio-
nes para encontrar el intervalo y el radio de convergencia de
la serie de potencias dada.

En los problemas 25-28, emplee la prueba de la raíz para
determinar el intervalo y el radio de convergencia de la serie
de potencias dada.

En los problemas 29 y 30, encuentre el radio de convergencia
de la serie de potencias dada.

29.

30.

En los problemas 31-38, la serie dada no es una serie de
potencias. No obstante, encuentre todos los valores de x para
los cuales la serie dada converge.

31. 32.

33. 34.

35. 36.

37. 38.

39. Encuentre todos los valores de x en para los cua-

les converge.

40. Demuestre que gq
k=1 (sen kx)�k2 converge para todos los

valores reales de x.

Problemas con calculadora/SAC
41. Algunas funciones importantes en matemáticas aplicadas

se definen en términos de integrales no elementales.
Algunas de estas funciones especiales de matemáticas
aplicadas también se definen mediante series infinitas. La
serie de potencias

recibe el nombre de función de Bessel de orden 0.
a) El dominio de la función es su intervalo de con-

vergencia. Determine el dominio.
b) El valor de se define como la suma de la serie

para x en su dominio:

donde

es el término general de la sucesión de sumas parcia-
les. Emplee una calculadora o SAC y grafique las
sumas parciales S0(x), S1(x), S2(x), S3(x) y S4(x).

c) Hay varios tipos de funciones de Bessel de diferentes
órdenes. es un caso especial de una función más
general llamada función de Bessel de primer
tipo de orden v. Las funciones de Bessel son funcio-
nes incorporadas en sistemas algebraicos computari-
zados tales como Mathematica y Maple. Emplee un
SAC para obtener la gráfica de y compárela con
las gráficas de las sumas parciales en el inciso b).
[Sugerencia: En Mathematica, se denota por
medio de BesselJ[0, x].]
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PROBLEMAS A.8 Las respuestas de los problemas impares comienzan en la página RES-19.
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A.9 Representación de funciones mediante
series de potencias

Introducción Para cada x en su intervalo de convergencia, una serie de potencias
converge a un número. Por esta razón, una serie de potencias es en sí misma una función, la cual
se denota como f, cuyo dominio es su intervalo de convergencia. Entonces para cada x en el inter-
valo de convergencia se define el elemento correspondiente en el rango de la función, el valor
f (x), como la suma de la serie:

Los dos siguientes teoremas, que se anuncian sin demostración, responden algunas de las
preguntas fundamentales acerca de la diferenciabilidad, integrabilidad y continuidad de una fun-
ción f definida por una serie de potencias.

Diferenciación de una serie de potencias La función f definida por una serie de potencias
es diferenciable.a ck(x � a)k

f (x) � c0 � c1(x � a) � c2(x � a)2
� p � a

q

k�0
ck 

(x � a)k.

ack(x � a)k
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Teorema A.9.1 Diferenciación de una serie de potencias

Si converge sobre un intervalo para el cual el radio de
convergencia R es positivo o q, entonces f es diferenciable en cada x en y

(1)

El radio de convergencia R de (1) es el mismo que el de la serie original.

(a � R, a � R), 
(a � R, a � R)f (x) � gq

k�0 ck 
(x � a)k

El resultado de (1) establece simplemente que una serie de potencias puede diferenciarse
término por término como se haría para una función polinomial:

(2)

Puesto que (1) es una serie de potencias con un radio de convergencia R, es posible aplicar el
teorema A.9.1 a f ¿ definida en (2). Esto es, puede afirmarse que f ¿ es diferenciable en cada x en

y f – está dada por

Continuando de esta manera, se concluye que:

• Una función f definida por una serie de potencias sobre (a - R, a + R), R 7 0, o sobre
(- q, q), posee derivadas de todos los órdenes en el intervalo.

El radio de convergencia R de cada serie derivada es el mismo que el de la serie original.
Además, puesto que la diferenciabilidad implica continuidad, también tenemos el resultado:

• Una función f definida por una serie de potencias sobre (a - R, a + R), R 7 0, o sobre
(- q, q), es continua en cada x en el intervalo.

Integración de una serie de potencias Como en (1), el proceso de integración de una serie
de potencias puede llevarse a cabo término por término:

El resultado se resume en el siguiente teorema.

 � a
q

k�0

ck

k � 1
 (x � a)k�1

� C.

 � c0(x � a) �
c1

2
 (x � a)2

�
c2

3
 (x � a)3

� p �
cn

n � 1
 (x � a)n�1

� p � C

 � f (x) dx � �c0(x � a)0 dx � �c1(x � a) dx � �c2(x � a)2 dx � p � �cn(x � a)n dx � p

f –(x) � 2c2 � 3 # 2c3(x � a) � p � n(n � 1)cn 
(x � a)n�2

� p � a
q

k�2
k(k � 1)ck 

(x � a)k�2.

(a � R, a � R)

 � c1 � 2c2(x � a) � 3c3(x � a)2
� p � ncn(x � a)n�1

� p � a
q

k�1
kck(x � a)k�1.

 f ¿(x) �
d
dx

 c0 �
d
dx

 c1(x � a) �
d
dx

 c2(x � a)2
� p �

d
dx

 cn(x � a)n
� p

f ¿(x) a
q

k 1
kck(x a)k 1.



Puesto que la función es continua, su integral definida existe y está
definida por

para cualesquiera números a y b en o en si R � q.
En los teoremas A.9.1 y A.9.2 se estableció que si la función tiene

radio de convergencia R 7 0 o R = q, entonces la serie obtenida que forma e 
tiene el mismo radio de convergencia R. Esto no significa que la serie de potencias que definen
a f (x), f ¿(x) e tengan los mismos intervalos de convergencia. Esto no es tan malo como
parece. Si el radio de convergencia de la serie que define a , f ¿(x) e es enton-
ces los intervalos de convergencia pueden diferir sólo en los puntos extremos del intervalo.
Como regla, al diferenciar una función definida por serie de potencias con radio de convergen-
cia es posible perder convergencia en un punto final del intervalo. Al integrar una fun-
ción definida por una serie de potencias con radio de convergencia puede ganarse con-
vergencia en un punto extremo del intervalo.

EJEMPLO  1 Intervalo de convergencia

Para la función f definida por encuentre los intervalos de convergencia de

a) b)

Solución Se muestra fácilmente de la prueba de las proporciones que el intervalo de conver-
gencia de la serie de potencia que define a f es [-1, 1).

a) La derivada

(4)

se reconoce como una serie geométrica cuyo intervalo de convergencia es (-1, 1). La
serie diferenciada (4) ha perdido convergencia en el punto extremo izquierdo en el
intervalo de convergencia de f.

b) La integral de f es

(5)

En x � -1 y x � 1, las series en (5) se convierten, respectivamente, en

Como ambas series convergen, el intervalo de convergencia de (5) es [-1, 1]. En este
caso, la serie integrada (5) ha ganado convergencia en el punto extremo derecho del
intervalo de convergencia de f.

Representación de series de potencias de una función Con frecuencia es posible expresar
una función f conocida o dada (tal como ex o tan�1 x) como la suma de una serie de potencias
en algún intervalo. En este caso puede afirmarse que la serie es una representación de f en serie
de potencias sobre el intervalo.

El siguiente ejemplo es importante debido a que conduce a muchos otros resultados.

� f (x) dx � a
q
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� xk

k
 dx � a

q

k�1

xk�1

k (k � 1)
� C.
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dx

 
xk

k
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q
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 x k�1

� 1 � x � x2
� x3

� p

� f (x) dx.f ¿(x)

f (x) � a
q
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xk

k
,

R 7 0
R 7 0

R 7 0,�f (x) dxf (x)
�f (x) dx

�f (x) dxf ¿(x)
f (x) � gq

k�0 ck 
(x � a)k

(�q, q)R 7 0,(a � R, a � R),

f (x) � gq
k�0 ck 

(x � a)k
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Teorema A.9.2 Integración de una serie de potencias

Si converge sobre un intervalo para el cual el radio de
convergencia R es positivo o q, entonces

(3)

El radio de convergencia R de (3) es el mismo que el de la serie original.

(a � R, a � R)f (x) � gq
k�0 ck 

(x � a)k

Es recomendable que lea este
párrafo varias veces.

La primera serie converge por la
prueba de la serie alternante; la
segunda converge por la prueba
de comparación directa (la serie
es dominada por la serie p
convergente g1�k2).

f (x) dx a
q

k 0

ck

k 1
 (x a)k 1 C.

b

a

f (x) dx a
q

k 0
ck 
a b

a

(x a)k dxb

a
q

k 1

( 1)k 1

k(k 1)
  y  a

q

k 1

1
k(k 1)

.



EJEMPLO  2 Representación de una función por una serie de potencias

Encuentre una representación en serie de potencias de centrada en 0.

Solución Recuerde que una serie geométrica converge a si :

Identificando a � 1 y r � x, observamos que

(6)

La serie converge para El intervalo de convergencia es (-1, 1). En la FIGURA A.9.1 se ha
desplegado la gráfica de junto con las gráficas de las sumas parciales S2(x), S5(x),
S8(x) y S9(x) de la serie de potencias (6). Al inspeccionar esta figura, ponga atención sólo en el
intervalo (-1, 1). La serie no representa la función fuera de este intervalo.

Al sustituir x por �x en (6), obtenemos una representación de serie de potencias para la fun-
ción 

(7)

La serie (7) converge para 0-x 0 6 1 o x 6 1. El intervalo de convergencia es otra vez (-1, 1).
Muchas funciones conocidas pueden representarse mediante una serie infinita a través de

cierto tipo de manipulación de las series en (6) y en (7). Por ejemplo, podría multiplicarse la serie
por una potencia de x, reemplazar x con otra variable o quizá combinar la sustitución de x con
otra variable con el proceso de integración (o diferenciación), etcétera.

EJEMPLO  3 Representación de una función por una serie de potencias

Encuentre una representación de serie de potencias de centrada en 0.

Solución Al sustituir simplemente el símbolo x por 3x en (7) obtenemos

Esta serie converge cuando 0-3x 0 6 1 o 0x 0 6 . El intervalo de convergencia es

EJEMPLO  4 Representación de una función por una serie de potencias

Encuentre una representación de series de potencias de centrada en 0.

Solución Factorizando 5 del denominador,

estamos en posibilidad de utilizar (6). Al reemplazar el símbolo x en (6) con x�5 obtenemos

o

La serie converge para 0x�50 6 1 o 0x 0 6 5. El intervalo de convergencia es (-5, 5).
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Con un poco de habilidad, las representaciones en serie de potencias en (6) y (7) muy a
menudo se utilizan para encontrar una representación de serie de potencias de una función
centrada en un número a diferente de 0.

EJEMPLO  5 Serie de potencias centrada en 3

Determine una representación de serie de potencia de centrada en 3.

Solución Puesto que el centro de la potencia va a ser 3, deseamos que la serie de potencias con-
tenga sólo potencias de x � 3. Con ese fin, sustraemos y sumamos 3 en el denominador:

A partir de este punto, procedemos como en el ejemplo 4, a saber: factorizamos 4 del denomi-
nador y usamos (7) con x sustituida por 

o

Esta serie converge para 0 (x � 3 )�40 6 1 o 0x � 3 0 6 4. La solución de la última desigualdad
muestra que el intervalo de convergencia es (-1, 7).

EJEMPLO  6 Diferenciación de una serie de potencias

La diferenciación término por término de (7) produce una representación en serie de potencias
de sobre el intervalo (-1, 1):

produce

o

EJEMPLO  7 Integración de una serie de potencias

Encuentre una representación de serie de potencias de sobre (-1, 1).

Solución Primero introducimos un cambio de variable de integración al sustituir x � t en (7):

Entonces, para cualquier x dentro del intervalo (-1, 1),
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y así

(8)

Advierta que el intervalo de convergencia de la serie en (8) es ahora (-1, 1], esto es, hemos
agregado la convergencia en x � 1. Dejando x � 1 en (8), la serie en el lado derecho de la igual-
dad es la serie armónica alternante convergente; sobre el lado izquierdo se obtiene ln 2. De tal
manera, hemos obtenido la suma S de la serie armónica alternante:

(9)

EJEMPLO  8 Aproximar un valor de ln x

Aproxime hasta cuatro lugares decimales.

Solución Al sustituir x � 0.2 en (8) se obtiene

(10)

(11)

Si la suma de la serie (10) en el ejemplo 8 se denota mediante S, entonces sabemos del teo-
rema A.7.2 que El número dado en (11) es exacto hasta cuatro decimales, ya
que, para la quinta suma parcial de (10),

Aritmética de series de potencias Las dos series de potencias y g(x) =
gck(x - a )k pueden combinarse mediante las operaciones aritméticas de adición, multiplicación
y división. Es factible que calculemos y como en la adición y multiplica-
ción de dos polinomios: agrupamos términos a partir de potencias similares de x - a. En cada
punto en el cual las series de potencias que definen a f y g convergen absolutamente, las series

(12)

y (13)

convergen absolutamente. De manera similar, para podemos calcular mediante
división larga:

(14)

La división es válida en alguna vecindad del centro a de las dos series.
En ocasiones es posible que utilicemos las operaciones aritméticas tal como se ilustró junto

con los resultados conocidos previamente para obtener una representación de serie de potencias
de una función.

EJEMPLO  9 Suma de serie de potencias

Determine una representación de serie de potencias de centrada en 0.

Solución Para comenzar, descomponemos la función en fracciones parciales

4x

x2
� 2x � 3

�
3

3 � x
�

1
1 � x

.

4x

x2
� 2x � 3

f (x)>g(x)c0 � 0

f (x)g(x)f (x) � g(x)

f (x) � a bk(x � a)k

0S5 � S 0 � 0.00001067 6 0.00005.

0Sn � S 0 � an�1.

 � 0.1823.

 � 0.2 � 0.02 � 0.00267 � 0.0004 � 0.000064 � 0.00001067 � p

 ln (1.2) � 0.2 �
(0.2)2

2
�

(0.2)3

3
�

(0.2)4

4
�

(0.2)5

5
�

(0.2)6

6
 � p

ln (1.2)

ln (1 � x) � x �
x2

2
�

x3

3
� p � (�1)n

 
xn�1

n � 1
� p � a

q

k�0

(�1)k

k � 1
 xk�1.

A.9 Representación de funciones mediante series de potencias 333

Desde luego, no memorice (12),
(13) y (14); sólo aplique el
álgebra como lo haría para dos
polinomios.

ln 2 1
1
2

1
3

1
4

p .

f(x)g(x) b0c0 (b0c1 b1c0)(x a) (b0c2 b1c1 b2c0)(x a)2 p

f (x) g(x) (b0 c0) (b1 c1)(x a) (b2 c2)(x a)2 p

o

c0 c1(x a) p

b0

c0

b1c0 b0c1

c2
0

(x a) p

b0   b1(x a) p

b0   
b0c1

c0
(x a) p

0
b1c0 b0c1

c0
(x a) p

d cociente



Después factorizamos 3 del denominador de la primera fracción parcial y usamos (7) con x sus-
tituida por x�3:

(15)

Esta serie converge para 0x �30 6 1 o 0x 0 6 3. El intervalo de convergencia para (15) es (-3, 3).
Ahora sabemos de (6) que

(16)

converge para El intervalo de convergencia para (16) es (-1, 1). Por último, la suma de
(15) y (16) produce la siguiente representación de serie de potencias para la función dada:

(17)

La serie (17) converge para todas las x comunes a (esto es, la intersección de) los intervalos
(-3, 3) y (-1, 1), es decir, para toda x en (-1, 1).

El resultado (17) también puede obtenerse al multiplicar dos series de potencias.

EJEMPLO  10 Repaso del ejemplo 9

Si reescribimos la función en el ejemplo 9 como un producto

y después usamos (15) y (16), se concluye que

 � �
4
3

x �
8
9

x2
�

28
27

x3
� p.

 � �
4
3

x . c1 � 1a1 �
1
3
bx � a1 �

1
3

�
1
32
b x2

� p d
 

4x

x2
� 2x � 3

� �
4
3

x . a1 �
x
3

�
x2

32
�

x3

33
� pb . (1 � x � x2

� x3
� p)

4x

x2
� 2x � 3

� �
4
3

x . 1

1 �
x
3

. 1
1 � x

4x

x2
� 2x � 3

�
3

3 � x
�

1
1 � x

� �
4
3

x �
8
9

x2
�

28
27

x3
� p � a

q

k�1
a (�1)k

3k
� 1b x k.

0x 0 6 1.

1
1 � x

� 1 � x � x2
� x3

� p � a
q

k�0
x k

3
3 � x

�
1

1 �
x
3

� 1 �
x
3

�
x2

32
�

x3

33
� p � a

q

k�0

(�1)k

3k
 x k.
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Fundamentos

En los problemas 1-8, utilice (6) y (7) para determinar una
representación de serie de potencias, centrada en 0, de la fun-
ción indicada. Proporcione el intervalo de convergencia.

1. 2.

3. 4.

5. 6.

7. 8.

En los problemas 9-14, utilice la diferenciación de una serie
apropiada de los problemas 1-8 para encontrar una represen-

tación de serie de potencias, centrada en 0, de la función que
se indica. Señale el intervalo de convergencia.

9. 10.

11. 12.

13. 14.

En los problemas 15-20, utilice la integración de una serie
apropiada de los problemas 1-8 para encontrar una represen-
tación de serie de potencias, centrada en 0, de la función indi-
cada. Proporcione el intervalo de convergencia.
15. tan-1 x 16.
17. 18.

19. 20. ln a3 � x
3 � x

bln (4 � x)

ln (5 � 2x)ln (1 � x2)
tan�1

 (x>2)

1 � x2

(1 � x2)2

x

(1 � x2)2

1
(4 � x)3

1
(5 � 2x)3

1
(1 � 2x)2

1
(3 � x)2

4
4 � x2

1
4 � x2

x

1 � x2

1
1 � x2

1
5 � 2x

1
1 � 2x

1
4 � x

1
3 � x

PROBLEMAS A.9 Las respuestas de los problemas impares comienzan en la página RES-20.



En los problemas 21-28, utilice (6), (7) o resultados previos para
encontrar una representación de serie de potencias, centrada en
0, de la función dada. Indique el intervalo de convergencia.

En los problemas 29-32, proceda como en el ejemplo 5 y
encuentre una representación de serie de potencias, centrada
en el número dado a, de la función indicada. Señale el inter-
valo de convergencia.

29. 30.

31. 32.

En los problemas 33 y 34, proceda como en el ejemplo 9 y
utilice fracciones parciales para encontrar una representación
de serie de potencias, centrada en 0, de la función dada.
Indique el intervalo de convergencia.

33. 34.

En los problemas 35 y 36, proceda como en el ejemplo 10 y
utilice multiplicación de serie de potencias para determinar los
primeros cuatro términos distintos de cero de una representa-
ción de serie de potencias, centrada en 0, para la función dada.

35. 36.

En los problemas 37 y 38, encuentre el dominio de la función
dada.

37.

38.

En los problemas 39-44, use la serie de potencias para apro-
ximar la cantidad dada hasta cuatro lugares decimales.

45. Utilice el problema 15 para demostrar que

46. Se sabe que la serie en el problema 45 converge muy len-
tamente. Demuestre lo anterior encontrando el entero
positivo n más pequeño de manera que Sn aproxime 
hasta cuatro lugares decimales.

En los problemas 47 y 48, demuestre que la función definida
por la serie de potencias satisface la ecuación diferencial dada.

47.

48.

Piense en ello

49. a) Si entonces demuestre que 

para toda x en 
b) ¿Qué función tiene la propiedad de que su primera deri-

vada es igual a la función? Conjeture sobre cuál función
se representa mediante la serie de potencias del inciso a).

50. a) Si entonces demuestre

que para toda x en 
b) ¿Qué funciones tienen la propiedad de que su segun-

da derivada es igual al negativo de la función?
Conjeture respecto a cuál función se representa
mediante la serie de potencias del inciso a). Advierta
que las potencias de x en la serie de potencias son
enteros positivos impares.

(�q, q).�f (x)f –(x) �

f (x) � a
q

k�0
 

(�1)k

(2k � 1)!
x2k�1,

(�q, q).

f ¿(x) � f (x)f (x) � a
q

k�0
 

x k

k!
,

J0(x) � a
q

k�0
 

(�1)k

22k(k!)2
 x2k; xy– � y¿ � xy � 0

y � a
q

k�1

(�1)k�1

k
 x k; (x � 1)y– � y¿ � 0

p>4
p

4
� 1 �

1
3

�
1
5

�
1
7

� p .

f (x) � 1 � 2x �
4x2

1 . 2
�

8x2

1 . 2 . 3
� p

f (x) �
x
3

�
x2

2 . 32
�

x3

3 . 33
�

x4

4 . 34
� p

x

(1 � 2x)(1 � x2)
1

(2 � x)(1 � x)

3
x2

� x � 2
7x

x2
� x � 12

x � 2
x � 1

; a � 2
x

2 � x
; a � �1

1
x

; a � �2
1

1 � x
; a � 6
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A.10 Serie de Taylor
Introducción Suponga que es una serie de potencias centrada en a y que tiene

un intervalo de convergencia con un radio de convergencia R distinto de cero. Luego, como se
vio en la sección anterior, dentro del intervalo de convergencia una serie de potencias es una fun-
ción continua que posee derivadas de todos los órdenes. También se abordó la idea de usar una
serie de potencias para representar una función determinada (tal como ) sobre un inter-
valo. En esta sección se va a extender de manera adicional la noción de representar una función
mediante una serie de potencias. El problema básico es:

• Suponga que se cuenta con una función ƒ que posee derivadas de todos los órdenes en un
intervalo abierto I. ¿Es posible encontrar una serie de potencias que represente a ƒ sobre I?

En palabras un poco diferentes: ¿podemos expandir una función diferenciable infinitamente (tal
como f (x) � sen x, f (x) � cos x o ) en una serie de potencias que conver-
ge al valor correcto de la función ƒ(x) para toda x en algún intervalo abierto 
donde R es o ?R � qR 7 0

(a � R, a � R), 
a ck(x � a)kf (x) � ex

1>(1 � x)

a ck(x � a)k

.22.12

.42.32

.62.52

.82.72

.04.93

.24.14

.44.34

1>2
0

tan 1 x2 dx
0.3

0

x tan 1 x dx

1>3
0

x

1 x4
dx

1>2
0

1
1 x3

dx

tan 1 (0.2)ln(1.1)

x

0

ln(1 t2) dt
x

0

tan 1 t dt

x2 tan 1 xx ln(1 x2)

x3

8 2x
x2

(1 x)3

3 x
1 x

1 x
1 2x



Serie de Taylor para una función f Antes de responder la pregunta del último párrafo, se va
a hacer simplemente la suposición de que una función ƒ infinitamente diferenciable sobre un
intervalo puede representarse mediante una serie de potencias sobre
ese intervalo. En ese caso es relativamente fácil determinar cuáles deben ser los coeficientes ck.
La diferenciación repetida de

(1)

produce

(2)

(3)

(4)

y así sucesivamente. Al evaluar (1), (2), (3) y (4) en x � a, encontramos que

respectivamente. En general, se ve que ƒ (n)(a) � n!cn o

(5)

Cuando n � 0, interpretamos la derivada 0-ésima como ƒ(a) y 0! � 1. Al sustituir (5) en (1) se
producen los resultados resumidos en el siguiente teorema.

cn �
f (n)(a)

n!
, n � 0.

 f ‡(x) � 3 . 2 . 1c3 � p ,

 f –(x) � 2c2 � 3 . 2c3(x � a) � p

 f ¿(x) � c1 � 2c2(x � a) � 3c3(x � a)2
� p

f (x) � c0 � c1(x � a) � c2(x � a)2
� c3(x � a)3

� p � cn(x � a)n
� p

ack(x � a)k(a � R, a � R)
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Teorema A.10.1 Forma de una serie de potencias

Si una función ƒ posee una representación en serie de potencias sobre un
intervalo entonces los coeficientes deben ser ck � f (k)(a)>k!.(a � R, a � R), 

f (x) � a ck(x � a)k

En otras palabras, si una función ƒ tiene una representación en serie de potencias centrada
en a, entonces debe verse como lo siguiente:

(6)

La serie en (6) se denomina serie de Taylor de ƒ en a, o centrada en a. La serie de Taylor cen-
trada en a � 0,

(7)

se denomina serie de Maclaurin de ƒ.
La pregunta planteada en la introducción ahora puede reformularse como:

• ¿Es posible expandir una función ƒ infinitamente diferenciable en una serie de Taylor
(6)?

Parecería que la respuesta es afirmativa (calculando simplemente los coeficientes como lo indi-
ca la fórmula (5)). Por desgracia, no es tan simple el concepto de expandir una función ƒ dada
infinitamente diferenciable en una serie de Taylor. Es necesario tener en mente que (5) y (6) se
obtuvieron bajo la suposición de que ƒ era representada por una serie de potencias centrada en
a. Si no se conoce a priori que una función ƒ infinitamente diferenciable tiene una representa-
ción en serie de potencias, entonces debe considerarse una serie de potencias obtenidas de (6) o
(7) como un resultado formal, en otras palabras, una serie de potencias que es simplemente gene-
rada por la función ƒ. No se sabe si la serie generada de esta manera converge o, incluso si lo
hace, si converge a ƒ(x).

EJEMPLO  1 Serie de Taylor de ln x

Encuentre la serie de Taylor de f (x) = ln x centrada en a � 1. Determine su intervalo de conver-
gencia.

f(a) c0, f ¿(a) 1!c1, f –(a) 2!c2 y f‡(a) 3!c3,

f(x) f (a)
f ¿(a)
1!

(x a)
f –(a)

2!
(x a)2 f‡(a)

3!
(x a)3 p a

q

k 0

f (k)(a)
k!

(x a)k.

f (x) f (0)
f ¿(0)
1!

x
f –(0)

2!
x2 f‡(0)

3!
x3 . . . a

q

k 0

f (k)(0)
k!

xk



Solución La función ƒ, sus derivadas y sus valores en 1 son:

Puesto que (6) produce

(8)

La prueba de las proporciones,

muestra que la serie (8) converge para 0x � 10 6 1 o sobre el intervalo (0, 2). En los puntos extre-
mos x � 0 y x � 2, las series

y

son divergente y convergente, respectivamente. El intervalo de convergencia de estas series es
(0, 2]. El radio de convergencia es R � 1.

Advierta en el ejemplo 1 que no se escribió la igualdad

En este punto no se ha establecido que la serie dada en (8) representa a ln x sobre el intervalo
(0, 2].

Teorema de Taylor De acuerdo con (5), es claro que para tener una serie de Taylor centrada
en a es necesario que una función ƒ posea derivadas de todos los órdenes que estén definidas en
a. Así, por ejemplo, f (x) = ln x no posee una serie de Maclaurin, debido a que f (x) = ln x y todas
sus derivadas no están definidas en 0. Además, es importante notar que incluso si una función ƒ
posee derivadas de todos los órdenes y genera una serie de Taylor convergente sobre algún inter-
valo, es posible que la serie no represente a ƒ sobre el intervalo, esto es, la serie no converge a
ƒ(x) en toda x en el intervalo. Vea el problema 63 de los ejercicios A.10. La pregunta fundamen-
tal de si una serie de Taylor representa la función que la generó puede resolverse por medio del
teorema de Taylor.

a
q

k�1

(�1)k�1

k
�a

q

k�1

1
k

(x � 1) �
1
2

 (x � 1)2
�

1
3

 (x � 1)3
� p � a

q

k�1

(�1) 
k�1

k
 (x � 1)k.

(n � 1)!>n! � 1>n, n � 1,
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Teorema A.10.2 Teorema de Taylor

Sea ƒ una función tal que existe para toda x en un intervalo que contiene al número
a. Entonces para toda x en el intervalo

donde (9)

f (n�1)(x)

(continúa)

lím
nSq

n
n 1

0 x 1 0 0 x 1 0 ,
 lím
nSq

` an 1

an
` lím

nSq
` ( 1)n(x 1)n 1

n 1
. n

( 1)n 1(x 1)n
`

Pn(x) f (a)
f ¿(a)
1!

(x a) p
f (n)(a)

n!
(x a)n

f (x) Pn(x) Rn(x),

f (x) ln x (1) 0

f ¿(x)
1

x
f ¿(1) 1

f –(x)
1

x2
f –(1) 1

f‡(x)
1 . 2

x3
f ‡(1) 2!

oo

f (n)(x) ( 1)n 1(n 1)!

xn
f (n)(1) ( 1)n 1(n 1)!

f

ln x a
q

k 1

( 1)k 1

k
(x 1)k.



Puesto que la demostración de este teorema desviaría la principal finalidad de esta discu-
sión, puede omitirse. La importancia del teorema A.10.2 radica en el hecho de que los polino-
mios de Taylor Pn(x) son las sumas parciales de la serie de Taylor (6). El residuo se define como

(11)

Si Pn(x) = f (x), entonces la función ƒ es la suma de la serie de Taylor que la genera. Sin

embargo, de (11) observamos que

por lo que sí es posible mostrar de algún modo que Rn(x) S 0 cuando n S q, y entonces la
sucesión de sumas parciales converge a ƒ(x). Resumimos el resultado.

lím
nSq
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Existen varias formas del
residuo. Esta forma se debe al
matemático francés Joseph
Louis Lagrange (1736-1813).

recibe el nombre de polinomio de Taylor de ƒ en a, de grado n-ésimo, y

(10)

se llama forma de Lagrange del residuo. El número c yace entre a y x.

Teorema A.10.3 Convergencia de una serie de Taylor

Suponga que ƒ es una función que posee derivadas de todos los órdenes sobre un intervalo
centrado en el número a. Si

para toda x en el intervalo, entonces la serie de Taylor generada por ƒ converge a ƒ(x),

f (x) � a
q

k�0

f (k)(a)
k!

 (x � a)k.

En la práctica, la prueba de que el residuo Rn(x) tiende a cero cuando depende
muchas veces del hecho de que

(12)

Este último resultado sigue de aplicar el teorema A.3.2 a la serie la cual se sabe que
es absolutamente convergente para todos los números reales. (Vea el ejemplo 3 en la sección A.8.)

EJEMPLO  2 Repaso del ejemplo 1

Demuestre que la serie (8) representa a f (x) = ln x sobre el intervalo (0, 2].

Solución En la solución para el ejemplo 1 vimos que la derivada n-ésima de f (x) = ln x está
dada por

De , obtenemos de (10)

donde c es algún número en el intervalo (0, 2] entre 1 y x.
Si 1 � x � 2, entonces 0 6 x - 1 � 1. Puesto que debemos tener

y, en consecuencia, Por consiguiente,(x � 1)>c 6 1.0 6 x � 1 � 1 6 c
1 6 c 6 x,

0Rn(x) 0 � 0 f (n�1)(c) 0
(n � 1)!

 0 x � 1 0 n�1
� ` (�1)nn!

cn�1(n � 1)!
. (x � 1)n�1 ` � 1

n � 1
` x � 1

c
` n�1

,

f (n�1)(c) �
(�1)n n!

cn�1

f (n)(x) �
(�1)n�1(n � 1)!

xn .

gq
m�1 xk>k!,

n S q

Rn(x)
f (n 1)(c)
(n 1)!

(x a)n 1

Rn(x) f (x) Pn(x)  y así  Pn(x) f (x) Rn(x).

lím
nSq

Pn(x) f (x) lím
nSq

Rn(x)

lím
nSq

Rn(x) 0

lím
nSq

x n

n!
0.

0Rn(x) 0 1
n 1

  y  lím
nSq

Rn(x) 0.



En el caso en el que también puede mostrarse que Rn(x) = 0. Se omite la demos-
tración. En consecuencia,

para todos los valores de x en el intervalo (0, 2].

EJEMPLO  3 Representación de la serie de Maclaurin de cos x

Encuentre la serie de Maclaurin de f (x) � cos x. Demuestre que la serie de Maclaurin represen-
ta a cos x para toda x.

Solución Determinamos primero la serie de Maclaurin generada por f (x) � cos x:

y así sucesivamente. De (7) obtenemos la serie de potencias

(13)

La prueba de las proporciones indica que (13) converge absolutamente para todos los valores
reales de x, en otras palabras, el intervalo de convergencia es En este caso, con el fin
de demostrar que cos x es representada por la serie (13), debemos mostrar que Rn(x) = 0.
Para este fin, advertimos que la derivada de ƒ satisface

En cualquier caso, para todo número real c, y consecuentemente por (10),

En vista de (12), tenemos para cualquier elección fija aunque arbitraria de x,

Pero 0Rn(x)0 = 0 implica que Rn(x) = 0. Por tanto,

es una representación válida de cos x para todo número real x.

EJEMPLO  4 Representación de la serie de Taylor de sen x

Determine la serie de Taylor de f (x) � sen x centrada en Compruebe que la serie de
Taylor representa a sen x para toda x.

Solución Tenemos

a � p>3.

lím
nSq

lím
nSq

�Rn(x)� �
� f (n�1)(c)�
(n � 1)!

 �x�n�1
�

�x�n�1

(n � 1)!
.

� f (n�1)(c)� � 1

lím
nSq

(�q, q).

1 �
x2

2!
�

x4

4!
�

x6

6!
� p � a

q

k�0

(�1)k

(2k)!
 x2k.

lím
nSq

0 6 x 6 1,
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f (x) cos x f(0) 1

f ¿(x) sen x ¿(0) 0

f –(x) cos x –(0) 1

f‡(x) sen x ‡(0) 0

f

f

f

f (n 1)(x) e sen x , n par
cos x , n impar.

lím
nSq

x n 1

(n 1)!
0.

f (x) sen x f ap
3
b 13

2

f ¿(x) cos x f ¿ap
3
b 1

2

f –(x) sen x f –ap
3
b 13

2

f‡(x) cos x f‡ap
3
b 1

2

ln x (x 1)
1
2

(x 1)2 1
3

(x 1)3 p a
q

k 1

( 1)k 1

k
(x 1)k

cos x 1
x2

2!
x4

4!
x6

6!
p ( 1)n x2n

(2n)!
p



y así sucesivamente. Por consiguiente, la serie de Taylor centrada en generada por sen x es

(14)

También en este caso, de la prueba de las proporciones se sigue que (14) converge absolutamen-
te para todos los valores reales de x, esto es, su intervalo de convergencia es Para
demostrar que

para todo valor real x, advertimos que, como en el ejemplo anterior, Esto impli-
ca que

a partir de lo cual vemos, con la ayuda de (12), que Rn(x) = 0.

Se resumen algunas representaciones importantes de series de Maclaurin y sus intervalos de
convergencia:

(15)

(16)

(17)

(18)

(19)

(20)

(21)

Se pide al lector demostrar la validez de las representaciones (15), (17), (19) y (20) como ejer-
cicio. Vea los problemas 51-54 en los ejercicios A.10.

Además, se le recomienda observar con cuidado las series dadas en (16)-(20) y responder
después la pregunta del problema 61 de los ejercicios A.10.

Algunas gráficas de polinomios de Taylor En el ejemplo 3 observamos que la serie de Taylor
de f (x) � cos x en a � 0 representa la función para toda x, ya que Rn(x) = 0. Siempre es de

interés ver gráficamente cómo las sumas parciales de la serie de Taylor, las cuales son los poli-
nomios de Taylor definidos en (9), convergen a la función. En la FIGURA A.10.1a) las gráficas de los
polinomios de Taylor

y

se comparan con la gráfica de f (x) � cos x.
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1
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Intervalos de

convergencia Series de Maclaurin
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Una comparación de los valores numéricos se presenta en la figura A.10.1b).
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FIGURA A.10.1 Polinomios de Taylor P0, P2, P4 y P10 para cos x

1�1

�1

2

1

�2

�2�3�4�5�6�7�8�9 2 3 4 5 6 7 8 9

y

x

P2 (x) P10 (x)

P0 (x)
P4 (x)

ƒ(x) � cos x

a)

Aproximaciones Cuando el valor de x es cercano al centro a de una serie de Taylor,
puede usarse el polinomio de Taylor de una función f en a para aproximar el valor de la
función f (x). El error en esta aproximación está dado por

EJEMPLO  5 Aproximación utilizando un polinomio de Taylor

Aproxime e�0.2 mediante un polinomio de Taylor Determine la exactitud de la aproxima-
ción.

Solución Como el valor x � -0.2 es cercano a 0, recurrimos al polinomio de Taylor de
en a � 0:

Se sigue de

que

Este polinomio es la cuarta suma parcial de la serie dada en (15). Ahora,

y por ello, (22)

Después de esto, de acuerdo con (10) es posible escribir

puesto que -0.2 6 c 6 0 y ec 6 1. La desigualdad

implica que el resultado en (22) es exacto hasta tres lugares decimales.

0R3(�0.2) 0 6
0�0.2 0 4

24
6 0.0001

0R3(x) 0 � ec

4!
 0x 0 4 6

0x 0 4
4!

e�0.2
� 0.8187.

P3(�0.2) � 1 � (�0.2) �
1
2

 (�0.2)2
�

1
6

 (�0.2)3
� 0.8187

P3(x) � 1 � x �
1
2

x2
�

1
6

x3.

 f (0) � f ¿(0) � f –(0) � f ‡(0) � 1

 f (x) � f ¿(x) � f –(x) � f ‡(x) � ex

P3(x) � f (0) �
f ¿(0)
1!

x �
f –(0)

1!
x2

�
f –(0)

3!
x3.

f (x) � ex

P3(x).

0Rn(x) 0 � 0 f (x) � Pn(x) 0 .
Pn(x)

(x � a)

b)



En la FIGURA A.10.2 hemos comparado las gráficas de los polinomios de Taylor cen-
trados en a � 0:

Advierta en las figura A.10.2b) y A.10.2c) que las gráficas de los polinomios de Taylor P2(x) y
P3(x) son indistinguibles de la gráfica de y � ex en una pequeña vecindad de x � 0.2.

f (x) � ex
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FIGURA A.10.2 Gráficas de los polinomios de Taylor del ejemplo 5

Una integral tal como μsen x2 dx, donde sen x2 no posee una antiderivada en la forma de una
función elemental, se conoce como una integral no elemental. La serie de Taylor es de gran
ayuda cuando se trabaja con integrales no elementales. Por ejemplo, la serie de Maclaurin que
se obtiene al sustituir x por x2 en (17) converge para y por ello, de acuerdo con
el teorema A.9.2,

(23)

EJEMPLO  6 Aproximación utilizando una serie de Taylor

Aproxime μ0
1 sen x2 dx hasta tres lugares decimales.

Solución De (23) advertimos de inmediato que

(24)

Por el teorema de la cota del error para la serie alternante, teorema A.7.2, el cuarto término en
la serie (24) satisface

Por tanto, la aproximación

es exacta hasta tres lugares decimales.

Límites Una representación de serie de potencias de una función algunas veces es útil en el
cálculo de límites. Por ejemplo, en la sección 3.4 se recurrió a un sutil argumento geométrico

para demostrar que = 1. Pero si usamos (17) y la división entre x observamos de inme-
diato que
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EJEMPLO  7 Cálculo de un límite

Evalúe

Solución Observe que el límite tiene la forma indeterminada 0�0. Si revisa el problema 25 en
el ejercicio 5.11, tal vez recuerde evaluar este límite mediante la regla de L’Hôpital. Pero en vista
de (18), podemos escribir

Empleo de la aritmética de una serie de potencias En la sección A.9 se discutió la aritmé-
tica de la serie de potencias, esto es, las series de potencias pueden básicamente manipularse de
manera aritmética igual que los polinomios. En el caso en que las representaciones de las series
de potencia y convergen en el mismo intervalo abierto

para o para pueden obtenerse las representacio-
nes de la serie de potencias para f (x) + g(x) y f (x)g(x) a su vez, sumando las series y multipli-
cándolas. La suma y el producto convergen en el mismo intervalo. Si dividimos la serie de poten-
cias de f entre la serie de potencias de g, entonces el cociente representa a en alguna
vecindad de a.

EJEMPLO  8 Serie de Maclaurin de tan x

Encuentre los primeros tres términos distintos de cero de la serie de Maclaurin de f (x) = tan x.

Solución De (16) y (17) podemos escribir

Entonces mediante división larga

Por consiguiente, tenemos

Desde luego, el último resultado pudo también obtenerse utilizando (7). Vea el problema 11
en los ejercicios A.10. Después de trabajar en el ejemplo 8 se le recomienda leer ii) en las Notas

desde el aula.
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Polinomios de Taylor (Redux) En la sección 5.8 se introdujo la noción de una aproximación
lineal local de f en a dada por donde

(25)

Esta ecuación representa la línea tangente a la gráfica de f en x � a. Como es un polinomio li-
neal, otro símbolo apropiado para (25) es

(26)

La ecuación se reconoce ahora como el polinomio de Taylor de primer grado de f en a. La idea
detrás de (25) es que la línea tangente puede usarse para aproximar el valor de f (x) cuando x está
en una pequeña vecindad de a. Pero, puesto que la mayoría de las gráficas tienen concavidad y
una línea tangente, no es posible esperar que un polinomio de grado superior proporcionaría una
mejor aproximación a f (x) en el sentido de que su gráfica estaría cerca de la gráfica de f sobre
un intervalo más grande que contenga a a. Advierta que (26) tiene las propiedades de P1 y su pri-
mera derivada concuerda con f y su primera derivada en x � a:

y

Si deseamos que una función polinomial cuadrática

tenga las propiedades análogas, a saber:

entonces, siguiendo un procedimiento similar a (1)-(5), se advierte que P2 debe ser

(27)

Gráficamente, esto significa que la gráfica de f y la gráfica de P2 tienen la misma línea tangente
y la misma concavidad en x = a. Desde luego, se reconoce (27) como el polinomio de Taylor de
segundo grado. Se afirma que es una aproximación cuadrática local de f en a. Al
continuar de esta manera se construye , que es una aproximación local de grado
n-ésimo de f en a. Con esta discusión en mente, el lector necesita prestar mayor atención a las
gráficas de f (x) = cos x, P0, P2, P4 y P10 cerca de x = 0 en la figura A.10.1a) y las aproximacio-
nes en la figura A.10.1b). También debe reexaminar la figura A.10.2.

Posdata: Un poco de historia El teorema A.10.2 recibe su nombre en honor del matemático
inglés Brook Taylor (1685-1731), quien publicó este resultado en 1715. Sin embargo, la fórmu-
la en (6) fue descubierta por Johann Bernoulli casi 20 años antes. La serie en (7) recibe su nom-
bre en honor al matemático escocés y estudiante de Isaac Newton, Colin Maclaurin (1698-
1746). No es claro por qué el nombre de Maclaurin se asocia con esta serie.

Pn(x)f (x) �

P2(x)f (x) �

P2(x) � f (a) �
f ¿(a)
1!

 (x � a) �
f –(a)

2!
 (x � a)2.

P2(x) � c0 � c1(x � a) � c2(x � a)2

P1¿(a) � f ¿(a).P1(a) � f (a)

P1(x) � f (a) � f ¿(a)(x � a).

L(x) � f (a) � f ¿(a)(x � a).

f (x) � L(x),
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Pn(x) es el polinomio de grado
n definido en (9).

NOTAS DESDE EL AULA

i) El método de la serie de Taylor para encontrar la serie de potencias de una función y la
prueba posterior de que la serie representa a la función tiene una gran y obvia desventa-
ja. La obtención de una expresión general para la derivada n-ésima de la mayoría de las
funciones es casi imposible. De tal modo, se presenta con frecuencia la limitación de
determinar sólo algunos de los primeros coeficientes cn.

ii) Es fácil pasar por alto la importancia de los resultados en (6) y (7). Suponga que se desea
encontrar la serie de Maclaurin para Es posible, desde luego, utilizar
(7), lo cual se le pide al lector en el problema 1 de los ejercicios A.10. Por otro lado, el
lector debe reconocer, de los ejemplos 3-5 de la sección A.9, que la representación en
serie de potencias de f puede obtenerse utilizando series geométricas. El punto es:

• La representación es única. De tal modo que sobre su intervalo de convergencia,
una serie de potencias que representa a una función, independientemente de cómo
se obtuvo, es la serie de Taylor o de Maclaurin de esa función.

f (x) � 1>(2 � x).

g

P2(a) f (a),  P2¿(a) f ¿(a)  y  P–2(a) f –(a),



Fundamentos

En los problemas 1-10, emplee (7) para determinar la serie de
Maclaurin de la función dada.

1. 2.

3. 4.

5. f (x) � sen x 6. f (x) = cos 2x

7. 8.

9. f (x) � senh x 10. f (x) = cosh x

En los problemas 11 y 12, emplee (7) para determinar los pri-
meros cuatro términos distintos de cero de la serie de Ma-
claurin para la función dada.

11. f (x) = tan x 12. f (x) � sen-1 x

En los problemas 13-24, emplee (6) para determinar la serie de
Taylor de la función dada centrada en el valor indicado de a.

En los problemas 25-32, utilice resultados, métodos o proble-
mas previos para determinar la serie de Maclaurin de la fun-
ción dada.

En los problemas 33 y 34, emplee la serie de Maclaurin como
una ayuda en la evaluación de límite indicado.

En los problemas 35 y 36, use adición de series de Maclaurin
para ex y e�x para determinar la serie de Maclaurin de la fun-
ción dada.

35. f (x) � cosh x 36. f (x) � senh x

En los problemas 37 y 38, use multiplicación para encontrar
los primeros cinco términos distintos de cero de la serie de
Maclaurin para la función dada.

37. 38. f (x) � ex sen x

En los problemas 39 y 40, utilice división para encontrar los
primeros cinco términos distintos de cero de la serie de
Maclaurin de la función dada.

En los problemas 41 y 42, establezca el valor indicado de la
integral definida dada.

41.

En los problemas 43-46, encuentre la suma de la serie dada.

43. 44.

45. 46.

En los problemas 47-50, aproxime la cantidad indicada utili-
zando el polinomio de Taylor para los valores señalados
de n y a. Determine la exactitud de la aproximación.
47. sen 46°, n = 2, a = p�4 [Sugerencia: Convierta 46° a

radianes.]

48. cos 29�, n = 2, a = p 6 49.

50. senh(0.1), n = 3, a = 0

51. Demuestre que la serie obtenida en el problema 5 repre-
senta a sen x para todo valor real de x.

52. Demuestre que la serie obtenida en el problema 7 repre-
senta a ex para todo valor real de x.

53. Demuestre que la serie obtenida en el problema 9 repre-
senta a senh x para todo valor real de x.

54. Demuestre que la serie obtenida en el problema 10 repre-
senta cosh x para todo valor real de x.

Aplicaciones

55. Al nivelar una larga autopista de longitud L, debe hacer-
se una compensación con respecto a la curvatura de la
Tierra.
a) Demuestre que la corrección de nivelación y indicada

en la FIGURA A.10.3 es y = R sec(L R) - R, donde R es
el radio de la Tierra medido en millas.

b) Si es el polinomio de Taylor de segundo grado
para f (x) = sec x en a = 0, utilice sec x para x
cercano a cero con el fin de demostrar que la correc-
ción aproximada del nivelado es 

c) Encuentre el número de pulgadas de la corrección del
nivelado que se necesita para una autopista de 1 milla.
Emplee R � 4 000 mi.

d) Si se usa sec x P4(x), entonces demuestre que la
corrección de nivelación es

y �
L2

2R
�

5L4

24R3
.

y � L2>(2R).
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>
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� p

f (x) �
ex

1 � x

f (x) � e�xf (x) � ex

f (x) � ln (1 � 2x)f (x) � ln (1 � x)

f (x) �
1

1 � 5x
f (x) �

1
2 � x
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PROBLEMAS A.10 Las respuestas de los problemas impares comienzan en la página RES-20.

42.
1
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Repita el cálculo en el inciso c) utilizando la última
fórmula.

56. Una onda de longitud L viaja de izquierda a derecha a tra-
vés de agua a una profundidad d (en pies), como se ilus-
tra en la FIGURA A.10.4. Un modelo matemático que relacio-
na la velocidad de la onda con L y d es

a) Para agua profunda demuestre que 
b) Utilice (7) para determinar los primeros tres térmi-

nos distintos de cero de la serie de Maclaurin para
f (x) = tanh x. Demuestre que cuando d�L es pequeña,

En otras palabras, en agua poco profunda
la velocidad de una onda es independiente de la lon-
gitud de la onda.

Piense en ello

En los problemas 57 y 58, encuentre dos maneras, aparte
de utilizar (7), de determinar la representación de la serie de
Maclaurin de la función dada.

57. f (x) � sen2 x 58. f (x) � sen x cos x

59. Sin utilizar (6), encuentre la serie de Taylor para la fun-
ción centrada en a � 1. [Sugerencia:

]

60. Discuta: ¿ f (x) � cot x posee una representación en serie
de Maclaurin?

61. Explique por qué resulta lógico que las series de
Maclaurin (16) y (17) para cos x y sen x contengan sólo
potencias pares de x y sólo potencias impares de x, res-
pectivamente. Después reinspeccione la serie de Maclau-
rin en (18), (19) y (20) y comente.

62. Suponga que se desea calcular para f (x) �

x4 sen x2. Desde luego, podría utilizarse el enfoque de
fuerza bruta: recurrir a la regla del producto y cuando se
obtenga (a la larga) la décima derivada igualar x a 0.
Piense en una manera más hábil de determinar el valor de
esta derivada.

Proyectos

63. Un clásico matemático La función

aparece en casi todo texto de cálculo. La función f es con-
tinua y posee derivadas de todos los órdenes en todo
valor de x.

a) Emplee una calculadora o un SAC para obtener la grá-
fica de f.

b) Emplee (7) para determinar la serie de Maclaurin
correspondiente a f. Tendrá que recurrir a la definición
de la derivada para calcular f ¿(0), f –(0), … Por ejem-
plo,

Podría ser de utilidad utilizar y recordar la
regla de L’Hôpital. Demuestre que la serie de
Maclaurin de f converge para toda x. ¿La serie repre-
senta a la función f que la generó?

t � ¢x

f (x) � e e�1>x2

, x � 0
0, x � 0

f (10)(0)

ex
� ex�1�1.

f (x) � (x � 1)2ex

FIGURA A.10.4 Onda del problema 56

d

L

y � 1gd.

y � 1gL>2p.

y � B
gL

2p
 tanh a2pd

L
b.

y

FIGURA A.10.3 La Tierra en el problema 55
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x

L

R

346 APÉNDICE Sucesiones y series

A.11 Serie del binomio
Introducción La mayoría de los estudiantes de matemáticas están familiarizados con la

expansión binomial en los dos casos:

En general, si m es un entero positivo, entonces

(1)

La expansión de en (1) se denomina teorema del binomio. Utilizando la notación de
sumatoria, (1) se escribe

(2)

(1 � x)m

� p � mxm�1
� xm.

(1 � x)m
� 1 � mx �

m(m � 1)
2!

 x2
� p �

m(m � 1)(m � 2) p (m � n � 1)
n!

 xn

 (1 � x)3
� 1 � 3x � 3x2

� x3.
 (1 � x)2

� 1 � 2x � x2

f ¿(0) lím
¢S0

 
f (0 ¢x) f (0)

¢x
.

(1 x)m
a
m

k 0
am

k
b xk,



donde el símbolo se define como

Estos números se llaman coeficientes binomiales. Por ejemplo, cuando m � 3, los cuatro coe-
ficientes binomiales son

Si bien (2) tiene la apariencia de una serie, es una suma finita consistente en m � 1 términos que
finalizan con xm. En esta sección se verá que cuando (1) se extiende a potencias m que no son
enteros positivos, el resultado es una serie infinita.

Serie del binomio Suponga ahora que donde r representa cualquier número
real. De

advertimos que la serie de Maclaurin generada por f es

(3)

La serie de potencias dada en (3) se denomina serie del binomio. Advierta que (3) termina sólo
cuando r es un entero positivo; en este caso, (3) se reduce a (1). De acuerdo con la prueba de las
proporciones, la versión dada en el teorema A.7.4,

concluimos que la serie del binomio (3) converge para 0x 0 6 1 o -1 6 x 6 1 y diverge para
esto es, para x 7 1 o x 6 -1. La convergencia en los puntos extremos depende

del valor de r.
Desde luego no es una gran sorpresa aprender que la serie (3) representa la función f que la

generó. Se enuncia esto como un teorema formal.

x � 	10x 0 7 1,

� a
q

k�0
ar

k
b xk.

� 1 � a
q

k�1

r(r � 1) p (r � k � 1)
k!

 xk

a
q

k�0

f (k)(0)
k!

xk
� 1�rx�

r(r � 1)
2!

x2
�

r(r � 1)(r � 2)
3!

x3
� p �

r(r �1) p (r � n �1)
n!

xn
� p

f (n)(0) � r(r � 1) p (r � n � 1)f (n)(x) � r(r � 1) p (r � n � 1)(1 � x)r�n

oo

f –¿(0) � r(r � 1)(r � 2)f –¿(x) � r(r � 1)(r � 2)(1 � x)r�3

f –(0) � r(r � 1)f –(x) � r(r � 1)(1 � x)r�2

f ¿(0) � rf ¿(x) � r(1 � x)r�1

f(0) � 1f(x) � (1 � x)r

f(x) � (1 � x)r,

a3
0
b � 1, a3

1
b �

3
1

� 3, a3
2
b �

3(3 � 1)
2

� 3, a3
3
b �

3(3 � 1)(3 � 2)
6

� 1.

Qm
k
R
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Isaac Newton fue el primero
que dio en 1665 la extensión del
teorema del binomio (m un
entero positivo) a la serie del
binomio (m fraccionario y
números reales negativos).

am
0
b 1, k 0  y   am

k
b m(m 1)(m 2) p (m k 1)

k!
, k 1.

TT

(m k 1) (m (k 1))
por conveniencia este
término se define como 1

lím
nSq

` r
n

1 `
1

1
n

0x 0 0x 0
lím

nSq

r n

n 1
x

 lím
nSq
` an 1

an
` lím

nSq
` r(r 1) p (r n 1)(r n)xn 1

(n 1)!
. n!

r(r 1) p (r n 1)xn `



EJEMPLO  1 Representación de una función mediante una serie del binomio

Encuentre una representación en serie de potencias para 

Solución Reescribiendo f como identificamos Después se deduce de
(4) que para 

La última línea se escribe utilizando la notación de sumatoria como

Suponga que la función en el ejemplo 1 ha sido Para obtener la represen-
tación en serie del binomio de f tendríamos que reescribir la función en la forma facto-
rizando el 4 fuera del radical, esto es,

Ahora es posible emplear (4) en la cual el símbolo x es sustituido por x�4. La serie resultante
convergería entonces para o 

EJEMPLO  2 Una fórmula de la física

En la teoría de la relatividad de Einstein, la masa de una partícula que se mueve a una velocidad
y relativa a un observador está dada por

(5)

donde m0 es la masa en reposo y c es la velocidad de la luz.
Muchos de los resultados de la física clásica no se cumplen para partículas, tales como elec-

trones, los cuales se mueven a una velocidad cercana a la de la luz. La energía cinética ya no es
sino

(6)

Si identificamos y en (5), tenemos ya que ninguna partícula puede
superar la velocidad de la luz. En consecuencia, (6) puede escribirse:

 � m0 c2[(1 � x)�1>2
� 1]

 K �
m0 c2

11 � x
� m0 c2

0x 0 6 1,x � �y2>c2r � �
1
2

K � mc2
� m0c

2.

K �
1
2  
m0y

2

m �
m0

21 � y2>c2
,

0x 0 6 4.0x>4 0 6 1

f(x) � 14 � x � 14 a1 �
1
4

xb1>2
� 2 a1 �

1
4

xb1>2
.

(1 � x)r
f(x) � 14 � x.

11 � x � 1 �
1
2

x � a
q

k�2
(�1)k�1 

1 . 3 . 5 p (2k � 3)

2kk!
xk.

 � 1 �
1
2

x �
1

222!
x2

�
1 . 3
233!

x3
� p � (�1)n�11 . 3 . 5 p (2n � 3)

2nn!
xn

� p.

�

1
2  
A12 � 1B A12 � 2B p A12 � n � 1B 

n!
xn

� p

 � 1 �
1
2

x �

1
2  
A12 � 1B

2!
x2

�

1
2  
A12 � 1B A12 � 2B

3!
x3

� p

 21 � x � 1 � a 1
2

1
b x � a 1

2

2
b x2

� a 1
2

3
b x3

� p � a 1
2

n
b xn

� p

0x 0 6 1,
r �

1
2.f(x) � (1 � x)1>2 f (x) � 11 � x.
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Teorema A.11.1 Serie del binomio

Si entonces para cualquier número real r,

(4)

donde

0x 0 6 1,

ar
0
b 1, k 0  y  ar

k
b r(r 1)(r 2) p (r k 1)

k!
, k 1.

(1 x)r
a
q

k 0
ar

k
b xk,



(7)

En el mundo cotidiano donde es mucho más pequeña que c, son ignorables los términos más
allá del primero en (7). Esto conduce al resultado clásico bien conocido

K � m0 c2 c 1
2

 ay2

c2
b d �

1
2

 m0 y2.

y
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FIGURA A.11.1 Cable colgante del problema 15

A

0

2
�
l

cable

carga uniforme distribuida horizontalmente

d

B

NOTAS DESDE EL AULA

Al llegar al final de la discusión de series infinitas es probable que el lector tenga la fuerte
impresión de que las series divergentes son inútiles. Nada de eso. Los matemáticos odian
que algo se desperdicie. Las series divergentes se usan en una teoría conocida como repre-

sentaciones asintóticas de funciones. Ocurre algo como lo siguiente; una serie divergente
de la forma

es una representación asintótica de la función f si

donde es la suma parcial (n � 1) de la serie divergente. Algunas funciones impor-
tantes en matemáticas aplicadas se definen de esta manera.

Sn(x)

a0 � a1>x � a2>x2
� p

PROBLEMAS A.11 Las respuestas de los problemas impares comienzan en la página RES-20.

Fundamentos

En los problemas 1-10, recurra a (4) para determinar los pri-
meros cuatro términos de una representación en serie de poten-
cias de la función dada. Indique el radio de convergencia.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

En los problemas 11 y 12, explique por qué el error en la apro-
ximación dada es menor que la cantidad indicada. [Sugeren-

cia: Revise el teorema A.7.2.]

11.

12.

13. Encuentre una representación en serie de potencias para
sen�1 x utilizando

14. a) Demuestre que la longitud de un cuarto de la elipse
está dada por donde

E(k) es

y Esta integral recibe el nom-
bre de integral elíptica completa del segundo tipo.

b) Demuestre que

15. En la FIGURA A.11.1 un cable colgante está sostenido en los
puntos A y B y soporta una carga distribuida uniformemen-
te (tal como el piso de un puente). Si es la
ecuación del cable, demuestre que su longitud está dada por

s � l �
8d 2

3l
�

32d 4

5l3
� p .

y � (4d>l2)x2

L � a 

p

2
�

a
2

 
p

4
 k2

�
a
8

 
3p
16

 k4
� p .

k2
� (a2

� b2)>a2 6 1.

L � aE(k), x2>a2
� y2>b2

� 1

(1 � x2)�1>2
� 1 �

x2

2
�

3
8

x4; 
5
16

x6

(1 � x)1>3
� 1 �

x
3

; 
1
9

x2, x 7 0

f (x) � x2(1 � x2)�3f (x) �
x

(2 � x)2

f (x) �
x

2(1 � x)5
f (x) � (4 � x)3>2

f (x) �
x

23 1 � x2
f (x) �

1

21 � x2

f (x) �
1

11 � 5x
f (x) � 19 � x

f (x) � 11 � xf (x) � 13 1 � x

g

m0c2 c 1
2
ay2

c2
b 3

8
ay4

c4
b 5

16
ay6

c6
b p d .

m0c2 c a1 1
2

x
3
8

x2 5
16

x3 pb 1 d ahora se sustituye
el valor por x

d

lím
nSq

xn [ f(x) Sn(x)] 0,

sen 1 x
x

0

1

21 t2
dt.

E(k)
p>2

0

21 k2 sen2 u du



16. Aproxime las siguientes integrales hasta tres lugares
decimales.

a) b)

17. Por la ley de los cosenos, el potencial en el punto A en la
FIGURA A.11.2 debido a una carga unitaria en el punto B es

donde x = cos u. La expresión
se dice que es la función generadora

de los polinomios de Legendre Pk(x), puesto que

Recurra a (4) para determinar P0(x), P1(x) y P2(x).

18. a) Suponga que

para Determine f ¿(x) y xf ¿(x).
b) Muestre que

c) Demuestre que 
d) Resuelva la ecuación diferencial de primer orden

sujeta a f (0) � 1.

En los problemas 19 y 20, emplee (4) para determinar la
representación en serie de potencias en x � 1 de la función
dada. [Sugerencia:

19. 20. f (x) � (1 � x)�2f (x) � 11 � x

1 � x � 2 � (x � 1).]

(1 � x) f ¿(x) � rf (x)

f ¿(x) � x f ¿(x) � rf(x).

� r 

r(r � 1) p (r � n � 1)
n!

.

(n � 1) 

r(r � 1) p (r � n)
(n � 1)!

� n 

r(r � 1) p (r � n � 1)
n!

0x 0 6 1.

�
r(r � 1) p (r � n � 1)

n!
 xn

� p

f (x) � 1 � rx �
r(r � 1)

2!
x2

� p

(1 � 2xr � r2)�1>2
� a

q

k�0
Pk(x)rk.

(1 � 2xr � r2)�1>21>R � (1 � 2xr � r2)�1>2,

�
1>2

0

23 1 � x4 dx�
0.2

0

21 � x3 dx
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FIGURA A.11.2 Carga unitaria en el punto B del problema 17

y

x

R

A

B r

1
�



Repaso de álgebra

Enteros

{ }

Enteros positivos (números naturales)

{ }

Enteros no negativos (números enteros)

{ }

Números racionales

Un número racional es un número en la forma p q, donde p
y son enteros.

Números irracionales

Un número irracional es un número que no puede escribirse
en la forma p q, donde p y son enteros.

Números reales

El conjunto R de números reales es la unión de los conjun-
tos de números racionales e irracionales.

Leyes de exponentes

Exponente negativo

Radical

un entero

Exponentes racionales y radicales

Fórmula cuadrática

Las raíces de una ecuación cuadrática ax2 + bx + c = 0,
a Z 0, son

Expansiones binomiales

Triángulo de Pascal

Los coeficientes en la expansión de siguen el
patrón:

Cada número en el interior de este arreglo es la suma de los
dos números directamente arriba del mismo:

El último renglón son los coeficientes en la expansión de

Fórmulas de factorización

Definición del valor absoluto

Propiedades de desigualdades

Si y entonces 
Si entonces 
Si entonces para 
Si entonces para c 6 0.ac 7 bca 6 b,

c 7 0.ac 6 bca 6 b,
a � c 6 b � c.a 6 b,

a 7 c.b 7 c,a 7 b

a4
� b4

� (a � b)(a � b)(a2
� b2)

a3
� b3

� (a � b)(a2
� ab � b2)

a3
� b3

� (a � b)(a2
� ab � b2)

a2
� b2

� (a � b)(a � b)

(a � b)5.

1  4  6  4  1
           R b           R b           R b           R b

1 5 10 10 5 1

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
o

(a � b)n

(a � b)5
� a5

� 5a4b � 10a3b2
� 10a2b3

� 5ab4
� b5

(a � b)4
� a4

� 4a3b � 6a2b2
� 4ab3

� b4

(a � b)3
� a3

� 3a2b � 3ab2
� b3

(a � b)2
� a2

� 2ab � b2

x �
�b � 2b2

� 4ac
2a

 An a
b

�
1n a

1n b

 1n ab � 1n a 1n b

 am>n
� 1n am

� A1n a Bm am>n
� AamB1>n � Aa1>nBm

a1>n
� 1n a, n 7 0

a�n
�

1
an, n 7 0

Qa
b
Rn �

an

bn, a0
� 1, a � 0

(am)n
� amn, (ab)n

� anbn

aman
� am�n, 

am

an � am�n

q � 0>
q � 0

>
0, 1, 2, 3, 4, 5, p

1, 2, 3, 4, 5, p

p , �4, �3, �2, �1, 0, 1, 2, 3, 4, p

FÓ
RM

U
LA

S 
M

AT
EM

ÁT
IC

A
S

0a 0 e a
a

si a es no negativo (a 0)
si a es negativo (a 6 0)
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Fórmulas de geometría

FÓ
RM

U
LA

S 
M

AT
EM

ÁT
IC

A
S

w

l

A � lw,  C � 2l � 2w

RECTÁNGULO

b

h

A � bh

PARALELOGRAMO TRAPEZOIDE

A � (a � b)h1
2

b

h

a

c a

b

Teorema de Pitágoras:

c2
� a2

� b2

TRIÁNGULO RECTÁNGULO

b

ac
h

TRIÁNGULO

A � bh,  C � a � b � c1
2

s

ss

TRIÁNGULO EQUILÁTERO

h � s,  
2

A � s23
4

3

r

A � �r2,  C � 2�r

CÍRCULO

r

R

A � �(R2
� r2)

ANILLO CIRCULAR

A � r2 �,1
2 s � r�

r

s
�

SECTOR CIRCULAR

b
a

A � �ab

ELIPSE

ab

c

ELIPSOIDE

V �   �abc4
3

r

ESFERA

V�  �r3,  4
3  S � 4�r 2

Área A, circunferencia C, volumen V, área superficial S

FM-2



Fórmulas matemáticas FM-3

FÓ
RM

U
LA

S 
M

AT
EM

ÁT
IC

A
S

V � Bh,  B, área de la base

CILINDRO RECTO

h
B

CILINDRO CIRCULAR RECTO

V ��r2h,  S � 2�rh (lado lateral)

h

r

PARALELEPÍPEDO
RECTANGULAR

V � lwh,  S � 2(hl � lw � hw)

l

h
w

CONO

V �   Bh,  B, área de la base1
3

h

B

CONO CIRCULAR RECTO

r

h

V �   �r2h,  S ��r1
3 r2

� h2

FRUSTO DE UN CONO

r2

r1

h

V �    �h(r2
1 � r1 r2 � r2

2)1
3



Gráficas y funciones

FM-4

Para encontrar intersecciones

Intersecciones y: sea x = 0 en la ecuación y resolvemos
para y

Intersecciones x: sea y = 0 en la ecuación y resolvemos
para x

Funciones de polinomios

donde n es un entero no negativo.

Función lineal

La gráfica de una función lineal es una recta.

Formas de ecuaciones de rectas:

Punto pendiente: 
Pendiente ordenada al origen: ,

donde m es la pendiente.

Función cuadrática

La gráfica de una función cuadrática es una parábola.

Vértice (h, k) de una parábola

Complete el cuadrado en x para para
obtener De manera alterna, calcule
las coordenadas

Funciones par e impar

Par: simetría de la gráfica: el eje y
Impar: simetría de la gráfica: el origen

Transformaciones rígidas

La gráfica de para 
desplazada hacia arriba c unidades
desplazada hacia abajo c unidades
desplazada hacia la izquierda c unidades
desplazada hacia la derecha c unidades
reflexión sobre el eje y

reflexión sobre el eje x

Función racional

,

donde y son funciones polinomiales.

Asíntotas

Si las funciones polinomiales y no tienen ningún
factor en común, entonces la gráfica de la función racional

tiene una

asíntota vertical:

x = a cuando 

asíntota horizontal:

y = an bm cuando n = m y y = 0 cuando 

asíntota oblicua:

y = ax + b cuando 

La gráfica no tiene una asíntota horizontal cuando 
Una asíntota oblicua se encuentra mediante una división.

Función potencia

donde n es cualquier número real.

f (x) � xn, 

n 7 m.

n � m � 1.

n 6 m, >
q(a) � 0, 

f (x) �
p(x)
q(x)

�
an xn

� p � a1x � a0

bm xm
� p � b1x � b0

q(x)p(x)

q(x)p(x)

f (x) �
p(x)
q(x)

�
an xn

� p � a1x � a0

bm xm
� p � b1x � b0

y � �f (x),
y � f (�x),
y � f (x � c),
y � f (x � c),
y � f (x) � c,
y � f (x) � c,

c 7 0:y � f (x)

f (�x) � �f (x);
f (�x) � f (x);

f (x) � a(x � h)2
� k.

f (x) � ax2
� bx � c

f (x) � ax2
� bx � c, a � 0

y � mx � b
y � x0 � m(x � x0), 

f (x) � ax � b, a � 0

f (x) � an xn
� an�1 xn�1

� p � a1x � a0, 
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Revisión de trigonometría

FM-5

Definición de seno y coseno de acuerdo
con el círculo unitario

Otras funciones trigonométricas

Fórmulas de conversión

Definición de seno y coseno de acuerdo
con el triángulo recto

Otras funciones trigonométricas

Signos de seno y coseno

Valores de seno y coseno para ángulos especiales

Límites para las funciones seno y coseno

Periodicidad de las funciones trigonométricas

Identidades de cofunción

Identidades pitagóricas

Identidades par/impar

(0, 1)

(1, 0)
x

y

(�1, 0)

(0, �1)

2�
3

( )
�
3 �

4 �
6

0

3�
45�

6

7�
6 5�

4 4�
3

5�
3

7�
4

11�
6

2�

1
2

3
2,�

��

( )1
2

3
2,

��

( )1
2

1
2,��� �� ( )1

2
1
2,�� ��

( )3
2

1
2,�

��

( )3
2

1
2,

��

( )3
2

1
2,� �

�� ( )3
2

1
2,�

��

( )1
2

1
2,� �

�� ��

( )1
2

1
2,��� ��

( )1
2

3
2,� �

�� ( )1
2

3
2,�

��

�
2

3�
2
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y

x

sen 0
cos 0

sen 0
cos 0

I

IVIII

II

sen 0
cos 0

sen 0
cos 0

sec u
hip
ady

, csc u
hip
opu

tan u
opu
ady

, cot u
ady
opu

cos u
ady
hip

sen u
opu
hip

1 radián 
180
p

 grados

1 grado 
p

180
 radianes

sec u
1
x

1
cos u

, csc u
1
y

1
sen u

tan u
y

x
sen u
cos u

, cot u
x
y

cos u
sen u

x cos u
y sen u

x

P(x, y)
1

y

opu
hip

ady

Par Impar

cot( x) cot x
tan( x) tan x
csc( x) csc xsec( x) sec x
sen ( x) sen xcos( x) cos x

1 cot2 x csc2 x

1 tan2 x sec2 x

sen2 x cos2 x 1

tanQp
2

xR cot x

cosQp
2

xR sen x

sen Qp
2

xR cos x

tan(x p) tan x, cot(x p) cot x

sec(x 2p) sec x, csc(x 2p) csc x

sen (x 2p) sen x, cos(x 2p) cos x

1 sen x 1 y 1 cos x 1



Fórmulas de suma

Fórmulas de diferencia

Fórmulas del ángulo doble

Fórmulas alternas del ángulo doble para coseno

Fórmulas del medio ángulo como se usa en cálculo

Leyes de los senos

Leyes de los cosenos

Funciones trigonométricas inversas

Ciclos para seno, coseno y tangente

�

�

�

a

b

c

FM-6 Fórmulas matemáticas
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c2 a2 b2 2ab cos g

b2 a2 c2 2ac cos b

a2 b2 c2 2bc cos a

sen a
a

sen b
b

sen g
c

cos2 x 1
2(1 cos 2x)

sen2 x 1
2(1 cos 2x)

cos 2x 2 cos2 x 1
cos 2x 1 2 sen2 x

cos 2x cos2 x sen2 x

sen 2x 2 sen x cos x

tan(x1 x2)
tan x1 tan x2

1 tan x1 tan x2

cos(x1 x2) cos x1 cos x2 sen x1 sen x2

sen (x1 x2) sen x1 cos x2 cos x1 sen x2

tan(x1 x2)
tan x1 tan x2

1 tan x1 tan x2

cos(x1 x2) cos x1 cos x2 sen x1 sen x2

sen (x1 x2) sen x1 cos x2 cos x1 sen x2 si y sólo si 
si y sólo si 
si y sólo si 

seno

2
3
2

2

1

1

y

x

coseno

2
3
2

2

1

y

x

1

tangente

2 2

x

y

x tan y, p>2 6 y 6 p>2y tan 1 x
x cos y, 0 y py cos 1 x
x sen y, p>2 y p>2y sen 1 x



Funciones exponencial y logarítmica

FM-7

El número e

Definiciones del número e

Función exponencial

Función exponencial natural 

Función logarítmica

donde es equivalente a 

Función logarítmica natural

donde es equivalente a 

Leyes de logaritmos

Propiedades de logaritmos

Cambio de la base b a la base e

Funciones hiperbólicas

Funciones hiperbólicas inversas como logaritmos

Identidades par/impar

Par Impar

Identidades adicionales

logb bx
� x,  blogb

 
x

� x

logb b � 1,  logb 1 � 0

logb Mc
� c logb M

logb 

M
N

� logb 
M � logb N

logb MN � logb M � logb N

x � eyy � ln x

f (x) � loge x � ln x, x 7 0

x � byy � logb x

f (x) � logb x, x 7 0

f (x) � ex

f (x) � bx, b 7 0, b � 1

e � 2.718281828459...

FÓ
RM

U
LA

S 
M

AT
EM

ÁT
IC

A
S

e lím
hS0

(1 h)1>h
e lím

xSq
Q1 1

x
Rx

cosh 2x 1
2(1 cosh 2x)

senh2 x 1
2( 1 cosh 2x)

cosh 2x cosh2 x senh2 x

senh 2x 2 senh x cosh x

cosh(x1 x2) cosh x1 cosh x2 senh x1 senh x2

senh(x1 x2) senh x1 cosh x2 cosh x1 senh x2

coth2 x 1 csch2 x

1 tanh2 x sech2 x

cosh2 x senh2 x 1

senh( x) senh xcosh( x) cosh x

csch 1 x lnQ1
x

21 x20x 0 R, x 0

sech 1 x lnQ1 21 x2

x
R, 0 6 x 1

coth 1 x
1
2

lnQx 1
x 1

R, 0x 0 7 1

tanh 1 x
1
2

lnQ1 x
1 x

R, 0x 0 6 1

cosh 1 x ln Ax 2x2 1 B, x 1

senh 1 x ln Ax 2x2 1 B
sech x

1
cosh x

, csch x
1

senh x

tanh x
senh x
cosh x

, coth x
cosh x
senh x

senh x
ex e x

2
, cosh x

ex e x

2

logb x
ln x
ln b



Diferenciación

FM-8

Reglas

1. Constante:

2. Múltiplo constante:

3. Suma:

4. Producto:

5. Cociente:

6. Cadena:

7. Potencia:

8. Potencia:

Funciones

Trigonométricas:

Trigonométricas inversas:

Hiperbólicas:

Hiperbólicas inversas:

Exponenciales:

Logarítmicas:

d
dx

 [g(x)] n
� n [g(x)] n�1g¿(x)

d
dx

 xn
� n xn�1

d
dx

  f (g(x)) � f ¿(g(x))g¿(x)

d
dx

 
f (x)
g(x)

�
g(x) f ¿(x) � f (x)g¿(x)

[g(x)] 2

d
dx

  f (x)g(x) �  f (x)g¿(x) � g(x) f ¿(x)

d
dx

 [ f (x) � g(x)] � f ¿(x) � g¿(x)

d
dx

 cf (x) � cf ¿(x)

d
dx

 c � 0
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.01.9

.21.11

.41.31

.61.51
d
dx

cos 1 x
1

21 x2

d
dx

sen 1 x
1

21 x2

d
dx

csc x csc x cot x
d
dx

sec x sec x tan x

d
dx

cot x csc2 x
d
dx

tan x sec2 x

d
dx

cos x sen x
d
dx

sen x cos x

.81.71

.02.91

.22.12

.42.32

25.

26.

.82.72

.03.92

31.

32.

.43.33

.63.53
d
dx

logb x
1

x (ln b)
d
dx

ln 0x 0 1
x

d
dx

bx bx(ln b)
d
dx

ex ex

d
dx

csch 1 x
10x 02x2 1

d
dx

sech 1 x
1

x21 x2

d
dx

coth 1 x
1

1 x2

d
dx

tanh 1 x
1

1 x2

d
dx

cosh 1 x
1

2x2 1

d
dx

senh 1 x
1

2x2 1

d
dx

csch x csch x coth x

d
dx

sech x sech x tanh x

d
dx

coth x csch2 x
d
dx

tanh x sech2 x

d
dx

cosh x senh x
d
dx

senh x cosh x

d
dx

csc 1 x
10x 02x2 1

d
dx

sec 1 x
10x 02x2 1

d
dx

cot 1 x
1

1 x2

d
dx

tan 1 x
1

1 x2



Fórmulas de integración

FM-9

Formas básicas Formas que implican

Formas que implican FÓ
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1.

2.

.4.3

.6.5

.8.7

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
du

u2 a2

1
2a

ln ` u a
u a

` C

du

a2 u2

1
2a

ln ` u a
u a

` C

du

u2u2 a2

1
a

sec 1 ` u
a
` C

du

a2 u2

1
a

tan 1 u
a

C

du

2a2 u2
sen 1 u

a
C

csc u du ln 0csc u cot u 0 C

sec u du ln 0sec u tan u 0 C

cot u du ln 0sen u 0 C

tan u du ln 0cos u 0 C

csc u cot u du csc u C

sec u tan u du sec u C

csc2 u du cot u C

sec2 u du tan u Ccos u du sen u C

sen u du cos u Cau du
1

ln a
au C

eu du eu C
du
u

ln 0u 0 C

un du
1

n 1
un 1 C, n 1

u dy uy y du 21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
du

u2a2 u2

1
a

ln ` a 2a2 u2

u
` C

u2 du

2a2 u2

u
2
2a2 u2 a2

2
sen 1u

a
C

2a2 u2

u2
du

1
u
2a2 u2 sen 1 u

a
C

2a2 u2

u
du 2a2 u2 a ln ` a 2a2 u2

u
` C

a4

8
sen 1 u

a
C

u22a2 u2 du
u
8

(2u2 a2)2a2 u2

2a2 u2 du
u
2
2a2 u2 a2

2
sen 1 u

a
C

du

(a2 u2)3>2 u

a22a2 u2
C

du

u22a2 u2

2a2 u2

a2u
C

du

u2a2 u2

1
a

ln `2a2 u2 a
u

` C

u2 du

2a2 u2

u
2
2a2 u2 a2

2
ln 0u 2a2 u2 0 C

du

2a2 u2
ln 0u 2a2 u2 0 C

2a2 u2

u2
du

2a2 u2

u
ln 0u 2a2 u2 0 C

2a2 u2

u
du 2a2 u2 a ln ` a 2a2 u2

u
` C

a4

8
ln 0u 2a2 u2 0 C

u22a2 u2 du
u
8

(a2 2u2)2a2 u2

2a2 u2 du
u
2
2a2 u2 a2

2
ln 0u 2a2 u2 0 C

2a
2

u
2

2a
2

u
2



Formas que implican

Formas que implican a + bu

Formas trigonométricas
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36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.
du

u(a bu)2

1
a(a bu)

1
a2

ln ` a bu
u

` C

u du

(a bu)2

a

b2(a bu)
1
b2

ln 0a bu 0 C

du

u2(a bu)
1
au

b

a2
ln ` a bu

u
` C

du
u(a bu)

1
a

ln ` u
a bu

` C

 2a2 ln 0a bu 0 ] C

u2 du
a bu

1
2b3

[(a bu)2 4a(a bu)

u du
a bu

1
b2

(a bu a ln 0a bu 0 ) C

du

(u2 a2)3>2 u

a22u2 a2
C

du

u22u2 a2

2u2 a2

a2u
C

a2

2
ln 0u 2u2 a2 0 C

u2du

2u2 a2

u
2
2u2 a2

du

2u2 a2
ln 0u 2u2 a2 0 C

ln 0u 2u2 a2 0 C

2u2 a2

u2
du

2u2 a2

u

2u2 a2

u
du 2u2 a2 a cos 1 a

u
C

a4

8
ln 0u 2u2 a2 0 C

u22u2 a2 du
u
8

(2u2 a2)2u2 a2

a2

2
ln 0u 2u2 a2 0 C

2u2 a2 du
u
2
2u2 a2

du

(a2 u2)3>2 u

a22a2 u2
C

3a4

8
sen 1 u

a
C

(a2 u2)3>2 du
u
8

(2u2 5a2)2a2 u2

du

u22a2 u2

1
a2u
2a2 u2 C 53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71. sec3 u du
1
2

sec u tan u
1
2

ln 0sec u tan u 0 C

cot2 u du
1
2

cot2 u ln 0sen u 0 C

tan3 u du
1
2

tan2 u ln 0cos u 0 C

cos3 u du
1
3

(2 cos2 u) sen u C

sen3 u du
1
3

(2 sen2 u) cos u C

cot2 u du cot u u C

tan2 u du tan u u C

cos2 u du
1
2

u
1
4

sen 2u C

sen2 u du
1
2

u
1
4

sen 2u C

du

un 11a bu

b(2n 3)
2a(n 1)

du

un1a bu

1a bu

a(n 1)un 1

un du

1a bu

2un1a bu
b(2n 1)

2na
b(2n 1)

un 1 du

1a bu

2na
b(2n 3)

un 11a bu du

u21a bu du
2un(a bu)3>2

b(2n 3)

1a bu

u2
du

1a bu
u

b
2

du

u1a bu

1a bu
u

du 21a bu a
du

u1a bu

2
1 a

tan 1Aa bu
a

C, si a 6 0

du

u1a bu

1
1a

ln ` 1a bu 1a

1a bu 1a
` C, si a 7 0

u2 du

1a bu

2
15b3

(8a2 3b2u2 4abu)1a bu C

u du

1a bu

2
3b2

(bu 2a)1a bu C

u1a bu du
2

15b2
(3bu 2a)(a bu)3>2 C

u2 du

(a bu)2

1
b3
Qa bu

a2

a bu
2a ln 0a bu 0 R C

2u
2

a
2



Formas trigonométricas inversas

Formas exponenciales y logarítmicas
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72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

2
a2

ln ` sen Qp
4

au
2
R ` C

udu
1 sen au

u
a

tanQp
4

au
2
R

du
1 sen au

1
a

tanQp
4

au
2
R C

du
1 sen au

1
a

tanQp
4

au
2
R C

m 1
n m

senn u cosm 2 u du

senn 1u cosm 1 u
n m

n 1
n m

senn 1 u cosm u du

senn u cosm u du
senn 1 u cosm 1 u

n m

un cos u du un sen u n un 1 sen u du

un sen u du un cos u n un 1 cos u du

u cos u du cos u u sen u C

u sen u du sen u u cos u C

sen au cos bu du
cos(a b)u

2(a b)
cos(a b)u

2(a b)
C

cos au cos bu du
sen (a b)u

2(a b)
sen (a b)u

2(a b)
C

sen au sen bu du
sen (a b)u

2(a b)
sen (a b)u

2(a b)
C

cscn u du
1

n 1
cot u cscn 2 u

n 2
n 1

cscn 2 u du

secn u du
1

n 1
tan u secn 2 u

n 2
n 1

secn 2 u du

cotn u du
1

n 1
cotn 1 u cotn 2 u du

tann u du
1

n 1
tann 1 u tann 2 u du

cosn u du
1
n

cosn 1 u sen u
n 1

n
cosn 2 u du

senn u du
1
n

senn 1 u cos u
n 1

n
senn 2 u du

csc3 u du
1
2

csc u cot u
1
2

ln 0csc u cot u 0 C
90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

n
m 1

um lnn 1 u du, m 1

um lnn u du
um 1 lnn u

m 1

un ln u du
un 1

(n 1)2
[(n 1)ln u 1] C

1
u ln u

du ln 0 ln u 0 C

ln u du u ln u u C

eau cos bu du
eau

a2 b2
(a cos bu b sen bu) C

eau sen bu du
eau

a2 b2
(a sen bu b cos bu) C

uneau du
1
a

uneau n
a

un 1eau du

ueau du
1
a2

(au 1)eau C

un 1 du

1 u2
d , n 1

un tan 1 u du
1

n 1
cun 1 tan 1 u

un 1 du

21 u2
d , n 1

uncos 1 u du
1

n 1
cun 1 cos 1 u

un 1 du

21 u2
d , n 1

un sen 1 u du
1

n 1
cun 1 sen 1 u

u tan 1 u du
u2 1

2
tan 1 u

u
2

C

u cos 1 u du
2u2 1

4
cos 1 u

u21 u2

4
C

u sen 1 u du
2u2 1

4
sen 1 u

u21 u2

4
C

tan 1 u du u tan 1 u
1
2

ln(1 u2) C

cos 1 u du u cos 1 u 21 u2 C

sen 1 u du u sen 1 u 21 u2 C



Formas hiperbólicas

Formas que implican

Algunas integrales definidas
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107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

a2

2
cos 1Qa u

a
R C

22au u2 du
u a

2
22au u2

csch u coth u du csch u C

sech u tanh u du sech u C

csch2 u du coth u C

sech2 u du tanh u C

csch u du ln 0 tanh 1
2 u 0 C

sech u du tan 1(senh u) C

coth u du ln 0senh u 0 C

tanh u du ln (cosh u) C

cosh u du senh u C

senh u du cosh u C

du
a beu

u
a

1
a

ln 0a beu 0 C

a ln ` u a
u a

` Cln 0u2 a2 0 du u ln 0u2 a2 0 2u

ln(u2 a2) du u ln(u2 a2) 2u 2a tan 1 u
a

C 121.

122.

123.

124.

125.

126.

127.

128.

129.

2 . 4 . 6 p 2n
1 . 3 . 5 p (2n 1)

, n 1, 2, 3, p

p>2
0

sen2n 1 x dx
p>2

0

cos2n 1 x dx

p

2
1 . 3 . 5 p (2n 1)

2 . 4 . 6 p 2n
, n 1, 2, 3, p

p>2
0

sen2n x dx
p>2

0

cos2n x dx

du

u22ua u2

22au u2

au
C

3a2

2
cos 1Qa u

a
R C

u2 du

22au u2

(u 3a)
2

22au u2

u du

22au u2
22au u2 a cos 1Qa u

a
R C

du

22au u2
cos 1Qa u

a
R C

22au u2

u2
du

222au u2

u
cos 1Qa u

a
R C

22au u2

u
du 22au u2 a cos 1Qa u

a
R C

a3

2
cos 1Qa u

a
R C

u22au u2 du
2u2 au 3a2

6
22au u2

22au u
2



Respuestas a la evaluación diagnóstica

Evaluación diagnóstica, página xv

1. falso 2. verdadero

3. falso 4. verdadero

5. 12 6.

7. 8.

9. a) b)
c) 1 d) 1

10. a) b)
c) d)

11. falso 12. falso

13. verdadero 14.

15.

16. a), b), d), e), g), h), i), l)

17. i ) d); ii ) c), iii ) a); iv) b)

18. a) b)

19. 20.

21. 22.

23. cuarto 24.

25.

26. a) b) c) 

27. 28. segundo y cuarto

29. x = 6 o x = -4 30.

31.

32. c) 33. falso

34. 35. 8

36. 37.

38. 39.

40. 41.

42. i ) g); ii ) e); iii ) h); iv ) a); v ) b); vi ) f); 
vii ) d); viii ) c)

43. falso 44. falso

45. 46. 15

54. aproximadamente 55. 1 000

56. verdadero

2.3347

4p>3
x � 13y � 413 � 7 � 0y � �

5
8

x

y � �
1
3

x � 3y � 2x � 14

y � �5x � 3
2
3

; (�9, 0); (0, 6)

�27

d(P1, P2) � d(P2, P3) � d(P1, P3)

x2
� y2

� 25

(�2, 0), (0, �4), (0, 4)

(�1, �5)(�1, 5)(1, �5)

�12; 9

(5, �7)

(�q, �2) ´  [0, 1](�q, �5] ´ [3, q)

(�q, �2) ´  A83, q B
�1 3

] ]

0x 0 6 2�2 6 x 6 2;

�a � 5

6; � 6

(x � 2)(x � 2)(x2
� 4)(x � 3)(x2

� 3x � 9)
x2(x � 3)(x � 5)(5x � 1)(2x � 3)

�1 � 16, �1 � 160, 7

2 Ax �
3
2B2 �

1
2

3x3
� 8x

2x2
� 4

�243

RE
SP

U
ES

TA
S 

A
 L

A
 E

VA
LU

A
CI

Ó
N

 D
IA

G
N

Ó
ST

IC
A

RES-1

.84.74

49.

.15.05

.35.25 logb 1254 641>3 k 10 ln 5b 10 tan u, c 10 sec u

csc u 5
3

sen u 3
5; cos u 4

5; tan u 3
4; cot u 4

3; sec u 5
4;

cos t
212

3
0.23
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Problemas 1.4

1. Demostración 3. 5.25

5. -0.2352941176470588 7. 1.23

9. 0.05 11. 3141615�106

13. 23�90 15. 571 715�105

17. 134�9 990 19. 123�999

21. 4 018�999 23. Demostración.

25. Demostración. 27. Demostración.

29. Demostración. 31. Demostración.

33. Irracional. 35. Irracional.

37. Irracional. 39. Demostración.

41. Demostración. 43. Demostración.

45. Si A ( �, entonces no hay un ínfimo y .5 es el supremo.

47. Si A ( �, entonces no hay ínfimo ni supremo.

49. Considerando que A ( �, el ínfimo es 1 y no hay supremo.

51. Si A ( � entonces el ínfimo es el 0 y el supremo 2.

53.

55.

57.

59.

61. (- q, 10] 63. (-3, 3)

65. (-4, 1) 67. �

69. (- q, -1] ´ [8, q) 71. (-3, 2)

Problemas 1.5

1. Demostración. 3. (- q, )

5. (-8, q) 7. [- , q)

9. (-2, 0) 11. ( , 1]

13. (- , q) 15. (- q, 1) ´ (5, q)

17. (- q, -4] ´ [9, q) 19. (- q, -1] ´ [ , q)

21. (- q, -3] ´ [1, q) 23. (- 6, 0)

25. (- q, -3) ´ (-2, -1) 27. (- - , - )

29. [0, ) ´ ( , ] 31. (6, 9)

33. (- , -12) 35. [ , 3)

37. [ - , 0) ´ [ + , q) 39. (0, ] ´ (2, q)

41. (- q, -4) ´ [5 - , 0) ´ [5 + , q )

43. (- q, ) ´ (4, q) 45. (- 1, 4)

47. (- q, 1) ´ [ , q)

49. (4 - , 2) ´ [3, 4 + ) 51. (- q, - 1) ´ (- , q)

53. (- q, - 5) ´ (15, q) 55. (- q, - 1) ´ (-1, 0)

57. (- q, 5] 59. (- q, ) ´ ( , )

61. (- q, - ) ´ (1, q) 63. (- q, - )

65. [- , ] 67. Demostración.

69. Demostración. 71. Demostración.

Problemas 2.1

1. 24; 2; 8; 35, 3.

5.

7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27. no es una función

29. función

31. dominio: rango: 

33. dominio: rango: 

35. 37.

39. 41.

43. (�2, 0), (2, 0), (0, 3)

A0, �1
4B(�1, 0), (2, 0), (0, 0)

A32, 0B, A 52 , 0B, (0, 15)(8, 0), (0, �4)

[1, 6][1, 9] ;

[0, 5][�4, 4] ;

(�2, 3]

(�q, 0]  ´ [5, q)[�5, 5]

(�q, q){x 0x � 5}

{x 0x � 0, x � 3}(�q, 1)

[1
2, q B�2, 2

�8a2
� 2a � 1; �2x2

� 4xh � 2h2
� 3x � 3h

�2x2
� 3x; �8a2

� 6a; �2a4
� 3a2; �50x2

� 15x;

�
3
2

; 0; 
3
2

; 12

0; 1; 2; 16

5
4

11
4

1
2

3
7

3
4

1
3

1
3

2
777

4
3

1
2

6565

4
3

5
2

1
2

5
2

1
2

2
3

116
9

9
4
π5

4
ππ

4

5
6

37
6

5
6

37
6

1
2

9
5

2
3

1
5

5
3

-9

0

-2 14

-10 -2
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45.

47.

49.

51. a) 2; 6; 120; 5 040 c) 5; 42
d)

Problemas 2.2

1.

3.

5.

7. el intervalo 9. el intervalo 

11. 13.

15. 17.

19. 21.

23. 25.

27. 29.

31. 33.

35.

37. a) b)

c) d)

e) f)

39. a) b)

c) d)

e) f)

41. a) b)

c) d)

e) f)

g) h)

43. 45.

47. 49.

51.

53.

55. y

x

3
2
1

1 2 3 4
�1�1

�2
�3

y � 2 � 3U(x � 2) � U(x � 3)

y

x

1

�1

2

3

1 2 3 4

10, 8, �1, 2, 0y

x

y � �(x � 7)4y � (x � 1)3
� 5

y

x
�� �

1
2

1
2

�

�

2
�

2�

y

x

�1

�� �

1
�

2
�

2�

y

x

�1

�

2
�� �

1

�

2�

y

x

�1

1

�

2
�

2
�� �

�

y

x

�1

�

2
�

2�
� 3�

2

1

y

x

�1

1

3�

2
�

2
�2� ��

�

y

x

�1

�

2
�

2
��

�
�

y

x

1

�

2
�

2
��

�
�

y

x

x

y

x

y

x

y

x

yy

x

x

y

x

y

x

y

x

y

x

yy

x

(2, 1), (�3, �4)

(�6, 2), (�1, �3)(�8, 1), (�3, �4)

(�2, 3), (3, �2)f (x) � 2x2
� x, g(x) � x2

�2x � 936x2
� 36x � 15

128x9; 
1

4x9[�15, 15 ]

(�q, �1] ´ [1, q)
3x � 3

x
; 

3
3 � x

x6
� 2x5

� x4; x6
� x43x � 16; 3x � 4

[1, 2)[1, 2]

x � 3
x � 4

, x � 1, x � �4

2x2
� 5x � 7; �x � 1; x4

� 5x3
� x2

� 17x � 12;

x2
� x � 1

x(x � 1)
; 

x2
� x � 1

x(x � 1)
; 

1
x � 1

; 
x2

x � 1
, x � 0, x � �1

�2x � 13; 6x � 3; �8x2
� 4x � 40; 

2x � 5
�4x � 8

, x � 2

(n � 1)(n � 2)(n � 3)

f1(x) � 1x � 5, f2(x) � �1x � 5; [�5, q)

3.6; 2; 3.3; 4.1; 2; �4.1; (�3.2, 0), (2.3, 0), (3.8, 0)

0; �3.4; 0.3; 2; 3.8; 2.9; (0, 2)
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Problemas 2.3

1. 3.

5.

7. 9.

11. 13.

15. 17.

19.

21. a) b)

c) d)

e) f)

23. a) b)

c) d)

e) f)

25. a) b)

c) d)

e) f)

27. La gráfica se desplazó de manera horizontal 10 unidades a la
derecha

29. La gráfica se comprime de manera vertical, luego hay una
reflexión sobre el eje x, después un desplazamiento horizontal
de 4 unidades hacia la izquierda y finalmente un desplazamien-
to vertical de 9 unidades hacia arriba

31. La gráfica se desplazó de manera horizontal 6 unidades a la
izquierda, después hay un desplazamiento vertical de 4 unida-
des hacia abajo

33. 35.

37. 39.

41. 43. f )

45. e) 47. b)

y

x
1

1

y

x

y

x

y

x
1

1

y

x

1

1

[3
2, q B; A�q, 32][�1

4, q B
x

yA32, �1
4B; x �

3
2

y � Ax �
3
2B2 �

1
4(1, 0), (2, 0), (0, 2)

(�q, 1] ; [1, q)(�q, 4]

x

y(1, 4); x � 1

y � �(x � 1)2
� 4(�1, 0), (3, 0), (0, 3)

[�5
2, q B; A�q, �5

2][�25
4 , q B

x

yA�5
2, �

25
4 B; x � �

5
2

y � Ax �
5
2B2 �

25
4(0, 0), (�5, 0)

y � x � 3

f (x) �
1
2

 x �
11
2

y � �4x � 11

y � �3x � 2y � �2x � 7

x

yy

x

2
3

; A92, 0B, (0, �3);
3
4

; (�4, 0), (0, 3);

y � �x � 3

y � 2y �
2
3

x �
4
3

49.

51.

y

x

intersecciones: (0, 1);asíntotas: x 1, y 0;

y

x
22

2

2

intersecciones: A94, 0B, (0, 3);asíntotas: x 3
2, y 2;



Respuestas de los problemas impares RES-5

RE
SP

U
ES

TA
S 

D
E 

LO
S 

PR
O

B
LE

M
A

S 
IM

PA
RE

S,
 U

N
ID

A
D

 2

63. -1 está dentro del rango de f, pero 2 no está en el rango de f

65.

67. 1 680; 35.3 años aproximadamente

69. t = 0 y t = 6;

Problemas 2.4
1. 3.

5. 7. amplitud: 4; periodo: 2;

9. amplitud: 3; periodo: 1; 11. amplitud: 4; periodo: 

x
2��

�2

6

4

2

y

x

�1
�2
�3

3
2
1

y

1
2

1

2p;

x
21

4

2

�2

�4

y

x
2�

2

�2

�4

�6

�

y

y

1

2

3

x
2��

x

y

2�

1

�

3
2

1
2

1
2

�

s

t

100

TF �
9
5

TC � 32

53.

55.

57.

59.

61.

y

x

intersecciones: ( 1, 0), (3, 0), (0, 3);
asíntotas: x 1, y x 1;

y

x

intersecciones: (0, 0);asíntotas: x 2, y x 2;

y

x

intersecciones: ( 3, 0), (3, 0);asíntotas: x 0, y x;

y

x

intersecciones: ( 1, 0), (1, 0);asíntotas: x 0, y 1;

y

x

intersecciones: (0, 0);asíntotas: x 1, x 1, y 0;

13. amplitud: 1; periodo: 15.

.91.71

.32.12

25. amplitud: 1; periodo: 

27. amplitud: 1; periodo: 

x

4
7
4

1

1

y

desfasamiento: p>4;2p;

x

6
13

6

1

1

y

desfasamiento: p>6;2p;

y sen pxy
1
2

cos px

y 3 sen 2xy 1 3 cos x

x
3

2

1

y

3
2

y 3 sen x3p;



29. amplitud: 4; periodo: desfasamiento: 

31. amplitud: 3; periodo: desfasamiento: 

33. amplitud: 4; periodo: 6; desfasamiento: 1;

37. donde n es un entero

39. donde n es un entero

41. donde n es un entero

43. donde n es un entero

45. periodo: 1; intersecciones x: (n, 0), donde n es un entero;
asíntotas: donde n es un entero;

47. periodo: intersecciones x: donde n es un

entero; asíntotas: donde n es un entero;

49. periodo: intersecciones x: donde n es
un entero; asíntotas: donde n es un entero;

51. periodo: 1; intersecciones x: donde n es un ente-
ro; asíntotas: x = n, donde n es un entero;

53. periodo: 2; asíntotas: x = n, donde n es un entero;

55. periodo: asíntotas: donde n es un entero;

57.

59. a) b)
c) 980.61796  cm/s2

983.21642  cm/s2978.0309  cm/s2

�

2

t

5

5 10 15 20 25

15

20

10

d

�

6

�

2
x

2
3
4

1

�1
�2
�3
�4

y

�

3
2�

3

x � np>3,2p>3;

1
2

3
2

x

2
3
4

1

�1
�2
�3
�4

y

1 2

1
2

1
4

x

2
3
4

1

�1
�2
�3
�4

y

1

A14 � n, 0B,
3�

2

�

2

x

2
3
4

1

�1
�2
�3
�4

y

�

2�

x � 3p>2 � 2np,
(p>2 � 2np, 0),2p;

�

2

x

2
3
4

1

�1
�2
�3
�4

y

x � np>2,

A14 (2n � 1)p, 0B,p

2
;

x

2
3
4

1

�1
�2
�3
�4

y

11
2

x �
1
2 (2n � 1),

(p>4 � np, 0),

((2n � 1)p, 0),

(n, 0),

(p>2, 0); (p>2 � 2np, 0),

x

4

2

�2

�4

y

71

3
2
1

�1
�2
�3

y

x
14�

3

2�

3

2p>3;4p;

x

4

2

�2

�4

y

3�

4
7�

4

3p>4;p;
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35. y 5 sen apx
p

2
b
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Problemas 2.5

1. porque f (0) = 1 y f (5) = 1 3. no es uno a uno
5. uno a uno 7. uno a uno

9. 11.

15. dominio: rango: 

17. dominio: rango: 
19. 21.

23. 25. 

27.

29.

33. 35.

37. 39.

41. 43. 2

45. 47.

49. 51.

Problemas 2.6

1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

33. e 35. 36

37.

39.

41. 43. el intervalo 

45. 47.

49.

63. a) b) c)

65. a) 82 b) 8.53 días

c) 2 000                 d)

5 10 15
(días)

(e
st

ud
ia

nt
es

)

20

500

1 000

2 000

1 500

P

t

8.64 h5.66P0P(t) � P0 e0.3466t

0

y

�1�2 2

1
x

ln (x2
� 2)(�1, 0), (1, 0); x � 0;

y

�1
x

(�3, 3)(�1, q); (0, 0); x � �1;

y

1

1
x

(0, q); (1, 0); x � 0;

1
7

�
1
2

� log4 

1
2

1 2 3

�1

�2 �1�3

y

x

2

2
3
4

1

�2

y

x

1

1
�1

�1

�2

�3

y

x

y

x

3

2

1

1�1

x 6 2

x 7 4f (x) � e�2x

y

2

2
�2

�2

�4

�4
x

f (x) � 6x(0, �4); y � �5;

y

x
2�2

�1

�2

�3

�4

�4

y

x

4

�4 �2 2 4

3
2
1

(0, �1); y � 0;(0, 1); y � 0;

21 � x221 � x2

13(2 � 110)>9412>9
4
5

�p>33p>4 p>43p>4 f �1(x) � �1 � 1x � 3f (x) � x2
� 2x � 4, x � �1;

f �1(x) �
1
2 (5 � 1x)f (x) � (5 � 2x)2, x �

5
2;

y �ƒ(x)

y

x

(0, �1)

    , 0 3
2
( )

y

(0, 1)

y � f –1(x)

x

x � 12(20, 2)
(�q, �3) ´ (�3, q)(�q, 0) ´ (0, q);

[�2, q)[0, q);

f�1(x) �
2 � x
1 � x

f �1(x) � A3 x � 7
3

57.

63. a) b) 0.942 radianes 53.97°p>4csc t 15>2cos t 15>5, tan t 2, cot t
1
2

, sec t 15,

.72.52

.13.92

51.

53.

.75.55

.16.95 3
1 ln 2
1 ln 5

2.7782

5
ln 9
ln 2

1.8301log6  51
ln 51
ln 6

2.1944

9 ln(7x 5)5 ln(x3 3) 8 ln(x4 3x2 1)
1
2

ln x

10 ln x
1
2

ln(x2 5)
1
3

ln(8x3 2)

f (x) log7 xA13 B8 81

27 1284 log10 10 000



Problemas 2.7

1.

3.

5.

7.

9.

11.

13.

15.

17.

Competencia final de la unidad 2

A. 1. falso 3. verdadero

5. falso 7. verdadero

9. falso 11. verdadero

13. verdadero 15. verdadero

17. verdadero 19. verdadero

B. 1. 3.

5. 7.

9. 6 11.

C. 1. a) 3 b) 0 c) d) 0 e) 2.5
f ) 2 g) 1 h) 0 i) 3 j ) 4

3. 1 y 8 están en el rango; 5 no está en el rango

5.

7. f ) 9. d)

11. h) 13. c)

15. b) 17.

19. a) ab b) c)

25. b) 27. d)

29. c)

31. a) b) c)

Problemas 3.1

1. 8 3. no existe

5. 2 7. no existe

9. 0 11. 3

13. 0

15. a) 1 b) c) 2 d) no existe

17. a) 2 b) c) d)

29. a) b) 0 c) d) e) 0 f) 1

35. no existe 37.

39. 41.

43. 0 45.

47. 49. 5

Problemas 3.2

1. 15 3.

5. 4 7. 4

9. 11. 14

13. 15.

17. 19. no existe

21. 23. 3

25. 60 27. 14

29. 31.

33. 3 35. no existe

37. 2 39.

41. 43.

45. 47.

49. 51.

53. 55.

57. no existe 59. 8a

Problemas 3.3

1. ninguno 3. 3 y 6

5. 7. 2np>2, n � 0, �1, �2, . . .

1
2

32

1
5

1
2

�1>x216

a2
� 2ab � b2

�2

128
3

�
1
8

1
5

�10

17

�1
28
9

�
8
5

�12

1
4

1
3

�3�2

�
1
4

�2�3�1

�1�1�1

�1

V �
3
4

 h3V �
2
9

 w3V � 6l3

1>bb>a 31�h
� 3

h

�3x2
� 4x � 3xh � h2

� 2h � 1

�2

0

A0, �4
5B(1, 0); (0, 0), (5, 0)

(�8, 6)[�2, 0) ´ (0, q)

A(x) �
1

4p
 x2; (0, q)

A(h) �
1
13

 h2; (0, q)

d(C) � C>p; (0, q)

P(A) � 41A; (0, q)

d(x) � 22x2
� 8; (�q, q)

A(x) � 2x �
1
2

 x2; [0, 4]

A(x) � 100x � x2; [0, 100]

S(x) � 3x2
� 4x � 2; [0, 1]

S(x) � x �
50
x

; (0, q)
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19.

21.

23.

25.

27.

29.

31.

.51.31

.91.71

.32.12 f (x) 5 A12Bxf (x) 5eA 1
6 ln 5Bx 5e 0.2682x

y ln x
1
9

log3 5
ln 5
ln 3

(3, 5)

u(x) tan 1(1>x) tan 1(1>2x); (0, q)

L(u) 3 csc u 4 sec u; (0, p>2)

h(u) 300 tan u; (0, p>2)

e 120h2,
1 200h 3 000,

0 h 6 5
5 h 8

; [0, 8]V(h)

d(t) 20213t2 8t 4; (0, q)

S(w) 3w2 1 200
w

; (0, q)

C(x) 8x
3 200

x
; (0, q)

33.

.73.53

19. correcto 21.

.52.32

27. lím
xS3
29 x2 0

correctolím
xS0
:x ; 0

lím
xS1
11 x 0

V(x) 213(1 x2)A(f) 100 cos f 50 sen 2f

V(u) 360 75 cot u
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9. ninguno 11.

13. a) continua b) continua

15. a) continua b) continua

17. a) no continua b) no continua

19. a) continua b) no continua

21. a) no continua b) no continua

23. a) no continua b) continua

25. 27.

29. discontinua en n�2, donde n es un entero;

31. defina 33.

35. 0 37. 1

39. 1 41.

43. 45.

47. 55.

57. 59.

Problemas 3.4

1. 3.

5. 1 7. 4

9. 11.

13. 15. no existe

17. 3 19.

21. 23.

25. 4 27.

29. 5 31.

33. 8 35.

37. 43. 3

Problemas 3.5

1. 3.

5. 7.

9. 11. 5

13. 15.

17. 19.

21. 1 23.

25. 27.

29. 31.

33. AV: ninguna; AH: 

35. AV: AH: ninguna;

37. AV: AH: 

39. AV: AH: 

41. AV: ninguna; AH: 

43. a) 2 b) c) 0 d) 2

45. a) b) c) d) 0

51. 3

Problemas 3.6

1. elija 3. elija 

5. elija 7. elija 

9. elija 11. elija 

13. elija 15. elija d � 1ed � e>8 d � ed � 2e

d � e>3d � e

d � ed � e

q�1�q

�q

y

x

y � �1, y � 1;

y

x

y � 1;x � 1;

y

x

y � 0;x � 0, x � 2;

y

x

x � �1;

y

x

y � 0;

�1; 1�1; 1

�
2
13

; 
2
13

�4; 4

�p>60
1
12

5
2

�
1
4

1
4

qq

q�q

12
2

12

1
6

1
2

�40

3
7

1
2

360

0
3
2

0.782.21

�1.22, �0.64, 1.34c � 0, c � �12

c � 4(�3, q)

�p>6
13
2

f(9) � 6

y

1

1
x

m � 1; n � 3m � 4

e�2



17. elija 19. elija 

21. elija 23. elija 

25. elija 31. elija 

33. elija 

Competencia final de la unidad 3

A. 1. verdadero 3. falso

5. falso 7. verdadero

9. falso 11. falso

13. verdadero 15. verdadero

17. falso 19. verdadero

21. falso

B. 1. 3.

5. 0 7.

9. 11.

13. 15.

17. 19. continua

21. 9

C. 5. a), e), f ), h) 7. c), h)

9. b), c), d), e), f )

11. ; continua en todas partes

13.

15.

17.

Problemas 4.1

1. 3. 7;

5. 7.

9.

11.

13.

15.

17.

19.

21. no una recta tangente 23.

25.

27.

29. 31. 3.8 h

33.

35. a) b) 5 s c)

37. a) 448 pies; 960 pies; 1 008 pies; 960 pies
b) 144 pies/s d) 16 s e)
f) -256 pies/s g) 1 024 pies

Problemas 4.2

1. 0 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

37. 39.

41.

43. 45.

47. 49. e)

51. b) 53. a)

Problemas 4.3

1. 0 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27. (�1, 7)(3, �25),(4, �11)

y �
1
4

x � 5y � 6x � 3

�1>r2
� 2>r3

� 3>r4
� 4>r5

192u2

16 � 4>1x6x5
� 40x3

� 50x

20x4
� 20x3

� 18x2x4
� 12x3

� 18x

2x�1>2
� 4x�5>314x � 4

9x8

1

x

�1
1

ƒ�

1

x
�1

�1
1

ƒ�

1

1
x

ƒ�

y �
1
2

x � 3;  f (�3) �
3
2

;  f ¿(�3) �
1
2

4>(3 � a)23a2
� 8a

�3x2; (2, �4), (�2, 12)x; A3, 72B (1, �2), (�1, 2)(�4, �6)

y � 2x � 2y � �x � 4

�1>(2x3>2)5>(x � 4)2

�2>(x � 1)2
�3x2

� 30x � 1

3x2
� 12x � 2

�2x � 46x

�3

�32 t � 256

�49 m/s�4.9 m/s

�14

58  mi/h

mtan � 3x2
� 3; (�1, 2), (1, �2)

mtan � �2x � 6; (3, 10)

y � x � 2; (0, �2)

mtan �
13
2

; y �
13
2

x �
13p
12

�
1
2

mtan �
1
4

; y �
1
4

x � 1

mtan � 2; y � 2x � 1

mtan � �
1
2

; y � �
1
2

x � 1

mtan � �23; y � �23x � 32

mtan � �1; y � �x � 1

y

x
�� �2

mtan � 6; y � 6x � 15
313 � 6
p

;

y

x

y

x

�4.5;

1
6

(�q, �15), (15, q)

(�q, �1), (�1, 0), (0, 1), (1, q)

x

y

10

�2�q

3�1

q

�
1
5

4

N � �30>e N � 7>(4e)d � 1ae

d � 1ed � min{1, e>7}

d � e>2d � e2>5
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.53.33 20af ¿ (2) 2 pero f ¿ (2) 1
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29. 31.

33. 35.

37. 39. 1 440x2 + 120x

41. 43.

45. 49.

51. 53.

55. 57.

Problemas 4.4

1. 3.

5. 7.

9. 11.

13. 15.

17.

19.

21. 23.

25.

27. 29.

31. 33.

35. 37.

39. 41.

43.

49. 51.

Problemas 4.5

45. cuando el ángulo de elevación aumenta, la longitud s de
la sombra decrece

53. no diferenciable en 

d) 13.7281 aproximadamente
e) el esfuerzo mínimo requerido para jalar el trineo es alre-

dedor de 13.73 lb cuando es aproximadamente 0.1974
radián u 11.31�.

Problemas 4.6

1. 3.

5.

7.

9. 11.

13.

37.

39. 41.

43. 45.

47.

53.

55.

Problemas 4.7

5. 7.

13. 15.

17. 19.
3

2y(x � 2)2

1 � x
y � 4

2x4y4
� 3y10

� 6x9y

6xy9
� 3x10

x2
� 4x (x2

� y2)5

y2
� 4y (x2

� y2)5

2x � y2

2xy
1

2y � 2

1
18

(13>3, 313>16), (�13>3, �313>16); no

y �
16
4

�
12

p(212 � 316)
 ax �

1
2
by � 6x � 1 �

3p
2

y � �8x � 3

�7�54

360 x2(1 � x3)3(1 � (1 � x3)4)4 (1 � (1 � (1 � x3)4)5)5

10(1 � 6x(x2
� 4)2)(x � (x2

� 4)3)9

2x

2x2
� 1(x2

� 1)3>2cos 12x

12x

�2(3x � 1)3(�2x � 9)4(27x � 59)

�4(x3
� 2x2

� 7)�5 (3x2
� 2x)

200 (2x2
� x)199 (4x � 1)�150(�3x)29

u

0, �p, �2p, p

�
160
3 ;

�
RT

(V � b)2 �
2a

V3�16 km1m2

(x2 f –(x) � 2xf ¿(x) � 2f (x))>x3

13
2

�30

11
3

�28

k � �21(�4, 0), (�6, 2)

A3, 32B, A�5, 12B(0, 0), A�1, 12B, A1, 12B(0, 24), (15, �1), (�15, �1)

y � 7x � 1y � �4x � 1

(2x3
� 8x2

� 6x � 8)>(x � 3)2

(6x2
� 8x � 3)>(3x � 2)2

18x2
� 22x � 6(x2

� 2x)>(2x2
� x � 1)2

(2x5
� x2

� 40x � 12)>x472x � 12

�17>(5 � 2x)2
�20x>(x2

� 1)2

8x�7>3
� 4x�5>6

� 121>25x4
� 9x2

� 4x � 28

�15 NS � 4pr2

y � �7xA14, � 3
16B (2, 8)(1, q), (�q, 1)

(�4, 48)(�4, q), (�q, �4)

60>x4

32�2

x � 4y �
1
4

x �
7
2

45.

47.

.3.1

.7.5

9.

.31.11

.71.51

19.

21.

.52.32

.92.72

.33.13

.73.53

39.

41. csc x  cot 2 x csc 3 x

x2 sen x 2x cos x 2 sen x

x3

2 cos x x sen x2(cos2 x sen2 x) 2 cos 2x

y x 2py 2x
13
2

8p
3

p>2p>6, 5p>6 y
2
3

x
2
13

p

9
y

13
2

x
1
2

13p
6

x4 sen x sec2 x x4 sen x 4x3 sen x tan x

1
1 cos x

2x2 sec2 x 4x tan x 2x

(1 2 tan x) 2

x csc2 x csc2 x cot x

(x 1)2

cos x0

x2 sec x  tan x 2x sec x sec2 x

(x3 2) sec2 x 3x2 tan xx cos x sen x

7 cos x sec2 x2x sen x

f ¿(x) 7 0 en A q, 5
8B; f ¿(x) 6 0 en A58, q Bf ¿(x) 7 0 en ( q, 0) ´ (0, 1); f ¿(x) 6 0 en (1, 2) ´ (2, q)

55. b) c) 0.1974 radián

.71.51

.12.91

23.

25.

27.

29.

31.

33.

35.

.15.94

57. Si 

59.

.3.1

.11.9

.32.12

.72.52

.13.92 y
8
3

x
22
3

1
3

  y
2
3

2
5

cos 2u
r

cos y cot y
cos(x y) y

x cos(x y)

4x 3x2y2

2x3y 2y

2x

3 sen y

2y sen y2
dy

dx
4x2y3

dy

dx
2xy4

dr>dt 5>(8p) pulg>min

0 u p, entonces u p>4 o u 3p>4.

125x cos 5x 75 sen 5xp3 cos px

24x sen2(4x2 1)cos(4x2 1)

(2x 5) 1>2cos12x 5 sen (sen12x 5)

2 cos 2x cos(sen 2x)

5(sec 4x tan 2x)4(4 sec 4x tan 4x 2 sec2 2x)

3 sen 2x sen 3x 2 cos 2x cos 3x

x 2 sec2(1>x)

10(2 x sen 3x)9(3x cos 3x sen 3x)

3x5 sen x3 3x2 cos x315 sen2 5x cos 5x

p cos(px 1)
5x14 9x13 13x12

(x2 x 1)5

14(0.2 cos u sen u)

(0.2 sen u cos u)2



33. 35.

37.

39. 41.

47. 49.

51. 53.

55.

57.

59. a) b)

Problemas 4.8

1. para toda x muestra que f es creciente en 
Así f es uno a uno.

3. implica que f no es uno a uno

5. 7.

9. 11.

13. 15.

39. 41.

Problemas 4.9

1. 3.

5. 52x(2 ln 5) 7.

9. 11.

13. 15.

17. 19.

25. 27.

31.

45.

47. a) b)

c) d) no

49. b) c) d)

61.

Problemas 4.10

1. 3.

21. 23.

25. 27. 4

29. 31. (e, e�1)�8

y � x � 1

1
x � 1

�
1

x � 2
�

1
x � 3

2
t

�
2t

t2
� 2

1
2x

10
x

f ¿(0) � 0

t � 0

t

PP � 0, P � 2

ƒ�

x

f ¿(x) � e ex,
�e�x,

x 7 0
x 6 0

x

ƒ

�y2
� yex>y

2y3
� xex>y

x

y

n � 0, �1, 2, px � p>4 � np,

y � 4x � 42xex2

eex2

1
3

 x�2>3ex1>3
�

1
3

 ex>33e3x�3

8e8x
�

ex>2
� e�x>2

(ex>2
� e�x>2)2

�
5
2

(1 � e�5x)�1>2e�5x
�e�2x(2x � 1)

x2

x2e4x(3 � 4x)

e1x

21x
�e�x

(5p>6, 4), (7p>6, 6)y �
2 � p

4
x �

1
2

�8
4 � x2

5

21 � (5x � 1)2

(8, 1); y �
1

60
x �

13
15

(5, 3); y �
1

10
x �

5
2

( f �1)¿(x) � �1>(x � 2)22
3

f(0) � 0, f(1) � 0

(�q, q).f ¿(x) 7 0

A13 2, 13 4By � �x � 3

dy

dt
� �

x
y
 
dx

dt

y � e24 � x2, �2 	 x 6 0
�24 � x2, 0 	 x 6 2

y � 1 � 1x � 2
�2x � 3

x4

2x � 1

22x2
� x

, �
2x � 1

22x2
� x

�2
(y � x)3

y3
� 2x2

y5(8, 4)

(�15, 215), (15, �215)

(1, 2), (�1, �2)y �
1
2

x �
1
2

�
p

4
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.54.34

65. b) c)

.91.71

.32.12

25.

.92.72

.33.13

.73.53 13>3sen 1 x cos 1 x constante

2x(1 y2)

1 2y 2y3

2x sec 2(sen 1 x2)

21 x4

4 sen 4x

sen 4x

1
t2 1

3ax2 9 tan 1x
3
b2a2x

27
9 x2b

2 x

21 x2
cos 1 x

2x

(1 x4)(tan 1 x2)2

2(cos 1 2x sen 1 2x)

21 4x2(cos 1 2x)2

1
1 x

tan 11x

1x

x 617 15.87  pies
4(252 x2)

(x2 252)2 16x2

sen y

(1 cos y)3

25
y3

.32.12

29.

.53.33

.34.14

.7.5

.11.9

.51.31

.91.71

.53.33 sec x
1

2x2 1

1

4x2ln1x

1 ln x

x ln x

1
x(ln x)2tan x

1
x(x 1)

1 ln x

x2

3x 6x ln x
4x3 6x

x4 3x2 1

yexy sen exy

1 xexy sen exy

e x y

1 ex y

4e2x cos e2x 4e4x sen e2x4ex2

(2x3 3x)

(ln 3, 3)

ex2x2 1(2x2 1)

2x2 1
sec2 ex e x tan ex
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RE
SP

U
ES

TA
S 

D
E 

LO
S 

PR
O

B
LE

M
A

S 
IM

PA
RE

S,
 U

N
ID

A
D

 5

43. 45.

51.

53.

55.

57.

59.

Problemas 4.11

Competencia final de la unidad 4

A. 1. falso 3. falso

5. verdadero 7. verdadero

9. verdadero 11. verdadero

13. falso 15. verdadero

17. falso 19. verdadero

B. 1. 0 3.

5. 7.

9.

13. 15.

C. 1.

3.

5.

15. 17.

35.

37. 39.

41. 43.

45. 47.

53. a) b)

55.

Problemas 5.1

1.

3.

5. �
15
4

, 0; 17, 2; 17, 2; �128, �2

18, 6; �23, 1; 23, 1; 18, �6

�1, 19; �2, 18; 2, 18; 8, 8

y � 13x �
13
2

, y � �13x �
13
2

4, �2, �2(2, 0), (2, �1), (2, 1)

0, 2p>3, p, 4p>3, 2p(4, 2)

y � 6x � 9, y � �6x � 9y �
1
3

x �
2

27
, y �

1
3

x �
2

27

ex
� y2

2xy � ey

1
4

4
x � 5

�
3

2 � x
�

10
x � 8

�
2

6x � 4

�xe�x�4x2

21 � x2

x2(x4
� 16)1>4(x3

� 8)�2>3
� x3(x4

� 16)�3>4(x3
� 8)1>310(t � 2t2

� 1)9 (1 � t (t2
� 1)�1>2)0.08x�0.9

(1, 5)a � 6; b � �9

23

�3y � �
5
4

x �
3
2

�
1
4

y

x

1

1

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

(e�1, e�e�1

);

y � 3x � 2

(x3
� 1)5(x4

� 3x3)4

(7x � 5)9 c 15x2

x3
� 1

�
16x3

� 36x2

x4
� 3x3 �

63
7x � 5

d
1(2x � 1)(3x � 2)

4x � 3
c 1
2x � 1

�

3>2
3x � 2

�
4

4x � 3
d

x(x � 1)x c 1
x

�
x

x � 1
� ln (x � 1) d

y � xy

2xy2
� x

y

2xy2
� x

.93.73

.94.74

65. b) un intervalo es  67.

1.

.5.3

7.

9.

11.

.51.31

.91.71

.32.12

25.

27.

29.

.53.13

.93.73

.34.14

.74.54

49. (b) c) 56 m/syter 1mg>k
3

2cosh 1 6x236x2 1

1

x21 x2 sech 1 x

1

x221 x2

sech 1 x

x2

3x3

2x6 1
senh 1 x3

sec x
2x

1 (1 x2)2

3

29x2 1
2 sech 2 x tanh x

(0, 2), ( 2, 2 cosh 2 4 senh 2), (2, 2 cosh 2 4 senh 2)

y 3x

cos t cos t senh 2t 2 sen t cosh 2t

(1 senh 2t)2

esenh t cosh t
ex 1

(1 cosh x)2

4 tanh 4x
2
3

(x cosh x) 1>3(1 senh x)

3 senh2 x cosh x2x2 senh x2 cosh x2

3 senh 2x senh 3x 2 cosh 2x cosh 3x

3 senh 3x csch 2(cosh 3x)

6(3x 1) sech(3x 1)2 tanh(3x 1)2

1
2

x 1>2 sech21x10 senh 10x

sech x 215>5, csch x 2
cosh x 15>2, tanh x 15>5, coth x 15,

4 4 ln 4 1.55(p, 2p)

xsen x c sen x
x

(cos x) ln x d2x x2y y3

x3 xy2 2y

2 2 ln x

x2

2
x3

11.

.91.71 catenaria

7.

9.

.31.11

.12.91

23.

25.

.92.72

.33.13 4esen 2x(cos 2 2x sen 2x)
120
t6

405
811 3x

3x2ex3

cosh ex3

ex cosh 1 x c x2

2x2 1
x cosh 1 x 1 d

1

2(sen 1 x)2 121 x2

1
x

2
4x 1

7x6 7x(ln 7) 7e7x

1
(cot 1 x)2(1 x2)

3

x2x2 9

10x3 sen 5x cos 5x 3x2 sen2 5x

16x sen 4x 4 sen 4x 4 cos 4x

(4x 1)2

1
x (ln 10)

16F¿(sen 4x)sen 4x 16F–(sen 4x)cos2 x



7.

9. a) b)
11. a) b) 15 c)

13. reducción de velocidad en los intervalos de tiempo
aumento de velocidad en los intervalos de

tiempo 

15. reducción de velocidad en el intervalo de
tiempo aumento de velocidad en el intervalo de tiem-
po 

17. reducción de velocidad en el interva-
lo de tiempo aumento de velocidad en el intervalo de
tiempo 

19. reducción de velocidad en
los intervalos de tiempo aumento de velocidad
en los intervalos de tiempo 

21.

23.

27.

29. frenándose en los intervalos de
tiempo (a, b), (d, e), (f, g); aumen-
tando la velocidad en los intervalos
de tiempo (c, d), (e, f )

Problemas 5.2

7. 9.

11. 13. 1

15. 17.

39. a)
b)

53. b)

Problemas 5.3

9. f no es diferenciable sobre el intervalo

13. 15.

17. f no es continua sobre el intervalo

19. 21.

23. f no es continua sobre [a, b]

25. f creciente en f decreciente en 

27. f creciente en f decreciente en 

29. f creciente en y f decreciente en 

31. f creciente en [3, q); f decreciente en (-q, 0] y [0, 3]

[0, 2][2, q);(�q, 0]

(�q, �3][�3, q);

(�q, 0][0, q);

c � 1 � 16c �
9
4

c � 113c � 3

0, p>3, p, 5p>3, 2p

c2, c5, c6, c7, c8, c9

c1, c3, c4, c10

�2, �
11
7

, 1
3
4

4
3

, 2

�1, 6
3
2

positiva negativa

cero cero

positiva positiva

positiva negativa

negativa negativa

negativa positiva

0 1
s

y (t) � e�t(�t3
� 3t2), a(t) � e�t(t3

� 6t2
� 6t);

0 1�1
s

0�4
s

y (t) � 1 � 2t�1>2, a(t) � t�3>2;
0 30�20

s

y (t) � 12t3
� 24t2, a(t) � 36t2

� 48t;

0 10�40
s

(2, 3);(0, 1),
(�2, 0), (1, 2);

y (t) � 6t2
� 12t, a(t) � 12t � 12;

0 3�6
s

(2, 5);
(�1, 2);

y (t) � 2t � 4, a(t) � 2;

0 10
s

(0, 3);
(�1, 0);

y (t) � 2t, a(t) � 2;

(�3, 0), (3, q)
(�q, �3), (0, 3);

�4, 8�612, 612
� 8, 8�6, 6

1, 
1
2

; 1 � p, 1; p � 1, 1; 0, p2
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25.

31. a)

b) 42 pies

33.

35. la coordenada y es decreciente81p  pies/s;

6412  pies/s; 16  pies/s2

y 7 0 en [0, 3
2B, y 6 0 en A32, 1

4 (6 142 B]

y (t)
p

2
cos
p

2
t, a(t) Qp

2
R2sen

p

2
t;

1. a)

b)

c)

d)

3. a)

b)

c)

d)

5. a) no extrema
b)

c)

d) no extrema

.12.91 2

23.

25.

27.

29.

31. máx. abs. f (2) 16, mín. abs. f (0) f (1) 0

máx. abs. f (3) 8, mín. abs. f ( 4) 125

máx. abs. f (0) 2, mín. abs. f ( 3) 79

máx. abs. f (8) 4, mín. abs. f (0) 0

máx. abs. f (3) 9, mín. abs. f (1) 5

2np, n un entero

máx. abs. f (p>3) 13, mín. abs. f (0) 0
máx. abs. f (p>4) 1, mín. abs. f ( p>4) 1

máx. abs. f (5) 5
mín. abs. f (2) 4
máx. abs. f (1) f (3) 3, mín. abs. f (2) 4
máx. abs. f (4) 0, mín. abs. f (2) 4

máx. abs. f (4) 0, mín. abs. f (1) 3
no extrema
máx. abs. f (7) 3, mín. abs. f (3) 1
máx. abs. f (2) 2, mín. abs. f ( 1) 5

33.

35.

37.

c)

d)

41. a) b)

c)

.3.1

.7.5

11. f (a) 0 y f (b) 0, así, f (a) f (b)

c p>2, p>2,  o 3p>2c
2
3

f ( 3) 0 pero f ( 2) f ( 3)c 0

máx. abs. f (p) 3, mín. abs. f (p>3) f (5p>3) 3
2

s(10) 1 600s(t) 0 sólo para 0 t 20

máx. rel. f (c3), f (c5), f (c9), mín. rel. f (c2), f (c4), f (c7), f (c10)
mín. abs. f (c7), punto extremo máx. abs. f (b)

mín. abs. f ( 1) f (1) 1
punto extremo máx. abs. f (3) 3, máx. rel. f (0) 0,

mín. abs. f (0) f (p>4) f (p>2) f (3p>4) f (p) 3
máx. abs. f (p>8) f (3p>8) f (5p>8) f (7p>8) 5,

mín. abs. f (p>2) f (3p>2) 3
máx. abs. f (p>6) f (5p>6) f (7p>6) f (11p>6) 3

2,
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33. f decreciente en (-q, 0] y [0, q)

35. f creciente en (-q, -1] y [1, q); f decreciente en
[-1, 0] y [0, 1]

37. f creciente en f decreciente en y

39. f creciente en f decreciente en 

41. f creciente en y f decreciente en 

43. f creciente en f decreciente en
donde n es un entero

45. f creciente en f decreciente en 

47. f es creciente en 

49. si el motociclista viaja a la velocidad límite, no habrá recorri-
do más de 65 mi

Problemas 5.4

1. máx. rel. ; 3. máx. rel. ,
mín. rel.

5. máx. rel. 7. sin extremos;

mín. rel. 

9. mín. rel. 11. mín. rel.

13. máx. rel. 15. máx. rel. 

mín. rel. mín. rel. 

17. máx. rel.  19. máx. rel. 
mín. rel.

mín. rel. 

21. máx. rel. 23. máx. rel. 
mín. rel. 

25. máx. rel. 27. máx. rel. 

mín. rel. 
mín. rel. 

29. mín. rel. 

31. mín. rel. máx. rel. 

33. 35.
y

a b
x

y

a
x

y

x

f (�1) � 4e;f (�3) � 0,

x

y

50

�2 2

f (2) � � 8.64;

y

x

10

10

y

x

f (8) � �16;
f A�12

2 B � �
1
2;

f (�8) � 16,f A12
2 B � 1

2,

y

x

y
10

x

f (�2) � f (2) � 0;
f (0) � 13 16,f (0) � 10;

y

x

y

x

f (�13) � �
213

9
;

f (1) � 2;
f A13 B � 213

9
,f (�3) � �6,

y

x

y

x

f (1) � �1;f A32B � �
81
16;

f (0) � 0,f (0) � f (3) � 0,

y

x

y

x

f (0) � 0;f (�1) � �3;

y

x

y

x

f (2) � 0;

f A23B � 32
27,

y

x

y

x

f (1) � �2;
f (�1) � 2f (1) � 2

(�q, q)

(�q, 0][0, q);

[p>2 � 2np, 3p>2 � 2np ] ,
[�p>2 � 2np, p>2 � 2np ] ;

[1, 3][3, q);(�q, 1]

[0, q)(�q, 0] ;

[2, 212]
[�212, �2][�2, 2] ;

61. c 0.3451 radianes



37. 43. mín. rel. 

45. a) n un entero
b) n un entero; máx. rel. es 

mín. rel. es 
c)

Problemas 5.5

1. cóncava hacia abajo en 

3 cóncava hacia arriba en cóncava hacia abajo en

5. cóncava hacia arriba en (-q, 2) y (4, q); cóncava hacia
abajo en 

7. cóncava hacia arriba en cóncava hacia abajo en

9. cóncava hacia arriba en cóncava hacia abajo en

11. cóncava hacia arriba en (-q, -1) y (1, q); cóncava hacia
abajo en

13. respuestas aproximadas: creciente en decre-
ciente en (-q, -2) y (2, q)

15. respuestas aproximadas: creciente en y 
decreciente en 

19.

21. n un entero

23. n un entero

25.

27. máx. rel. 29. punto de inflexión: 

31. máx. rel. mín. rel. puntos de inflexión: 

33. máx. rel. mín. rel. 

puntos de inflexión: 

35. máx. rel. 

37. mín. rel. 

puntos de inflexión: 

39. máx. rel. 
mín. rel. 
puntos de inflexión: 

41. máx. rel. máx. rel. 
puntos de inflexión: 

y

x
2�

�

(3p>4, 0), (7p>4, 0);
f (5p>4) � �12;f (p>4) � 12,

y

x
2�

�

(9p>6, 0), (11p>6, 0);
(5p>6, 0), (7p>6, 0),(p>6, 0), (p>2, 0),

f (5p>3) � �1;f (p>3) � f (p) �
f (2p>3) � f (4p>3) � 1,

y

x

(1>2, 3>24>3);(0, 0),

f A�1
4B � �3>44>3;

y

x

f (0) � 3;

x

y

(0, 0), A�16, �16
8 B, A16, 16

8 B;
f (�12) � �

12
4 ;f (12) �

12
4

,

x

y

(0, 0), A�12
2 , 712

4  B, A12
2 , �712

4 B;f (1) � �4;f (�1) � 4,

x

y

x

y

(�1, 0);f A52B � 0;

(2, 2 � 2e�2)

(np, np),

(np, 0),

(�12, �21 � 12), (12, �21 � 12)

(�1, 3)f ¿
(3, q);(�q, �1)f ¿

(�2, 2); f ¿f ¿

(�1, 1)

(�q, 0)
(0, q);

(0, q)
(�q, 0);

(2, 4)

(2, q)
(�q, 2);

(�q, q)

y

x

1

�

2
�

�

2
3�

2
�

f (0) � f (p) � . . . 0
f (�p>2)� f (p>2) � . . . 1,np>2,

(np, p>2 � np), (p>2 � np, p � np),

f ¿(�2) � �13

a

b
c

y

x
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43. máx. rel. 

45. máx. rel.  47. mín. rel. 

Problemas 5.6

1. 3.

25. 27.

29. a) b)

31.

43.

45. a) aumenta b) aproximadamente 2.8% por día

47. a) 24 000 kg km/h2 b) 2 023 100 kg km/h2

Problemas 5.7

1. 30 y 30 3.

9. 11. altura 1

13. (4, 0) y (0, 8) 15. 750 pies por 750 pies
17. 2 000 m por 1 000 m
19. el jardín debe ser rectangular con 40 pies de largo y 20 pies de

ancho
21. base 40 cm por 40 cm, altura 20 cm

27. 10 pies del poste de la bandera al lado derecho

29. radio de la porción circular ancho 20�(4 +p) m,
altura de la porción rectangular 

37. volar al punto 17.75 km desde el nido

39. costo mínimo cuando 

41.

43. longitud mínima cuando x = 6.375 pulg

45. cuadrado con longitud de lado 

47. longitud de la sección transversal ancho de la sección
transversal 

49. del foco con iluminancia I1

53.

55. a)

b)

65. Debe nadar del punto A al punto B alrededor de 3.18 millas
desde el punto en la playa más cercano a A, y después seguir
directamente a C.

67. a)

c)

d)

f)

Problemas 5.8

1. 3.

5. 7.

17. 19.

21. 23.

25. 16 27.

29. 31.

33.

35.

37.

39.

43.

45. a) b) 47. a) b) 8p cm29p cm2
�2.91.11

¢y � �
¢x

x(x � ¢x)
; dy � �

1
x2 dx

¢y � 2(x � 1)¢x � (¢x)2; dy � 2(x � 1) dx

¢y � 2x ¢x � (¢x)2; dy � 2x dx

L(x) � 4 � 2(x � 1); 4.08

1
2

�
13p
120

� 0.54530.4

0.325

0.960.7

11.60.98

L(x) � 2 �
1
4

 (x � 3)L(x) � x � 1

L(x) � 1 � 2 Qx �
p

4
RL(x) � 3 �

1
6

(x � 9)

x � 3.1955

L � x � 21 � (4 � x)2
� 24 � (4 � x)2

x � 4 �
2
3
13

L � x � 224 � (4 � x)2

y

x

L

w0L
4>384EI

�
1
8

50
11 m

16d>3 13d>3,

(a � b)>12

r � 13 9, h � 213 9

x �
4
13

10>(4 � p) m
10>(4 � p) m,

base 32,A43, �128
27 B

1
2

dR

dt
�

R2

R2
1

 
dR1

dt
�

R2

R2
2

 
dR2

dt

5
32p

 m>min

500 mi/h50013 mi/h

8p
9

 km/min�360  mi/h

813 cm2/h
dV

dt
� 3x2 

dx

dt

f (p) � 0f (p>4) �
1
2

y

x

f (e) � e;

.7.5

23.

25. ancho 15 cmaltura 15
2  cm,

base 80
3  cm por 80

3  cm, altura 20
3  cm; máx. vol. 128 000

27  cm3

(2, 213), (2, 213); (0, 0)
1
3

 y
2
3

.7.5

.11.9

13. a) b)

.91.51 17 nudos

.32.12 15 rad/h

33. a) b)

c) aproximadamente 

35. a) c) 0.035 pie/min

.14.93 668.7 pies/min
1
3

 pulg2/min

16513
4

71.45 min;
13
10

 pie/min

0.0124 pie/min

1
12p

 pie/min
1

4p
 pie/min

5
4

 pies/s

1
12

 pies/min

4 pies/s1 pie/s

4
9

 cm2/h6 o 6

dx

dt
s cos u

du

dt
sen u

ds

dt

4
3

pulg/h

x x� �y dy y � dy�

2 1 25 20 5

2 0.5 11.25 10 1.25

2 0.1 2.05 2 0.05

2 0.01 0.2005 0.2 0.0005

41.

49. nemulov lese otcaxe nemulov le
aproximado es

.55.15 2 048 pies; 160 pies6 cm2; 0.06; 6%

(0.1024)p pulg3dV 4pr2t, donde t ¢r;
¢V 4

3p(3r2t 3rt2 t3);

¢y cos x sen ¢x sen x (cos ¢x 1); dy cos x dx

.33.13

35. radios 23 16>p, altura 223 16>p radios 16>3, altura 4L 20.81 pies



57. a) mínimo en el ecuador máximo en el polo norte

b) c)

59. 0.0102 s

Problemas 5.9

1. 0 3. 2

5. 7. 10

9. 11.

13. 15.

17. no existe 19.

21. 23. 0

25. 27.

29. 31.

33. 35. no existe

37. 39. 3

41. 43.

45. 47.

49. 51.

53. 55.

57. 59. El denominador

es 

61. 63.

65. 67.

69. no existe 71.

73. 75.

79. 0

Competencia final de la unidad 5

A. 1. falso 3. falso

5. verdadero 7. falso

9. verdadero 11. verdadero

13. verdadero 15. falso

17. verdadero 19. falso

B. 1. la función velocidad

5. 0 7. 2

9.

9. b)

11. máx. rel. f (-3) = 81, 13. máx. rel. f (0) = 2, 
mín. rel. f (2) = -44; mín. rel. f (1) = 0;

15. mín. rel. f (0) = 0, puntos de inflexión: 

17. punto de inflexión:  19. c), d)

21. c), d), e) 23. c)

25. 27. 32 pulg2/min

31. y = h; la distancia máxima es h

39. 41.

43. 45.

47.

Problemas A.1

1. 3.

5. 10, 100, 1 000, 10 000, . . . 7.

9.

15. 0 17. 0

19. 21. la sucesión diverge

23. la sucesión diverge 25. 0

27. 0 29. la sucesión diverge

31. 0 33.

35. 1 37. 6

39. 1 41. 1

45. 0

47. converge a 1

49. diverge 51. converge a 0

53. 55.

57. 8 59. an�1 �
5

n � 1
 an, a1 � 5

3, 1, 
1
3

, 
1
3

, p�
1
2

, �
1
4

, �
1
8

, �
1

16
, p

e 2
3n�1 f ,{(�1)n�1(2n � 1)},

e 2n
2n � 1

f ,

5
7

1
2

1, 1 �
1
2

, 1 �
1
2

�
1
3

, 1 �
1
2

�
1
3

�
1
4

, p

2, 4, 12, 48, p

�1, 
1
2

, �
1
3

, 
1
4

, p
1
3

, 
1
5

, 
1
7

, 
1
9

, p

�q

e�11

�2813p>9
1
2

(a � b � c)>3
(3, 10)

(�3, 27), (�1, 11)

y

x

y

x

a, b, (a � b)>2
s

0 40

2x¢x � ¢x � (¢x)2

1
2

00; 1

1q; e�1>3q � q;

0 . q; 50 . q; 1

0 . q; 0q � q; 
1
5

0 . q; 
1
4

00; 1

1q; e3q0; 1

0 . q; 
1
4

q � q; 
1
24

q � q; 000; 1

0 . q; 1q � q; �
1
2

1
9

�1

�
1
8

�2

q1
3

2e4

1
2

1
6

7
5

1
2

�6

2
3

0.07856 cm/s2981.9169 cm/s2
(u � 90° N)

(u � 0°);
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3.

C. 1.

3. mín. abs. f (0) 0máx. abs. f (3) 9
7,

mín. abs. f (4) 86máx. abs. f ( 3) 348,

y tan 1 x

81. a) b) 0 c)

83. b) p1y1 ln(y2>y1)

50
3

A(u) 25
u 1

2 sen 2u

u2

7. vel. máx. y (2) 12, rapidez máx. 0y ( 1) 0 0y (5) 0 15;

.34 ln
4
3

33. x 195 pies, y 390 pies; 57 037.5 pies2
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61. converge a 0 63. converge a 0

69.

71. 32

Problemas A.2

1. creciente 3. no monótona

5. creciente 7. no creciente

9. creciente 11. no monótona

13. acotada y creciente 15. acotada y creciente

17. acotada y decreciente 19. acotada y decreciente

21. acotada y creciente 23. acotada y decreciente

25. 10 27. 7

Problemas A.3

1. 3.

5. 7.

9. 11. 1

13. 15.

17. 19. diverge

21. 9 000 23. diverge

25. 27.

51. 18.75 mg

Problemas A.4

1. converge 3. converge

5. diverge 7. converge

9. converge 11. converge

13. diverge 15. converge

17. converge 19. diverge

21. converge 23. diverge

25. converge 27. converge

29. converge 31. diverge

33. converge

35. converge para diverge para 

Problemas A.5

1. converge 3. diverge

5. diverge 7. diverge

9. converge 11. converge

13. converge 15. diverge

17. converge 19. converge

21. converge 23. converge

25. diverge 27. converge

29. diverge 31. diverge

33. converge 35. diverge

37. converge 39. diverge

Problemas A.6

1. converge 3. diverge

5. converge 7. diverge

9. converge 11. converge

13. converge 15. diverge

17. converge 19. diverge

21. converge 23. converge

25. diverge 27. converge

29. diverge 31. converge

33. converge para 

35. converge para todos los valores reales de p

39. utilice la prueba del cociente

Problemas A.7

1. converge 3. diverge

5. converge 7. converge

9. converge 11. converge

13. diverge 15. condicionalmente conver-
gente

17. absolutamente convergente 19. absolutamente convergente

21. absolutamente convergente 23. divergente

25. condicionalmente convergente 27. divergente

29. condicionalmente convergente 31. absolutamente convergente

33. divergente 35.

37. 5 39.

41. menor que 

43. la serie contiene signos algebraicos mixtos pero los signos no
se alternan; converge

45. los signos algebraicos no se alternan; converge

47. no se satisface para k suficientemente grande. La
sucesión de las sumas parciales es la misma que la suce-
sión de las sumas parciales para la serie armónica. Lo anterior
implica que la serie diverge.

49. diverge 51. converge
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29. 4 31. x 7 1 o x 6 -1

33. 35.
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41. a)

Problemas A.9

1.

3.

5. 7.

9.

11.

13.

15.

17.

21.

23.

25.

27.

29.

31.
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Inecuación. Véase Desigualdad
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Intersecciones, 25, 44-46, 51
de las funciones polinomiales, 44-45
x, 45

de polinomios, 45
Intervalo 
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Optimización, 247-252

directrices para resolver problemas de, 248-249

P

Parábola, 31
eje de la, 43
forma normal, 43
vértice de la, 43

Paradoja de Zenón, 306
Parte

entera, 90
fraccionaria de x, 40

Pendiente, 41
de la curva, 135
de rectas secantes, 134

Periodo, 50, 52
Pisano, Leonardo. Véase Leonardo Fibonacci
Polinomio 

cero, 40
de Taylor de f en a, 338

Polinomios
de Legendre

función generadora de los, 350 
de Taylor, 340-341, 344

aproximaciones utilizando, 341-342
gráficas de, 340-341
(Redux), 344

Posición de equilibrio, 176 
Potencia entera no negativa, 40
Potencias

reglas de, 150, 162, 180
Principio de Fermat, 257, 279
Producto 

de dos números, 75-76
de la derivada de la función externa, 172
regla del, 159

Promedio. Véase Media aritmética
Prueba

de comparación, 310-314
del límite, 312-313
directa, 310-311, 313-314

de la derivada para creciente/decreciente, 226
de la raíz, 316, 323
de la recta horizontal, 58
de la recta vertical, 24
de la serie alternante, 318-319
de las proporciones, 315-316, 322
del único número crítico, 233
para crecimiento/decrecimiento, 225-227
para una serie divergente, 301

Punto 
crítico, 219, 462
de inflexión, 235-236
frontera

extremo de un, 217
Puntos

de inflexión, 239
“huecos”, 10
“sólidos”, 10

R

Radicando, 23
Radio de convergencia

R = 0, 326
R = q, 326-327
R 7 0, 327

Raíz, 25
Ramanujan, Srinivasa, 317
Rango, 22

salida de la función, 22
Rapidez, 212

media. Véase Velocidad media
Razón 

áurea, 291
común, 298
de cambio media, 138

de la función, 138
instantánea de la función, 138-139, 148

Razones de cambio, 239-247 
Rearreglo de términos, 323
Recorrido horizontal. Véase Cambio en x
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Recta, 31
horizontal, 58

prueba de la, 58
indefinida, 41
normal, 154
paralela, 42
perpendicular, 42
real, 6
tangente, 134

a una gráfica, 134
con pendiente, 134
vertical, 137

Rectas, 40-41
ecuaciones de, 41-42
paralelas, 42-43
perpendiculares, 42-43

Reflexión, 35
Reflexiones, 35-36, 59, 182
Regla 

de la cadena, 169-176
de la función constante, 151
de la multiplicación por constante, 152
de L’Hôpital, 267-273, 285
de potencias, 151, 162, 197

para funciones, 169-170, 180, 240
demostración de la, 172

del cociente, 160-161
del producto, 159-161

Reglas de suma y diferencia, 152
Residuo, 310

forma de Lagrange del, 338
Resistencia, 246
Resonancia pura, 274
Restricción, 76, 248, 250

problemas con, 250
Rolle, Michel, 227

S

Secante, 51
hiperbólica, 199
inversa, 185

Semicírculo
inferior, 26
superior, 26

Seno
hiperbólico, 199
inverso de x, 61

Serie, 296
absolutamente convergente, 321
alternante, 318-320

aproximación de la suma de una, 320
cota de error para una, 320
prueba de la, 318

armónica, 301
alternante, 318

convergente, 298
de Maclaurin de f, 336, 344
de potencias

centrada en a, 325
centro a. Véase Serie de potencias centrada en a
diferenciación de una, 329

empleo de la aritmética de una, 343
en x, 325
en x – a, 325
forma de una, 336
integración de una, 329-330
representación de f en, 330-333

de Taylor, 335-346
centrada en a. Véase Serie de Taylor de f en a
de f en a, 336
para una función f, 336

del binomio, 346-348
divergente, 298

prueba para una, 301
geométrica, 298
hiperarmónica. Véase Serie p
infinita, 296
múltiplo constante de una, 302
p, 308

convergencia de la, 309
suma de la, 298
telescópica, 298

Series, 296-350
alternantes, 318-325
convergentes

suma de dos, 302
de Maclaurin, 340, 346

intervalos de convergencia de las, 340
de potencias, 329-332

aritmética de, 333-334
representación de funciones mediante, 329-335

Signos algebraicos, 213
significado de los, 213

Símbolos 
de desigualdad estricta, 8
de desigualdad no estricta, 8
de infinito, 114

Simetría, 37-38, 44
Sistema de coordenadas cartesianas o rectangulares, 24
Solución, 25. Véase también Raíz
Sucesión, 282

acotada, 293
por abajo, 293
por arriba, 293

convergente, 282-284
de constantes, 284
de sumas parciales, 297
de valores absolutos, 288
definida recursivamente, 287
diverge, 283

a infinito, 284
negativo, 284

por oscilación, 284
finita, 282
infinita, 282
límite de la, 283, 285-286
monótona

creciente, 292
decreciente, 292
no creciente, 292
no decreciente, 292

no acotada, 293
términos de la, 282
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Sucesiones, 282-296
de la forma 
{r¿}, 286
{r–}, 286
monótonas, 291-296
propiedades de, 285-286

Suficientemente próximo, 124
Suma

de una serie convergente y una divergente, 302 
de una serie geométrica, 299
parcial n-ésima, 297

Supremo, 9
Sustitución, 112

uso de una, 112-113

T

Tangente, 51, 134
hiperbólica, 199
horizontal, 146
inversa, 185
que puede no existir, 137
vertical, 146

Tangentes
horizontales, 145 
verticales, 137, 146

Taylor, Brook, 344
Teorema

de compresión, 109, 287
de Rolle, 223-227
de Taylor, 337-338
del binomio, 346-347
del emparedado. Véase Teorema de compresión
del juego de compresión. Véase Teorema de compresión
del pellizco. Véase Teorema de compresión
del valor extremo, 217
del valor intermedio, 105
del valor medio, 223-228

ampliado, 268
para derivadas, 223-225

los dos soldados, 109
Término 

constante, 40

general, 282, 296
n-ésimo, 282
primer, 282
segundo, 282

Términos positivos, 307
Tractriz, 206
Transformación,

no rígida, 34, 36
rígida, 34
y gráficas, 52-55

Traslaciones 
hacia abajo, 34
hacia arriba, 34
hacia la derecha, 34
hacia la izquierda, 34

Trayectorias ortogonales, 181
Tricotomía

ley de, 8

V

Variable 
dependiente, 22
independiente, 22

Velocidad 
instantánea, 139
media, 138-139, 192
terminal, 206

Valor, 22 
absoluto, 12

de un número real, 15
propiedades del, 16

Velocidad
media, 212 

W

Weiertrass, Karl, 5, 129, 148
Whewell, William, 129

Z

Zenón de Elea, 306
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